
•
Introduction to Low Resolution

How to draw lines, create shapes, animate figures, prepare charts
- for business or pleasure.

s SCELBI Publications

Introduction
to Low Resolution

~llt~~Wll<C~

By Nat Wadsworth

SCELBI Publications
20 Hurlbut Street, Elmwood, CT 06110

Copyright © 1979
Scelbi Computer Consulting, Inc.

20 Hurlbut Street
Elmwood, CT 06110

ALL RIGHTS RESERVED

IMPORTANT NOTICE

No part of this publication may be reproduced, transmitted,
stored in a retrieval system, or otherwise duplicated in any form or
by any means electronic, mechanical, photocopying, recording or
otherwise, without the prior express written consent of the copy
right owner.

The information in this manual has been carefully reviewed
and is believed to be entirely reliable. However, no responsibility is
assumed for inaccuracies or for the success or failure of various
applications to which the information contained herein might be
applied.

Foreword.,

There are lots of small computers available today that are capa
ble of displaying information graphically in at least a low resolution
mode. This means that information can be summarized by a com
puter and placed in a visual format that is entertaining to people.

Alas, while this capability is provided, it appears that few
people are using it. This is a shame. Why isn't the average user of a
small personal computer capitalizing on this power? I hope it is be
cause they have simply not been introduced to the easily understood
techniques that may be used to produce graphic displays on their
machines.

The purpose of this publication is to get users started utilizing
low resolution graphics as a means to liven up the interface between
people and computing machines. Only the simplest of techniques are
presented here to get across the fundamentals. Once mastered, the
enthusiastic initiate can call on his or her own artistic talents to fur
ther the craft. Indeed, much of the fun of computer graphics is that
the personal tastes and preferences of the individual programmer can
be expressed on the video screen.

Right now there are thousands of individuals dabbling in the
area of creating programs that utilize low resolution graphics. We
shall really start to make progress when there are hundreds of thou
sands of people who are comfortable with the art.

I urge you to get started now. To enjoy the thrill of being a pio
neer in an exciting area of the application of small computers serving
individual people. An area where the creative talents of individuals
can do much to advance the art as a whole. Low resolution graphics
capability has much to offer. Use it for all it is worth.

Nat Wadsworth

September, 1979

ACKNOWLEDGEMENT

I would like to thank all the people at SCELBI Publications for
their continued dedication to excellence in an area of publishing that
is most demanding. Their technical and production people are most
helpful in working with me to get my manuscripts and programs ac
curately reproduced in book form.

Julie MacGregor at SCELBI must receive special accolades for
her tireless devotion to getting this book into production in a very
short amount of time.

J

Contents

Introduction Page 1

I Getting Started Page 9

2 A Whole Chapter on Math Page 15

J Drawing Simple Shapes Page 19

4 Drawing Lines Page 21

5 A Graphics Library Page 31

Index Page 11

Introduction

Many small computer systems sold today have at least a limited
form of graphics capability. The Commodore PET, the Radio Shack
TRS-80 and the APPLE II, for instance, are all able to at least display
or "plot" at a designated point in a display matrix. (Some of these
units, with appropriate software, can provide much more complex
types of graphics capability.)

Because a machine is capable of doing something doesn't mean
that it is going to do it! People have to know several things before a
personal computer is going to utilize its graphics capabilities ef
fectively. They have to know how the machine does it and they have
·to tell the machine to do it! It seems that we are in the stage of
personal computer use where not too many people understand how
to utilize a small system's graphics capability. I hope to change that
a little bit through this publication!

The discussion ~hat follows will be aimed at showing users how
a computer, equipped with what is commonly referred io as "low
resolution" graphics capability, can be programmed to provide in
teresting and entertaining displays. This will be done here by devel
oping a specific "game" program in a step-by-step manner that is
fashioned around simple graphics effects.

What do I mean by "low resolution" ·graphics? I mean any
system (such as an APPLE II, Commodore PET or Radio Shack
TRS-80) that is capable of controlling the display on a television,
video monitor or other typ(, of cathode-ray-tube device so that it
causes a "point" in a matrix to be on or off or light up with one
color or another. To be "low resolution" it is assumed that the num
ber of points in the matrix is on the order of a few thousand points
or less. For instance, an APPLE-II .3ystem when operating in the
normal low resolution graphics mode has a display matrix that con-

Learning By Doing

''Because a machine is
capable of doing some
thing, doesn't mean that
it is going to do it!"

Introduction 7

" ... you will have the
knowledge to allow you to

be 'graphics boss' of your
own machine."

8 Introduction

sists of 40 points in the X direction and 40 in the Y direction for a
total of 1600 points on the screen.

What type of game will we be developing in this publication?
Well, it is a game of football. An interactive game of football that
pits a person against the well designed capriciousness of a computer.
A game of football that entertains the player with graphic action,
and yes, one that can include sound effects, too!

More important than the fact that we will develop a " foot
ball" game in this publication is the fact that you will learn how to
form images, then make them move and, if desired, even emit
sounds. With this knowledge you will be in a position to go off on
your own. Then you can create your own animated version of foot
ball or parcheesi. Or, you can create cartoons. Or, if your line is of
a more serious nature, you can chart and draw business graphs or
represent chemical structural diagrams or draw simple electronic
schematics. In other words, you will have the knowledge to allow
you to be "graphics boss" of your own machine. That is what you
really want anyhow, right? Then keep reading on.

Chapter 1

Getting Started

There is the old story of the army sergeant who was reviewing and
attempting to discipline a group of new recruits. He had them all
lined up for inspection. "Attention!" he bellowed. His greenhorns
nervously stood their straightest. "Now everybody raise their right
foot!" he shouted in preparation for a boot inspection. The
sergeant looked down the long line of raised legs, then his expression
changed to one of disbelief. "All right." he roared, "Who is the wise
guy that has both of his feet up!?"

We don't want that kind of situation here. So, let's start by
making sure that we all understand the basic organization of a
display matrix and the kinds of commands or directives we can use
to control the contents of the matrix.

Figure 1 illustrates a hypothetical matrix of a display that I will
use for initial discussion purposes. You should note that the draw
ing presents a grid composed of 16 rows and 16 columns of squares.
There are thus 256 squares in the grid or matrix. In order to talk
about individual squares within this grid it is necessary to designate
some reference point' and correlate our discussions to this point.

A method that has done very well for mathematicians for many
years is to call one side of the grid the "X" side and an adjacent side
the "Y" side. A point along each such designated side can be speci
fied as the zero reference point and all other points along that side
referred to that point.

Now a likely place from common experience to use as a zero
reference point for the grid in Figure 1 would be at the lower left
hand corner of the matrix. Squares could then he designated as being
to the right of the zero point along the X side or axis and towards
the top from the zero point along the Y side.

You will note please, however, that I have not labeled the dia
gram in such a fashion. Rather, the illustration shows a zero ref-

Let's All Start
on the Same Foot

Getting Started 9

Figure 1

0

~o 1 2 3

0

1

2

3

4

5

erence point at the top left-hand corner of the diagram. While this
still allows us to reference points along the X axis to the right of
the starting point, note that along the Y axis we will be going down

(instead of up) from the reference point.
Now why, you may be asking, would I try to confuse you right

at the start like that? I am not trying to confuse you. I am, alas, try
ing to show you how most of the designers of popular cathode-ray
tube (abbreviated CRT hereafter) displays like to refer to the opera
tion of their creations. In the typical system, the electron beam

4 5 6

X=8
Y=7
OR POSITION #120

7 8 9 10 11

15

12 13 14 15 I
15

31

47

63

79

95

X=7
Y=7
OR
POSIT
#119

ION r-6 t--r- 111

7

8

9

10

11

12

13

14

15

2 40

10 Chapter l

X=7, Y=8
OR

t--

J

J

z

POSITION #135

-r=-
z
if

z
T

127

143

. 159

175

191

207

223

239

255

~

X=8
Y=8
OR
POSITION
#136

~
255

sweeps lines from left to right. Each line is placed below the pre
vious one. Thus, it is convenient to start the reference point at what
may seem an unconventional location on the screen. But, that is
how it is, so to stay consistent in this field, that is how I will present
things in our discussions.

To summarize, points on a CRT matrix can be referenced f~om
the upper left-hand corner along aµ "X" axis that increases to the
right and a "Y" axis that increases as we go down.

Thus, in the diagram, we could define the shaded squares in
the center of the matrix to be residing at the four positions: X =7,
Y = 7; X = 8, Y = 7; X = 7, Y = 8 and X = 8, Y = 8.

Aha! But that is not the only way that we could reference
positions of squares within the grid. Another way would be to assign
each square in the grid a number. Some popular small computer
systems do just this. In the example, I have indicated that the squares
in the top row could be designated as boxes 0 through 15. Boxes in
the row beneath it could be referred to by the numbers 16 through
31. In the next lower row they would be numbered 32 through 47.
The bottom row in the diagram would have numbers 240 through
255.

Oh yes, please note in the illustration that I have shown the first
position in a column or row as being position zero. I presume that
anyone reading this publication is familiar with the custom of com
puter users to assign the reference zero to the first address of memo
ry, etc. Thus, I won't do anything more here than to caution you to
watch out and think when we are talking about items versus ref
erencing their positions. Remember, the fifteenth item in a line will
be referenced as being in the fourteenth cell because the first item
will be residing in cell number zero! It gets to be tricky stuff some
times, but again, it is the convention established among computer
users.

"In the typical system, the
electron beam sweeps lines
from left to right."

Remember here that Figure 1 refers to a hypothetical display matrix. Plot It or Poke It
Most systems will have a considerably larger display grid with which
to.work.

Suppose all the points in the diagram of Figure 1 were "turned
off" or "not illuminated" by the computer and we wanted to have
the four shaded squares or "points" on our display lit? The com
puter language of some systems would allow us to do that by mak
ing statements something along the following lines:

PLOT 7,7

Getting Started 11

F
I

"Some systems, such as an

APPLE-II, will allow us to

designate the color of

PLOT 8,7
PLOT 7,8
PLOT 8,8

Or, in general by using a "PLOT X,Y" directive where X and Y rep
resent distances along a corresponding axis.

Some systems, such as an APPLE-II, will allow us to designate
the color (or, in black and white displays, the intensity) of points by
preceding PLOT statements with a color-designating statement, such
as "COLOR=Z ",.where the variable Z represents an allowable number
that specifies a certain color. Thus, with an APPLE-II system, one
could get a blue, orange, green and a yellow square at the four
shaded positions in Figure l by issuing directives along the lines of

points " COLOR=6

12 Chapter l

PLOT 7,7
COLOR=9
PLOT 8,7
COLOR=l2
PLOT 7,8
COLOR=l3
PLOT 8,8

Other systems might require that the illumination of a spot be
indicated by referencing the position's number. Thus, for the exam
ple, one might need to designate instructions such as

ON 119,120,135,136

Still other systems make things just a tad more complicated.
Sometimes it is necessary to directly place data into a specific memo
ry location. The types of displays we are dealing with in this dis
cussion are driven out of sections of memory reserved for such pur
poses. The CRT can be viewed as an image of this section of memo
ry. Indeed, the hardware portion of such a system simply keeps scan
ning the corresponding display memory buffer area and decodes the
data there to turn the display on or off at matching positions on the
screen.

In such systems it is generally necessary to know the memory
address at which the display buffer starts. From that point one adds
a displacement value to reach the location of the byte that is to be
activated. For instance, in a Commodore PET unit, a memory buffer

starts at address 32768. To get the positions in our hypothetical dis
play grid to light up in such a system, we would need to do something
along the following lines: Add the display position number to the
base memory address and place a specific data code into that memo
ry location. What data code? The data code for the type of charac
ter or graphic symbol we want to see displayed! The PET has a
choice of several hundred such symbols. How do you put the data
into the memory location? One such way is to use a BASIC lan
guage "POKE" or equivalent directive.

So, if we wanted to fill the four shaded squares in our exam
ple diagram with a symbol, such as an asterisk (*), we would need
to poke the code for an asterisk (42) into memory locations that
were offset 119, 120, 135and136 units from the CRT buffer's base
address of 32768. Thus, we would need to perform a series of direc
tives such as

POKE 32887,42
PO KE 32888 ,42
POKE 32903,42
PO KE 32904 ,42

Remember, the grid in our example is only 16 by 16 units. Ac
tually poking data into the memory addresses just calculated on a
Commodore PET unit would not result in the four cells being ad
jacent, as the display matrix is larger than 16 by 16 units. It is, in
fact, 40 (X axis) by 25 (Y axis) units. Given this information, as an
exercise can you determine just where in the display the data would
appear if the addresses used in this discussion were actually used?

" ... in a Commodore PET
unit, a memory buffer starts
at address 32768."

In this discussion, what I mean by ''accessing the screen" is simply Accessing the Screen
finding out the status of a display using the computer. (Obviously, I
can find out the status of the display directly by looking at it! Trou-
ble is, I wouldn't be able to manipulate what I saw as fast as I might
like to. The computer can do so much better in that area, so why not
let it?)

This capability is generally provided in the form of instructions
that are sort of the inverse of a POKE or PLOT command. For in
stance, with a Radio Shack TRS-80 unit you can use a statement
"POINT (X,Y)" to determine the display status of a cell. This di
rective will return a zero value if the corresponding position on the
display is turned off (not illuminated). It returns a nonzero value
(such as -1) if the spot is illuminated when the statement is executed.

Getting Started 13

I •

"The opposite of a POKE
statement is the

'PEEK(N)' directive."

14 Chapter l

Note that the POINT statement uses the X and Y axes as references.
This is similar to the method used on the APPLE-II. Here the

statement "SCRN(X,Y)" returns a value from 0 to 15. Each value
represents the color being displayed at the specified matrix position.
The value 0 corresponds to black (or off as it is essentially "no
color"). The other figures represent the various colors the APPLE-II
is capable of generating.

The opposite of a POKE statement is the "PEEK(N)" directive.
Here N stands for the value of an address in memory. The PEEK
statement returns the contents of the memory address specified. In
a system such as the Commodore PET, one can determine the status
of a point in the display by peeking at an address in the display's
memory buffer. Doing so will return a number corresponding to the
character or symbol code being displayed. One or more of these char
acter codes, such as "32" for a "space," represents a "no display"
or unilluminated condition at that point on the CRT!

Chances are your computer system uses one of the types of di
rectives mentioned (or something similar) to activate or deactivate
a position on the screen. At least now we have a common language or
shorthand from which to start a more detailed discussion of develop
ing graphic displays.

Chapter 2

A Whole Chapter on Math

Nothing more complicated than high school algebra is needed in or
der to get started drawing graphic figures. That is all we shall use in
this publication. Of course, if mathematics is your bag, you will un
doubtably see how more sophisticated mathematical principles
could be used to good advantage in various situations. And, indeed, if
you want to graph or draw mathematical functions you will have to
have an understanding of what it is you want to represent. It will be
presumed in such cases, that the reader will be as prepared as one's
interests leads him/her.

Now, as I have said, in order to do just about anything using
graphics, it is necessary to call upon some basic high school algebra
techniques.

For instance, the 8 by 5 block of squares shown in Figure
2 could be referenced using the standard cartesian coordinate

'\

' \.
'

(4,5) (6,2)

(4,1) (6.4)

Math - How Much

Is Really Necessary?

A Whole Chapter on Math 15

"The computer ... 'thinks'
that going down along the

Y axis is a positive direc
tion."

16 Chapter 2

system. Suppose one wanted to move ·the shaded square shown as
residing at (4,1), meaning X = 4 and Y = 1, so that it resided at the
point (6,4) indicated by the arrow. To a viewer not familiar with the
workings of a computer, it would seem that to reach the point (6,4)
one would simply move 2 squares in the positive direction along the
X axis and 3 squares up (positive), along the Y axis from the starting
point at (4,1).

You, however, having read this far, know that to make this
move using the typical low resolution graphing capabilities of the
type we have been discussing, we have to direct the machine to do
something slightly different! Namely, the computer must reference
the move along the Y axis for the example to be negative in direc
tion!

How is that?
(Remember, the computer would start its scan from the top

left-hand square (instead of the bottom left-hand square). The com
puter also "thinks" that going down along the Y axis is a positive
direction. Accordingly, the shaded square to the computer is ref
erenced by the computer as (6,2). To go from the shaded square to
the location pointed to by the arrow, the computer will calculate a
move of 2 squares in the positive direction along the X axis. It will
view the move along the Y axis as being 3 units in the negative di
rection! Study the diagram and review the concepts carefully here
until you are sure you understand the translation! (Note in this
example that the computer begins at (1,1) and not at (0,0) as would
normally be the case. This reference point was chosen to simplify
this illustration.)

Thus, for instance, if the computer had already displayed the
shaded point in the diagram, one could have it display the location
pointed to by the arrow using a statement on an APPLE-II system
such as:

PLOT X+2,Y-3

Note that X and Y in this statement refer to the coordinates of the
last point (the shaded square in the example) displayed by the com
puter.

If one was interfacing with a user who wished to give directions
for the move in reference to the standard cartesian starting point
(bottom right square), one would only have to have the computer
make the simple translation: Change all positive moves along the Y
axis to negative and vice versa. Thus, when the operator said, "Move

3 units in the positive direction along the Y axis," the computer
would translate that to mean, "Move 3 units (still up here!) in the
negative direction."

As discussed earlier, some computer graphing systems do not al
low positions to be simply identified by defining X and Y coor
dinates. Some units assign a number to each square. The number of a
square becomes a function of the number of squares in a row in such
cases. Figure 3 illustrates the same type of move being made as has
been discussed for Figure 2. That is, the location pointed to by the
arrow is 2 units to the right of and 3 units above the shaded square.
In a system that assigned numbers to the squares (beginning in the
top left-hand corner at square "zero"), the diagram depicts the shad
ed square as being number 35. The arrow points to the square as
signed number 13.

To translate the move from cartesian coordinates in the exam
ple, one would need to proceed in the following manner.

First, determine the number of rows (up or down) between the
starting and ending point. In this example, three rows separate the
two locations. The number of rows that separate the points will be
come a multiplier value.

Next, it is necessary to determine a sign, positive or negative,
for the "row multiplier." In keeping with our computer-oriented

--+2-7

-3X8

(35) (13)

4-22_J

" ... some computer graph
ing systems do not allow

positions to be simply iden
tified by defining X and Y
coordinates."

7

15

23

31

39

A Whole Chapter on Math 17

" ... the offset is a 'signed'
(positive or negative)

value."

18 Chapter -2

convention, to move up on the screen means~ minus direction, as it
is moving back towards the reference point (at the upper left-hand
corner of the screen). Thus, in the example of Figure 3, the sign of
the row multiplier will be minus or negative.

Now the number of columns in a row is multiplied by the
"row multiplier." In this example (-3 X 8) = -24.

Finally, this value (-24 here) is augmented by the offset in
rows between the two points. Note that here also the offset is a
"signed" (positive or negative) value. For the example, it is positive
if to the right of the starting point and negative if to the left. If the
starting and ending squares are in the same column, then the offset
is zero. Figure 3 has an offset value of +2. Adding the offset value
(+2) to the row multiplier (-24) yields a result of (-22). As illus
trated in the diagram, taking 22 from 35 yields 13.

Thus, in a PET or similar computer where a display is controlled
by the contents of a display buffer in memory, assuming the display
buffer was organized only as a 5 by 8 matrix, the shaded square in
the diagram would be illuminated by a command such as POKE
BASE+35,42. The arrow on the diagram would be illuminated by a
directive such as POKE BASE+35-22,42 (or POKE BASE+l3,42).
Again, for the sake of clarity, Figure 3 has assumed a starting point
at (1,1) instead of the usual (0,0).

Be sure and study the discussion of Figures 2 and 3 before
proceeding further in this manual. It is crucial for further under
standing that these fundamental concepts be understood.

Chapter 3

Drawing Simple Shapes

W can draw pictures of simple objects by putting a number of
points together. Figures 4 and 5 illustrate a number of ways in which
we could form the representation of a triangle. The diagrams in those

Figure 4

A

0 7 8

B c

Getting Started

15

Drawing Simple Shapes 19

Figure 5

B

c

20 Chapter 3

figures also highlight some subtle points about creating low resolu
tion pictures.

Want to g~t started? OK, if you have an APPLE-II system, try
executing the following directives in BASIC language

A

D

E

GR
COLOR=l3
PLOT 2,3
PLOT 3,3
PLOT 1,4
PLOT 2,4
PLOT 3,4
PLOT 4,4

Issuing these directives will result in the crude representation of the
triangle shown in Figure 4A to be drawn on the screen!

Don't have an APPLE-II system? Then try this on a Radio
Shack TRS-80

CLS
SET (2,3)
SET (3,3)
SET (1,4)
SET (2,4)
SET (3,4)
SET (4,4)

On a Commodore PET you would need to do something like

(Strike key to clear the screen)
A=32768
POKE A+81,
POKEA+82,
POKEA+l20,
POKEA+l21,
POKEA+l22,
POKEA+l23,

If your system is like any one of these, you can issue the corres
ponding statements to obtain similar results. Do you see what is
being done? The reference point for these diagrams is taken as the
top left-hand corner. That point is designated as being at X=O and
Y =O on the screen. Figures 4A and SA represent "magnified" views
of a crude triangle being constructed from just a few illuminated
squares.

Do you notice a difference between Figures 4A and SA? Sure
you do. Figure 4A uses an even number of squares in both the ver-

Drawing Simple Shapes 21

"Some pictures can be
drawn better if an odd num

ber of sectors are used
rather than an even num

ber."

''If we increase the num
ber of points we illuminate,

our object will get larger."

22 Chapter 3

tical and horizontal directions. Figure 5A draws the triangle using
an odd number of sectors in both directions. Do you think one
looks better than the other? Why not figure out the statements need
ed to draw Figure 5A on your display and compare the two ver
sions? The two drawings are provided to illustrate a simple point.
Some pictures can be drawn better if an odd number of sectors are
used rather than an even number, or vice versa. Remember this
when you start creating pictures on your own. If you can't get the
desired shape or effect with one attempt, try redrawing the dia
gram using one more or less sector in one or both dimensions.
It's simple, but it sure can work wonders at times.

If we increase the number of points we illuminate, our object
will get larger. It may also appear to get "smoother" in appearance.
Compare Figure 4A with 4B or 5A to 5B. Try drawing these figures on
your screen by expanding the concept used to draw Figure 4A. You
might want to note an interesting phenomena by examining Figures
5A and 5B. When the number of squares in Figure 5A is doubled to
that shown in 5B, the number of sectors in the X direction switches
to an even value! If you want to keep the aesthetic value of using an
odd number of squares in the X direction, you would have to settle
for slightly more or less than a doubling in the X dimension as il
lustrated by Figure 5D.

If you try drawing Figure 4B or 5B on your screen, you will
soon learn firsthand the effects of doubling both dimensions. The
number of points that must be plotted is more than doubled! It
soon becomes apparent that a better method than individually
specifying all the points to be drawn is desirable.

Figure 4C shows a triangle that is four times larger than in 4A.
Do you really want to specify all the points, on a one-by-one basis,
that need to be illuminated in order to create that triangle? Not
likely! It is time to call on your computer and BASIC language to
do some of the work for you. Listing 1 shows one way of drawing
the triangle in Figure 4C using a series of BASIC statements grouped
as a subroutine. The first version in Listing 1 is for an APPLE-II
system. Statement line number 5 calls the subroutine that com
mences at line 10.

Similar listings are included to draw the same type of figure
on a Radio Shack TRS-80 and a Commodore PET. Note that the
listing for the PET requires a conversion from X and Y coordinates
to the linear addressing scheme utilized by that system's graphics.
The conversion used in the POKE statements is A+X+Y*40. A is
defined as the starting address of the display buff er. This simple

1 GR: COLOR=13
4 8ASEX=0:8ASEY=O
5 GOSU8 10
6 END

10 Y=8ASEY+8
20 FOR X=8ASEX+7 TO 8ASEX+8: PLOT

X,Y: NEXTX
30 Y=Y+1: FOR X=8ASEX+6 TO 8ASEX+

9: PLOT X,Y: NEXT X
40 Y=Y+1: FOR X=8ASEX+5 TO 8ASEX+

10: PLOT X,Y: NEXT X
50 Y=Y+1: FOR X=8ASEX+4 TO 8ASEX+

11: PLOT X,Y: NEXT X
60 Y=Y+1: FOR X=8ASEX+3 TO 8ASEX+

12: PLOT X,Y: NEXT X
70 Y=Y+1: FOR X=8ASEX+2 TO 8ASEX+

13: PLOT X,Y: NEXT X
80 Y=Y+1: FOR X=8ASEX+1 TO 8ASEX+

14: PLOT X,Y: NEXT X
90 Y=Y+1: FOR X=8ASEX TO 8ASEX+

15: PLOT X,Y: NEXT X
100 RETURN

1 CLS
4 81=0:82=0
5 GOSU8 10
6 END

10 Y=82+8
20 FOR X=81+7 TO 81+8:SET (X,Y):NEXT X
30 Y=Y+1:FOR X=81+6 TO 81+9:SET (X,Y):NEXT X
40 Y=Y+1 :FOR X=81+5 TO 81+10:SET (X,Y):NEXT X
50 Y=Y+1: FOR X=81+4 TO 81+11 :SET (X,Y) :NEXT X
60 Y=Y+1 :FOR X=81+3 TO 81+12:SET (X,Y):NEXT X
70 Y=Y+1 :FOR X=81+2 TO 81+13:SET (X,Y):NEXT X
80 Y=Y+1:FOR X=81+1TO81+14:SET (X,Y):NEXT X
90 Y=Y+1:FOR X=81 TO 81+15:SET (X,Y):NEXT X

100 RETURN

1 (Statement to clear screen)
4 A=32768:81=0:82=0
5 GOSU8 10
6 END

10 Y=82+8
20 FOR X=81+7 TO 81+8:POKE A+X+Y*40,102:NEXT X
30 Y=Y+1:FOR X=81+6 TO 81+9:POKE A+X+Y*40,102:NEXT X
40 Y=Y+1:FOR X=81+5 TO 81+10:POKE A+X+Y*40,102:NEXT X
50 Y=Y+1:FOR X=81+4 TO 81+1 l:POKE A+X+Y*40,102:NEXT X
60 Y=Y+1:FOR X=B1+3 TO 81+12:POKE A+X+Y*40,102:NEXT X
70 Y=Y+1 :FOR X=B1+2 TO 81+13:POKE A+X+Y*40,102:NEXT X
80 Y=Y+1:FOR X=81+1 TO B1+14:POKE A+X+Y*40,102:NEXT X
90 Y=Y+1:FOR X=B1 TO 81+15:POKE A+X+Y*40,102:NEXT X

100 RETURN

Listing 1

Drawing Simple Shapes 23

procedure enables us to handle PET graphics in a manner similar to
those used on the APPLE-II and TRS-80 systems where we use the
PLOT or SET statements.

Note that Listing l operates by first setting the Y coordinate
value. It then uses a FOR--NEXT loop to turn on all the desired
points along the X axis for the current value of Y. You see, it does
save quite a few individual PLOT directives over the method sug
gested for drawing the diagram in Figure 4A!

Make Your Triangle The triangle produced by the subroutine exhibited in Listing l can

24 Chapter 3

Multiply be positioned just about anywhere you want it on the CRT screen.

Listing 2

How? By merely initializing the value of the reference point varia
bles BASEX and BASEY (or Bl and B2 in the PET and TRS-80 ver
sions). Listing 2 shows a "calling sequence" that will cause the tri
angle to be drawn a number of times on the screen. (The triangles
will overlap a bit on their sides. Y eu can modify the program so
that they are completely separated if you like. I just happened to
like the pattern they made when they slightly overlap!) Listing 2
is specifically for an APPLE-II system. However, with just a few
minor modifications (such as using the appropriate statement type to

1 GR : COLOR=13
3 FOR BASEX=O TO 24 STEP 12
4 FOR BASEY=O TO 24 STEP 8
6 GOSUB 1{)

7 NEXT BASEY
8 NEXT BASEX
9 END

10 Y=BASEY+8
20 FOR X=BASEX+7 TO BASEX+a: PLOT

;.:,y: NEXT X
30 Y=Y+i: FOR X=BASEX+6 TO BASEX+

9: PLOT x,y: NEXT x
40 Y=Y+1: FOR X=BASEX+5 TO BASEXt

1 (): PLOT x,y: NEXT x
50 Y=YtU FOf~ X=BASEXt4 TO BASEX+

1U PLOT x,v: NEXT x
6(i Y=Y+U FOR X=BASEXt3 TO BASEX+

1,.., • ..:.. ,;,. PLOT x,y: NEXT x
70 Y=Y+1: FOR X=BASEX+2 TO BASEX+

13: PLOT x,v: NEXT x
80 Y=Yti: FOf\ X=BASEX+1 TO BASEX+

14: PLOT x,y: NEXT x
90 Y=Y+U FOR X=BASEX TO BASEX+

1"'" • ...J. PLOT x,y: NEXT x
100 RETURN

F
!j

clear the display) the same essential calling sequence can be used
for other types of computers.

Now the calling sequence in Listing 2 is nice if you want to draw a And What About Erasing?
whole bunch of triangles and leave them on the screen. But suppose
you just want to have the triangle change its position. That is, for it
to disappear from one part of the screen and appear in another place.
Well, in that case you had better "erase" the old triangle. Right?

That is simple enough to do if you only want to have the
single triangle somewhere on the screen at any one time. Listing 3
illustrates a calling sequence that will do the job. The difference be
tween it and Listing 2 is that it has a statement to clear the screen
prior to drawing another triangle. (Again, the listing is specifically
for an APPLE-II unit. You will need to make minor statement
changes for other systems.)

Listing 3 will serve fine if all you need to display on the screen
is the one item drawn by the subroutine. Suppose, however, that
you will have other items on the screen at the same time that you
desire to move the triangle about? Unless you plan to redraw the en
tire screen, you sure don't want to use a "clear screen" statement

3 FOR BASEX=O TO 24 STEP 12
4 FOR BASEY=O TO 24 STEP 8
5 Gf:: t COL0f<=13
6 GOSUD 10
7 NEXT BASEY
8 NEXT Ili:.iSEX
9 END

10 Y=BASEY+8
20 FOR X=BASEX+7 TO BASEX+B: PLOT

)(" 'f : NE X ·r X
30 Y=Y+l: FOR X=BASEXt6

9: PLOT x,y: NEXT X
40 Y=Y+1: FOR X=BASEX+5

10; PLOT X1Y: NEXT X
50 Y=Y+1: FOR X=BASEXf4

111 PLOT x,y: NEXT X
60 Y=Yt1: FOR X=BASEX+3

12: PLOT x,y: NEXT X
70 Y=Y+l: FOR X=BASEX+2

13! PLOT x,y: NEXT X
80 Y=Y+1: FOR X=BASEXtl

14: PLOT x~v: NEXT x
90 Y=Y+l: FOR X=BASEX TO

15: PLOT XrY: NEXT X
100 RETUhN

TO BASEX+

TO BASEX+

TO BASEX+

TO BASEX+

TO BASEX+

TO BASEXt

BA SEX+

Listing 3

Drawing Simple Shapes 25

" ... to get rid of the old

triangle ... change the

calling sequence so that it

reexecutes the subroutine

with COLOR=O ..• "

Listing 4

1 GR

to get rid of the old triangle. Nope, all you want to do is erase the
old triangle. So, you execute a routine just like the one for drawing a
triangle, only now you turn the display off at those points.

Such a procedure is a snap on the APPLE-II. Listing 4 shows
that all one has to do is change the calling sequence so that it reexe
cutes the subroutine with COLOR=O, which effectively extinguishes
the old triangle. (What else could you do with the APPLE-II? You
could reexecute the subroutine with COLOR set to some other
value, so that previous positions of the triangle are displayed in a
color different than its current position!)

If one set up the drawing subroutine for a PET so that the por
tion of the POKE statement that designates the code to be inserted
was a variable name, then a similar type of calling sequence would
work there. (i.e., If a POKE statement in the subroutine appeared
as POKE A+X+Y*40,Z, then a statement in the calling sequence
could alter the variable Z between a displaying and nondisplaying
code. For instance, setting Z to the value 32 would effectively blank
out thP- triangle if the drawing subroutine was reexecuted.)

The situation would be a little more complicated with a TRS-80
or similar system. One would need to actually create a second suh
rou tine. This would be identical to the one shown for the TRS-80 in
Listing 1 except that the SET (X ,Y) directives would be replaced
with the RESET (X,Y) command. One would then have the calling
sequence alternately call the two subroutines: one to draw the figure
using the SET statements, the other to eliminate it through the
use of the RESET statements.

TO BASEXt
2 FOR BASEX=O TO 24 STEP 12
3 FOR BASEY=O TO 24 STEP 8
4 COLOR=13: GOSUB 10

40 Y=Y+1: FOR X=BASEX+5
10: PLOT x,y: NEXT X

50 Y=Ytlt FOR X=BASEXt4
11! PLOT x,y: NEXT X

60 Y=Y+1: Fm~ X=BASEX+3
12: PLOT x,y: NEXT X

7•) 'f::::Yf1: FOR X=BASEX+2
13: PLOT x,y: NEXT X

80 Y=Y+1: FOf;: X=BASEX+1
14: PLOT XYY: NEXT x

90 Y=Y+1 ! FOf~ X=BASEX TO
15: PLOT XrY: NEXT X

100 F<ETUHN

TO BASEXt

5 COLOR=O: GOSUB 10
6 NEXT BASEY
7 NEXT BASEX
8 END

10 Y=BASEY +8
20 fOR X=BASEXt7 TO BASEXtS: PLOT

x,Yt NEXT X
30 Y=Y+1: FOR X=BASEXt6 TO BASEX+

9: PLOT x,y: NEXT X

26 Chapter 3

TO BASEXt

TO BASEXt

TO BASEXt

BA SEX+

Chapter 4

Drawing Lines

A few readers might wonder why I didn't discuss the drawing of a
line before talking about something like triangles. After all, what
could be simpler than drawing a line? Lots of things, it turns out!
Drawing a line by computer, yes a plain old straight line, is not
quite so simple as it might appear at first glance.

Oh yes, it is not difficult to draw a perfectly vertical or a per
fectly horizontal line on a screen. In fact, you already know how to
do that. We drew some straight horizontal lines when we drew the
triangle! The procedure for creating a horizontal line is simply to
set Y to the value on which the line is to reside, then invoke a state
ment such as

FOR X=O TO 39 STEP 1: PLOT X,Y :NEXT X
or
FOR X=O TO 39 STEP l:POKE A+X+Y*40,Z:NEXT X

where A=32768 for a PET system and Z is the code for the graphic

symbol to be displayed.
Similarly, to draw a vertical line you can set X to a fixed value

and then vary Y over the desired range of the line that is to be
drawn.

It turns out, however, that the cases of a perfectly vertical or
perfectly horizontal line are somewhat unique. It is a little bit hard
er to draw a line using a computer when the end points are not on
the same X or Y coordinate.

To take a look at the situation, why don't you load in the pro
gram shown in Listing 5 into your machine?

Please note that from here on out in this publication, listings
will be shown for the APPLE-II system. I'll assume you will make

It's Time to Draw the Line

" ... what could be sim
pler than drawing a line?
Lots of things, it turns out!"

Drawing Lines 27

28 Chapter 4

..___ -

Listing 5 1 Gt~ : COLOR= 13
4 x1 = o:x2 = 39
5 Y1 = o:v~ = 39
6 GOSUB 10
9 END
10 FOR X = Xl TO X2
20 Y = INT <<<Y2 - Y1> I <X2 - X

1)) * X)
30 PLOT X r Y
4·) NEXT X
50 FOR Y = Yi TO Y2
60 X = INT <Y * <X2 - Xl> I CY2 -

Yi))
70 PLOT x,y
80 NlXT Y
'10 RETURN

minor changes if necessary in order for these programs to run on
your system. If you are running a Radio Shack TRS-80 (Level II),
this generally means substituting the SET (X,Y) or RESET (X,Y)
for PLOT X,Y directives and using the appropriate "clear the screen"
directive to replace the GR (GRaphics) command used on the
APPLE-II. If you have a Commodore PET unit, then you will want
to substitute the now familiar POKE A+X+Y*40,Z directive in place
of PLOT X,Y. A is equal to 32768 for a PET in the POKE formula
and Z represents whatever graphics code you want displayed. The
code 32 may be used if you want the display turned off at a point.

Once you have Listing 5 loaded, modify it slightly by inserting
a statement line numbered 45 that reads as follows: 45 RETURN.
This little change will enable you to see something of interest re
lated to the current discussion. Figure 6 also applies to this discus
s10n.

Suppose we wanted to have the computer draw a line on our
display screen from position 0,0 to position 39,39. How would we go
about giving it directions to do such a task?

The first part of Listing 5 gives one possible way. It is based
on an old high school algebra formula for the equation of a straight
line in cartesian coordinates. Remember it?

Y =mX+b

The variable m in the formula stands for the slope of the line and b
is the Y axis offset value. For the time being, we can forget about b
as we shall initially restrict our discussion to lines that originate at
0,0. In such cases there is no Y axis offset.

Now the slope m is simply the change in units along the Y axis
over the change in units along the X axis between two points on the
lin.e. What two points on the line? Why the starting and ending points
of the line as far as we are concerned! So, if a line starts at Xl,Yl
and ends at X2,Y2, then the slope can be equated to (Y2 - YI)/
(X2- Xl). Or,in other words, once the end points (or any two points,
but I shall be using end points in my examples) have been defined,
then points along the Y axis are those defined by multiplying the
value of X at that location times (Y2 - Yl)/(X2 - Xl). Line 20 in
Listing 5 uses precisely that relationship to calculate values of Y

along the line. Only integer values are used because we can only plot
locations at integral points on the CRT screen.

Figure 6

0

0

' ' ' I

' I
' ' ' ' I I • \
I
I

' I
' I I
' '

0 1 2 39

0
1
2

39

Drawing Lines 29

Figure 7

0

0

0 1 2

30 Chapter 4

If you execute the program in Listing 5, with a RETURN state
ment inserted at line 45, it will draw what appears to be a nice dia
gonal line. That could lead you to think that the program works
just fine. However, if you were to change line 4 of the calling se
quence to Xl=O:X2=2, you might be a little disappointed with the
"line" drawn. As the dotted line in Figure 6 illustrates, you would
only see a few points displayed along the line! That is hardly what
you could call "drawing a line."

Restoring line 4 to its original value, Xl=O:X2=39, and then
changing line 5 to read Yl=O,Y2=2 would yield the nearly hori
zontal line shown in Figure 6. That line is not exactly perfect. For
one thing, the end point of the line does not get displayed by the

39

0
1
2

39

routine!
The reason we do not get a very good line drawn is because,

with a RETURN statement at line 45, the program only calcu
lates and plots points along the Y axis at di~crete values of X. When
X only goes from 0 to 2, you will only get a few points displayed,
regardless of how far the line goes in the Y direction. We can improve
the situation somewhat by removing the RETURN statement at line
45. Now the program will effectively fill in the gaps between points
because it will also plot points along the X axis for discrete values
of Y. Figure 7 illustrates the improvement one obtains when the
entire program in Listing 5 is util~ed. .

Well, the lines in Figure 7 might be pretty good, considering

Figure 8

0

0

0 1 2

I

39

Drawing Lines 31

32 Chapter 4

l

that they do show the end points of the line as well as a pretty
rough approximation of the path that the line takes. However, to
some people they ·may appear somewhat less than perfect. What
seems to be the problem?

The problem is an anomaly of using digital computer tech
niques. A point along the line does not get plotted until a discrete
value is reached. Thus, for the line that runs from Xl=O to X2=39
along the top of Figure 7, the line is plotted along Y =O until Y
reaches the value 1. It is plotted at Y=l until Y=2, etc. Y reaches 2
just at the point that the line ends. This causes the line to appear
somewhat lopsided or weighted towards the lower values of X.

A "smoother" line can be drawn by slightly modifying the
program of Listing 5 so that it appears as shown in Listing 6. Com
pare lines 20 and 60 in those two listings. The simple technique of
rounding off values to the next higher coordinate, by adding 0.5 to
the product of the slope and the opposite axis' value, results in the
improvement shown in Figure 8. Figure 8 is about the best you are
going to be able to do when drawing straight lines with a low reso
lution display!

We aren't done with the matter of drawing straight lines yet!
The program is Listing 6 is only for special cases of lines that start
at the coordinate X=O,Y=O. It also will not handle the cases of a
perfectly vertical or horizontal line. (Can you see why?)

What we really want is a general procedure for drawing a
straight line starting and ending anywhere on a display. To do this,
we need to add in the off set (b) part of our general line equation
Y = mX +b. We also need to make a few tests so that our computer
can handle the special cases when X or Y does not change value (thus

Listing 6 1 GF: : COLOR= 13
4 x1 :::: o:x2
5 Yi :::: 0: Y2
6 GO~·WB 10
9 END
10 Fm;: X =
20 Y ::-~ INT

Xi)) *
30 PL.OT x,y
40 NEXT X

= 39

X1 TO X2
<<<<Y2 - Y1) I CX2 -
X> t .5>

~O FOR Y = Y1 TO Y2
60 X = INT ((Y * CX2 - Xl> I CY2

-· Y1)) t .5)

68 ~k~t 9' y
9(i RETURN

resulting in a delta value of zero in the divisor of the slope variable
in the equation).

Listing 7 shows a general line-drawing algorithm that fills the
bill. The line-drawing subroutine starting at line 5000 expects the
starting and ending points of the line Xl,Yl and X2,Y2 to be set
up before it is called.

The calling sequence I have shown in Listing 7 will cause an
APPLE-II system to draw lines of random length and direction with
randomly varying colors. If you RUN it, your display screen will
soon fill up with a continuously changing pattern. Systems that do
not provide different colors can still be coaxed into interesting dis
plays by alternately having the lines be drawn in white and black.
This is easy to do with a PET by changing the POKE character each
time the line drawing subroutine is called. Witli a TRS-80 you would
need to create another line drawing subroutine that utilized the
RESET (X,Y) statement. In any event, you can see how BASIC's
RND (random) function can be used in connection with the line
drawing subroutine to create random patterns.

1 GR • COLOR= 13 •
2 Xi :::: INT (RND < 1 > * 38 >:x2 ==

INT < RND < 1 > * 38 >: IF Xl =
X2 THEN 2

3 Xl = INT (RND < 1 > * 38 >:X2 :::

INT < RND < 1 > * 38)
c· .., Y1 :::: INT < RND < 1 > * 38 >:Y2 =

INT < RND <1> * 38)
6 GOSUB 5000
7 COLOR= RND (1 > * 14 + 1
8 GOTO 2
9 EN[t
5000 IF X2 > X1 THEN A :::: 1
5010 IF X2 < X1 THEN A = -· 1
5(>20 IF X2 :::: X1 THEN 5070
5030 FOR X :::: X1 TO X2 STEP A
5040 y = INT <<<<Y2 ~ Y1> I <X2 -

X1 > > * C X -- Xi» t .5) t Yl
5050 PLOT x,y
5060 NEXT X
5070 IF Y2)a Yi THEN B :::: 1
5080 IF Y2 ·< Y1 THEN B :::: - 1
5090 IF Y2 :::: Y1 THEN 5140
5100 FOR Y = Y1 TO Y2 STEP II
5110 x = INT <<CY - Yl> * CX2 -

Xl) I (Y2 - Y1 » t .5> t Xl
5120 PLOT x,y
5130 NEXT Y
5140 RETURN

Listing 7

Drawing Lines 33

11

34 Chapter 4

l

Just as drawing lines on a display is not as easy as one might ini- Avoid Going around
tially think for the general case; drawing of circles can become quite in Circles
complex for the general case. For that reason and another factor
that I will discuss shortly, I recommend that you minimize your use
of circular diagrams. Furthermore, when you find you really want
to use a circle, I suggest you draw it using a point-by-point specifi-
cation method such as that used to draw triangles that I presented
earlier.

Figure 9 shows the points that could be illuminated to draw a
circle. Listing 8 illustrates the method for drawing the circle.
Notice that a subroutine is used to actually draw the diagram. The
calling sequence allows the user to specify initial values for X and Y
so that the circle may be positioned wherever desired on the screen.

Alas, if you were to load the program of Listing 8 into your
computer system and try displaying the circle it draws, you might
be a bit disappointed. The circle would quite likely look more like
an ellipse than a perfectly round ring. Why? Because, unfortunately,
most CRT displays today do not plot or illuminate a sector that is
actually a square. The sectors are generally rectangular. To make
matters worse, there does not appear to be any standardization
amongst manufacturers.

For instance, Figure 10 illustrates the typical shapes of a low
resolution sector for several popular systems. The numbers along the
sides of each rectangle give the approximate ratio of the sides in the
vertical and horizontal directions. You can promptly see that an
APPLE-H's display illuminates a sector that is somewhat longer
horizontally than vertically. On the other hand, a TRS-80's display

Figure 10

...,.__,~

-41: 1.5 ~

I i 1.25
1

l t
APPLE-II COMMODORE PET

'1llf ..

1
1.75

l
RADIO SHACK

TRS-80

Drawing Lines 35

36 Chapter 4

has sectors that are just the opposite. They are taller vertically than
horizontally! The PET unit is somewhat like the Radio Shack
TRS-80 except that the ratio is not as pronounced. For drawing cir
cles, the PET unit has about the best symmetry, but it too is not
perfectly balanced.

What to do if you really want a circle to look like a circle rather
than an ellipse? You will need to use special graph paper that accur
ately represents the ratios of the display sectors on your particular
system. Draw a circle on that graph, and then create the exact state
ments needed to draw the round circle on your display.

Chapter 5

A Graphics Library

he whole key to really effectively applying graphics on your own
personal machine is the building up of a "library" of routines that
you can call on as desired. This library must be carefully organized
so that it consists of subroutines that operate in such a manner that
they can be positioned wherever desired on the screen. That is,
they should start from a set reference point, such as the upper left
hand sector (0,0). They then may be positioned by having the calling
sequence set up the appropriate offset values. This procedure has
been introduced in this publication starting off with the triangles
and was continued with the circle. This principle will be continued
so you can at least start your library with some of th~~items pre
sented here.

Remember, the key idea is to structure your subroutines so
that they are able to be off set by a base address. When you first
design an item, the base address can be zero. Later, when you want
to position the drawing at some particular point on the screen, you
have the calling sequence set the base value to the desired starting
point of the drawing.

Build Up Your Own
Graphics Library

You become the boss when it comes to building up your graphics Creating a Library Means
library. You also become the artist! The strategy and the funda- Drawing Pictures
mental technique is simple.

You get some graphing paper.
Now be careful! I generally like to work with the "engineering"

type of graphing paper you can buy from drafting paper supply
houses. I usually work with the type that has 1/ 4-inch or· 1/8-inch
grids. But you can buy the paper with grids ranging from. one inch
down to 1/20 inch. By "be careful," I mean to keep in mind the
fact that this kind of graphing paper has square grids. The individual
sectors that are illuminated on your screen, as previously pointed

A Graphics Library 37

38 Chapter 5

l

out, are not likely to be exactly square. If you plot a square on your
graph paper, you are going to get a rectangle if you illuminate the
corresponding positions on your screen. If you plan a circle, you will
get an ellipse.

I have found I can work pretty effectively using the regular
engineering-type graphing paper. I just keep in mind the kind of dis
tortion likely to occur on the screen and make adjustments if neces
sary.

However, if you are a perfectionist, or are going to get involved
in fancy drawings or critical representations, you may want to con
struct your pictures on special graph paper.You can make your own
by drawing grids that have the same horizontal to vertical ratios as
that used on the display screen your system uses. If you have access
to a duplicating or mimeographing machine, you can make up one
master and then run off a bundle. You can do the same thing if there
is an offset printer in your neighborhood. In fact many of the offset
printing firms can actually make up pads of 50 or so sheets of your
own personally created grids.

In any event, get a hold of some graphing paper that suits you.
Then, lightly sketch the outline of the object you wish to represent
on the screen, going along grid lines wherever possible. Then fill in
the portion(s) to he represented as you see fit. In some cases you
will just want to outline the object, such as was done for the circle
illustrated in Figure 9. In other cases, such as the triangles shown
earlier, you may want to fill in the entire object.

When the outline of your sketched object goes at an angle to
the grid, you will have to make a judgment about illuminating a sec
tor. A good rule of thumb is that if more than half the sector is "in,
side" the line, then illuminate it. However, sometimes you will have
to use "artistic judgment." This is particularly true when you are
drawing curves or dealing with angular and irregularly shaped ob
jects, etc.

Don't he afraid to experiment and try different arrangements.
If something doesn't seem to come out right, try some of the follow
ing alternatives:

1) Try just bordering the object instead of illuminating it solid
ly or vice versa.

2) Try reversing the background. That is, surround the drawing
with illuminated points so that the object or its outline is portrayed
by sectors that are not illuminated.

3) Try changing the number of sectors along one or both di
mensions. Especially try going from an odd to an even value or vice

versa.
4) Reposition the item you are trying to represent on the grid

or show it in a new perspective.
5) If you have color capability (such as on the APPLE-II) or

special graphics symbols (such as on the PET), by all means try to
capitalize on that capability. Alter the colors to enhance lines or
change the graphics symbols used to accent a line or portion of a
drawing.

Once you have your drawing represented on graphing paper,
you are ready to construct your "general purpose" subroutine. By
general purpose, I mean a subroutine constructed in such a way that
it can be called upon, by setting up parameters, to draw the item at
different locations on the screen. The easiest technique to use is
the one illustrated when presenting the triangle and circle in this
manual. You simply have the subroutine construct the drawing as
though it was positioned initially at 0,0 (as the starting point). Then
use variables that can be offset by the subroutine calling sequence. In
Listing 8 variables X and Y are set by the calling sequence so that the
circle can be drawn anywhere on the screen after initial values of X
and Y are defined. In Listing 1, the triangle is offset along the X axis
by the variable named BASEX and the Y axis offset is determined
by variable BASEY, if desired, or simply by the variable Y.

When a subroutine has been prepared in this manner, it can be
used again and again in the same or different programs. The item rep
resented by the subroutine can be placed wherever desired on the
screen. As will be observed later, this technique also permits a pro
grammer to animate pictures by rapidly changing the positions of
drawings on the screen. This concept was introduced by the program
of Listing 4 that causes a triangle to move about the screen. ·

Listing 9 shows a large group of subroutines (starting at line 9000)
that may be placed in your library. They may be used to draw pic
tures of playing cards - from the Ace of Hearts to the Deuce of
Spades. The first part of the listing illustrates just one way that the
subroutines may be called. Lines 10 through 220 in the program will
repeatedly deal two cards at random from a deck and cause them to
be drawn on the display screen. Lines 20 and 40 set values of X and
Y to position the starting point for the subroutine at line 9000 that
draws an outline of a playing card.

Figure 11 illustrates how a playing card is built up. This is done
by selecting any one of a group oLsmaller "picture blocks" and plac
ing it in the proper position within the outline or border of a card

"When a subroutine has
been prepared in this man

ner, it can be used again

and again .•. "

Let's Stack Your Library
with a Deck of Cards

A Graphics Library 39

1
I

Listing 9

40 Chapter 5

10 GR : COLOR= 13: REM GRAPHIC
S/COLOR STATEMENT FOR COLOR
SYSTEMS

20 X = 2:Y = 7
30 GOSUB 9000
40 X = 22:Y = 7
50 GOSUB 9000
60 X = 4:Y = 15
70 C1 ·- INT (RND (1) * 52 + 1)
80 C2 = INT < RND C 1 > * 52 + 1)
90 IF C2 = Cl THEN 80
100 s = INT CC1 I 13 > + 1
110 GO SUB 2000
120 X = 4:Y = 9
130 N = INT (C1 I 4) + 1
140 GOSUB 2100
150
160
170
180
190
200
210

2000
2010
2020
2030
2040
2100
2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
9000
9010

X - 24:Y = 15
S = INT CC2 I 13) t 1

GOSUB 2000
X - 24:Y = 9
N = INT <C2 I 4) t 1

GOSUB 2100
FOR K = 1 TO 2000: NEXT K
GOTO 60

IF S = 1 THEN GOSUB 9200
IF S = 2 THEN GOSUB 9250
IF S - 3 THEN GOSUB 9300
IF S = 4 THEN GOSUB 9350
RETURN
IF N = 1 THEN GOSUB 9500
IF N = 2 THEN GOSUB 9530
IF N = 3 THEN GOSUB 9560
IF N = 4 THEN GOSUB 9590
lF N = 5 THEN GOSUB 9620
IF N - 6 THEN GOSUB 9650
IF N = 7 THEN GOSUB 9680
IF N - 8 THEN GOSUB 9710
IF N = 9 THEN GOSUB 9740
IF N = 10 THEN GOSUB 9770
IF N = 11 THEN GOSUB 9800
IF N = 12 THEN GOSUB 9830
IF N - 13 THEN GOSUB 9860
RETUFm
FOR I - 0 TO 15 STEP 1

W - X t I: PLOT W,y: PLOT Wr
y + 25

9020 NEXT 1
9030 FOR I = 1 TO 24 STEP 1
9040 Z - Y + I: PLOT XrZ: PLOT X +

15,z
9050 NEXT I
906(> RETUF<N

_j

9200 f<EM **HEART** CALL SUIT
CLEANUP

9210 GO SUB 9950
<jl220 COL.OR= 11: REM COLOR STAT

EM ENT FOF< COL.OR ~YSTEMS
911 ...) '1

A-If .. .;.. PLOT x t 3,y: PLOT x + 9,y
922-4· PLOT x t 2rY t 1: PLOT x +

3,y + :t: PLOT x + 4rf + 1: PLOT
x + 7,y + 1: PLOT x + s,y +
u PLOT x + 9,y + 1

9226 FOF! I ::: 1 TO 10 STEP uw =
x + r: PLOT WrY + 2: NEXT I

9228 FOi' I - 1 TO 10 STEP 1:w :::

x + 1: PLOT WrY + 3: NEXT I
9230 FOR I ::: 1 TO 10 STEP uw =

x + r: PLOT WrY + 4: NEXT I
9232 FOR I =

,.,
,;:.. TO 9 STEP l:W = x

+ I: PLOT WrY + s: NEXT I
9234 FOR I - 2 TO 9 STEP l:W = x

+ r: PLOT w,y + 6: NEXT I
9236 FOR I = 3 TO 8 STEP 1:w = x

+ r: PLOT WrY + 7: NEXT I
92:38 FOR I - 4 TO 7 STEP 1:w = x

1· I: PLOT w,v + a: NEXT I
9240 PLOT x + 5,y t 9: PLOT x +

6rY t 9
9245 RETURN
11250 r<EM **DIAMOND** CALL SUI

T CLEANUP
9260 GO SUB 9950
9270 COLOR= 11: REM COLOR STAT

EM ENT FOR COLOR SYSTEMS
9272 PLOT x + 5,y
9274 PLOT x + 4,y + 1: PLOT x +

~hY + :t: PLOT x + 6rY + 1
9276 FOR r = 3 TO 7HJ = x 1· I: PLOT

W11Y + 2: NEXT I
9278 FOF~ I - ? ... TO s:w = x + 1: PLOT

WrY + 3i NEXT I
9280 FOR I - 1 TO 9HJ = x + I: PLOT

w,y + 4: NEXT I
9282 FOR I - '") ..:.. TO a:w = x + I: PLOT

WllY + c:· + '"'. NEXT I
9284 FOR l = 3 TO 7UJ = x + I: PLOT

w,y + 6: NEXT I
9286 PLOT x + 4,y + 7: PLOT x +

:::;, y + 7: PLOT x + 6rY + 7
9288 PLOT x i· 5,y t 8
9290 RETURN
930•j REM **Cl-LIB** CALL SUIT c

L.EANUF'
9~10 GO SUB 9950

A Graphics Library 41

9320 COLOR= 6: REM COLOR ST~1TE

MENT FOR COLOR SYSTEMS
s)··1~·;,.>
~:... FOi:\: I = 4 TO 7:W = x + I: PLOT

w, y: NEXT I
9324· FOR I - 3 TO a:w = x + I: PLOT

w,y + 1: NEXT I
S1326 FOR I - 3 TO a:w = x + 1: PLOT

w,y + 2: NEXT I
9328 PLOT x + 1,y + 3: PLOT x +

2,y + 3: FOR I = 4 TO 7: lJ =
x + 1: PLOT w,y + 3: NEXT I:

PLOT x + 9,y + 3: PLOT x +
1(), y + 3

9330 FOR I - 0 TO 1UW - x + I: PLOT
w,y + 4: NEXT I

9332 FOR I - 0 TO 11: tJ = x + I: PLOT
w,y + 5: NEXT I

9334 FOF~ I = 0 TO 1UW = x + I: PLOT
w,y + 6: NEXT I

9336 FOF~ I - 0 TO 11:W = x + r: PLOT
w,y + 7t NEXT I

9338 PLOT x + 1,y + a: PLOT x +
2,y + a: PLOT x + 5,y + a: PLOT
x + 6, '(+ 8! PLOT x + 9,y + s: PLOT x + 10,y + 8

9340 PLOT x + 5,y + 9: PLOT x +
6,Y + CJ

9345 RETURN
9350 1:<EM **SPADE** CALL SUIT

CLEANUP
9360 GOSUl'.i 9950
9370 COLOR= 6: REM COLOR STATE

MENT FOR COLOR SYSTEMS
93:?2 PLOT x t 5,y: PLOT x + 6,Y
S'3? 4 FOR I :::: -4· TO 7UJ = x + I: PLOT

w,.y + 1: NEXT I
9376 FOR I = 3 TO B:W = x + I: PLOT

w,y + ,.) t
.;_ •· NEXT

I
I

9378 FOR I - ,..,
~ TO 9tW = x + 1: PLOT

w,y + 3: NEXT I
9380 FOR I = 1 TO 10: w = x + r: PLOT

w,.y + 4: NEXT I
9382 FOR I - 1 TD 10: w = x + I: PLOT

w ,,,y + 5: NEXT I
9384 For-< I :::: 1 TO 10: w = x + I: PLOT

w,y + 6: NEXT I
9386 PLOT x + 2,y + 7: PLOT x +

3,y + 7: PLOT x + 5,y + 7: PLOT
x + c..,y + 7: PLOT x + 9,y +
7: PLOT x + 9,y + 7

Si388 PLOT x + 5,y + a: PLOT x +
6rY + 8

42 Chapter 5

I
l_

93'10

9395
S)50 0

9505
9510

9512

9514

9515

9516

9518

9525
9~30

9535
95.40

9542

9~144
1i~146

9548
95o0

9555
9560

11!:16~1
951·0

1·l5?4
9~/'6

•;)5/'8
9580

9585
95·:;0

PLOT X + 5,y t 9: PLOT X t
6,Y t 9

f<ETURN
REM **ACE** CALL CLEANUP
ROUTINE
GOSUB 9980
COLOR= 15: REM COLOR STAT

EMENT FOR COLOR SYSTEMS
FOR I = 0 TO 4:W = X + It PLOT

w~Y: NEXT I
PLOT x,y + 1: PLOT X + 4rY t

1
COLOR= 15: REM COLOR STA~

EMENT FOR COLOR SYSTEMS
FDR I = 0 TO 4:W = X + I: PLOT

w,y t 2: NEXT I
PLOT x,y + 3: PLOT X t 4,y t

3

4
PLOT x,y + 4: PLOT X + 4,y +

RE"f URN
REM **TWO** CALL CLEANUP
FWUTINE
GOSUB 9980
COLOR= 15: REM COLOR STAT

EMENT FOR COLOR SYSTEMS
FOR I = 0 TO 4:W = X t 1: PLOT

WYY: NEXT I
PLOT X + 4,y t 1
~OR I = 0 TO 4:W = X + 1: PLOT

w,y + 2: NEXT I
PLOT x,y t 3
FOR I = 0 TO 4:W = X + I: PLOT

~lYY t 4: NEXT I
1:<ETURN
REM **THREE** CALL CLEAN

UP ROUTINE
GOSUB '7980
COLOR= 15: REM COLOR STAT

EMENT FOR COLOR SYSTEMS
FOR I = 0 TO 4:W = X t I: PLOT

w,yt NEXT I
PLOT X + 4,y t 1
FOR I = 0 TO 4tW = X + I: PLOT

w,y + 2t NEXT I r

PLOT X + 4,y t 3
FOR I = 0 TO 4:W = X + I: PLOT

W1Y + 4: NEXT I
RETURN
REM **FOUR** CALL CLEANU

P l~OUTINE
GOSUB 9980

A Graphics Library 43

9600 CQLOR= 15: REM COLOR STAT
EMENT FOR COLOR SYSTEMS

9602 PLOT x,y: PLOT X + 3,y
9604 PLOT x,y + 1: PLOT X + 3,y t
9606 1PL01· x,y t 2: PLOT X t 3rY +

2
9608 FOR I = 0 TO 4:W - X t l: PLOT

WrY t 3: NEXT I
9610 PLOT X + 3,y + 4
9615 RETURN
9620 REM **FIVE** CALL CLEANU

P ROUTINE
9625 GOSUB 9980)
9630 COLOR= 15: REM COLOR STAT

EMENT FOR COLOR SYSTEMS
9632 FOR I - 0 TO 4tW = X t 1: PLOT

WrY: NEXT I
9634 PLOT x,y + 1
9636 FOR I = 0 TO 4:W = X t l: PLOT

w,y t 2: NEXT I
9638 PLOT X t 4,y t 3
9640 FOR I = o TO 4tW = X + I: PLOT

WrY + 4; NEXT l
9645 RETURN
9650 REM **SIX** CALL CLEANUP

ROUTINE
9655 GOSUB 9980
9660 COLOR= 15: REM COLOR STAT

EMENT FOR COLOR SYSTEMS
9662 PLOT x,y
9664 PLOT x,y + 1
9666 FOR I - 0 TO 4:W = X + lt PLOT

w,y + 2: NEXT I
9668 PLOT x,y + 3: PLOT X t 4,y +

3
9670 FOR I = 0 TO 4:W = X t lt PLOT

w,y + 4: NEXT I
9675 RETURN
9680 REM **SEVEN** CALL CLEAN

UP ROUTINE
9685 GOSUB 9980
9690 COLOR= 15: REM COLOR STAT

EMENT FOR COLOR SYSTEMS
9692 FOR I - 0 TO 4tW = X t 1: PLOT

w,y: NEXT I
9694 PLOT X t 3,y + 1
9696 PLOT X t 2,y + 2
9698 PLOT X t 1,y + 3
9700 PLOT x,y + 4
9705 RETURN
9110 R~M **EIGHT** CALL CLEAN

UP ROUTINE
971~ GOSUB 9980
9720 COLOR= 15: REM COLOR STAT

u EMENT FOF< COL.OR SYSTEMS
9722 FUR I = 0 TO 4tW = X t 1: PLOT

w,y: NEXT I
9/24

t:t726

9728

9730

97:15
974(>

9745
r:n~:;<>

9756

9758
9/6(>
9/65
r:n70

9775
9780

97B2

978-4

9786

9788

979(>

9795
980()

9805
9810

PLOT XrY t 1: PLOT X t 4,y t

1
FOR I = 0 TO 4:W = X t 1: PLOT

w,y + 2: NEXT I
PLOT XrY t 3: PLOT X t 4rY t

3
FOF< I :::: 0 10 • .

w,y + 4: NEXT f •W = X + l: PLOT
f<ETURN
REM **NINE** CALL CLEANU

P HOUTINE
GOSUB 99B(>

COLOR= 15: REM COLOR STAT
EMENT FOR COLOR SYSTEMS

FOR I = 0 TO 4:W = X t l: PLOT
Wv'i: NEXT l

PLOT XrY t 1: PLOT X t 4,y t
1

FOR I = 0 TO 4:W = X t 1: PLOT
WrY + 2: NEXT l
Pun x + 4,y + 3
PLOT X + ·4, Y t 4
f<ETUf<N
REM **TEN** CALL CLEANUP
1:;:0UTINE
GO SUB 9900
COLOI:;:= 15: REM COLOR STAT

EM ENT FOR COL.OR SYSTEMS
PLO:r XrYl PLOT x + 2r'f': PLOT

x + 3vYt PLOT x + 4,y
PLO"I x,y + 1: PLOT x + 2rY +

u PL.OT x + 4,y + 1
PLOT XrY + ,,., .. PLOT x + 2,y + ,;,. .

2: PLOT x + 4,y + 2
PLOT x,y + :.3: PLOT x t· 2,y +

3t PL.OT x + 4. ,y + 3
PLOT x,y + 4: PLOT x + 2,y +

4: PL.Ol x + 3,y + 4: PLOT x +
4vY + 4

RETURN
REM **·JACK** CALL CLEA NU

p F<OUTINE
GOSUB 99HO
COLOR= 15: REM COLOR STAT

EMENT FOR COLOR SYSTEMS

A Graphics Library 45

46 Chapter 5

9812 FOR I = 0 TO 4HJ = x t I: PLOT
w,y: NEXT I

9814 PLOT x + 2,y + 1
9816 PLOT x + 2,y t "> .:..

9818 PLOT x,y + 3: PLOT x t 2,y +
3

. 9820 PLOT x,y + 4: PLOT x + 1,y +
4: PLOT x + 2,y + 4

9fl25 RETURN
98:50 REM **QUEEN** CALL CLEAN

UP ROUTINE
9835 GO SUB 99BO
9840 COLOR= 1 i;:-.

~· REM COLOR STAT
EM ENT FOR COL.OR SYSTEMS

9842 FOR I = 0 TO 4tW = x + It PLOT
w,y: NEXT I

9844 PLOT x,y + 1: PLOT x + 4,y t
1

</8-46 PLOT x,y t ,.., +
.:.. . PLOT x + 2,y t

') + ,,_ + PLOT x t 4.,y + •) .:..

9848 F'LO"f x,y + 3t PLOT x + 3,y +
3t PLOT x + 4,y + ~5

98~0 FOR I - () TO 4:W -· x + I: PLOT
w, y + 4t NEXT I

985~ RETURN
9860 F:EM **KING** CALL CLEA NU

f-' HOU TINE
986~ GOSUB 9S'BO
98?0 (;OLOF~:::: 15: REM COLOR STAT

EM ENT FOf(COLOR SYSTEMS
987~ PLOT x,y: PLOT x + 4,y
9874 PLOT x,y + 1 : PLOT x + 3rY

98/6
1

f'LOT x,y + 2: PLOT x + 1, y
2: PLOT x + 2,y + 2

98/B 1:·'LOT x,y + 3:
:

PLOT x + 3,y
988(i 3PLOT x,y + 4: PLOT x + 4,y

4
988~ r~:ETURN

)/''i;:, 0 M~~r 0~oR 0 toEb~ SY~?hM§ STATE
)HJ!:J2 FOR I
995.4 FOR ,J
?9~6 w - x + .,

L

99~8 NEXT ,J
9'760 NEXT I
996'2 RETUFm

-
-

0 TO 9 STEP 1
0 TO 11 STEP 1

J:z - y + I: PLOT w,

9980 COLOR= Ot REM COLOR STATE
M~NT FOR COLOR SYSTEMS

9982 FOR I - 0 TO 4 STEP 1
9984 FOR J = 0 TO 4 STEP 1

+
+

+
+

9986 W = X + J:Z - Y t 1: PLOT w,
z

NEXT .J
NEXI I
F<EIOHN

that has been drawn on the screen.
Each of the numerals, as well as the symbols for the Jack,

Queen, King and Ace are shown at the top of Figure 11. A subrou
tine that creates each of these symbols is provided as part of the
"card library." These subroutines start at line 9500. They are spaced
30 line numbers apart in Listing 9. Thus, the symbol for an ace can
be drawn by calling the subroutine at line 9500; the symbol for a
deuce, by calling line 9530; the symbol for a three, by calling line
9560, and so forth. Note that each of these subroutines starts by call
ing upon another subroutine that will clear the area in which the
symbol is to be drawn. This is done so that a symbol is always drawn,
so to speak, on a clean slate. Otherwise, we could get mixed up
images if, for instance, the numeral seven was drawn on top of the
digit six.

Now, before any of the card rank symbols are drawn by calling
the desired subroutine, the values of X and Y must be defined as a
starting reference point. The reference point for the subroutines is
always the top left point of the block shown in the illustration. Lines
120 and 180 in Listing 9 are used to initialize the starting points
for the card rank symbols. (Remember, there are two cards being
drawn on the screen. Thus, there must be two reference points pro
vided for the subroutine.)

The larger picture block shown in the illustration, in the center
of the card, is used to draw the symbol for a card's suit. There are
four standard card suits: hearts, diamonds, clubs and spades. Sub
routines in Listing 9, starting at line number 9200, are capable of
drawing the corresponding symbol for each of these suits. Note
again, that each of these subroutines first calls on another subroutine
to clear the area in which the suit symbol is to be drawn.

As is always the case, before a suit-drawing subroutine is called
upon, the program must set initial values of X and Y to tell the pro
gram where to start drawing the illustration on the display screen.

· This is done by lines 60 and 150 in the example program.
The subroutine calling sequence in lines 10 through 220 is pro

vided purely as an example. Normally, you would use the card draw
ing subroutines in connection with some type of card game that you
were having the computer play, such as blackjack.

·~ .. before a suit-drawing
subroutine is called upon,
the program must set ini
tial values of X and Y ... "

A Graphics Library 4 7

Figure 11

0
r--

o I
I
I
I
I
I
I
I
I

g L----

48 Chapter 5

l _ -------

0

0

4

11 .--,
•, I

' I
' I

I
I
I
I
I
I
I
I

4

____ J

0
r----o I ,
I
I
I
I
I
I
I
I
I '

0

25

r---
1
I
I
I
I I
L------'

.... ----------,
I
I

I
I
I
I
I
I
I
I
I

L..------- ___ J

0

9 I L--------- --.J

15

0
r---o I
I
I
I
I
I
I
I
I
I
I

9 L---- -

11

It will also be pointed out here that the subroutines shown in
the example listing were created in a manner to maximize clarity
of presentation. Each block is defined by specifying each sector
that should be turned on (illuminated) all the way across each row.
This was done on a row-by-row basis. Naturally, this method is very
wasteful of memory. All of the subroutines could be considerably
compressed by creating other subroutines that performed repetitive
functions. By all means do such compression if memory is at a pre
mium in your system. It is also possible to compress some of the
subroutines by using different methods of specifying the sectors to
be illuminated, such as capitalizing on nested subroutines.

TRS-80 users will probably want to double the number of hori
zontal points used to define a symbol. (By the way, if you want to
sound like a real pro, you can refer to an individual low resolution
point or sector as a pixel. For some reason the nomenclature reminds
me of knitting so I rarely use it. However, some people who are
really into graphics use it all the time, so remember it, at least you
will know what they are talking about!) Don't forget also to substi
tute the SET statement in place of the PLOT statement shown in
the listing for a TRS-80. You also won't need the COLOR statements
shown in the listing on a TRS-80.

If you want to use the card drawing subroutines on a PET,
things will be just a little more complicated as you now know. A
statement shown in Listing 9 as PLOT X + l ,Y +2 would translate to
POKE A+(X+ l)+(Y +2)*40,Z for the PET, where A is the starting
address of the display buffer (32768) and Z is the code for the
graphic symbol to be displayed. It is a bit more work to keep this
formula straight as you convert the subroutines of Listing 9 for use
on a PET, but it will go pretty smoothly once you get the knack of
it. It is a good idea to check out each subroutine as it is entered to
catch any boo-boos right away. Just initialize X and Y to some
suitable values (such as 0,0 or 15,15 if you want things more towards
the center of the screen) and call the subroutine you want to test.
Use Figure 11 as a comparison to see that you get each card rank.and
suit symbol displayed correctly.

Once you have them checked out, be sure and save a couple of
copies of the subroutines on your mass storage device. Then you will
be all set to conjure up your own card playing games with genuine
card drawing graphics. It makes a big difference in the impression
your computer will make on friends when the card in play is actually
drawn and displayed by the computer, rather than just having a
printed message to the effect of ''you drew the Ace of Clubs."

" ..• you can refer to an in
dividual low resolution
point or sector as a pixel."

A Graphics Library 49

Are You Ready for
Some Clowning Around?

Figure 12 shows the layout of a figure that, for lack of better words
I have called a clown. I shall use the figure to introduce the subject
of simple animation and a few other novelties. Note that Figure 12
shows several parts of the clown identified by a different type of

Figure 12

0

2

3

4

5

11111111112222222222
0123456789012345 67890123456789

t--+--+--+--+---+---+----il--+--

t--+--+--+--+---+---+----il--+--

t--+--+--+--+---+---+----il--+--

t--+--+--+--+---+---+----il--+--
6

t--+--+--+--+---+---+----il--+--
7

t--+--+--+--+---+---+----il--+--
8

t--+--+--+--+---+---+----il--+--
9

t--+--+--+--+---+---+----il--+-+--
10

11

12

13

14

15

16

17

18

19

t--+--+--+--+---+---+----il--+-+--+--

t--+--+--+--+---+---+--ll--+-+--1----1--

t--+--+--+--+---+---+----it--;---t--

1---1--1--+--+---+---+--ll--+-+--
20

t--+---+--+--+---+---+---!~+-+---

21
t--+---+--+--+---+---+---!~+-+---

221--+---+--+--+---+---+---l~+-+--
23

t--+---+--i--+---+---+---l~+--+--1

24
t--+---+--+--+---+---+---!~+-+-t-

251---+--+--1---+---+---+--I~+---
26

l---+--+--i--+---+---+--l~+---

27
t--+---+--+--+---+---+---l~+--

28
l---+-+--+--+--l---+---+---1--

29
1---1--+--+--+--+--+--I~

30
1---1--+--+--+--+--+--I~

31
1---1--+--+--+--+--+--I~

32
t--+---+--+--+---+---+---l~

33
t--+---t--+--+--+--

34
l---+--+--l---+--

35 .___..._...__.....__......__

50 Chapter 5

shading. These parts include the center part of the mouth, the eyes,
and a "finger" on each hand. These parts of the character are not
drawn by the main subroutines. They are filled in by small subrou
tines that will serve to animate the diagram.

Listing 10 provides the software for the clown. The main clown
drawing subroutine starts at line 9000. Because the clown takes up
almost all the vertical space on the display of a typical low resolution
system such as an APPLE-II, the subroutine does not provide for
varying the reference point along the Y axis. (Indeed, if you want to
draw the clown on a PET unit, you will have to be satisfied with
the upper half of the figure! Note, however, that I did not attempt
to animate anything below the waist, so you PET users will be able
to save yourself some work here and still get all the benefits of the
discussion.)

10 GR
15 GOSUB 9980
20 COLOR=?
30 GOSUB 9000
40 Y=9tA=5
50 FOR M=1 TO RND (5)
60 GOSUB 9600
70 S= RND C100>t100:T=40: GOSUB

9990
80 GOSUB 9650
90 S= RND C60>+20:T=40: GOSUB

9990
100 GOSUB 9600
110 S= RND C 100 >+100 :T=40: GOSUB

9990
120 GOSUB 9650
130 S= RND C60>t20iT=40: GOSUB

9990
140 NEXT M
150 FOR 1=1 TO 500: NEXT l
160 Y=4
170 GOSUB 9700
180 S=60tT=20: GOSUB 9990
190 GOSUB 9725
200 FOR 1=1 TO 200: NEXT l
210 GOSUB 9750
220 GOSUB 9990
230 GOSUB 9775
240 FOR 1=1 TO 500: NEXT I
250 Y=15
260 GOSUB 9800
270 S=240tT=240t GOSUB 9990
280 GOSUB 9825
290 FOR I=l TO 500: NEXT I

l

Listing 10

A Graphics Library 51

l'i .1 I ii.
i' ·,

52 Chapter 5

300 GOSUB 9850
310 GOSUB 9990
32(; GOSUB 9875
330 FOR I=1 TO RND <10000>: NEXT

r
340 GOTO 40

900(> Y=1 :A=5
9010 FOR X=At12 TO At17: PLOT x,

Y: NEXT X
9020 Y=Y+1: PLOT A+11,y: PLOT At

1a,y
9030 Y=Ytl: PLOT A+10,y: PLOT At

12,y: PLOT At171Y: PLOT At19
,y

9040 Y=Y+l: PLOT A+9,y: PLOT At11
,y: PLOT A+13,y: PLOT At16'
Y: PLOT At1a,y: PLOT A+20,y

9050 Y=Ytlt PLOT A+9,Y: PLOT At12
,y: PLOT A+17,y: PLOT At20'
y •

9060 Y=Yt1t PLOT Af9,y: PLOT At14
,y: PLOT A+15,Y: PLOT At20,
y

9070 Y=Ytlt PLOT A+9,y: PLOT At20
,y

9080 Y=Y+1: PLOT A+9,y
9090 FOR X=At12 TO At17: PLOT x,

Y: NEXT X
9100 PLOT A+20,y
9110 Y=Ytl: PLOT A+9,y: PLOT At12

,y: PLOT A+17,y: PLOT A+20,
y

9120 Y=Yt1: PLOT A+10,y
9130 FOR X=At12 TO At17: PLOT Xr

Y: NEXT X
9140 PLOT At19,Y
9150 Y=Yt1t PLOT At11,y: PLOT At

19,y
9160 Y=Ytlt FOR X=At12 TO At17: PLOT

x,y: NEXT X
9170 Y=Y+1: FOR X=At12 TO At17: PLOT

x,y: NEXT X
9180 Y=Yt1: PLOT At2rY
9190 FOR X=AW TO At22: PLOJ x,y:

NEXT X
9200 PLOT At27rY
9210 Y=Y+1: FOR X=At1 TO At28: PLOT

x,v: NEXT X
9220 Y=Y+1: FOR X=Atl TO At28: PLOT

x,y: NEXT X
9230 Y=Ytlt FOR X=At1 TO At6: PLOT

x,y: NEXT X

9240 FOR X=At10 TO At19: PLOT Xr
Y: NEXT X

9250 FOR X=At23 TO At28: PLOT Xr
Y: NEXT X

9260 Y=Yt1: PLOT A+1,y: PLOT At2
,y

9270 FOR X=At10 TO At19: PLOT Xr
Y: NEXT X

9280 PLOT A+27,y: PLOT.At2BrY
9290 FOR Y=Yt1 TO Yt7
9300 FOR X=At10 TO At19: PLOT Xr

Y: NEXT X
9310 NEXT Y
9320 FOR X=At10 TO At13: PLOT Xr

n NEXT X
9330 FOR X=At16 TO At19: PLOT.Xr

Y: NEXT X
9340 Y=Yt1: FOR X=At9 TO At13: PLOT

x,y: NEXT X
9350 FOR X=At16 TO At20t PLOT Xr

Y: NEXT X
9360 Y=Ytlt FOR X=At9 TO At12: PLOT

x, Y: NEXT X
9370 FOR X=At17 TO At20t PLOT Xr

Y: NEXT X
9380 Y=Y+1: FOR X=At9 TO A+12: PLOT

Xr V: NEXT X
9390 FOR X=At17 TO At20: PLOT Xr

Y: NEXT X
9400 Y=Yt1: FOR X=At9 TO A+12: PLOT

x, V: NEXT X
9410 FOR X=At17 TO At20: PLOT Xr

Y: NEXT X
9420 Y=Yt1: FOR X=At8 TO A+12: PLOT

XrY: NEXT X
9430 FOR X=At17 TO At21: PLOT X1

Y: NEXT X
9440 Y=Y+1: FOR X=At8 TO At11: PLOT

X1Y: NEXT X
9450 FOR X=At18 TO At21: PLOT Xr

Y: NEXT X
9460 Y=Yt1: FOR X=AtB TO At11t PLOT

x,y: NEXT X
9470 FOR X=At18 TO At21: PLOT Xr

Y: NEXT X
9480 Y=Y+1: PLOT At9 ~: PLOT At10

,y: PLOT At191Y: PLOT At20r
y

9490 Y=Y+l: FOR X=At6 TO At11: PLOT
Xr V: NEXT X

9500 FOR X=At18 TO At23: PLOT Xr

A Graphics Library 53

54 Chapter 5

Y: NEXT X
9510 Y=Yt1: FOR X=At5 TO At11: PLOT

x,y: NEXT X
9520 FOR X=At18 TO At24: PLOT Xr

Y: NEXT X
9530 RETURN
9600 COLOR=11: REM COLOR STATEMENT

FOR COLOR SYSTEMS
9610 FOR X=At13 TO At16: PLOT x,•

Y: NEXT X
9620 RETURN
9650 COLOR=O: REM COLOR STATEMENT F

OR COLOR SYSTEMS
9660 FOR X=At13 TO At16: PLOT x,

Y: NEXT X
9670 RETURN
9700 COLOR=6: REM COLOR STATEMENT F

OR COLOR SYSTEMS
9705 PLOT At12,y
971 (> RETURN
9725 COLOR=O: REM COLOR STATEMENT F

OR COLOR SYSTEMS
9730 PLOT A+12,y
9735 RETURN
9750 COLOR=6: REM COLOR STATEMENT F

OR COLOR SYSTEMS
9755 PLOT A+17,y
9760 RETURN
9775 COLOR=O: REM COLOR STATEMENT F

OR COLOR SYSTEMS
978(i PLOT A+17, Y
9785 RETURN
9800 COLOR=9t REM COLOR STATEMENT F

OR COLOR SYSTEMS
9805 PLOT A,Y
98Hl RETUF~N
9815 PRINT s,T
9820 GOSUB 9990
9825 COLOR=O: REM COLOR STATEMENT F

OR COLOR SYSTEMS
9830 PLOT A,Y
9835 RETURN
9840 NEXT S
9850 COLOR=9: REM COLOR STATEMENT F

OR COLOR SYSTEMS
9855 PLOT A+29,y
9860 RETURN
9875 COLOR=O: REM COLOR STATEMENT F

OR COLOR SYSTEMS
9880 PLOT At291Y
9885 RETURN
9980 POKE 2,173: POKE 3,49: POKE

4,192: POKE 5,136: POKE 6,208
: POKE 7,4: POKE a,19a: POKE
9,1: POKE 10r240

9985 POKE 11,at POKE 12,202: POKE
13,2oa: POKE 14r246: POKE 15
,166: POKE 16,o: POKE 17r76
: POKE 18r2t POKE 19)0: POKE
20,96: RETURN

9990 POKE o,s: POKE 1rTt CALL 2:
RETURN

9999 END

When the subroutine starting at line 9000 is executed, the
clown will be drawn on the screen except for the center of the
eyes, the middle of the mouth, and the index fingers on either hand.
Note that you can vary the horizontal position of the figure by ini
tializing the value of the variable A. You TRS-80 owners will proba
bly want to double the number of sectors used along the horizontal
axis to get a figure proportionally equivalent to that shown.

Now the fun begins. The subroutine that starts at line 9600 causes
the middle portion of the clown's mouth to be filled in. Another sub
routine at line 9650 restores the mouth to the "open" position. By
alternating the two subroutines, the clown can be made to appear as
though it is opening and closing its mouth!

Similarly, a simple subroutine at line 9700 causes the left eye
to close. The subroutine at 9725 causes the left eye to open back
up. Execute the one at 9700, provide a slight delay, then execute
the one at 9725 and the eye will appear to wink.

Subroutines at 9750 and 9775 can be invoked to cause the right
eye to wink, too!

You can call on the subroutine that starts at line 9800 to have
a simulated index finger appear on the clown's left hand. The subrou
tine at line 9825 will make that finger disappear. Similarly, routines
at 9850 and 9875 control the action of such a finger on the right
hand side of the finger.

So now, by judiciously calling on the "action" subroutines, you
can have the clown open and shut its mouth, wink either or both
eyes, and point to the right or the left. Can you think of ways to
combine such a figure with a game or quiz to amuse people? I as
sure you, newcomers to computers get quite a kick out of seeing
such a performance.

Animation Makes It Look

Alive - Well, Almost!

" ... by judiciously calling
on the 'action' subroutines,
you can have the clown
open and shut its mouth,
wink either or both eyes,
and point to the right or
the left."

A Graphics Library 55

I
L

56

Now Add Some Sound People expect something that opens and closes its mouth to make
some noise. Well, you can synchronize some other simple subroutines
with the animation subroutines just discussed so that the clown
beeps and buzzes as it moves its mouth. It's good for a laugh from
most people!

If you have an APPLE-II computer, you can use the noise-mak
ing subroutines shown in Listing 10. The subroutine starting at line
9980 sets up the basic sound generating program that is recom
mended in the APPLE II Reference Manual, published by APPLE
Computer Incorporated (January 1978 edition) that comes with
the basic APPLE-IT machine. The subroutine at 9990 sets up the
parameter values for frequency and duration of the tone that are
passed to it and activates the sound unit.

Lines 10 through 340 in Listing 10 tie together all the various
suhroutiiles mentioned to provide a demonstration sequence of ani
mation complete with sound effects. The use of some random num
bers provides for a more interesting demonstration. This is done by
varying the number of times that the clown opens and closes its
mouth during each cycle. Random numbers also vary the pitch at
which the clown emits buzzes and beeps. Study lines 10 through 340
so that you can see how the various subroutines are sequenced to
provide the animation and synchronized noises. Remember, the se
quence was chosen for demonstration purposes. Feel free to make
your own variations. All I am trying to do here is illustrate concepts.
Once you grasp them, you have the freedom to run off and create
funny acts of your own!

They All Can Do It Oh yes, almost any popular computer can make beeps and buzzes
even if it does not have a circuit for that specific purpose built into
it. If it is able to store data on an external magnetic tape device,·
you can probably jury-rig it to make entertaining burbles. You cer
tainly can do this with a Radio Shack TRS-80 or Commodore PET.
Just insert a short little tape-write subroutine in place of the noise
generating subroutine I sh,owed at line 9990 in Listing 10. If you
want to get really fancy, create two or three such subroutines: one
that writes, for instance, a series of ones to the tape unit; another
that writes a series of zeros; and still another that writes alternat
ing ones and zeros. You will then be able to select one of three dif
ferent tones or buzzes.

Chapter 5

Now refer to Figure 13. It shows a block diagram of how you
can jury-rig your tape recorder system to hear the sounds you create
with your tape-write subroutines. Unless you have a small speaker/

amplifier, you will have to be satisfied with listening to the sounds
using an earphone. However, the electronic technician types among
you will undoubtably have little difficulty hooking up a small speak
er/ amplifier so that your friends will be able to hear things through a
speaker. (Frankly, you might be wise to keep the earphone arrange
ment available. For some reason, other members of your household
might not appreciate your computer emitting burps and beeps at the
wee hours of the night. Aren't those just the times when you want to
run some of those fun-and-game programs that emit all those wierd
noises?)

The arrangement shown in Figure 13 re9_uires that you put the
tape recorder in the "record" mode without having a tape cassette
unit installed. Most cassette players have a "record lockout" switch
that normally prevents the tape recorder from going into the record
mode unless an "unprotected" cassette is installed in the machine.
An unprotected cassette is one that has not had its recording tab
knocked out. With the tab in place, the cassette will push against
the record lockout switch when it is installed in the player.

Figure 13

YOUR
COMPUTER

+
OR OPTIONAL
SPEAKER/AMPLIFIER

f ___________ J ,,

I
TAPE OUTPUT
FROM YOUR
COMPUTER

MICROPHONE
OR "AUX"
INPUT

-n--NO CASSETTE IN UNIT
--- SEE TEXT & FIGURE 14

TAPE UNIT IN
"RECORD"
MODE

A Graphics Library 57

An Animated Game
of Football

Figure 14

58 Chapter 5

Figure 14 shows the typical location of the record lock-out
switch on a tape cassette player. You can make the player think it
has an unprotected cassette installed by taping the switch closed
(as though a cassette were pushing against it) or using a plastic pen
or similar object lightly wedged into the unit to keep the switch ac
tivated. With the switch activated, you should then be able to place
the recorder in the normal record mode. When in this mode, most
players will couple whatever is fed into the microphone or auxili
ary input. to the earphone jack so that monitoring can take place.
It is this feature that you wish to take advantage of in order to hear
what your computer sends out to the tape unit. Since the sounds
are for entertainment only, there is no need to waste good tape
by actually recording the nonsense sounds.

This simple arrangement provides a quick and inexpensive way
for you to liven up animated performances as they appear on your
display screen.

Now that you have a fundamental background in how to create and
position graphic symbols, it is time to tie all that you have learned
together as a final exercise. In doing so you will create a game that
is graphically entertaining.

The game is called football. The object of the game is to guide a
quarterback through a field of defenders to gain yardage. Gain
enough yards and you score a goal. Or, in certain situations you can

RECORD
LOCK-OUT
SWITCH

.....
I .l

.-.v

TAPE CASSETTE TRANSPORT

0 0

try to kick a field goal. Of course, all of the running and defending is
done on your computer's video screen. But, you get to control the
direction of the quarterback's movement. (The computer gets to con
trol the defense!)

It should be remembered here that the version I am presenting
is merely a guideline. The listing shown is for an APPLE-IT system.
However, by following the discussion and referring to the listing,
you can gain the knowledge to modify the program to run on a PET,
TRS-80 or other type of low resolution display system. Don't be
afraid to try your own ideas. Change the graphic symbols if you like.
Change the way the game is controlled or played if you want to!
After all, the whole point of a computer is that it provides immense
freedom of choice and creativity. Exercise some of that capability
to suit your own tastes!

Figure 15

A Graphics Library 59

Figure 16

The game I am presenting takes place on a grid consisting of a
9 by 5 matrix as illustrated in Figure 15. Each box in the matrix
is made up of 18 pixels arranged in a 3 by 6 fashion. Count
ing the grid lines, that are all one sector wide, the entire grid is de
fined by an area that is 37 units wide by 36 units high. This fits com
fortably with some room to spare on an APPLE-II display. It will
not fit in the vertical direction on a PET display. I suggest that you
reduce the number of vertical boxes to three if you create this pro
gram for a PET system. On a TRS-80, you will probably want to
increase the number of horizontal sectors to a box. If you do not,
the animated characters are going to look rather skinny on the dis
play!

The Screen Cast The stars of our football game are tiny animated characters as de
picted in Figure 16. There are seven basic configurations in which
the players can appear plus a blank or "no character" symbol. The
latter is needed to erase the previous position of a displayed player.
Notice that ,some of the characters are drawn as pairs. Characters 1

0 3 5 7

7800 *6000 *6400 6800 *7200

2 4 6

6200 *6600 *7000

60 Chapter 5

and 2 in Figure 16 will be paired together in an alternating fashion
to represent a player that is opening and closing its mouth. Charac
ters number three and four can be alternated to show an animated
version of a player "running." You might not think so from seeing
characters number 5 and 6 in Figure 16, but they can be alternately
displayed to symbolize a player punting the football. Figure number
7 represents a player that has been flattened after being tackled!
(Come on! Use your imagination. You have to use a little if you want
to utilize low resolution graphics effectively. Don't judge the charac
ters until you see them in action on a video screen!)

Figure 17 illustrates how the characters might typically appear
in a "frozen frame" shot at the start of a game. For the APPLE-II
version there are 11 defensemen lined up as shown. If you only have

Figure 17

6 3 (8 5 4 7 t)

2

i

l

g---,+

A Graphics Library 61

l -- ----

Setting the Stage and
the Cast

62 Chapter 5

a 9 by 3 box matrix, such as might be used on a PET, I would
recommend you reduce the number of defensemen to some
thing in the order of five or six. The defensemen are all automatically
controlled by the computer. They will at all times advance upon and
attempt to contact or "tackle" the quarterback. The quarterback is
shown in Figure 17 all alone on the right end of the grid. Different
colors are used to distinguish between the quarterback and the de
fensive players on an APPLE-II system. For black and white sys
tems you can change the figure used to represent the quarterback.
Or, on a system such as the PET, you can construct the quarterback
using different graphic symbols than that used for the defensemen.

The arrows eminating from the quarterback in Figure 17 show
the possible directions of movement afforded to the quarterback.
The direction of movement is always under the control of a person
serving as the coach of the offensive team. Note, however, that the
quarterback can never run backwards. While evasive maneuvers
can be made up and down on the screen (across the playing field),
the loyal quarterback can only attempt to gain yardage, not fritter
it away! (For most people, attempting to gain yardage will be enough
of a challenge. It is not as easy as it might look at first glance.)

Each time the quarterback is able to advance a square without
contacting or being contacted by a defenseman, a ''yard" is gained.
If the quarterback gets all the way across the grid, it is advanced,
on the next move, back to the right side. This is depicted by the
numbers shown at the bottom of the diagram in Figure 17. (These
numbers and the arrows surrounding the quarterback are not pro
duced on the display. They are provided for illustrative purposes
only in Figure 17 .)

Listing 11 contains the program for the football game. The program
is structured as a number of subroutines that are in turn tied together
by several control routines.

The playing grid is drawn by the subroutine that starts at line
9000 in the listing. Nested FOR-NEXT loops are used to draw all the
horizontal lines of the grid and then all of the vertical lines. The grid
lines are drawn in white for an APPLE-II color system. On a black
and white system, such as a TRS-80, you might not want to actually
draw the playing grid. This is because a grid that is not distinguished
by a. different color from the graphic symbols may not be as pleasing
to some as simply having an implied grid. Try it both ways, with
and without a grid, to see which version you and your friends like
better. Or, you can make the grid lines appear different by using a

different kind of character, such as an asterisk. This is the technique
to use on a PET. However, you can also use it to POKE a unique grid
on the TRS-80 or similar systems. Again, don't be afraid to experi
ment. Take a look at some different methods; then use what you
like best.

The cast of characters used in the game are defined in a series
of .subroutines starting at line 6000. The start of each character is
indicated by the line number given below each in Figure 16. Notice
also that some line numbers in Figure 16 are preceded by an aster-

. 4

isk. This indicates that some sound generation is associated with
that configuration of the character.

Refer to Listing 11, line 6000 to study the development of a
typical character. The first few lines in each subroutine have been
left available to set the type of symbol one might want to use or
define the color in a color system. Color definition for an APPLE-II
has been done in line 6010 of the listing. The actual creation of char
acter type number one (as designated in Figure 16) begins at line
6050.

1 GR
10 p = 80
20 G = 10
30 v = 1
40 T = 900
50 GOSUB 1900
100 G = 1
200 IF G = 0 THEN G = 1: GOTO 22

0
210 IF G = 1 THEN G = 0
22(l D = 0 :G = 10
300
1000
1010

GOSUB 1900
FOR [I = 1 TO 4
GOSUB 2000

1020 P = P - u: IF P < = 0 THEN
B = 7: GOTO 1400

1030 Q = G - u: IF G < = 0 THEN
D = o:a = 10: GOSUB 1700

1040 IF T < = 0 THEN T = O: GOTO
180C•

1060 IF D = 3 THEN PRINT : PRINT
"YOU NEED "mp YARDS FOR A
FIRST DOWN!": PRINT : PRINT
11 DO YOU WANT TO TRY A KICK•;
: INPUT Wf: IF LEFT$ < W$rl >
= II Y" THEN 1500

1070 IF D < 4 THEN GOSUB 1900
1080 NEXT D
1090 P = 100 - P: GOTO 200

Listing 11

A Graphics Library 63

1400 IF G = 0 THEN S2 = S2 + B
1410 IF G = 1 THEN S1 = 51 + B
1420 p = ao: GOTO 200
1500 GOSUB 3000
1530 FOR I = 1 TO 500
154(> GOSUB 7000
1550 FOR I = 1 TO 100
1560 GOSUB 6800
1570 U = INT< RND.Cl> * 55 + 1>

1580 P = .P - U: IF P < = 0 THEN
I= RND Cl>: IF I> 0.5 THEN
PRINT : PRINT : PRINT "HURR

AH! YOU KICKED A FIELD GOAL!
11 : PRINT tB = 3: GOTO 1400

1590 IF P < = 0 THEN P = SO: GOTO
200 .

1600 P = 100 - P: GOTO 200
1700 PRINT : PRINT 11 YOU PICKED U

p A FIRST DOWN. II
1710 PRINT : PRINT "CONGRATULATI

ONS -- YOU BIG OX ! !"
1720 FOR J = 1 TO 5000: NEXT J
1730 RETURN
1800 V = V + 1: IF V > 4 THEN V =

4: GOTO 1840
1810 T = 900
1820 IF v = 3 THEN G = l:P = 00:

G = 10:D = 0
1830 GOTO 3(i0
1840 GR
1850 PRINT : PRINT : PRINT "IT'S

ALL OVER - EXCEPT FOR THE S
HOUHNG ! II: FOR I = 1 TO 2000
: NEXT I: GOSUB 1900: GR

1860 PRINT : PRINT : PRINT 11 WANT
A NEW GAME 11 ;: INPUT W$: IF
LEFT$ (W$, 1 > = "Y" THEN GOTO

10
1870 PRINT : PRINT : PRINT : PRINT

: GOTO 9999
1900 PRINT " DOWN: 11 ;D + lJ" MA

RKER: n;p;" YARDS TO GO: n;
Q

1910 PRINT " TIME REMAINING: u;
T;" QUARTER: "PV

1920 PRINT "BLUE TEAM HAS: 0 ;s1;
" YELLOW TEAM HAS: ";s2

1930 FOR J = 1 TO 2000: NEXT J
1940 RETURN
2000 FOR M = v TO 8
2010 FOR N = 0 TO 4
2()20 ACMrN) = 0

64 Chapter 5

~~~8 ~~~f ~ 
2050 AC 0, 2 } = 1 

~898 *H:~~ ; l 
2080 AC 3, U = 1 
2090 A(3,2) = 1 
2100 A(3,3) = 1 

2110 AC 5,0 > = 1 
2120 AC 5, 1> = 1 
2130 AC 5, 2 ) = 1 
2140 A(S,3} = 1 
215() AC 5,4) = 1 
2200 GOSUB 9000 
2210 X = 32:Y = 14: IF G = 0 THEN 

C = 13: GOTO 2220 
2215 c = 2 
2220 GOSUB 6200 
2230 IF G = 0 THEN C = 2: GOTO 2 

240 
2235 c = 13 
2240 GOSUB 9200 
2250 M = o:N = O:U = 0 
2260 X = 32:Y = 14:x2 = 32:Y2 = 1 

4: IF G = 0 THEN C = 13: GOTO 
2270 

2265 c = 2 
227(> GOSUB 8000 
2280 X = X2iY = Y2: IF G = 0 THEN 

C = 13! GOTO 2290 
2285 c = 2 
2290 GOSUB 8000 
2295 IF F = 1 THEN GOTO 2330 
2300 GOSUB 9500 
2310 IF F = 0 THEN GOTO 2280 
2330 X = X2:Y = Y2 
2340 GOSUB 7200 
2350 RETURN 
3000 FOR M = O TO 8 
3010 FOR N = 0 TO 4 
302(> ACMrN} = 0 
3030 NEXT N 
3040 NEXT M 
305() AC v, 2 > = 1 
3060 A( 1 '1 ) = 1 
307(> A( 1'3) = 1 
3(>80AC3r1)=1 

~ 3090 AC3r2) = 1 
3100 AC3r3) = 1 
3110A(5r0)=1 
:5120 AC 5'1) = 1 
313(i A< 5r2 > = 1 
3140 AC 5,3} = 1 



315(i A(5,4)= 1 
3200 GOSUB 9000 
3210 X = 32:Y = 14: IF G = 0 THEN 

C = 13: GOTO 32?0 
3215 c = 2 ~ 
3220 GOSUB 6800 
3230 IF G = 0 THEN C = 2: GOTO 3 

240 
3235 c = 13 
3240 GOSUB 9200 
3250 X = 32:Y = 14: IF G = 0 THEN 

C = 13: GOTO 3260 
3255 c = 2 
3260 RETURN 
6000 REM FIGURE TYPE t 1 
6() 10 COLOR= C 
6050 PLOT X t 1,y + 1 
6060 PLOT X + 2,y t 1 
6070 PLOT X + 3,y + 1 
6080 PLOT X + 1,y t 2 
6090 PLOT X t 3,y + 2 
6100 PLOT X + 2,y t 3 
6110 PLOT X t 1,y t 4 
6120 PLOT X + 2,y + 4 
6130 PLOT X t 3,y + 4 
6140 PLOT X t 2,y t 5 
6150 PLOT X + 1,y t 6 
6160 PLOT X t 3,y t 6 
6170 COLOR= (i 

6172 PLOT X + 2rY t 2 
6174 PLOT X + 1,y t 3 
6176 PLOT X + 3,y t 3 
6178 PLOT X t 1,y + 5 
6180 PLOT X t 3,y t 5 
6182 PLOT X t 2,y + 6 
6184 s = - 16336 
6186 FOR I = 1 TO 20 
6188 R = PEEK <S> - PEEK <S> -

PEEK <S> - PEEK CS) - PEEK 
( S ) - PEEK ( S ) 

619(1 NEXT I 
6199 RETURN 
6200 REM FIGURE TYPE t 2 
6210 COLOR= C 
6250 PLOT X t 1,y t 1 
6260 PLOT X t 2,y t 1 
6270 PLOT X t 3,y t 1 
6280 PLOT X t 1,y t 2 
6290 PLOT X t 2,y t 2 
6300 PLOT X + 3,y t 2 
6310 PLOT X t 2,y t 3 
6320 PLOT X t 1,y t 4 

6330 PLOT X t 2,y t 4 
6340 PLOT X t 3,y t 4 
6350 PLOT X t 2,y t 5 
6360 PLOT X + 1rY t 6 
6365 PLOT X + 3,y t 6 
63/0 COLOR= 0 
6374 PLOT X + 1,y t 3 
6316 PLOT X t 3,y t 3 
6378 PLOT X t 1,y t 5 
6380 PLOT X t 3,y t 5 
6382 PLOT X t 2,y t 6 
6399 RETURN 
6400 REM FIGURE TYPE t 3 
6410 COLOR= C 
6420 s = - 16336 
6425 FOR I = 1 TO 2 
6430 R = PEEK (5) - PEEK <S> -

PEEK ( S > 
6435 NEXT I 
6450 PLOT X + 1,y t 1 
6455 PLOT X t 2,y t 1 
6460 PLOT X t 3,y t 1 
6465 PLOT X + 1,y t 2 
6470 PLOT X t 2,y t 2 
6475 PLOT X + 3,y t 2 
6480 PLOT X + 2,y t 3 
6485 PLOT X t 1,y t 4 
6490 PLOT X + 2,y t 4 
6495 PLOT X + 3,y t 3 
6500 PLOT X t 2rY t 5 
6505 PLOT X t 3,y t 5 
6510 PLOT X t 1,y t 6 
6520 COLOR= 0 
6530 PLOT X + 11Y t 3 
6535 PLOT X t 3,y t 4 
6540 PLOT X t 1,y + 5 
6545 PLOT X + 2,y t 6 
6550 PLOT X t 3,y t 6 
6599 RETURN 
6600 REM FIGURE TYPE t 4 
6610 COLOR= C 
6620 s = - 16336 
6625 FOR I = 1 TO 2 
6630 R = PEEK (5) - PEEK <S> -

PEEK < S > 
6635 NEXT I 
6650 PLOT X + 1,y t 1 
6655 PLOT X + 2rY t 1 
6660 PLOT X + 3,y t 1 
6665 PLOT X t 1,y + 2 
6670 PLOT X t 2,y + 2 
6675 PLOT X t 3,y + 2 

A Graphics Library 65 



! 

L_ .... ~ .... --.. ~~ .. 

6680 1 PLOT X + 2rY t 3 
6685 PLOT X t lrY t 3 
6690 PLOT X + 2rY t 4 
6695 PLOT X + 3,y t ·4 
6/00 PLOT X + 1rY + 5 
6705 PLOT X t 2rY t 5 
6710 PLOT X + 3,y + 6 
6720 COLOR= 0 
6730 PLOT X + 1rY + 4 
6735 PLOT X + 3,y + 3 
6740 PLOT X + 3,y + 5 
6745 · PLOT X t 1rY t 6 
6750 PLOT X + 2rY + 6 
6799 RETURN 
6800 REM FIGURE TYPE t 5 
6810 COLOR= C 
6850 PLOT X + 1rY + 1 
6855 PLOT X + 2,y + 1 
6860 PLOT X + 1rY + 2 
6865 PLOT X + 2rY t 2 
6870 PLOT X + 2rY t 3 
6875 PLOT X + 1rY + 4 
6880 PLOT X + 2rY + 4 
6885 PLOT X + 3,y t 4 
6890 PLOT X + 2rY + 5 
6895 PLOT X + lrY t 6 
6900 PLOT X + 2rY t 6 
6920 COLOR= 0 
6930 PLOT X + 3,y + 1 
6935 PLOT X + 3,y + 2 
6940 PLOT X + 1rY + 3 
6945 PLOT X + 3,y + 3 
6950 PLOT X + lrY + 5 
6955 PLOT X + 3,y t 5 
6960 PLOT X + 3,y + 6 
6999 RETURN 
7000 REM FIGURE TYPE t 6 
7010 COLOR= C 
7020 s = - 16336 
7025 FOR I = 1 TO 20 :R = PEEK < 

S >: NEXT I 
7050 PLOT X + 1rY + 1 
7055 PLOT X + 2rY + 1 
7060 PLOT X t 2rY t 2 
7065 PLOT X + 2rY t 3 
7(170 PLOT X + 3,y + 3 
7(175 PLOT X + 1rY t 4 
7080 PLOT X + 2rY t 4 
7085 PLOT X + 1rY t 5 
7090 PLOT X + 2rY t 5 
7095 PLOT X + 2rY + 6 
710(> COLOR= 0 

66 Chapter 5 

7110 PLOT X + 3,y t 1 
7115 PLOT X t 1rY t 2 
7120 PLOT X + 3,y + 2 
7125 PLOT X + 1rY + 3 
7130 PLOT X + 3,y + 4 
7135 PLOT X t 3' Y + 5 
7140 PLOT X + lrY + 6 
7145 PLOT X + 3,y + 6 
7199 RETURN 
7200 REM FIGURE TYPE t 7 
7210 COLOR= 11 
7250 PLOT X + lrY + 1 
7255 PLOT X + 3,y + 1 
7260 PLOT X + 1rY + 2 
7265 PLOT X + 3,y + 2 
7270 PLOT X + 2,y + 3 
7275 PLOT X + 2rY + 4 
7280 PLOT X + 1rY + 5 
7285 PLOT X + 3,y + 5 
7290 PLOT X + lrY + 6 
7295 PLOT X + 3,y + 6 
7300 COLOR= 0 
7305 PLOT X + 2,y + 1 
7310 PLOT X + 2rY t 2 
7315 PLOT X + lrY t 3 
7320 PLOT X + 3,y + 3 
7325 PLOT X + lrY + 4 
7330 PLOT X + 3,y + 4 
7335 PLOT X + 2rY + 5 
7340 PLOT X + 2rY + 6 
7350 s = - 16336 
7355 FOR I = 1 TO 150 
7360 R = PEEK ( S > 
7365 NEXT I 
7370 RETURN 
7800 . REM FIGURE TYPE t 0 
7810 COLOR= 0 
7850 FOR I = 1 TO 3 
7860 FOR J = 1 TO 6 
7870 PLOT X + I,Y + J 
7880 NEXT J: NEXT I 
7890 RETURN 
8000 Xl' = X21Y1 = Y2 
8010 IF PDL CO)< 110 THEN Y = 

y + 7 
8020 IF PDL CO> > 146 THEN Y = 

y - 7 
8030 IF Y < 0 THEN Y = 0 
8040 IF Y > 28 THEN Y = 28 
8050 FOR I = 1 TO 100 
8060 IF PEEK ( - 16287) > 127 THEN 

I = 100 



8070 NEXT I 
8080 IF PEEK ( - 16287> > 127 THEN 

x = x - 4 
8090 IF X > 32 THEN X = 32 
8100 IF X < 0 THEN X = 32 
8110 IF PEEK ( - 16287> > 127 THEN 

8110 
8120 T = T - INT C RNII ( 1 > * 5 t 

1) 

8130 IF ACX I 4,y I 7) < > 0 THEN 
F = 1! RETURN ~ 

8140 IF X < > X2 THEN U = U + 1 

8150 X2 = X!Y2 = Y 
0160 x = x1:v = v1 
8170 GOSUB 7800 
8180 X = X2!Y = Y2 
8190 GOSUB 6200!F = o: RETURN 
9000 GR 
9010 COLOR= 15 
9020 FOR Y = 0 TO 35 STEP 7 
9030 FOR X = 1 TO 36 STtP 1 
9040 PLOT x,y 
9050 NEXT X 
9060 NEXT Y 
9070 FOR Y = 0 TO 35 STEP 1 
9080 FOR X = 0 TO 36 STEP 4 
9090 PLOT x,y 
9100 NEXT X 
911(i NEXT Y 
912<1 RETURN 
9200 FOR M = 0 TO 8 
9210 FOR N = 0 TO 4 
9220 IF ACM, N > = 0 THEN 9250 
9230 X = M * 4:Y = N * 7 
9235 X = M * 4:Y = N * 7 
9240 GOSUB 6200 
9250 NEXT N 
9260 NEXT M 
927•'J RETURN 
9500 F = 0: IF G = 0 THEN C = 2: GOTO 

9510 
9505 c = 13 
9510 FOR M = 0 TO a: GOSUB 9550 
9520 IF F = 1 THEN RETURN 
9530 NEXT M 
9540 N = N t 1: IF N > 4 THEN N = 

o: RETURN 
9550 IF A(M,N> = 0 THEN RETURN 

9560 IF RND C 1 > > 0 .2 THEN 9650 
9570 IF X2 I 4 = M THEN 9650 

9580 IF X2 I 4 < M THEN 9620 
9590 IF CM+ 1} * 4 = X2 AND N * 

7 = Y2 THEN F = 1: RETURN 
9600 IF ACM t 1,N) < > 0 THEN 9 

650 
9610 ACM t 1' N > = l:A( M1N > = 0 :x = 

M * 4!Y = N * 7: GOSUB 7'800: 
COLOR= c:x = < M t 1) t 4: GOSUB 

9800: RETURN . ( 
9 620 IF ( M - 1> * 41 = X4 AND< N * 

7 = Y2 THEN F = 1: ~~TURN 
9630 IF ACM - 11N> < • 1 THEN 9 

65(; 
9640 ACM - 1'N> = 1!A1 '(N) = o:x = 

M * 4!Y = N * 7t uSUB 7800: 
' COLOR= C!X = C~ -1> * 4: GOSUB 

9800 t ·RETURN 
9650 IF RND C1> ~ ·.4 THEN RETURN 

966C IF Y2 I 7 = N . HEN RETURN 

9670 IF Y2 I 7 < ~ THEN 9710 
9680 IF M * 4 = X' ANH < N t 1) * 

7 = Y2 THEN F = 1: RETURN 
9690 IF A<M,N t l) < > 0 THEN RETURN 
9700 A<M,N t 1> = 1:A(M1N> = OtX = 

M * 4:Y = N * 7: GOSUB 7800: 
COLOR= CtY = C N t 1 > * 7: GOSUB 

980 0 : RETURN 
9710 IF M * 4~ = X2 AND < N - 1 > * 

7 = Y2 THEN F = 1: RETURN 
9720 IF A<M,N - 1) < > 0 THEN RETURN 
9730\_ACM1N - 1> = UAOhN > = o:x = 

M * +:Y = N * 7: GOSUB 7800: 
COLOR= C:Y = < N - 1) * 7: GOSUB 

9800: RETURN 
9800 IF RND C1) > 0.2 THEN 9870 

9810 FOR Z = 1 TO RNII ( 1) * 3 t 
1 

9820 GOSUB 6400 
9830 FOR .J = 1 TO 50: NEXT J 
9840 GOSUB 6600 
9850 FOR J = 1 TO 50 : NEXT J 
9860 NEXT Z 
9870 IF RND ( 1 > > 0 .1 THEN 9940 

9880 FOR Z = 1 TO RNII ( 1 > * 5 t 
1 

9890 GOSUB 6000 
9900 FOR J = 1 TO 5: NEXT J 
9910 GOSUB 6200 

A Graphics Library 67 

~ 
I 



"Note that line 6050 
through 6160 define every 
point within a box that is 

to be illuminated. " 

68 Chapter 5 

9920 FOR .J = 1 TO s: NEXT J 
9930 NEXT Z 
994-0 GOSUB 62_00: RETURN 
9999 END 

Note that lines 6050 through 6160 define every point within a 
box that is to be illuminated. Most important, too, is that line 6172 
through 6182 define every point that is to be blanked! Failure to 
perform this step will result in problems when a character is reposi
tioned on the screen and overlaid on top of a previous figure. (Line 
6170 sets the color to zero for an APPLE-II which means black or 
"no color.") On a TRS-80, lines 6172 through 6182 would be 
RESET statements. On a PET, one would want to POKE blank 
characters in those positions. 

Again, I must point out that these characters serve as guidelines. 
For instance, on a TRS-80 you would probably want the characters 
to contain more sectors in the horizontal direction. Perhaps you 
would want each box in a grid to be 6 by 6 units. If such is the 
case, you will have to define more points in each box in order to de
fine a character. 

Please take careful note that each point making up a charac
ter is defined as an X plus displacement and Y plus displacement 
value. It is most important that you construct your characters in this 
manner in order that they may be moved and positioned anywhere 
desired on the grid, by initializing the variables X and Y. I trust by 
this point that my previous lessons on this essential point have 
reached their mark! 

Lines 6184 through 6190 are statements to have an APPLE-II 
emit a short buzzing sound. You will want to create similar capabili
ty using appropriate statements for your system if you want your 
animated players to have sound effects. Initially, I suggest you try 
to create your sound effects to last· about half a second. You can 
change the duration later to suit your auditory channels. 

The other characters shown in Figure 16 are drawn by subrou
tines beginning at lines 6200, 6400, 6800, 7000 and 7200, plus the 
special blank box that is drawn by the subroutine starting at line 
7800. All of these subroutines will be called on as needed to draw 
and animate the characters. 

One other feature I will point out is that you may notice that 
some of the character-drawing routines insert the sound effects be
fore the figure is drawn. Others have it after the character has been 
drawn. This arrangement has been derived from experience so as to 
closely synchronize the sounds with the action. As always, however, 



I urge you to experiment with your own ideas if you are not satis
fied with what you see and hear. 

Figure 17 illustrates one way the defense can be set each time a 
play is started. The positions of the defensemen are defined by a 
two-dimensional array (named "A," having elements M,N). The ini
tial positions of the defensemen are set up in a sequence of instruc
tions by a subroutine that starts at line 2000. The subroutine that 
actually examines the array and positions figures on the playing grid 
starts at line 9200. 

A position in the matrix M,N is set to the value one if a defense
man is to be placed at the corresponding position on the playing grid. 
Note that the cells of the playing grid, corresponding to positions 
in the array, are numbered from left to right and top to bottom, 
per the convention generally established when dealing with CRT dis
plays. Also note that the actual starting position of a box is ob
tained by multiplying the array position by a multiplication factor in 
each direction. The factor is four in the X direction and seven in the 
Y direction for the grid shown. This is because each box, when the 

grid line associated with it is included, takes four sectors in the X di
rection and seven in the Y direction. 

When the defense is first set, all of the characters are drawn 
using the character defined by the subroutine that starts at line 6200. 
In other words, there is no initial animation of the characters. In 
initial tests of the program I did animate the defense as it was set. 
I found that the extra time it takes to produce the animation tended 
to slow the pace of a game to the point where it became annoy
ing. The defensemen thus do not start their antics until play gets 
underway. 

One of the major subroutines and probably the most involved one 
in the program begins at line 9500. The purpose of this subroutine 
is primarily to move the defensemen towards the quarterback in or
der to accomplish a "tackle." In conjunction with these maneuvers, 
the subroutine also serves to "animate" the football characters. 

The fundamental operation of the defense-movements subrou
tine is as follows. The M ,N array is scanned to locate the positions 
of· the defensemen in the grid. Each time one is located, its posi
tion is· compared to that of the quarterback. If it is not on the same 
X coordinate on the grid as the quarterback, then approximately 20 
percent of the time (using the random function) a defenseman will 
advance along the X direction, always towards the quarterback. If a 

Setting the Defense 

Placing the Defensemen 
in Motion 

A Graphics Library 69 



defenseman is on the same X coordinate as the quarterback or it 
is not advanced along the X axis, then there is a 40 percent chance 
that it will advance towards the quarterback along the Y axis. If 

"Since animation of the either type of move, in the X or Y direction, results in a defenseman 
characters slows down making contact with the quarterback, then a "tackle" has occurred. 

play somewhat, the level Only one row of grid positions is manipulated each time the subrou
of animation has been kept tine is entered. This is because of the interplay that takes place under 

low." program control between the defense and the manual control of the 
quarterback by a player. 

Interwoven into the defense-movements subroutine are subrou
tines to animate a small percentage of the defensemen. Thus, from 
time-to-time, a defenseman will be exercised to make it appear as 
through it is shifting its feet or "running." Also, from time-to-time 
a defense character has its mouth animated while it emits sounds that 
are meant to mimic a charging tackler! Since animation of the char
acters slows down play somewhat, the level of animation has been 
kept low. However, the percentage of characters that are animated 
is readily changed by altering the values used in lines 9800 and 9870 
of the listing. 

The speed at which animation takes place is controlled by de
lay loops at lines 9830 and 9850 when character "running" is being 
portrayed. Lines 9900 and 9920 control the rate at which the mouth 
of a character is opened and closed during animation. 

Control of the Quarterback The motion of the quarterback is under the control of a person play
ing the game of football. The subroutine that translates the direc
tives of a player to move the quarterback on the screen begins at 
line 8000 in the listing. 

70 Chapter 5 

For the version presented in the listing, a system paddle is used 
as an input device. A "paddle" on an APPLE-II system is a variable 
resistor that can be controlled by a player. Associated with a paddle 
is a "button." This button is used in the listed version of this pro

gram to cause the quarterback to advance along the grid in order to 
gain yardage. Advancement always takes place from right to left 
along the grid as indicated in Figure 17. 

Line 8010 and 8020 test the position of the player paddle and 
either increase or decrease the offset value for the quarterback in 
order to change its position along the Y axis. Lines 8030 and 8040 
are used to limit the Y range so that the figure does not get off set 
completely out of the playing grid. 

Next, a loop is formed to provide a time "window" in which a 
player may push the paddle button to attempt to advance the quar-

j 



terback along the X axis. If the button is pressed during this period, 
the quarterback can be advanced. Line 8110 ensures that only one 
advance directive will be accepted per entry to the subroutine. Lines 
8090 and 8100 keep the quarterback within the boundaries of the 
playing grid. This is done by repositioning the quarterback on the 
right-hand side of the grid whenever it advances beyond the left
hand grid line. 

The balance of the subroutine calls on the figure erasing and 
drawing routines to reposition the quarterback when a move direc
tive is received. 

TRS-80 and PET users, who do not have paddle controls on 
their machines, will need to modify the quarterback moving subrou
tine to respond to a set of keyboard characters. Select one charac
ter to move the quarterback up, another to move it down, and·yet 
another to have it move forward. Be sure to use the GET or IN.KEY$ 
statement as the input directive rather than an INPUT statement. 
The latter type of statement would cause the program to wait for 
an input each time the subroutine was used. What you really want 
is to just check and see if a particular character was inputted during 
the period, if not, the quarterback is not moved. 

"TRS-80 and PET users, 

who do not have paddle 
controls on their machines, 
will need to modify the 
quarterback moving sub
routine .. . " 

Once all the various graphics subroutines have been established, it is Putting It All Together 
necessary to do some "housekeeping" work to keep track of the 
game in progress. Lines numbered 1 through 300 in the listing are 
used to initialize the program at the start of the game as well as be-
tween quarters. Additionally, lines 200 and 210 change the colors 
of the defensemen and the quarterback whenever a team scores or a 
fourth down has occurred. It is not necessary to change the colors or 
the figures if yqu do not have such capability. All you really need to 
do is make sure that the scorekeeping changes, to keep track of the 
team that is "quarterbacking." 

The main calling sequence for the football program starts at 
line 1000 in the listing. It, in turn, calls on the subroutines already 
mentioned to perform graphics, plus some others that are shown 
with line numbers in the 1400 to 2000 range. These subroutines per
form such functions as keeping the scoreboard updated, offering an 
option to permit kicking of the ball (punting) on a fourth down, 
and controlling the turnover of the ball when a quarter expires. 

The scoreboard routines use a portion of the display screen 
that, on an APPLE-II, are reserved for text messages. For other types 
of systems you will most likely want to POKE scoreboard results 
beneath the playing grid. Or, you can present the scoreboard in be-

A Graphics Library 71 



Figure 18 

tween each new play in place of the playing grid. 

Playing a Game By this time you .probably have a pretty good idea of what is in
volved in actually playing a game of football. Ideally, two players 
take turns competing against one another. One captains the blue 
team, the other the yellow. (You can, of course, still enjoy the game 
by competing against yourself and playing for both teams.) 

The game starts with the blue team defending. The yellow quar
terback is then controlled by a player through a paddle and button 
(or keyboard keys in alternate versions). The object for the player 
in control is to advance the quarterback from the right side of the 
playing grid to the left while avoiding being "tackled" by a defense
man. A tackle occurs when any contact is made with the quar
terback, whether as a result of the quarterback charging into a de
fenseman or a defenseman contacting the quarterback. 

The defensemen are under computer control. They will con-

72 Chapter 5 



stantly proceed in the general direction of the quarterback. If the 
player controlling the quarterback does nothing, the quarterback 
will still be tackled. Figure 18 illustrates how the playing grid might 
appear when a play was in progress. The dotted arrows show a pos
sible way for the quarterback to move in the situation shown in or
der to gain yards. Play ends when the quarterback is stopped because 
contact has been made with the defense. The number of yards gained 
per play is equal to the number of grid lines crossed. 

After each play, the yardage required for a first down is calcu
lated. If a first down has not been earned, the down is advanced. 
A player has four downs in which to gain 10 yards, thereby earning 
a new first down, or to score a goal. 

In a fourth down situation, a player has the choice of attempt
ing to gain yardage by running or advancing the ball by "kicking." 
If kicking is elected, a random number generator is used to compute 
a kick in the range of 1 to 55 yards. If the kick was long enough to 
reach the end zone, then a percentage of the kicks are scored as 
three-point field goals. A kick into the end zone results in the ball 
being brought hack out to the 20-yard line (meaning the opposite 
team will have 80 yards to go to make a goal). 

When a score is made or four downs have been used, the oppo
site team defends. 

Time is consumed during each play. At the end of each quarter 
the 900 second playing clock is reset. The yellow team always starts 
as quarterback to begin a game. At the start of the third quarter, the 
blue team starts on the offensive. 

Scorekeeping is done after each play has been completed. The 
results are then automatically displayed on the "scoreboard." Play 
always goes from right to left on the grid, regardless of which team is 
defending, with the color of the characters being changed to show 
the team defending. Also note that the scoreboard always gives yard
age to go in terms of the current quarterback's position relative to 
the goal. 

Remember, the object of this publication has been to give you the 
knowledge and insights necessary to create graphic applications on 
your own machine. Since each type of computer with low level reso
lution graphics capability is different, the actual implementation 
of the routines and programs I have described will generally have 
to be customized by you for your system. To help you do this for 
the football game described, I shall conclude this publication with a 
"map" of the source listing and a list of the key variable names used 

"Play always goes from 

right to left on the grid, 

regardless of which team 

is def ending ... " 

To Help You Create 
Your Own 

A Graphics Library 73 

l 
I 

.. 111111111 ........................ 111111111 .............................. lllllllll ____________ """""_~,""""'~· ,,_ _________ _ 



in the program. Try to apply what you have learned in this manual 
to get your own customized version of the program on line. Have 
fun, and happy animations! 

Subroutine Map 1 Statements to initialize program at start, after quarters, after scoring, 
and when a first down is not achieved. 

74 Chapter 5 

1000 Main calling sequence. Keeps track of downs. Calls on various sub
routines to display graphics and conduct a game. 

1400 Routine to update score and reset yard marker after a goal has been 
scored. 

1500 Routine to kick ball if option taken on fourth down. Calls on 
graphics subroutines, randomly computes length of kick, and, if a 
field goal is made, goes to update score 

1700 Routine to display message when a first down is obtained. 

1800 Routine to keep track of quarters played. Resets clock for a new 
quarter. Changes teams at the half. Displays end of game message 
at conclusion of game. 

1900 Routine to update and display scoreboard. 

2000 Main graphics control routine. Sets defense at start of a play. Calls 
on defense-moves subroutine and quarterback control routine to 
develop play. Routine is exited when a "tackle" occurs. 

3000 Graphics control routine for fourth down kick. 

6000 Draws figure type 1 - front view, mouth closed. 

6200 Draws figure type 2 - front view, mouth open, with sound. 

6400 Draws figure type 3 - front view, running position A, with tapping 
sound. 

6600 Draws figure type 4 - front view, running position 8, with tapping 
sound. 

6800 Draws figure type 5 - side view, kicking stance A. 

7000 Draws figure type 6 - side view, kicking stance 8, with sound. 

7200 Draws figure type 7 - X =man tackled, with sound. 

7800 Draws figure type 0 - blank to wipe out previous character dis· 
played. 

8000 Routine to move quarterback. Inputs directions from player. Keeps 



9000 
9200 

9500 

Variable. 
Symbol 

A 

B 
D 
F 
G 
I 
J 
M 
N 
p 

a 
R 
s 
51 
52 
T 
u 
v 
W$ 
x 
X1 
X2 
y 
Y1 
Y2 
z 

quarterback within boundaries of the playing grid. Advances yard
age counter if quarterback is advanced. Controls graphics to display 
new position. Advances timer. "Tackle" occurs if contact made with 
a defenseman. 

Routine to draw playing grid at start of each play. 
Draws defensemen in their initial positions at the start of play. 

Defensive moves routine. Selects defenseman using random func
tions to advance towards the quarterback. Controls movement and 
animation of the defensemen as they progress towards "tackling" 
the quarterback. 

Function 

Array (0 - 8 and 0 - 4) having 45 positions. An array element hav
ing the value 1 indicates a defenseman is at that position. The ele
ment is zero otherwise. 
Temporary storage variable. 
"Downs" counter. 
Man tackled flag. 
Team flag. 0 = blue defending, 1 =yellow defending. 
Counter for temporary loops. 
Counter for temporary loops . 

. X coordinates assigned to defense. 
Y coordinates assigned to defense. 
Current position marker. 
Yards required to obtain first down. 
Assigned to sound generating routines. 
Constant for sound generating routines. 
Blue team score. 
Yellow team score. 
Time remaining in a quarter. 
Yardage gained per play. 
Current quarter in play. 
Keyboard input buffer. 
Primary X coordinate. 
Temporary X coordinate. 
New X coordinate of quarterback. 
Primary Y coordinate. 
Temporary Y coordinate. 
New Y coordinate of quarterback. 
Counter for major loops. 

A Graphics Library 75 





Index 
Accessing the screen: 13 
Address .offset: 18 
Animation: 55 

Base address: 37 

Cards, drawing of: 39 
Cartesian coordinate: 15 
Cassette, unprotected: 57 
Circles, drawing of: 35 
Clown, drawing of: 50 
COLOR: 12 

Display matrix: 9 
Display, planning of: 38 

Erasing: 25 

Football game, description of: 58 
instructions: 72 
listing of: 63 
subroutine map: 74 
variables list: 75 

Football grid, drawing of: 60 
Football players, drawing of: 60 
Football, game of: 58 

Graphics library: 37 
Grid: 9 

Horizontal line, drawing of: 27 

Line off set: 32 
Line, drawing of any: 33 

equation of a: 28 

slope of a: 29 
Low resolution: 7 

ON: 12 

PEEK: 14 
Pixel: 49 
PLOT: 11 
POINT: 13 
POKE: 13 
Positioning: 24 

RESET: 26 
Row multiplier: 17 

SCRN: 14 
·Sector ratios: 35 
SET: 21 
Smoothing: 22 
Sound, generation of: 56 
Subroutines, use of: 39 
Switch, tape recorder lockout: 57 

Tape recorder: 57 
Translate: 17 
Triangle, drawing a: 21 

Vertical line, drawing of: 27 

X axis: 9 

Y'axis: 9 

Zero reference point: 9 

Index 77 



The Author 

Introduction to Low Resolution Graphics is written by SCELBI's 
top staff author, Nat Wadsworth. He is truly a pioneer of the field 
having designed and developed the world's first "personal comput
ing system," marketed by SCELBI in 1973-75. Nat wrote the ZBO 
Instruction Handbook, Z80 Gourmet Guide and Cookbook, and 
Machine Language Programming, among other books and has had 
articles published in the popular microcomputer magazines. One 
reason for his success and popularity is his unique ability to make 
even the most elusive concept seem simple! 



Questionnaire for GRAPHICS Book 

Do you have a Radio Shack TRS-80 or a Commodore PET com
puter? Are you unsure about creating your own version of the foot
ball game described in this hook to run on your TRS-80 or PET? 
Well, why not first try your hand at it as a learning experience? 

If you want something to compare your version with, drop this cou
pon in the mail. SCELBI will send you absolutely FREE* your 
choice of one of the following: 

A.) Listing of "football" to run on a TRS-80 Level II. 
B.) Listing of "football" to run on a Commodore PET. 
C.) Listing of "windmill" scene in color for the APPLE-

11. 

(*Offer may be withdrawn without notice.) 

Check your choice of one of the above. (Checking more than one 
will disqualify your request.) This coupon itself must be removed 
from the book and submitted to SCELBI. Photocopies of this form 
will not be accepted. 

Would you like to see more instructive books similar to this one pub
lished by SCELBI? Help us determine your needs by providing the 
following information. It will only take a few minutes of your time 
to answer the questions. Your replies will help us continue to provide 
the kinds of publications you want! 

Approximately how long have you been. 'fovolved" with computers? 

Do you currently own a personal computer? 
If so, what kind is it? (Manufacturer, CPU chip ... ) 
How long have you had it? 
How much memory does it have? 
Do you have floppy disk capability? 

Do you like to create or customize your own programs? 
If so, what kind of languages do you frequently use? 

Where do you use computers the most? 
At home? At school? 
At work? Other? 



L 

What types of applications do you use your computer for? 
Business? 
Education? 
Home uses? 

Recreation? 
Other? (please list.) 

Thank you for your assistance! 



"Introduction to Low Resolution GRAPHICS" 
Errata for page 67 

9610A(M+1,N) = 1:A(M,N) = O:X = 
M * 4:Y = N * 7: GOSUB 7800: 
COLOR= C:X = (M + 1) * 4: GOSUB 
9800: RETURN 

9620 IF(M-1)*4=X2ANDN* 
7 = Y2 THEN F = 1: RETURN 

9630 IFA(M- 1,N)<>OTHEN9 
650 

9640 A(M - 1,N) = 1 :A(M,N) = O:X = 
M * 4:Y = N * 7: GOSUB 7800: 
COLOR= C:X = (M - 1) * 4: GOSUB 
9800: RETURN 

9650 IF RND (1) > 0.4 THEN RETURN 
9660 IF Y2 I 7 = N THEN RETURN 
9670 IF Y2 I 7 < N THEN 9710 
9680 IFM*4=X2AND(N+1)* 

7 = Y2 THEN F = 1: RETURN 



Now you can produce amazing computer graphics - even if you 
can't draw a straight line. Literally! Learn how to draw lines and 

shapes, make graphs, draw pictures and even do animation. The 

simple secrets of how to do all this are contained in SCELBI 's new 
book "Introduction to Low Resolution Graphics." 

Today's exciting personal and small business computing ma
chines are generally provided with at least some kind of "low reso

lution" graphics capability. What is low resolution graphics? It is 

graphics presented on a point-by-point basis where the number of 
points is limited to about 8000 or less. The APPLE II by APPLE 
Computers, Inc., the Radio Shack TRS-80 and the Commodore 

PET all have low resolution graphics capability. So do many other 
kinds of microcomputers. 

What can you do with low resolution graphics? All kinds of 
things .. . . If you know how! You can plot plain and simple or fancy 
and complex graphs to consolidate data, for business or pleasure 
purposes. But you can use the capability to improve the presenta
tion and impact of almost anything you want your computer to 
tell people. It can be used to animate games or data, clarify and 
amplify educational materials, or just plain entertain people. 

! 
! 






