
Aztec C65
For the Apple][

CII Version 1.05i 6502
© Copyright 1982, 1983 by Manx Software Systems

Apple][Shell 2.4
© Copyright 1982, 1983 by Manx Software Systems

Portions
© Copyright 1982, 1983 by James Goodnow II

Mini Manual
© Copyright RubyWand (Jeff Hurlburt) January 13, 2001, April 28, 2006

Abridged Version and C65 Extensions and Library Additions
© Copyright Bill Buckels, 1990, Dec 6, 2009, August 25, 2013

Copyright and Conditions of Use

This manual and its related compilers have been preserved, expanded upon, and made
available for the purposes of preserving the history of Aztec C65 and the Apple][on
behalf of the Apple][community to provide both a virtual and real experience of that era
for the enjoyment of other like-minded souls. Harry Suckow (the Copyright holder for
Aztec C) has given permission to redistribute Manx Software Systems discontinued
Aztec C compiler packages for now-obsolete platforms. Your use must be Fair as it
applies to Manx's Copyright on these compilers.

You may use these compilers, the original routines and derivative works that are provided
with these compilers Fairly but for whatever you wish as long as you agree that Bill
Buckels and the other Copyright holders and contributors have no warranty or liability
obligations whatsoever from said use. None of this may be bundled with a product for
resale without additional permission from the applicable Copyright holders.

Contents

1. TUTORIAL INTRODUCTION T0 AZTEC C65 ... 5
1.1 Getting Started ... 5
1.2 Configuring the SHELL .. 6
1.3 Two Drive Environment .. 7
1.4 Creating the Program .. 8
1.5 More SHELL Goodies ... 10
1.6 C65 and CCI, The Speed Versus Size Dilemma .. 10
1.7 Compiling and Assembling ... 11
1.8 A Few Utilities .. 12
1.9 Linking with the Library .. 13
1.10 Running the Program .. 15
1.11 More Choices .. 16
1.12 Going to the Source .. 17
1.13 Where to Go From Here .. 18

2. THE SHELL ... 20
2.5 General Use ... 20
2.6 Built-in Commands .. 21

2.6.1 boot ... 22
2.6.2 bye ... 22

2.6.3 call ... 22
2.6.4 cat ... 23
2.6.5 cd ... 24
2.6.6 ce ... 24
2.6.7 cp ... 24
2.6.8 load ... 25
2.6.9 lock ... 25
2.6.10 ls .. 25
2.6.11 maxfiles .. 26
2.6.12 mv ... 26
2.6.13 rm ... 27
2.6.14 run .. 27
2.6.15 save ... 28
2.6.16 unlock ... 28

2.7 Batch Facilities ... 28
2.7.1 loop ... 29
2.7.2 set .. 30

2.8 Configuration ... 30
2.8.1 Keyboard ... 31
2.8.2 Screen ... 31
2.8.3 Printer .. 32

3. PROGRAMS .. 34
3.1 C65 Native Code Compiler ... 34

8/25/2013 AztecC_minimanual2013 Page 2 of 77

3.2 CCI Pseudo-code Compiler ... 40
3.3 AS65 6502 Assembler .. 41

3.3.1 Overview .. 41
3.3.2 Syntax ... 42

3.4 ASI Pseudo-code Assembler .. 44
3.5 LN Linker ... 45
3.6 MKLIB .. 47
3.7 VED Screen Editor .. 49
3.8 ARCH Source Archive Utility ... 51
3.9 OD Hex Dump Utility .. 52
3.10 CMP Byte for Byte File Compare .. 53
3.11 NM Name List Generator ... 54
3.12 TABSET .. 55
3.13 CONFIG .. 55
3.14 LDEV .. 55

4. LIBRARIES .. 57
4.1 Introduction .. 57
4.2 Summary of Library Functions .. 59

4.2.1 Standard I/O .. 59
4.2.2 System I/O .. 60
4.2.3 Utility Routines .. 60
4.2.4 Math Routines ... 61

APPENDIX A: Compiler Error Codes ... 63
APPENDIX B: The Graphics Disk .. 66

B.1 FILES ON THE GRAPHICS DISK (DISK7) ... 66
B.2 GRAPHIC FUNCTIONS .. 66

B.2.2 plotchar .. 68
B.2.3 circle .. 68
B.2.4 line routines .. 69
B.2.5 page ... 70
B.2.6 color .. 70
B.2.7 plot .. 71
B.2.8 mode .. 71

Appendix C: DISKS ... 73
Appendix D: Mini Manual Credits and Attributions ... 74

D.1 Rubywand .. 74
D.1.1 The Compiler .. 74
D.1.2 Other Attributions ... 76

D.2 Manx Software Systems .. 76
e.o.f. Rubywand 13Jan2001 amdg .. 77

8/25/2013 AztecC_minimanual2013 Page 3 of 77

INTRODUCTION

8/25/2013 AztecC_minimanual2013 Page 4 of 77

1. TUTORIAL INTRODUCTION T0 AZTEC C65

1.1 Getting Started

Congratulations on choosing the Aztec C65 compiler from Manx Software Systems. This
part of the manual contains sections on installing and configuring the SHELL command
processor to your Apple. It then proceeds step by step through the creation, compiling,
linking and running of a test program. On the way, it will introduce important parts of the
SHELL which give a very UNIX-like environment on a small machine. The remainder of
the manual is more of a reference guide and provides more detailed information on the
individual pieces and procedures.

The Aztec C65 system is shipped on either three reversible or six single sided diskettes.
These diskettes should be copied to six other single sided diskettes before being used
These diskettes have been initialized with a special program which allows files to be
stored on tracks 1 and 2 which are normally reserved for DOS. Therefore, the best way to
copy them is to use the COPY or COPY A program which is supplied on the DOS 3.3
master. The originals should then be stored in a safe place in case they are needed again.

To boot the SHELL, first boot DOS 3.3 from the DOS 3.3 system master supplied with
your Apple. The disks supplied by Manx cannot be booted. Then, insert the disk labelled
STARTUP (Disk1) into drive 1 and type:

BRUN SHELL

Note: This set includes a bootable Disk 1 which automatically BRUNs SHELL.

SHELL is a binary program which contains the new command processor, the pseudo-
code interpreter, and part of the library. It will automatically move itself to the
appropriate places in memory. For more information, consult the memory map in the
SHELL section of this manual.

The SHELL will display the message:

APPLE][SHELL 2.4
COPYRIGHT (C) 1983
BY MANX SOFTWARE SYSTEMS
on the screen and the prompt:

-?

Following the prompt should be a solid cursor. At this point, the SHELL is up and
running, and assumes that the Apple it is running on is a normal 'bare bones' Apple II
without lower case keyboard inputs.

8/25/2013 AztecC_minimanual2013 Page 5 of 77

Note: This changed with version 2.4. It is pre-configured to expect and recognize
upper and lower case keyboard inputs. To use on an Apple II without lower case, use
the CONFIG option as discussed below.

In 'bare bones' config, the ESC key acts as a caps lock/unlock key, lower case is
displayed as normal text, and upper case is displayed as inverse video. Try typing some
characters. They should appear as normal video characters. Now, press the ESC key. The
first thing you should notice, is that the cursor is now flashing. This signifies that you are
in CAPS LOCK mode. Try typing some characters now.

They should appear as inverse video characters, which indicates that they are upper case.
If you are using a keyboard with full upper and lower case capability, such as the Apple
Ile, you will need to type the characters as upper case. This is necessary since the SHELL
is delivered configured for a basic Apple II. We will discuss how to take advantage of
additional capability shortly. On the IIe, simply make sure that the CAPS LOCK key is
engaged.

Type ^X (CONTROL-X) to cancel the line that you typed. (Note that control characters
will sometimes be displayed in this manual as a caret followed by the appropriate
character.) There are a number of other control characters which have special meaning.
The full list is discussed in the SHELL reference section on console I/O.

The important ones are:

^H (also the left arrow key) which is used to backspace over the last character typed.
^X to cancel the current line of input.
^S to stop and restart output to the screen.
^C to abort a program and return control to the SHELL.

Under the SHELL, the command to catalog the disk is "ls". Try typing it now followed
by a return to see the files on the ST ARTUP diskette. The SHELL normally assumes that
commands are typed in lower case. If you typed "LS", the SHELL tried to find a file with
the name "LS" to run, and gave an error message when it didn't find it. Hit the ESC key
to get out of CAPS LOCK and try it again. The "ls" command is "built- in" to the SHELL
A full list of the built-in commands can be found in the SHELL reference section.

1.2 Configuring the SHELL

Up to this point, the SHELL has ignored any peripherals or options which you might
have added to your machine. To make use of these features, the SHELL must be
configured to the exact system which you are using. This is done by using the CONFIG
program which is also on the STARTUP disk.

To run the CONFIG program, simply type:

config

8/25/2013 AztecC_minimanual2013 Page 6 of 77

followed by a return. Note that unlike DOS, you don't need to type RUN or BRUN to
execute programs. Simply the name of a file will cause it to be loaded and executed.

When the CONFIG program has been loaded, it will display a startup message and ask a
series of questions about the machine you are using and the peripherals installed. Most
questions can be answered with a simple 'y' or 'n'. A more detailed discussion of the
CONFIG program and the meaning of some of the questions can be found in the
CONFIG reference section.

At one point in the program, it will ask if you are using an 80-column video card. If you
answer yes, it will ask about specific cards that it has tables for. If the card you are using
is not in this list, you must provide information from the card's manual. For the purpose
of this introduction, you may wish to cancel the CONFIG program and perform the
configuration later after reading the CONFIG reference section. In the meantime, the
default configuration should suffice till then.

When the configuration is finished, the program will ask if you wish to store that
configuration. If you answer 'n', only the current memory version of the SHELL will be
altered.

1.3 Two Drive Environment

One of the nice features of the SHELL is it's use of two drive disk systems. To illustrate
this, insert a DOS initialized diskette into drive two. To catalog drive 2, type:

ls d2

This is different from the DOS way of doing things in two ways. The command name
"ls" must be separated from its argument by at least one space, not a comma. The second
thing that is different is that this command does not make drive two the active drive.
Typing the "ls" command by itself will still give the catalog for drive one. To change the
active drive, the "cd" command must be used. Type:

cd d2

to change the active drive from drive one to drive two. Now drive two will be the active
drive until another "cd" command is given, or the system is rebooted.

The other nice feature for multi-drive systems is the concept of an execution drive. For
example, try typing:

config

Note that the drive light on the active drive will go on as the SHELL tries to find the
program. Assuming that you don't have a program named CONFIG on the scratch disk,

8/25/2013 AztecC_minimanual2013 Page 7 of 77

the SHELL will then automatically check the current execution drive. In this case the
current execution drive will be drive one, and the CONFIG program will be loaded The
current execution drive can be changed by using the "ce" command in a manner similar to
the "cd" command.

For the rest of this introduction, it will be assumed that the current execution drive is
drive one, and that the current data drive is drive two. After cancelling out of the
CONFIG program by typing ^C, type the following just to be sure:

ce d1
cd d2

Then replace the STARTUP disk in drive one with Disk3 labeled C65. (The CCI disk is
Disk4.)

1.4 Creating the Program

The C65 disk contains the 6502 C compiler, the 6502 assembler, and several utility
programs. In the following paragraphs, we will use the VED screen editor to create a test
program which we will then compile, assemble and link with a library. The result will be
a file which we can then execute. We will also make use of some of the other utilities as
'well. The program which we will write gives a useful demonstration of how arguments
passed to a program are accessed by the program. The following is a listing of the
program:

main(argc, argv)
int argc;
char *argv[];
{
 register int i = 1;
 printf("Program <%s> has %d arguments\n", argv[0], argc-l);
 while (--argc) {
 printf("Arg %d = <%s>\n", i, argv[i]);
 i++;
 }
}

As can be seen, the program prints its name, which is the first argument, and the number
of arguments. Since the number of arguments includes the program name, argc-l is used
as the number of real arguments. Then, each argument is listed on a separate line. The
first step is to create the source program using the VED screen editor. Type:

ved args.c

VED will be loaded from the current execution drive, and will try to find "args.c" on the
disk. When it doesn't find it, it will say so and will start with an empty document. Note
that the screen should look like:

8/25/2013 AztecC_minimanual2013 Page 8 of 77

"args.c" line 1 of 1
-
-
-

The cursor should be on the second line, and a single '-' on all the remaining lines. The '-'
indicates that the line is after the end of the file. If the screen does not look this way,
there is something wrong with the way that your SHELL is configured Refer to the
CONFIG reference section before proceeding further.

VED has two modes, command and insert. Normally, VED is in command mode. For a
list of most of the commands available, try typing a question mark without a return. The
screen should clear, and the list should appear. Pressing the return key should repaint the
screen with the document being edited To enter insert mode, simply press the 'i' key. On
the status line, the <INSERT> mode indicator should appear. This will always be there
when in insert mode.

At this point, type in the test program, using the left arrow key to correct any mistakes.
The indentation in the program is produced by using a tab character. The tab character
width is defined by the SHELL and defaults to four. It can be changed using the
TABSET program discussed in the PROGRAMS section of this reference manual.

If you are using a standard Apple II keyboard, you will need help to produce some of the
characters. To get the '{', type ^A. To get the '[', first press the ESC key to go to CAPS
LOCK mode and then type ^A. If you have installed the SWSKM (single wire shift key
mod), and configured the SHELL for it, then use shift ^A to get the '['.

The following table lists the other mappings you will need. The capitalized control
characters must be typed with the CAPS LOCK on or the shift key down if the SWSKM
is installed.

^a (
^A [
^I tab (the right arrow key on Apple II's may be used as well)
^r }
^R]

VED expects an ESC character to end the insert mode. If the ESC key is being used as a
CAPS LOCK key, the AQ key will produce an ESC character instead Once out of insert
mode, the cursor can be moved around using the space bar to move right and the left
arrow to move left. To move a number of characters to the right or left, type the number
of characters to skip followed by the space or backspace. To move to the beginning of the
next line, use the return key. Similarly, use the ‘-‘ key to move to the beginning of the
previous line. Characters can be deleted by placing the cursor on the character and
pressing the 'x' key. Characters can be inserted by placing the cursor at the insertion point
and pressing 'i' to enter insert mode.

8/25/2013 AztecC_minimanual2013 Page 9 of 77

file modified - use q! to override

This message will appear whenever you try to exit VED after making a change without
writing the file out. To exit without saving the changes made, type ":q!" followed by
return.

1.5 More SHELL Goodies

At this point, the SHELL prompt should be back. To examine the file you created, you
may either use VED again, or type:

cat args.c

to display the file on the screen. This uses the built-in SHELL command, "cat", which
opens it's arguments one by one and copies them to the standard output.

If you have a printer card installed and configured correctly, you can print the file with
the following command:

cat args.c > pr:

This introduces another feature of the SHELL, I/O redirection. Under the SHELL, when a
program is invoked, it has three pre-opened channels of communication. These are
usually referred to as the standard input, output and error. Normally, the standard input
channel is connected to the keyboard, while the standard output and error channels are
both connected to the screen. However, by using the special characters '<' and '>', the
standard input and output can be "redirected" to other devices.

Thus in the above examples, the "cat" command opens the file specified by the argument
and reads the contents of that file and writes them to the standard output. In the first case,
that was the screen. By using the "> pr:" in the second example, the SHELL switched the
standard output to "pr:" which is the name of the printer device. The name of both the
keyboard and screen is "kb:". We will say more about I/O redirection later.

1.6 C65 and CCI, The Speed Versus Size Dilemma

Now that we have our C source program, the time has come to compile it. The Aztec C65
system actually comes with two C compilers. The first compiler, C65, produces 6502
machine code, while the second compiler, CCI, produces a pseudo-code that must be
interpreted. Because of the architecture of the 6502 microprocessor, there are advantages
to both.

The 6502 microprocessor is completely restricted to dealing with single bytes at a time.
Addresses and numbers larger than 256, on the other hand, are two bytes in size. As a
result, the 6502 machine code generated by C65 tends to be larger than programs

8/25/2013 AztecC_minimanual2013 Page 10 of 77

produced for machines which have better facilities for handling 16-bit quantities. As an
alternative, the pseudo-code C compiler, CCI, produces machine language for a
theoretical machine with 8, 16 and 32 bit capabilities. This machine language is
interpreted by an assembly language program that is about 3000 bytes in size.

The effects of using CCI, are twofold. First, since one instruction can manipulate a 16 or
32 bit quantity, the size of the compiled program is generally more than fifty percent
smaller than the same program compiled with C65. However, interpreting the pseudo-
code incurs an overhead which causes the execution speed to be anywhere from five to
twenty times slower.

Note: The note above refers to CCI compiled (Shell) programs that do not mix native
code into speed-critical portions. But from that time to this execution speed has
improved immensely. This manual was written when accelerators weren’t around
much. Really fast Apple II accelerators like the ZIP chip came even later. Today,
emulators like AppleWin with fast speed settings, and fast “virtual” disk image access,
can run Shell programs very quickly; With the benefit of very tiny compiled Shell
programs to save the limited disk space on a DOS 3.3 disk, and the benefit of the
Shell’s real command line and other features like redirection and compatibility with
shell scripting not available in DOS 3.3.

The dilemma appears obvious: speed versus size. For most applications, hopefully, the
resolution is obvious. If the program is small, there should be no problem using C65. If
the program is large and the speed of execution not critical, use CCI. If the program is
large and execution speed important, there are at least three solutions.

First, code extremely time critical parts of the program directly in 6502 assembly
language. This is typically necessary in applications such as real-time graphics, where the
overall program is written in a higher level language, but the extremely time-critical
portions are written in assembly. A second approach, similar to the first, is to compile just
the time critical routines with C65 and the remaining routines with CCI.

Both compilers and assemblers have been designed so that the object modules produced
by each may be combined together into one binary program.

A third possibility is to use the overlay facility provided with this system. Overlays allow
portions of a program to be loaded from a disk when they are needed, and then to be
"overlaid" with other portions. Using this technique, the size of a program need only be
limited by the size of the disk you are using. Finally, any combination of the above
methods may be used to achieve a satisfactory balance of size and execution speed

1.7 Compiling and Assembling

The examples and discussion which follow are restricted to C65, but basically apply to
CCI as well. The simplest way to use C65 is to type:

8/25/2013 AztecC_minimanual2013 Page 11 of 77

http://applewin.berlios.de/
http://en.wikipedia.org/wiki/Apple_II_accelerators

c65 args.c

The compiler will be loaded from the execution drive and will display the version number
and the copyright message. It then translates the source file into 6502 assembly language.
The assembly language is placed in a file called "$TMP.$$$" which will be deleted later
by the assembler. After the compiler finishes, the 6502 assembler, AS65, is automatically
loaded. AS65 assembles the assembly language in "$TMP.$$$" and places its output in a
file called "args.rel". The type of the ".rel" file is 'R' indicating that it is a relocatable
object file. When the assembler finishes, it deletes the temporary file, "$TMP.$$$". At
this point the compile is finished.

While the source is being compiled, if any errors are detected the line containing the error
will be displayed, along with the line number and the error number. Refer to the error
summary in the appendix to translate the error number. If there is an error, use VED to
edit the file. To move the cursor to the line with the error, type the line number followed
by a 'g'. Correct the error, write the file, and recompile it.

If you wish to compile without assembling, then typing:

c65 -a args.c

will compile the program and produce an assembly language text file called "args.asm".
This file may be edited or printed as desired When this option is used, the assembler is
not automatically executed. To produce a relocatable object file from "args.asm", type:

as65 args.asm

AS65 will place its output in a file called "args.rel". Note that in this case, AS65 will not
delete "args.asm" when it is finished.

1.8 A Few Utilities

The relocatable object file produced by both assemblers is in a special binary format. If
you "cat" the file to the screen, the result will be visual garbage. Instead. to look at the
contents of a non-text file, there is a utility program called OD. This is not a built-in
command and must be loaded from the disk. To execute the program, type:

od args.rel

The program will open the file args.rel and display in hex the value of each byte in the
file. If the byte is also a displayable character, it will be displayed at the right of the hex
values. Non-displayable characters will be displayed as a period. The display can be
temporarily stopped and restarted by using the ctrl-S key. The program can be aborted by
typing ctrl-C. OD can be used to dump the contents of any file, text, binary, basic, or
relocatable object Try it on "args.c".

8/25/2013 AztecC_minimanual2013 Page 12 of 77

A second utility, NM, works only with relocatable object modules. This utility performs
two functions. First, it can display the size of the code and the data which is contained in
an object file. This is useful since the physical size of an object file does not directly
reflect the size of the code and data which will be produced when it is converted to
absolute binary form. To see the size of the code produced by the "args.c" program, type:

nm -s args.rel

The result should be about 210 bytes if you used C65, and 96 bytes if you used CCI.

The second function of NM is to display the names and offsets, if known, of all labels
defined in a module. This is mostly useful when building libraries. It is possible to
determine what labels are defined within this module and which are yet to be defined.
The various options for the output can be found in the PROGRAMS reference section.
Typing:

nm args.rel

will show that the "main_" function is defined in this file, and that several functions are
undefined, including "printf_".

1.9 Linking with the Library

Note: Aztec C65 .REL files (discussed below) are in their own format and are saved as
binary files (with a .REL extension) on a DOS 3.3 disk and not as a DOS 3.3 REL file
type ‘R’. The REL file format used with the CII compiler (this vintage) was consistent
across Aztec C’s respective native-mode and cross-compilers for the Apple II,
Commodore 64, and CP/M, which also has its own Digital Research (DR) REL file
format which differs from the various REL formats found on the Apple II. By the time
ProDOS came around Apple Computer applied many restrictions to file types, but
never implied restrictions to the ProDOS REL file type simply describing a REL file as
“Relocatable code” although some folks (like APDA in their standard and Apple
themselves in manuals like the EDASM Manual) assigned the type exclusively. By the
time the Aztec 65 version 3.2b Apple II native compiler was released (the last Apple II
Aztec C native Compiler) in 1987, the .REL extension had been replaced with a .O
extension like their MS-DOS C86 version. But Aztec C was inconsistent with its
naming and the 3.2b Apple II cross-compiler for MS-DOS used the .R extension for
their object files, and calling the same program by different names for different
platforms (LN in this compiler is called LN65 in the MS-DOS Apple II cross-
compilers) making manuals like this difficult to decipher at times… and to make
things even more confusing the object file formats between the 3.2b compiler and this
compiler were different too. So to recap, for the purposes of reading and
understanding this manual, the REL format is an extension and not a DOS 3.3 file
type. Object files for the SHELL have a .INT extension which could be confusing too!
You can also use your own naming by –o (over-riding output default naming). Sheesh!

8/25/2013 AztecC_minimanual2013 Page 13 of 77

http://archiveit.archive.org/stream/EDASM-ProDOS_Assembler_Tools_Manual/EDASM-ProDOS_Assembler_Tools_Manual_djvu.txt
http://www.umich.edu/~archive/apple2/misc/programmers/filetypes.txt
http://www.1000bit.it/support/manuali/apple/technotes/ftyp/ft.about.html
http://www.seasip.demon.co.uk/Cpm/rel.html

Both assemblers translate assembly language into a format called relocatable object
format. This format is designed to allow the program module to be converted into
absolute data which will be loaded and run at a specific address in memory. This
becomes particularly important when the final program consists of several modules
compiled and assembled separately. As will be seen, this is true of almost all programs.

For example, assume that a program consists of two modules, "main.rel" and "subs.rel".
Assume, also, that "subs" contains several functions to be called from "main". Since the
two modules are compiled and assembled separately, there is no way for "main" to know
where "subs" is going to be in memory. Even if "main" did know the address of the
beginning of the "subs" module, it has no way of knowing the size of each function in
that module.

It is possible that one could give all the information needed when compiling and
assembling "main" to directly produce a binary image. This is only practical if the
amount of information needed is quite small However, most C programs make use of a
number of functions supplied with the compiler. These functions are usually kept in
individual modules so that functions not used by the program are not included.

The number of these functions make it totally impractical to produce any kind of direct
binary output. The solution is the relocatable object format and a program to link object
modules together, the Aztec linker, LN.

LN combines any number of object modules together and produces a binary file in the
standard Apple DOS "BRUN" format. LN will also indicate if anything is missing. For
this example replace the C65 disk with the LIB65 disk (Disk5) and type:

ln args.rel

In this case, LN will attempt to produce a binary file from "args.rel". However, since the
"args" program makes reference to several functions which are not defined in the "args"
module, the linker will give error messages to that effect.

Supplied with the Aztec C65 system, is a large set of subroutines which perform many
different functions. A large percentage of these routines are used to perform input and
output operations, since the C language has no inherent mechanisms for doing I/O. A
complete list of these functions and a description of each can be found in the
LIBRARIES section of this reference manual.

To simplify the process of selecting the correct routines to be linked with a particular
program, it is possible to combine a number of routines into a single file, called a library.
The format of a library is designed so that individual modules can be read from it without
reading all the modules. In addition, the linker, LN, will search a library and only use
those modules which satisfy references made in other modules that it has processed.

Thus, to correctly link the "args" program, type:

8/25/2013 AztecC_minimanual2013 Page 14 of 77

ln args.rel sh65.lib

In this case, the linker will read the "args.rel" file and make a list of all undefined
symbols. Then, it will check the library (note that LN looks for modules or libraries on
both the data and execution drives automatically) for any modules which contain the
proper symbol If it finds one, it will read that module from the library. If there are any
undefined symbols in that module, they are added to the list.

This process continues until the end of the library is reached. If there are still unresolved
symbols in the list, they are displayed in error messages and the link aborted. If all the
unresolved symbols get matched up with corresponding routines in the library, then the
linker proceeds with combining all the object modules together into one binary program.

If the link was successful, there will be a binary file called "args" located on the current
data disk. LN will call the output file the same name as the first object module argument
To specify a different name, LN can be used with a "-o" option as follows:

ln -o testprog args.rel sh65.lib

which will place the output in a file called "testprog" instead.

And that's all there is to it! In summary, to turn "args.c" into the program "args" takes
only two commands:

c65 args.c
ln args.rel sh65.lib

1.10 Running the Program

Now that the program has been compiled, assembled and linked, it's ready to be run. All
that has to be done is to type:

args these are some args

which will display:

Program <args> has 4 arguments
Arg 1 = <these>
Arg 2 = <are>
Arg 3 = <some>
Arg 4 = <args>

Note that the SHELL automatically parses the command line and breaks it up into pieces
which are separated by blanks. To type an argument which contains a blank, it is
necessary to enclose the whole argument in double quotation marks. For example, try:

8/25/2013 AztecC_minimanual2013 Page 15 of 77

args "arg one" "arg two"

To save the output of the "args" program in a file, we can use the I/O redirection
capability of the SHELL. The printf() routine that we used in "args" sends its data to the
standard output which can be redirected, as in:

args one two three > args.out
cat args.out

The first line calls "args" with three arguments. The '>' and all following information is
directed to the SHELL and is not passed to the program. The file "args.out" now contains
the output that would have gone to the screen. I/O redirection can be used to redirect I/O
to or from disk files, or the devices "kb:" and "pr:".

1.11 More Choices

There are basically two libraries supplied with the Aztec C system. One contains the
transcendental math functions and the floating point emulation routines. The second
contains all the other routines. When linking, the FLOAT library need only be specified if
floating point is used somewhere within one of the modules. If floating point has been
used, and the program is linked without the FLOAT library, there will probably be a
number of unresolved references. In particular, the symbol, ".fltused", indicates that
floating point was used at some point. This is an example of a case where the NM
program could be used to determine which modules declared ".fltused" as undefined.

When linking with the FLOAT library, it should be placed before the regular library in
the argument list. For example:

ln -o flargs args.rel flt65.1ib sh65.lib

will create a binary program called "flargs" which contains the floating point emulation
routines.

Although there are only two basic libraries, there are a number of different flavors of
each. The FLOAT library comes in only two flavors, FLT65.LIB and FLTINT.LIB. Both
libraries contain the same functions, but all the C language routines in FLT65.LIB have
been compiled with C65, while those in FLTINT.LIB with CCI.

The regular library also comes in a C65 version and a CCI version. However, there is
another distinction as well. One version of the regular library is only useful when creating
programs that will run while the SHELL is in memory. The other version is designed to
allow programs to run directly under Apple DOS with or without the SHELL. The second
version is called the STAND-ALONE library.

8/25/2013 AztecC_minimanual2013 Page 16 of 77

The SHELL libraries are called SH65.LIB and SHINT.LIB which correspond to the C65
and CCI versions respectively. Likewise, the STAND-ALONE libraries are called
SA65.LIB and SAINT.LIB. All the libraries compiled with C65 are on the disk labeled
LIB65, while the disk labeled LIBINT contains the others.

Note: This is not quite true. In order to fit the files onto the diskettes, the STAND-
ALONE libraries are swapped around. So, you have...

Disk5 "LIB65"
SH65.LIB for C65 Shell lib
FLT65.LIB for C65 Float lib
SAINT.LIB for CCI Stand-alone lib

Disk6 "LIBINT"
 SHINT.LIB for CCI Shell lib
 FLINT.LIB for CCI Float lib
 SA65.LIB for C65 Stand-alone lib

Note: This business of STAND-ALONE does not mean that everything called STAND-
ALONE (SA prefix) can run in “RAW” DOS 3.3. Only two libraries can do that;
SA65.LIB and FLT65.LIB. Only two libraries are mostly PCODE and lever the
Shell’s built-in calls; SHINT.LIB, which produces the smallest executables which run
only in the Shell INTerpreter, and the other library, SAINT, is a hybrid but can only
be used for programs that run in the Shell. To make things even more confusing,
native mode modules or libraries can be linked with Shell libraries (with varying
degrees of success). My recommendation after years of using this vintage of Apple II
compiler is the general rule of linking your shell programs to SHINT.LIB and your
“RAW” programs to SA65.LIB. Avoid running your RAW programs in the Shell
unless you don’t do much text screen manipulation. The Shell does well with its own
but fails on many “RAW” calls. Example programs that do both are in the Aztec33
bundle which repackages this compiler with a cross-compiler for MS-DOS of the same
vintage. And now you are likely horribly confused! But you have options!

G.LIB (the graphics library) is a “RAW” library which works both in the Sheell and in
RAW DOS 3.3 but special rules apply when writing for the Apple II’s Graphics Screen
to avoid clobbering it with your program. Atztec 33 has samples for that too.

The differences between the STAND-ALONE library and the SHELL library are
discussed in the LIBRARIES section of this manual. The FLOAT libraries may be used
stand-alone or with the SHELL.

1.12 Going to the Source

The source to most of the library routines, some of the utility programs, and parts of the
SHELL, are included with the Aztec C system. These text files are collected together in a
set of binary files called archives. Placing the files in archives allows more efficient use

8/25/2013 AztecC_minimanual2013 Page 17 of 77

of the disk space. Replace the disk in the current execution drive (drive 1) with the disk
labeled ARCHIVES and type:

cp progsrc.arc,d1 progsrc.arc

The "built-in" command, "cp", will copy the file "progsrc.arc" from drive one to the
current data drive (drive 2). Now type:

arch -l -o progsrc.arc

The "-l" (lower case "L") option tells the ARCH program to list the names of the files in
the archive. The name of the archive is specified by using the "-o" option. ARCH will list
the name and size of each file in the archive. To extract one of the files, type:

arch -x -o progsrc.arc tabset.c

The "-x" option tells ARCH to extract the file names which are passed as arguments.
Thus, more than one name may be specified at a time. That is also why the "-o" option is
necessary to tell ARCH which argument is the archive itself. If the "-x" argument is
specified with no filenames, then all the files in the archive are extracted.

Included with this manual should be a release document which describes the contents of
each archive.

1.13 Where to Go From Here

Well that about covers the basics. The rest of this manual is devoted to giving more
precise technical information on a number of different topics. The major sections and
their contents can be summarized as follows:

SHELL - commands and features
PROGRAMS - options and use of each program
LIBRARIES - calling sequence and function
TECH INFO - a variety of information

Familiarity with the sections on the SHELL and options to the programs is highly
recommended. In the beginning of the libraries section, there are several sheets which
provide a summary of the library functions and their arguments. A copy of these sheets
along with a copy of the compiler error codes can be found as the last pages of this
manual and can be used as a handy reference. The last section contains a number of
different documents which provide information on a variety of topics, including overlays,
floating point format; ROMable code, device drivers, stand-alone use and others.

8/25/2013 AztecC_minimanual2013 Page 18 of 77

THE SHELL

8/25/2013 AztecC_minimanual2013 Page 19 of 77

2. THE SHELL

2.5 General Use

The simplest form of a SHELL command is the name of a function followed by a
carriage return. A SHELL command may either be one of the built-in utilities or the name
of a binary or text file which resides on disk. The following is a list of the built-in
functions available with the SHELL. If a file has the same name as one of these
functions, the SHELL will not execute that file, but will execute the built-in function
instead.

boot cp mv
bye load rm
call lock run
cat ls save
cd/ce max files unlock

These commands are all specified using lower case. A complete description of each
command can be found in the Commands section.

Binary programs which are normally run using the DOS 'BRUN' command can be loaded
and executed by simply typing the name of the file followed by a carriage return. The
first two words of binary files which contain executable programs contain the load
address and length in bytes of the memory image. These are used to load the program
into memory. The SHELL 'load' command can be used to load the image into a different
section of memory much the same as the DOS 'BLOAD' command.

Text files containing a series of SHELL command lines can be executed by simply typing
the name of the text file followed by a carriage return. All SHELL input is then taken
from that file until the end is reached For more information see the Batch Facilities
section.

Some built-in SHELL utilities as well as binary programs produced using the Aztec C
compiler system require or allow arguments to be specified when the command is
executed These arguments are placed on the same line as the command name separated
by spaces. An example of this is the SHELL 'lock' command Under Apple DOS, if it is
desired to lock several files, the DOS 'LOCK' command must be given once for each file.
To lock several files using the SHELL, the user would type something like:

lock test1 test2 test3,d2

to lock files "test1" and "test2" on the current drive and "test3" on drive two.

8/25/2013 AztecC_minimanual2013 Page 20 of 77

Because arguments are separated by spaces, file names containing spaces must be
enclosed in double quotes to enable the SHELL to distinguish the single name from two
names. For example, to unlock a file called "testprog", the user would type:

unlock "testprog"

Double quotes should also be used around file names used as commands if the name
contains any blanks.

The final feature of the SHELL which will be discussed is the ability to redirect the
standard input and/or output of a program to a file or a device. Normally the standard
input and output of a program are connected to the keyboard and screen respectively. The
user may redirect either or both of these connections to a file or a device such as a printer.
This is accomplished by using the special character '<' for input and '>' for output.

As an example, to place the output of the NM command, which produces a symbol table
from an object file, into a file for later perusal, type:

nm objfile > listing

The namelist will not be printed to the screen, but to the file 'listing' instead. The SHELL
also pre-opens a second channel to the screen
called the standard error output. This channel cannot be redirected.

2.6 Built-in Commands

This section describes the commands which are built into the SHELL program itself.
Each SHELL command will be listed along with a description of
its use and its function. All commands are specified as being lower case. File names may
be typed with either upper or lower case letters, however they will all be mapped to upper
case for compatibility with Apple DOS. File names may contain blanks, but to
distinguish arguments from the parts of the file name, the entire name must be enclosed
within double quotes.

In the following discussions, the concept of current data drive and current execution drive
are used Under DOS, the last drive accessed is considered the current drive. Under the
SHELL, the current data slot, drive and volume must be explicitly changed by the user
using the "cd" command at any point where an optional slot, drive or volume parameter
may be given. If any are not specified, they will default to the current data value
respectively. The examples given for specific commands should clarify this point.

In general, all arguments to SHELL commands and to utility programs are separated by
blanks. Arguments in square brackets are optional and most commands allow more than
one file name per command line. In the following descriptions, any reference to a file
name is assumed to include the optional slot, drive and volume parameters.

8/25/2013 AztecC_minimanual2013 Page 21 of 77

2.6.1 boot

boot n

Does a jump to (slot number n) address $Cn00. (Usually to reboot a drive controller
installed at slot n (4, 5, 6 or 7).)

Example:

boot 6

Causes the floppy disk to reboot

Note: The boot command is really the equivalent of typing "PR#" in a BASIC
program; boot 6 will reboot a floppy drive system with the floppy controller in slot 6. If
you have a Microsoft CP/M Softcard in Slot 4 or 5, or an Applicard in slots 4, 5, or 7,
this command can be used to get to CP/M from DOS 3.3 by typing boot followed by the
respective slot number. Since hard disk systems aren't really supported by the DOS 3.3
filing system, boot 7 for a hard drive would be unlikely.

Doing a boot 3 with an 80 column card installed which has the same effect as a jump
to $C300 messes-up the shell's text screens and creates double spacing. Configuring
the shell to 80 column mode and letting the shell take care of text screens is the only
alternative, and a jsr or a jump to $C300 should never be done in a shell program if
you want your text screens to work afterwards. The shell does its own thing when it
comes to screen control and you are best to avoid any of the "RAW" jumps and jsrs to
manipulate text screens in shell programs. The shell has routines for that, and the text
screen cursor control and clearing the screen are supported by the shell's internal
terminal routines. To recap, this command is useful to reboot your floppy (boot 6)
including in a shell script that is not being redirected.

2.6.2 bye

bye

Does a jump to the Apple machine language monitor at location $FF65. Re-entry to the
SHELL is through $3D0 or by hitting RESET on systems with the autostart ROM.

2.6.3 call

call addr

Performs a "jsr" to the address given. If addr is preceded by a '$', it is interpreted as hex,
otherwise as decimal.

Examples:

8/25/2013 AztecC_minimanual2013 Page 22 of 77

call $800
call -151

The first example does a "jsr" to hex 800, while the second calls the monitor.

Note: Careful using this one. It probably works ok to run a little bit of code loaded into
where the shell expects, like at $800. It mucks-up on calls to routines like catalog at
$a56e. Equivalent shell commands can be used in some cases; i.e. ls maps to catalog
and works properly. In your own shell programs, using the runtime library calls
supplied with Aztec C like the catalog() call is a better alternative, but in a "RAW"
DOS 3.3 program you are free to do what you want. However, those "RAW" programs
that do what they want don't always run properly in the Aztec C65 DOS 3.3 shell. The
newer ProDOS Shell is more forgiving.

2.6.4 cat

cat [file1] [file2] ...

Concatenates the named files to the standard output. If no files are specified, input is
taken from the standard input. This is the quickest and easiest way of looking at a text
file.

Examples:

cat test1 test2,d1
cat test1 test2,d1 > test3
cat > pr:
cat kb: > pr:
cat > myfile.txt

The first example displays "test1" from the current data drive on the screen immediately
followed by the file "test2" located on drive one. The second example creates a new file
called "test3" containing the two files "test1" and "test2". The third example reads a
character from the standard input and writes it to the device "pr:" which is the printer.
The fourth example is equivalent to the third.

Note: One of the most useful variations of the cat command was never included in the
orginal manual. I have placed this as example 5 in the examples above. By redirecting to
a text file and then pressing ctrl-c (ctrl-break) when done, you can create shell scripts and
other 7 bit sequential ascii files without the need of an editor. The gotcha' here is that you
can't miss a typo on a previous line or insert a line above the current line, because all you
are doing is copying stdin to stdout. You can have blank lines in these files and pretty
much any character that the Shell console driver accepts.

8/25/2013 AztecC_minimanual2013 Page 23 of 77

2.6.5 cd

cd sn,dn,vn

Change the current data slot, drive and/or volume. Any or all of the three parameters may
be changed. Those not specified will remain the same. If a volume number is specified., it
will be checked whenever a file is opened A volume number of zero, however, will
match any disk.

Examples:

cd s6,d1,v0
cd d2

The first example changes the current data disk to be slot six, drive one, and any volume.
The second example changes from whatever the current drive was to drive two. The slot
and volume remain the same.

2.6.6 ce

ce sn,dn,vn

Change the current execution slot, drive and/or volume. Execution parameters are used
when loading and running a particular binary program or SHELL file. If the name
includes a specific reference to a slot, drive or volume, that parameter is used If there is
no reference as to which device holds the file, the current data disk is searched and if the
file is not found there, then the current execution disk is checked This allows all utility
programs to reside on a different disk than the one being actively used.

ce s6,d2,v0
ce d1

The first example changes the current execution disk to be slot six, drive two, and any
volume. The second example changes from whatever the current drive was to drive one.
The slot and volume remain the same.

2.6.7 cp

cp file1 file2

Copies files from the specified device to file2. Note that file2 will be overwritten if it
already exists.

Examples:

cp test oldtest

8/25/2013 AztecC_minimanual2013 Page 24 of 77

cp test,d1 test

The first example makes a copy of "test" on the same disk called "oldtest". The second
example assumes that drive one is not the current data drive and copies the file "test"
from drive one to the current drive.

2.6.8 load

load file [aN] [lN]

Loads a binary file into memory. If the starting address and/or length are not specified,
they are taken from the first two words of the file. After loading, the start address and
length are displayed on the screen. These values are remembered for use in the save and
run commands. If N begins with a '$', the value is interpreted as a hex value otherwise as
decimal.

Examples:

load tabset
A=0800 L=12F2 (read from the binary file header)

load tabset a$2000
A=2000 L=12F2 (length read from the binary file header)

The first example loads the tabset program into memory. The shell displays the load
address and length. The second example loads the tabset program into memory at address
hex 2000.

2.6.9 lock

lock file 1 [file2] ...

Lock the file on the specified slot, drive and volume. If any of slot, drive or volume are
not given, they default to the current data values.

Examples:

lock test1
lock test1 test2 test3,d2

The first example locks file test1 on the current data disk. Example two locks files test1
and test2 on the current data disk and locks file test3 on drive two of the current data slot
and volume.

2.6.10 ls

8/25/2013 AztecC_minimanual2013 Page 25 of 77

ls [sn,dn,vn] ...

Perform the catalog function on the specified slot, drive and volume. This command
defaults to the current data slot, drive and volume. If more than one is specified, they will
be cataloged in order. The SHELL will wait for a key to be pressed between different
catalogs. Unfortunately, the output of ls cannot be redirected.

Note: 3 example programs provided with the Aztec33 distribution provide different
methods of creating text files of directory lists. Two of these are for the shell; one
(called DLIST) uses the C65 runtime catalog() function and the other (called LS33)
uses a lower level C65 function called rwts() (Read Write Track Sector), which is also
in the Aztec C65 runtime library. Output from LS33 can be redirected and options are
provided for search criteria based on file type or extension or both. LS33 also creates
shell command scripts as an output option. The other two programs (DIR33 and
DLIST) write text files. LS33 and DIR33 (its “RAW DOS 3.3” equivalent) both provide
output in 7 bit plain text or DOS 3.3 text. But the Shell’s ls command is simply a
wrapper for their runtime catalog() function, and although necessary it cannot be
redirected to create lists and it cannot be scoped to provide a selective listing:

Examples:

ls
ls d1 d2

The first example does a catalog of the current data slot, drive and volume. The second
example catalogs drive one and then drive two of the current data slot and volume.

2.6.11 maxfiles

maxfiles n

Allocates n buffers for open files. This command is similar to the DOS 'MAXFILES'
command. It specifies the maximum number of disk files which may be open at anyone
time. When the SHELL is initialized, the value is defaulted to 3.

Example:

maxfiles 4

For an application which will have four disk files open, maxfiles is set to four.

2.6.12 mv

mv [-f] file1 file2

8/25/2013 AztecC_minimanual2013 Page 26 of 77

Moves file1 to file2. If the slot, drive, and volume of file1 are the same as that of file2,
file1 is simply renamed as file2. If they are different, file1 is copied to file2 on the
specified device and file1 is deleted. If file2 exists, an error message will be printed. If
the '-f' option is given, no error message will be given and file2 will be removed first.

Examples:

mv test foo
mv -f test foo
mv test test,d2

The first example simply renames the file "test" as "foo". The second example deletes the
file "foo" and then renames "test". The last example copies the file "test" from the current
data drive to drive two and then deletes "test" from the current drive.

2.6.13 rm

rm file1 [file2] ...

Delete the specified file or files. If a file is locked, a message is displayed giving the
name of the file which is locked.

Examples:

rm file1 file2
rm foo,s5

The first example deletes files "file1" and "file2" from the current data drive. The second
example deletes the file "foo" from the disk in slot five. The drive number will be the
same as the current data drive number.

2.6.14 run

run [argl] [arg2] ...

Does a jsr to the starting address of the last file loaded after pushing a pointer to the
argument vector and the number of arguments on the stack. Argv[0] will be the "run"
string.

Example:

load tabset
A=0800 L=12F0
run 8

8/25/2013 AztecC_minimanual2013 Page 27 of 77

This example loads the program "tabset" into memory. The SHELL displays the load
address and length. The "run" command then calls hex 800 ($800) with the argument "8".
The three lines are equivalent to typing:

tabset 8

all by itself.

2.6.15 save

save file [aN] [lN]

Saves a part of memory to a file on the specified device. If the starting address and length
are not specified, the starting address and length of the last file "load"ed will be used if N
is begun with a '$', the value is interpreted as a hex value otherwise as decimal.

Examples:

save foo
save foo a$800 l1000

The first example will save in a file called "foo", whatever the last program loaded or run.
The second example will save a thousand bytes of memory starting at hex 800 in a file
called "foo".

2.6.16 unlock

unlock file1 [file2] ...

Unlock the file on the specified slot, drive and volume. If any of slot, drive or volume are
not given, they default to the current data values.

Examples:

unlock test1
unlock test1 test2 test3,d2

The first example unlocks file test1 on the current data disk. Example two unlocks files
test1 and test2 on the current data disk and unlocks file test3 on drive two of the current
data slot and volume.

2.7 Batch Facilities

Text files (7 bit sequential text files not DOS 3.3 text files with hi-bits set) containing a
series of SHELL command lines can be executed by simply typing the name of the text
file followed by a carriage return. Note that the type of the file must be 'T'. All SHELL

8/25/2013 AztecC_minimanual2013 Page 28 of 77

input is then taken from that file until the end is reached SHELL command files may not
be nested, but they may be chained. If a SHELL command line executes a second SHELL
command file, the first command file is closed and forgotten. Lines beginning with the '#'
character are ignored by the shell and can be used as comments.

When the SHELL is booted for the first time, the disk that the SHELL was booted from is
searched for a file called ".PROFILE". If this file is found and is a (7 bit not DOS 3.3)
text file, it will be executed immediately. This allow any special startup procedures to be
automatically initiated. SHELL command files may also be given up to 9 arguments.
These arguments are referenced by the character '$' followed by the number of the
argument to be used. Argument 0 is the name of the SHELL command file itself. For
example, to link together several files, the following one line SHELL command file
might be created:

ln -o In.out $1 $2 $3 $4 $5 $6 $7 $8 $9 sh65.lib

If the file was called "linkit", it could be used by typing:

linkit f1.rel f2.rel f3.rel

If an argument does not exist, it is ignored.

There are two special "built-in" commands that the SHELL will only recognize when
read from a SHELL command file. These commands are used for additional control over
the processing of the commands in a SHELL command file.

2.7.1 loop

loop

This command is used to start and end a loop in a SHELL command file. The command
lines between the two loop statements will be executed once for each argument given to
the SHELL command file. During the loop, two special arguments are available for use.

'$#' is replaced by the number of the current argument being processed. The two-
character sequence '$%' will be replaced by the current argument itself. The following is
an example of a SHELL command file which will compile and assemble from one to nine
files, one at a time.

set -x -a
loop
This is argument number $#, $%
c65 -a -o $%.asm $%.c
as65 -o $%.rel $%.asm
loop

8/25/2013 AztecC_minimanual2013 Page 29 of 77

If the preceding lines were placed in a file called "compile", then the statement:

compile test junk foo

would compile and assemble the three files "test.c", "junk.c", and "foo.c" into the
corresponding ".rel" files and produce:

loop
This is argument 1, test
c65 -a -o test.asm test.c
as65 -o test.rel test.asm
loop
This is argument 2, junk
c65 -a -o junk.asm junk.c
as65 -o junk.rel junk.asm
loop
This is argument 3, foo
c65 -a -o foo.asm foo.c
as65 -o foo.rel foo.asm
loop

2.7.2 set

set [+-x] [+-a] [+-n]

Sets or clears one of three internal flags in the SHELL. Using '+' will clear the flag while
'-' will set it. The flags are defined as follows:

x Echo command lines to the screen. Defaults to off.
a Abort the SHELL command file if a command or program exits with a non-

zero value. Defaults to no abort.
n Parse the command lines but do not execute them. Defaults to off.

Thus, to see each line being executed, the first line of a SHELL command file should be:

set -x

To have a SHELL command file exit if an error occurs, include the line:

set -a

The "set" command may only be executed within a SHELL command file.

2.8 Configuration

8/25/2013 AztecC_minimanual2013 Page 30 of 77

The basic Apple II is limited in its ability to deal with upper and lower case and has a
limited screen size. The SHELL contains device drivers which allow it to overcome these
limitations to some degree. However, these same routines have been set up to take
advantage of optional peripherals which greatly enhance the Apple's operation. There are
two approaches to dealing with peripheral devices, writing custom routines to deal with
one particular device or to write a general routine to handle a number of similar devices.
The original versions of the SHELL device drivers were examples of writing custom
routines. The current version contains general purpose routines for dealing with three
devices, the keyboard, screen and printer.

The device routines make use of a table at a fixed location in the driver to handle the
functional differences between different hardware configurations. This table can be
modified by using the CONFIG program provided on the STARTUP diskette. A separate
set of options is available for each device and are detailed in the following.

2.8.1 Keyboard

The first device is the keyboard There are four variations of keyboard available. First, is a
full upper and lower case keyboard as is available with the //e or a keyboard enhancer. If
this option is selected, no mapping is done at all. Second, is an Apple keyboard with the
single wire shift key mod installed, while the third is an Apple keyboard without the
SWSKM. Both of these options map characters from the keyboard to get the full range of
ASCII characters. Finally, it is possible to specify that the keyboard is a remote terminal.
In this case, the driver will use the Pascal 1.0 entry point to the card that is assumed to be
in slot 3. It will not do any mapping on the data received from the card. Also, since there
is no status entry point, the AS and AC output control characters are not available. The
AC abort is still enabled during input.

2.8.2 Screen

The second device is the screen. There are three types of screen. First, the basic Apple
screen with 40 columns and upper case only. Second, 40 columns with upper and lower
case capability. Examples of this are the //e and a II with a lower case adapter. Finally,
there are the 80-column screens. All 80-column screens, remote and otherwise, are
assumed to reside in slot 3 and are accessed by using the Pascal 1.0 output hook.

Not all 80-column screens are identical, and do not necessarily use the same control
sequences to perform such functions as clearing the screen, moving the cursor and others.
To minimize this problem, a table of control codes has been built into the SHELL device
driver. This table is used by the ioctl() routine when performing the appropriate
functions.

The values in this table are already known for several devices by the CONFIG program.
The devices whose values are known are the //e, the Videx Videoterm, and the Smarterm.
If a device is used which is not compatible with any of the above three cards, then the
entries to the table must be provided by the user. The only programs which currently

8/25/2013 AztecC_minimanual2013 Page 31 of 77

make use of the ioctl() screen calls are the screen editor VED, and the CONFIG program.
For VED, the only required functions are cursor positioning, clear to end of line, and
clear screen. CONFIG only uses the clear screen.

2.8.3 Printer

The last device is the printer. The printer is assumed to be driven by a peripheral card in
slot 1 with firmware which supports the PR# basic protocol. The printer is initialized by
placing the address of the card in the CSW vector in low memory and then calling the
card. Normally the card then replaces the address in the CSW vector with the normal
character output routine. The printer driver then sends a string of characters to initialize
the firmware on the card. The default sequence is:

^I^Y^Y255N

which tells the card that the width is 255 and not to echo the characters to the Apple
screen. It is not really necessary to change the control character to be something other
than a ^I since tabs are expanded to spaces by the print driver. After the driver sends the
initialization string, it saves the address in CSW for use when sending characters to the
printer. When sending characters, the address is placed back in CSW and control passed
to the firmware by jumping indirectly through CSW.

The printer has three other control modes. First, some printer card firmware requires that
the high bit be on for characters sent to it. If so, the driver has a flag which will cause it to
"or" in a hex 80 with each character before transmitting it to the firmware. Also, the print
driver automatically converts newlines (LF) to carriage returns before transmitting to the
firmware on the card. If the appropriate flag is set, the print driver will automatically send
a line feed after each carriage return. Finally, when the printer is closed it is possible to
have the print driver automatically send a form feed ($0C) character to the device. All
these flags are set by answering the appropriate questions in the CONFIG program.

8/25/2013 AztecC_minimanual2013 Page 32 of 77

PROGRAMS

8/25/2013 AztecC_minimanual2013 Page 33 of 77

3. PROGRAMS

3.1 C65 Native Code Compiler

c65 [-abts] [-o file] [-Dtoken] [-Enn]
 [-Xnn] [-Ynn] [-Znn] file.c

The Aztec C65 compiler is a true native code C compiler. C65 produces in-line assembly
language code for all C statements with the following exceptions:

* All floating point operations.
* Multiplication, division, and modulus.
* Shifts.
* All pseudo-stack operations.
* Switches.
* Structure copies.

The code generated by the compiler uses a 16 bit pseudo- stack pointer kept in locations
2-3 of zero page. This stack is used for all local variable storage and for passing
arguments to functions. The return address of function calls is also stored on the pseudo-
stack. The 6502 machine stack is only used for temporary storage, thus fully recursive
programming may be used without the limitations of the 6502 machine stack.

C65 makes use of the first thirty-two locations of zero page as work space and temporary
registers. C65 also uses locations $80-$8F of zero page as user declared register
variables. Up to eight "register" declarations are accepted within each function. Each
routine which uses register variables automatically saves the locations it uses on the
pseudo-stack and restores them when it exits. Chars, ints, unsigned ints and pointers may
be declared as registers.

Use of register variables produces significantly smaller and faster code. The hidden
overhead of saving and restoring register variables is minor compared to the gain in speed
and code size. The simplest use of the compiler is just

c65 name.c

It is recommended that the file name end in ".c", but it is not necessary. C source
statements found in the "name.c" file are translated to 6502 assembler source statements
and written to a file named "$TMP.$$$". Then the compiler will automatically execute
the AS65 assembler which will assemble the "$TMP.$$$" file and produce a relocatable
object file called "name.rel". The "$TMP.$$$" file will then be deleted by the assembler.

The options available with C65 are listed below.

8/25/2013 AztecC_minimanual2013 Page 34 of 77

-a

If it is necessary to view the assembly language produced by C65, this option will force
the compiler to leave the output in a file called "name.asm", where "name" is from the
first part of the file being compiled. In this instance, the assembler will not be executed.
For example:

c65 -a dbms.c

will leave the assembly language output in the file "dbms.asm".

-o

This option allows the user to specify the name of the output file. Normally, this can be
used to specify the name of the relocatable object module as in:

c65 -o temp.rel dbms.c

which compiles "dbms.c" and then assembles the "$TMP.$$$" file and places the output
of the assembler in "temp.rel".

When used with the "-a" option, it specifies the name of the assembly language file
instead, as in:

c65 -a -o temp.asm dbms.c

which compiles "dbms.c" and places the assembly language in the file "temp.asm" and
quits.

-b

Normally, when conditionals are evaluated, the compiler generates a test and a branch
around a "jmp" instruction since it cannot know that the branch will be in range. For
example:

cmp #45
beq .5
jmp .17

This option will force the compiler to generate a direct branch instead of the branch and
jump, as in:

cmp #45
bne .17

8/25/2013 AztecC_minimanual2013 Page 35 of 77

If the branch is too long, an error message will not be generated until the module is linked
Most of the library was compiled with this option.

-s

By default, AZTEC C expects that pointer references to members within a structure are
limited to the structure associated with the pointer. However, to support existing source
where this is not the case, the "- s" option is provided If the "-s" is specified as a compile
time option and a pointer reference is to a member name that is not defined in the
structure associated with the pointer then all previously defined structures will be
searched until the specified member is found The search will begin with the structure
most recently defined and search backward from there.

-t

The "-t" option will copy the C source statements as comments in the assembly language
output file. Each C statement is followed by the assembly language code generated from
that statement

-D

This option allows a token to be entered into the macro definition table as being defined
This is most useful for controlling the conditional compilation of code. For example, if a
section of code is to be included for a specific customer, it might be surrounded by an
ifdef-endif combination:

#ifdef CUSTOM
statement1;
statement2;
statement3;
#endif

When normally compiled, these statements would not be included, but when compiled
with:

c65 -DCUSTOM prog.c

the statements would be compiled into the program. Multiple uses of the "-D" option are
permitted on one command line. There are four options for changing default internal table
sizes.

-E

The "-E" option specifies the size of the expression work table. The default value for "-E"
is 120 entries. Each entry uses 14 bytes. Each operand and operator in an expression
requires one entry in the expression table. Each function and each comma within an

8/25/2013 AztecC_minimanual2013 Page 36 of 77

argument list is an operator. There are some other rules for determining the number of
entries that an expression will require. Since they are not straightforward and are subject
to change, they will not be defined here. The best advice is that if a compile terminates
because of an expression table overflow (error 36), recompile with a larger value for "-
E".

The following expression uses 15 entries in the expression table:

a = b + function(a + 7, b, d) * x;

The following will reserve space for 300 entries in the expression table:

c65 -E300 prog.c

There must be no space between the "-E" and the entry size.

-X

The "-X" option specifies the size of the macro (#define) work table. The macro table
size defaults to 2000 bytes. Each "#define" uses four bytes plus the total number of bytes
in the two strings. The following macro uses 9 bytes of table space:

#define v 0x1f

The following will reserve 4000 bytes for the macro table:

c65 -X4000 prog.c

The macro table needs to be expanded if an error 59 (macro table exhausted) is
encountered.

-Y

The "- Y" option specifies the maximum number of outstanding cases allowed in a switch
statement. The default size for the case table is 200 entries, with each entry using 4 bytes.

8/25/2013 AztecC_minimanual2013 Page 37 of 77

The following will use 4 (not 5) entries in the case table:

switch(a) {
 case 0:
 a +=1;
case 1:
break;
case I:
 switch(x) {
 case 'a':
 funct1(a);
 break;
 case 'b':
 funct2(b);
 break;
}
 a = 5;
case 3:
 funct2(a);
 break;
}
The following allows for 300 outstanding case statements:

c65 -Y300 prog.c

The size of the case table needs to be increased if an error 76 (case table exhausted) is
encountered.

-Z

The "-Z' option specifies the size of the string literal table. The size of the string table
defaults to 2000. Each string literal occupies a number of bytes equal to the number of
characters in the string plus one (for the null terminator).

The following will reserve 3000 bytes for the string table:

c65 -Z3000 prog.c

The size of the string table needs to be increased if an error number 2 (string space
exhausted) is encountered.

The name of the C source file must always be the last argument.

The AZTEC C native-code compiler is implemented according to the language
description supplied by Brian W. Kernighan and Dennis M. Ritchie in The C
Programming Language (1st Edition). The user should refer to that document for a

8/25/2013 AztecC_minimanual2013 Page 38 of 77

description and definition of the C language. This document has detailed areas where the
AZTEC C compiler differs from the description in that book.

The reader who is not familiar with C and does not have a copy of the Kernighan and
Ritchie book is strongly advised to acquire one. The book provides an excellent tutorial
for learning and using C. The program examples given in the book, can be entered,
compiled with AZTEC C and executed to reinforce the instruction given in the text.

The library routines defined in standard C that are supported by AZTEC C are identical
in syntax to the standard. The library routines that are supported are defined in the library
section of this manual. AZTEC C includes some extended library routines that do not
exist in the standard C to allow access to native operating system functions. These are
also described in the library section. The system dependent functions should be avoided
in favor of the standard functions if there is or may be a requirement to run the software
under different operating systems.

Information regarding interfacing with assembly language can be found in the Technical
Information section of this manual

Note: The C Programming Language (1st Edition)

The version of C described in The C Programming Language (1st Edition) published
in 1978 is referred to as K&R C, to distinguish it from ANSI C. In 1988 ANSI C was
first standardized and The C Programming Language (2nd Edition) was published to
cover ANSI C.

Aztec CII Version 1.05i 6502 (this compiler) was released in 1983 (the same year that
ProDOS 8 was first released). It is exclusively for DOS 3.3 and uses K&R C. By the
time ANSI C came along, the Aztec CII compiler for the Apple II had been replaced by
Aztec C65 Version 3.2b (June 1987) which offered support for both DOS 3.3 and
ProDOS (which had taken over from DOS 3.3 by that time). The newer Version 3.2b
also provided support for creating programs for the newer Aztec C ProDOS Shell, but
dropped support for the DOS 3.3 Aztec C Shell (this shell).

Aztec C65 Version 3.2b provided many ANSI C features but was still a K&R C
compiler. Version 3.2b was the last Aztec C compiler released for the Apple II. It had
already been released for a year (June 1987) by the time ANSI C first came along and
The C Programming Language (2nd Edition) was published. An Aztec C65 ANSI C
compiler for the Apple II was never released.

8/25/2013 AztecC_minimanual2013 Page 39 of 77

3.2 CCI Pseudo-code Compiler

cci [-ats] [-o file] [-Dtoken] [-Enn]
 [-Xnn] [-Ynn] [-Znn] file.c

The Aztec CCI compiler is a pseudo-code compiler. CCI produces assembly language for
a pseudo- machine that is interpreted by a 6502 assembly language program. The pseudo-
machine makes use of the same pseudo-stack and registers as the native code produced
by C65. Thus, there is no difficulty in mixing routines compiled using C65 with routines
compiled with CCI.

CCI differs from C65 in that it does not make use of the "register" type definition. The
declaration is allowed; but, it is simply ignored.

CCI is invoked by the command:

cci name.c

It is recommended that the file name end in ".c", but it is not necessary. C source
statements found in the "name.c" file are translated to pseudo-code assembler source
statements and written to a file named "$TMP.$$$". Then the compiler will automatically
execute the ASI assembler which will assemble the "$TMP.$$$" file and produce a
relocatable object file called "name.int". The "$TMP.$$$" file will then be deleted by the
assembler.

The options available with CCI are the same as those for C65, with the exception of the
"-b" option, which does not apply to the pseudo-code compiler. Please refer to the section
on C65 for more information.

Note: The last comment seems to be false and may have been left in from the manual of
an earlier version of CCI. This version of C65 does in fact allow base address selection
for Aztec CCI compiled programs for the DOS 3.3 Shell.

8/25/2013 AztecC_minimanual2013 Page 40 of 77

3.3 AS65 6502 Assembler

as65 [-c] [-l] [-ZAP] [-o file] file.a65

3.3.1 Overview

The AZTEC AS65 assembler is a relocating assembler which supports most of the
standard MOS Technology mnemonics and is normally invoked by the command line:

as65 test.a65

The file "test.a65" is the assembly language source file. The filename does not have to
end in ".a65". In this case, the relocatable object file produced by the assembler will be
named "test.rel" where test is the same name as the prefix of the input filename. The type
of the file in a CATALOG will be 'R'. There are several options to the assembler which
are detailed below.

-o

An alternative object filename can be supplied by specifying the option "-o filename".
The object file will be written to the filename following the "-o". The filename does not
have to end in ".rel". It is, however, the recommended format.

-c

This option forces the assembler to make two passes through the source file. This allows
most forward references to be resolved during the second pass. The overall result is that
the object file size is significantly smaller since very few local labels need to be stored in
the object module. This option was added primarily for the production of libraries, where
size of the module is important. The overhead of reading the source file twice makes this
option much less useful during normal compilation and assembly with one exception. If
the "-b" option of C65 is used, using the "-c" option will detect a branch out of range
without having to use the linker.

-l (lower case "L")

This option generates a listing of the assembly language file. All opcodes are specified in
the listing and all arguments that are known. Unknown arguments such as forward
branches and addresses are represented as "XX". Using the "-c" and the "-l" together
eliminates the "XX"'s in forward branches. The output is placed in a file with a ".lst"
extension.

-ZAP

8/25/2013 AztecC_minimanual2013 Page 41 of 77

This option forces the assembler to delete the input file after performing the translation.
This option is used by C65 when it automatically executes the assembler to delete the
temporary file "$TMP.$$$".

3.3.2 Syntax

The following defines the syntax for the AS65 assembler.

Statements

Source files for the AZTEC AS65 assembler consist of statements of the form:

[label] [opcode] [argument] [[;]comment]

The brackets "[...]" indicate an optional element.

Labels

A label consists of any number of alphanumerics starting in column one. If a statement is
not labeled, then column one must be a blank or a tab or an asterisk. An asterisk denotes a
comment line. A label must start with an alphabetic. An alphabetic is defined to be any
letter or one of the special characters '_' or '.'. An alphanumeric is an alphabetic or a digit
from 0 to 9. A label followed by "#" is declared external. The AZTEC C compiler places
a '_' character at the end of all labels that it generates.

Expressions

Expressions are evaluated from left to right with no precedence as to operator or
parentheses.

Operators are:

* -multiply
/ -divide
+ -add
- -subtract
-constant
= -constant
< -low byte of expression
> -high byte of expression

8/25/2013 AztecC_minimanual2013 Page 42 of 77

Constants

The default base for numeric constants is decimal. Other bases are specified by the
following prefixes or suffixes:

BASE PREFIX SUFFIX
2 % b,B
8 @ o,O,q,Q
10 null,& null
16 $ h,H
A character constant is of the form 'character as in' A.

Assembler Directive

The AZTEC AS65 assembler supports the following pseudo operations:

COMMON block name sets the location to the selected common block.
CSEG select code segment.
DSEG select data segment
END end of assembler source statements.
ENTRY expr entry point of final module.
EQU expr define label value.
FCB expr define byte constant
FCC /expr/ define byte string constant
FDB expr define double byte constant
FUNC label if label is not defined then it is declared external.
INSTXT /file/ the specified file is included at this point
PUBLIC label declares label to be external.
RMB expr reserves expr bytes of memory with no particular value.
WEAK expr define label value if not previously defined

8/25/2013 AztecC_minimanual2013 Page 43 of 77

3.4 ASI Pseudo-code Assembler

asi [-ZAP] [-o file] file.asm

The AZTEC ASI assembler is a relocating assembler and is invoked by the command
line:

asi name.asm

The relocatable object file produced by the assembly will be named "name.int" where
name is the same name as the name prefix on the ".asm" file. The type of the file in a
CATALOG of the disk will be 'R'. An alternative object filename can be supplied by
specifying "-o filename". The object file will be written to the filename following "-o".
The filename does not have to end with ".int"; it is, however, the recommended format.
The file "name.asm" is the pseudo-code assembly language source file. The filename
does not have to end in ".asm".

The "-ZAP" option forces the assembler to delete the input file after performing the
translation. This option is used by CCI when it automatically executes the assembler to
delete the temporary file, "$TMP.$$$".

The complete definition of the pseudo-code and the syntax are not currently available.

8/25/2013 AztecC_minimanual2013 Page 44 of 77

3.5 LN Linker

ln [-t] [-o outfil] [-r] [-b N] [-c N]
 [-d N] [-f infil] file.rel ...

The AZTEC LN link editor will combine object files produced by the AZTEC ASI
pseudo-code assembler and/or by the AZTEC AS65 6502 assembler, select routines from
object libraries created with the MKLIB utility and produce an executable binary file.

Supplied with the AZTEC C Compiler System are several object libraries. In most cases
one or more of these libraries must be specified. To link a simple single module routine,
the following command will suffice:

ln name.rel libname.lib

The operand "name.rel" is the name of the object file. The executable file created by LN
will be named "name". The "-o" option followed by a filename can be used to create an
alternative name for the LN output file.

Several modules can be linked together as in the following example:

ln -o name mod1.rel mod2.int mod3.rel libname.lib

Also several libraries can be searched as in the following:

ln -o name mod1.rel mod2.int mine.lib libname.lib

Libraries are searched sequentially in order of specification. It is expected that all
external references are forward. One way to deal with the problem of routines that make
external reference to a routine already passed by the librarian is the following:

ln -o name mod1.rel mine.lib mine.lib libname.lib

The link editor will read the "mine.lib" library twice. The second time through it will
resolve backward references encountered on the first pass.

Other options for the link editor include:

-t

to create a symbol table for debugging purposes. The symbol table file will have the same
prefix name as the output file with a suffix of ".sym".

-b address

8/25/2013 AztecC_minimanual2013 Page 45 of 77

to specify a base address other than hex 800. The base address is normally the lesser of
the code start address and the data start address, but may be lower than either. The "base
address" is assumed to be in hex.

-c address

to specify a starting address for the code portion of the output. The default is the base
address + 3. The first three bytes are usually occupied by a jump instruction to system
initialization code. It is assumed that the code starting address is specified as a hex
number.

-d address

to specify a data address. Data is usually placed immediately at the end of the code
segment. The three preceding options are usually used when producing ROMable code or
for similar reasons. More information on ROMable code can be found in the Technical
Information section of this manual. These options were used to link the SHELL so that
the data was located outside the language card. This allowed the language card to be
write protected. The command to link the SHELL was basically:

ln -o SHELL -b A7FD -d A800 -c D000 -f shell.lnk

The base address was set at three below the data since the linker automatically places a
"jmp" to the start of the code at the base address unless the base and the code address are
the same.

-f filename

to merge the contents of "filename" with command line arguments. More than one
specification of "-f" can be supplied. There are several advantageous uses for this
command. The most obvious is to supply the names of modules that are commonly linked
together. All records in the file are read. There is no need to squeeze everything into one
record.

-r

This option is used to inform the linker that the modules being linked are the root
segment of a program with overlays. With this option, a file with a ".rsm" extension will
be produced which is used in linking the overlays. More information on overlays can be
found in the Technical Information section of this manual.

8/25/2013 AztecC_minimanual2013 Page 46 of 77

3.6 MKLIB

mklib [-atxr] [-o library] [.] module1 module2

This program creates libraries which can be used by the linker, LN, in a very efficient
manner. Each module is individually rearranged to make the linking process as fast as
possible. In addition, a dictionary of global variables which are in the modules is
automatically created as part of the library. This dictionary is used by the linker so that it
only looks at those modules that it needs to.

Note that a library may be specified as a module. In that case, all the modules in the
library are copied into the new library. This can be used to combine several libraries into
a single library.

There are several options to MKLIB which are detailed below. The simplest use,
however is to create a new library, as in:

mklib mod1.rel mod2.rel mod3.rel

which creates a library called "libc.lib" with the three named modules. As a convenience,
if the number of modules to be added to a library are large, the "." option can be used.
When the program processes the "." in the argument list, it switches its argument parsing
to the standard input. Thus, if a file containing the names of all the modules to be linked
has been created called "infil", then

mklib . < infil

will create a library called "libc.lib" with the modules named in "infil".

-o library

This option specifies the name of the library to be created or to be modified. The default
name of "libc.lib" is used if this option is not specified. For example:

mklib -o mylib.lib file1.rel file2.int . < infil

places the output in "mylib.lib".

-t

This option lists the names of the modules in the library. Note that a module may contain
several functions and that the name of the module may have nothing to do with the names
of the functions within that module. Module names are derived from the names of the
files used to create the library. As an example:

mklib -t -o mylib.lib

8/25/2013 AztecC_minimanual2013 Page 47 of 77

will list the module names of "mylib.lib".

-r

This option copies the library module by module. If a module name matches the name of
one of the modules specified as an argument, the module is not copied from the library,
but from the object file instead. This process continues until the end of the library is
reached. At that point, the remaining module names are appended to the library. The
original library is deleted, and the new library renamed.

-a

This option appends the named modules to the end of the library. All modules specified
will be appended. However, in order to update the dictionary properly, the library will be
copied in the process.

-x

This option extracts the named library modules from the library into individual files. If no
module names are specified, all modules are extracted.

8/25/2013 AztecC_minimanual2013 Page 48 of 77

3.7 VED Screen Editor

ved [-tn] [file]

VED is a screen oriented text editor written in C for use with the Aztec C65 system. The
source to VED is included in the archive "VEDSRC.ARC". VED is not a particularly fast
or smart editor, but it does get the job done. If VED is invoked with a file name, that file
will be loaded into the memory buffer, otherwise it will be empty. VED does all its
editing in memory and is thus limited in the size of files that it will edit. In VED, the
memory buffer is never completely empty. There will always be at least one newline in
the buffer.

The "-t" option specifies that a different tab size should be used. Normally VED will use
the current system value, but this may be overridden with this option, as in:

ved -t8 file.a65

which is useful since C programs work well with a tab size of four, but assembly
language works better with a tab size of eight.

VED has a 1000 character limit on the size of a line. If a line is longer than the width of
the screen, it will wrap to the next line. If a line starts at the bottom of the screen, and is
too wide to fit, the line will not be displayed Instead, the '@' character will be displayed.
Likewise, at the end of the file, all lines beyond the end will consist only of a single '-' on
each line.

A number of commands take a numeric prefix. This prefix is echoed on the status line as
it is typed.

The normal mode of VED is command mode. During command mode, there are a
number of ways to move the cursor around the screen and around the whole file.

newline move to the beginning of the next line.
- move to the start of the previous line.
space move to the next character of the line.
backspace move to the previous character.
0 move to the first character of this line.
$ move to the last character of this line.
h move to the top line of the screen.
l move to the bottom line of the screen.
b move to the first line of the file.
g move to the n'th line of the file.
/string move to the next occurrence of 'string'.

When the cursor is in the appropriate spot, there are two commands used to delete
existing text.

8/25/2013 AztecC_minimanual2013 Page 49 of 77

x delete the n character under the cursor up to but not including the newline.
dd delete n lines starting with the current line.

Note that deleting the last character on the line (newline character) causes the following
line to be appended to the current line.

To add new text, hitting the 'i' key will cause the top line of the screen to indicate that you
are now in <INSERT> mode. To exit insert mode, type ESCAPE (unless the CAPS
LOCK mode is enabled, in which case type control-Q). To insert a control character
which means something special to VED into a text file, first type control-V followed by
the control character itself. Control characters are displayed as '^X', where X is the
appropriate character.

Typing 'o' will cause a new line to be created below the current line, and the cursor will
be placed on that line and the editor placed into <INSERT> mode.

There are three commands used for moving text around. These commands make use of a
1000 character yank buffer. The contents of this buffer is retained across files.

yy yank n lines starting with the current line into the yank buffer.
yd yank n lines starting with the current line and then delete them.
p "put" the lines in the yank buffer after the current line.

The yank buffer is not modified.

The 'z' command redraws the screen with the current line in the center of the screen. The
'r' command replaces the character under the cursor with the next character typed.

When in command mode, if the ':' key is hit, a ':' will be displayed on the status line. At
this point, a number of special file-related commands may be given.

:f displays info about the current file.
:w file writes the buffer to the specified file name.
:w writes the buffer to the last specified file.
:e file clears the buffer and reads the named file.
:e! file clears the buffer and reads the named file even if the file was modified
:r file reads the named file into the buffer.
:q exits the editor.
:q! exits editor even if the file was modified

As can be seen VED protects from accidentally destroying the work being edited by
preventing exiting or editing another file if the current file has been modified. If the file
has been written using the ":w" command, the modified flag will be cleared.

VED will only edit Apple text files. Binary files will not be edited.

8/25/2013 AztecC_minimanual2013 Page 50 of 77

3.8 ARCH Source Archive Utility

arch -[clvxa]o archive [-f infil] [file1] [file2] ...

This program is used to create and manipulate archive files. Archive files are used as a
convenient means of collecting source modules together. The 'o' option must always be
used to specify the name of the archive itself. Only one of the options 'lxa' may be
specified. The 'v' option is a modifier for the 'xa' options and causes them to print each
file name they act upon. The remaining options are detailed below.

-l

This option lists the named files in the archive, giving the name and size of each. If no
file names are specified, all of the files in the archive are listed For example:

arch -lo progsrc.arc

lists the names and sizes of the files in the "progsrc" archive.

-a

This option specifies that the named files be appended to the end of the archive. If the 'c'
option is given as well, the archive is truncated before adding the files.

-x

This option extracts the named files from the archive. If no file names are given, all the
files in the archive are extracted from the archive. The archive is not modified.

-f file

This option forces the ARCH program to read the named "file" for the names of the files
to be placed in the archive. All the lines in the file are read, and more than one file name
may be placed on each line.

Different types of files may be freely intermixed within an archive file.

8/25/2013 AztecC_minimanual2013 Page 51 of 77

3.9 OD Hex Dump Utility

od [+nnn[.]] file1 [file2] [file3] ...

This program performs a binary dump in hex and ascii of the specified file to the standard
output. The program continues until the end of the file and then dumps the next file if
any. If the optional argument "+nnn" is supplied. "nnn" is used as an offset into the file
where the dumping is to start. If "nnn" is followed by a '.', it is treated as a decimal
number, otherwise it is considered to be a hex value. Each file will be dumped starting
from the last offset argument encountered. Thus, an offset of "+0" will cause the files
which follow it to be dumped from their beginning.

For example:

od + 16b oldtest newtest +0 junk
od + 1000. tstfil

Note: The OD program is a hex viewer with an 8 byte display width. The OD source
code is provided with Aztec C. The RD program written in 2013 used the OD program
as a starting point and modified it for the 80 column display and added many features.
RD is distributed with source code as part of the Aztec33 distribution.

8/25/2013 AztecC_minimanual2013 Page 52 of 77

3.10 CMP Byte for Byte File Compare

cmp [-l] file1 file2

This program compares two files on a character by character basis. When it finds a
difference, a message is printed giving the offset from the beginning of the file. The
program will normally stop after the first difference, unless the "-l" option is given. If the
"-l" option is specified. CMP will list all differences in the format:

decimal offset hex offset file1 value file2 value

If no difference is found, the program will exit without saying anything.

For example:

cmp -l otst ntst

 10 a: 00 45
100 64: 1a 23

and

cmp otst ntst

Files differ character 10.

8/25/2013 AztecC_minimanual2013 Page 53 of 77

3.11 NM Name List Generator

nm [-sunago] file1.int [file2.rel] ...

This utility operates only on the relocatable object files which are the output of the two
assemblers, AS65 and ASI. This program prints the symbol table (name list) of each
object file. The output consists of a symbol name preceded by the value of that symbol.
Between the symbol name and its valuc is a character indicating the type of symbol. The
characters used are:

A absolute
T program text
D initialized data
C common
R reference to common
E expression
U undefined
W weak definition

The options available are:

-s Display only the size of the code and data.
 -or-
-g Print only global (external) symbols.
-u Print only undefined symbols.
-n Sort numerically.
-a Sort alphabetically.
-o When multiple file names are given, each name is printed before the name list

for that file. When this option is given, the file name is printed at the
beginning of each line.

For example, to see the size of several modules:

nm -s mod1.rel mod2.int mod3.rel

or to see the undefined global symbols sorted in alphabetic order:

nm -uga mod1.rel mod2.int mod3.rel

8/25/2013 AztecC_minimanual2013 Page 54 of 77

3.12 TABSET

tabset [newsize]

This program displays the current setting of the tab width parameter of the SHELL. If the
argument is specified, the tab width parameter is set to that value. In that case, both the
old and the new value are displayed. The parameter is stored in location $D088 of bank 1
of the RAM card.

3.13 CONFIG

config

This program takes no parameters as it is completely interrogative. CONFIG is used to
alter the SHELL's device driver tables and thus make use of any non-standard
peripherals. More information on the use of the CONFIG program can be found in the
SHELL section of this manual.

3.14 LDEV

ldev file

This program replaces a former "built-in" SHELL command. LDEV loads the named file
into bank 1 of the RAM card and is used when loading a new or custom set of device
drivers. The format of the device driver module is the same as that previously used.
However, to take advantage of new features such as the settable tab width parameter,
custom drivers will need to be incorporated into the new SHELL drivers. More
information is available in the SHELL section and in the Technical Information section
of this manual.

8/25/2013 AztecC_minimanual2013 Page 55 of 77

LIBRARIES

8/25/2013 AztecC_minimanual2013 Page 56 of 77

4. LIBRARIES

4.1 Introduction

The libraries provided with the Aztec C65 system can be divided into four logical
groupings. These groups are the standard I/O, system I/O, utility, and math/floating point
libraries. The source to all the libraries with the exception of the math library is provided
with the system as archives.

 The compiled object modules are supplied in three libraries. However, six library files
are supplied with the system, three are compiled with C65 and three are compiled with
CCI.

The first library is the floating point library. This library contains the floating point
emulation routines and all of the transcendental math functions. This library must be
specified if any floating point operations are performed in any module being linked. If the
library is not specified, the linker will abort with the symbol ".fltused" undefined This
library must be specified before the regular library for successful operation.

The names of this library are

FLT65.LIB and FLTINT.LIB

which correspond to the C65 compiled version and the CCI compiled version.

The remaining two libraries are similar in function. The primary difference between the
libraries involves their use of the SHELL. Since the SHELL contains many of the system
I/O routines and a number of the utility routines, including the pseudo-code interpreter,
these routines are not included in one of the libraries. Instead, a set of dummy addresses
is included which provide a link to the routines within the SHELL.

Programs which use the SHELL vector are smaller and therefore take less disk space and
load faster. These programs also make use of the configured SHELL device drivers.

The names of the SHELL libraries are

SH65.LIB and SHINT.LIB.

The non-SHELL library contains all the routines in the SHELL library as well as all the
routines used by the SHELL. This library is known as the stand-alone library, since
programs linked with this library can be run without the SHELL in a normal DOS
environment. The one significant difference, other than size, of programs linked with this
library is that of console I/O. The I/O drivers supplied with the stand-alone library are not
the same as those contained in the SHELL. The calling format and use is the same, but

8/25/2013 AztecC_minimanual2013 Page 57 of 77

the actual routines are much simpler. More information on this subject can be found in
the Technical Information section of this manual.

The names of the stand- alone libraries are

SA65.LIB and SAINT.LIB

The differences between the libraries compiled with C65 and CCI are minimal, mostly
relating to size and speed. Any program may be linked with either library without any
hesitation or special procedures.

8/25/2013 AztecC_minimanual2013 Page 58 of 77

4.2 Summary of Library Functions

4.2.1 Standard I/O

agetc (stream) ASCII version of getc
aputc (c,stream) ASCII version of putc
clearerr (stream) clears the error flag on stream
exit (return) flushes and closes all streams
fclose (stream) closes an I/O stream
feof (stream) check for eof on stream
ferror (stream) check for error on stream
mush (stream) write out buffered data to stream
fgetc (stream) gets a single character from stream
fgets (buffer, max, stream) reads line from stream to buffer
fileno (stream) returns the fd associated with stream
fopen (name, how) opens file name according to how
fprintf (stream, format, arg1, ...) formatted print to stream
fputc (c, stream) writes character c to stream
fputs (cp, stream) writes string cp to stream
fread (buf, sz, cnt, stream) reads cnt items from stream to buf
freopen (name, mode, stream) switches stream to new file
fscanf (stream, cntrl, p1, ...) converts input string from stream
fseek (stream, pos, mode) positions stream to pos
ftell (stream) returns current file position
fwrite (buf, sz, cnt, stream) writes cnt items from buf to stream
getc (stream) gets a single character from stream
getchar () gets a single character from stdin
gets (buffer) reads a line from stdin
getw (stream) gets a word from stream
printf (format, arg1, ...) writes formatted data to stdout
putc (c, stream) writes character c to stream
putchar (c) writes character c to stdout
puts (cp) writes string cp to stdout
putw (w, stream) writes a word w to stream
rewind (stream) position stream at beginning
setbuf (stream, ut) force stream to use buf
scanf (cntrl, p1, ...) converts input string from stdin
sprintf (cp, format, arg1, ...) formats data into string cp
sscanf (cp, cntrl, p1, ...) converts input string cp
ungetc (c, stream) pushes c back into stream

8/25/2013 AztecC_minimanual2013 Page 59 of 77

4.2.2 System I/O

exit (return) returns control to operating system
catalog (slot, drive, volume) do a "CATALOG" of the disk
chmod (name, how) lock or unlock file name
close (fd) closes file fd
creat (name, mode) creates a file of type mode
ioctl (fd, cmd, arg) perform special I/O function
lseek (fd, pos, mode) positions file fd according to mode
open (name, rwmode) opens file according to rwmode
read (fd, buf, size) reads size bytes from file fd to buf
rename (oldname, newname) renames a disk file
unlink (filename) deletes a disk file
write (fd, buf, size) writes size bytes from buf to file fd

4.2.3 Utility Routines

alloc (size) allocates size bytes
atof (cp) converts ASCII to floating
atoi (cp) converts ASCII to integer
atol (cp) converts ASCII to long
blockmv (dest, src, size) moves size bytes from src to dest
calloc (nelem, elsize) allocates space for nelem*elsize
clear (area, size, value) initialize area to value
execl (prog, arg1, arg2, ...) executes prog with args
format (func, format, argptr) outputs formatted data using func()
free (addr) frees the space at addr
ftoa (m, cp, prec, type) converts floating to ASCII
htoi (cp) converts ASCII hex to integer
index (cp, c) finds c in string cp
isdigit (c) checks for digit 0...9
islower (c) checks for lower case a...z
isspace (c) checks for white space
isupper (c) checks for upper case A...Z
malloc (size) allocates size bytes
rindex (cp, c) finds c in string cp backwards
rwts (tr,se,buf,cmd,sl,dr,vol) read or write a sector from disk
settop (size) bumps top of program memory by size
stcrat (str1, str2) appends string 2 to the end of string 1
strcmp (str1, str2) compares string 1 with string 2
strcpy (str1, str2) copies string 2 to string 1
strlen (str) returns length of string
strncat (str1, str2, n) appends at most n character
strncmp (str1, str2, n) compares at most n characters
strncpy (str1, str2, n) copies at most n characters

8/25/2013 AztecC_minimanual2013 Page 60 of 77

system (str) SHELL executes string str
tolower (c) converts to lower case
toupper (c) converts to upper case

4.2.4 Math Routines

acos (x) inverse cosine of x (arcos x)
asin (x) inverse sine of x(arcsin x)
atan (x) inverse tangent of x (arctan x)
atan2 (x, y) arctangent of x divided by y
cos (x) cosine of x
cosh (x) hyperbolic cosine of x
cotan (x) cotangent of x
exp (x) exponential function of x
log (x) Natural log of x
log10 (x) logarithm base 10 of x
pow (x, y) raise x to the y'th power
ran () random number from 0 to 1
sin (x) sine of x
sinh (x) hyperbolic sine of x
sqrt (x) square root of x
tan (x) tangent of x
tanh (x) hyperbolic tangent of x

8/25/2013 AztecC_minimanual2013 Page 61 of 77

APPENDICES

8/25/2013 AztecC_minimanual2013 Page 62 of 77

APPENDIX A: Compiler Error Codes

 1 bad digit in octal constant
 2 string space exhausted
 3 unterminated string
 4 internal error
 5 illegal type for function
 6 inappropriate arguments
 7 bad declaration syntax
 8 syntax error in typecast
 9 array dimension must be constant
10 array size must be positive integer
11 data type too complex
12 illegal pointer reference
13 unimplemented type
14 internal
15 internal
16 data type conflict
17 unsupported data type
18 data type conflict
19 obsolete
20 structure redeclaration
21 missing }
22 syntax error in structure declaration
23 obsolete
24 need right parenthesis or comma in arg list
25 structure member name expected here
26 must be structure/union member
27 illegal typecast
28 incompatible structures
29 illegal use of structure
30 missing : in ? conditional expression
31 call of non-function
32 illegal pointer calculation
33 illegal type
34 undefined symbol
35 typedef not allowed here
36 no more expression space
37 invalid expression for unary operator
38 no auto. aggregate initialization allowed
39 obsolete
40 internal
41 initializer not a constant
42 too many initializers

8/25/2013 AztecC_minimanual2013 Page 63 of 77

43 initialization of undefined structure
44 obsolete
45 bad declaration syntax
46 missing closing brace
47 open failure on include file
48 illegal symbol name
49 multiply defined symbol
50 missing bracket
51 l value required
52 obsolete
53 multiply defined label
54 too many labels
55 missing quote
56 missing apostrophe
57 line too long
58 illegal # encountered
59 macro too long
60 obsolete
61 reference of member of undefined structure
62 function body must be compound statement
63 undefined label
64 inappropriate arguments
65 illegal argument name
66 expected comma
67 invalid else
68 syntax error
69 missing semicolon
70 goto needs a label
71 statement syntax error in do-while
72 'for' syntax error; missing first semicolon
73 'for' syntax error;; missing second semicolon
74 case value must integer constant
75 missing colon on case
76 too many cases in switch
77 case outside of switch
78 missing colon on default
79 duplicate default
80 default outside of switch
81 break/continue error
82 illegal character
83 too many nested includes
84 too many array dimensions
85 not an argument
86 null dimension in array
87 invalid character constant

8/25/2013 AztecC_minimanual2013 Page 64 of 77

88 not a structure
89 invalid use of register storage class
90 symbol redeclared
91 illegal use of floating point type
92 illegal type conversion
93 illegal expression type for switch
94 invalid identifier in macro definition
95 macro needs argument list
96 missing argument to macro
97 obsolete
98 not enough arguments in macro reference
99 internal
l00 internal
101 missing close parenthesis on macro reference
102 macro arguments too long
103 #else with no #if
104 #endif with no #if
105 #endasm with no #asm
106 #asm within #asm block
107 missing #endif
108 missing #endasm
109 #if value must be integer constant
110 invalid use of : operator
111 invalid use of void expression
112 invalid use function pointer
113 duplicate case in switch
114 macro redefined
115 keyword redefined

Error codes greater than 200 shouldn't occur. If they do, there's something wrong with the
compiler. If you get such an error, please send us the program that generated the error.

8/25/2013 AztecC_minimanual2013 Page 65 of 77

APPENDIX B: The Graphics Disk

B.1 FILES ON THE GRAPHICS DISK (DISK7)

There 8 files on the graphics disk. The list below gives a brief synopsis of each:

g.lib The object library containing the graphics routines.
g.arc The archive file containing the source for the graphics

library.
democlr.c and dem2clr.c Two demo programs using g.lib; they are written for

color monitors.
demoblk.c and dem02blk.c Two demo programs using g.lib; they are written for a

black and white monitor.
cpdemoclr A file with the correct compile, assemble and link steps

for the two color demo programs.
cpdemoblk A file with the correct compile, assemble and link steps

for the two black and white demo programs.

The only difference between the the color and black and white demo programs is one
uses color and the other does not. If you have a color monitor use the color demo
programs, if you have a black and white monitor use the black and white demo programs.

B.2 GRAPHIC FUNCTIONS

The graphics library g.lib contains graphic functions for the Apple. These functions allow
programs to plot points, draw lines, circles, clear the screen. These functions use the high
resolution graphics page, and the text pages. Programs can access both pages without any
loss of data.

Note: This is a very detailed area for discussion, but to summarize:

In this old compiler for DOS 3.3 it was not possible to create a memory hole in a
graphics program to load it over the HIRES screen. DOS 3.3 programs use HGR page
one which starts at 0x2000 and ends just before 0x4000, so a DOS 3.3 program that
uses HGR must run either below HGR or above HGR.

If you are writing graphics programs for the shell it is possible to use the memory below
HGR and link to g.lib without a “special” base address being specified for the linker
because shell programs are smaller. If you writing “RAW” DOS 3.3 programs that use
HGR they must generally have their base address set to 0x4000 above HGR using

LN –b 4000 my.rel g.lib flt65.lib sa65.lib

In the newer compiler version 3.2b you can create a memory hole over HGR and your
“RAW” DOS 3.3 or ProDOS shell programs will run below and above the memory hole

8/25/2013 AztecC_minimanual2013 Page 66 of 77

leaving the screen alone so you can write larger graphics programs without breaking
them into overlays. But version 3.2b introduced a new problem because it supported
ProDOS and SYS programs (ProDOS StandAlone programs) start at 0x2000 right at
HGR. So ProDOS SYS programs need to use HGR2 (page 2) graphics (which is why I
extended g.lib for ProDOS in that version and call it G2.lib. I also extended the DOS 3.3
g.lib for that version which still uses HGR and not HGR2. I call it g3.lib.

When I extended these libraries, I added routines for LGR, DLGR, and DHGR as well for
DOS 3.3, ProDOS, and the ProDOS Shell. I have not done so for this version, but I have
some extensions for LGR and HGR for the DOS 3.3 Shell in Aztec33.

For “RAW” DOS 3.3 programs that use graphics, a better alternative to this version is the
DOS 3.3 3.2b version which is more robust than this old compiler but cannot exit and re-
enter BASIC without a reboot. The 3.2b compiler is separated into 2 parts; AppleX which
is the ProDOS and ProDOS Shell compiler, and Apple33, the “RAW” DOS 3.3 compiler;
same compiler, different libraries. This compiler however was the last compiler for the
DOS 3.3 shell’s tiny programs and also contains a routine called rwts() Read Write Track
Sector which is not available in the 3.2b compiler.

You will need to decide for yourself if you want to use this compiler or the newer one to
do “RAW” DOS 3.3 graphics programs (or for that matter any “RAW” program). All
of this runs under XP and before, and runs in Vista under DOSBox. Runs on Ubuntu
under DOSEmu presumably too. And probably under DOSBox in other linuses and
unises.

And one last thing; With Windows 7, this compiler quit running in DOSBox; it goes
into a continuous loop and apparently can’t seek source files so keeps repeating.
VirtualBOX with FreeDOS is reported to work under Windows 7 but drive-sharing is
not available due to a crippled installer since VirtualBOX apparently has strong linux
support but no longer cares to provide a working Windows installer that I and others
have been able to make work. If it works it must be designed for a non-windows user of
some sort, because after developing software and working MS-DOS, Unix, Windows,
and Linux for up to and over 30 years, I can’t make it work, nor apparently can others
since an ftp server is the only file transfer option that seems to work, and that is a
worse cludge than some of this stuff that was written in 1982.

So the message here is that you may have only two options. The later version 3.2b DOS
3.3 compiler works in DOSBox under Windows 7 and will build raw DOS 3.3
programs. The Native Mode compiler that this document is about works almost as
advertised. Since it runs in an Apple II Emulator everywhere Apple II emulators run,
and since Apple II emulators run pretty quickly if they have a fast speed (AppleWin,
kegs32) your only limitation will be switching DOS 3.3 floppy disks between compiling
and linking. Aztec33 provides samples of doing this in its LS33.dsk and DIR33.dsk disk
images which also are bundled with this compiler.

8/25/2013 AztecC_minimanual2013 Page 67 of 77

B.2.1 Overview

All the Hi-resolution (hires) graphics routines that plot points have two things in
common:

1. They all use 1 dot in the 280 by 192 matrix as 1 (x, y) location.
2. The upper left hand corner of the screen is considered location (0, 0).

B.2.2 plotchar

plotchar -prints a character on the screen while in Graphics mode

plotchar (num, x, y)
char num, x, y;

plotchar will print any printable ASCII character on the screen at location x and y while
in the Hi-Resolution mode. The character set is defined in _chr[] in the file 'graphvar.h'.
plotchar is expecting to receive the integer value of the ASCII character. This routine
does not check to see if the arguments are out of range.

Note: Other distributions of the newer 3.2b compiler have an extended character set
that is available without this nonsense and can be loaded from a file as well into
unused memory below your program. These routines can be adapted to this compiler.

B.2.3 circle

circle -draws a circle on screen

circle (x, y, rad)
int x, y, rad;

set_asp(x_asp, y_asp)
int x_asp, y_asp;

circle draws a circle on the screen with a center point of (x, y) with a radius of rad. The
circle routine does not check to see if the circle is within range of the Hi-resolution page.

set_asp allows you to alter the shape of the circle so that it becomes an oval. Where x_asp
and y_asp are equal to 1 the circle will be round. In any given case the circle will be
round if x_asp = y_asp. If x_asp and y_asp are equal the circle will be plotted with a
radius of (x_asp * radius) and (y_asp * radius) giving a circle that is round. If the values
are > 1 the circle will be larger than its radius and if the values are < 1 the circle will be
smaller than its radius. x_asp and y_asp are defined in graphvar.h and are initialized to 1.

Note: The circle routine described above is the only reason that the bloated floating
point library needs to be linked to. Aztec33 has an integer based replacement that

8/25/2013 AztecC_minimanual2013 Page 68 of 77

eliminates this dependency which has been backported as an include file and
eliminates the need to link to FLT65.lib unless you also need to use floats[4 bytes] and
doubles[8 bytes] which will slow your programs down considerably.

B.2.4 line routines

line routines -draw white, blue, green, red, violet lines

drw (x1, y1, x2, y2)
int x1, y1, x2, y2;

bdrw (x1, y1, x2, y2)
int x1, y1, x2, y2;

gdrw (x1, y1, x2, y2)
int x1, y1, x2, y2;

rdrw (x1, y1, x2, y2)
int x1, y1, x2, y2;

vdrw (x1, y1, x2, y2)
int x1, y1, x2, y2;

lineto (x, y)
int x, y;

blineto (x, y)
int x, y;

glineto (x, y)
int x, y;

rlineto (x, y)
int x, y;

vlineto (x, y)
int x, y;

The drw routines plot a line from the ordered pairs (x1, y1) to (x2, y2). These routines do
not check to see if any of the ordered pairs are out of range. These routines will plot a line
in color depending on which routine is called. The color that goes with each drw each
routine is shown below. The drw routines reset the the gobal variables _oldx, _oldy to the
values of (x2, y2).

drw plots a white line
bdrw plots a blue line

8/25/2013 AztecC_minimanual2013 Page 69 of 77

gdrw plots a green line
rdrw plots a red line it
vdrw plots a violet line

The lineto routines plot a line from _oldx, _oldy to the ordered pair (x, y). The golbal
variables _oldx _oldy are defined in the file 'graphvar.h' and are set to (0, 0). If no drw
routines are called before a lineto routine the line will start at (0, 0). The color that goes
with each lineto routine is shown below.

lineto plots a white line
blineto plots a blue line
glineto plots a green line
rlineto plots a red line
vlineto plots a violet line

Note: Version 3.2b has more robust revisions of this whole lot. I have backported some
stuff from that version but left this part alone.

B.2.5 page

page -select which page is the current page

pagel ()
page2 ()

• pagel will set set whichever mode (Text or Hi-resolution) to the primary page.
• page2 will set set whichever mode (Text or Hi-resolution) to the secondary page.

B.2.6 color

color -changes screen color

black()
blue()
green()
red()
violet()

Any of the above routines will turn on the primary Hi-resolution graphics page in full
screen mode, and also clear the screen.

black turns off all the dots.
blue turns off all the dots except the blue ones.
green turns off all the dots except the green ones.
red turns off all the dots except the red ones.
violet turns of all the dots except the violet ones.

8/25/2013 AztecC_minimanual2013 Page 70 of 77

B.2.7 plot

plot -plots points on the screen

plot (x, y)
int x, y;

bplot (x, y)
int x, y;

gplot (x, y)
int x, y;

rplot (x, y)
int x, y;

vplot (x, y)
int x, y;

The plot routines will plot a point at and given (x, y) location. The table below shows
which routines plot which colored points.

plot plots a white point
bplot plots a blue point
gplot plots a green point
rplot plots a red point
vplot plots a violet point

The color plotting routines will plot the point if its location is within the limitations of the
color on the hires screen.

B.2.8 mode

mode -selects display mode

text()
hgr()
fscreen()
mscreen()

text() sets the soft switch and returns you to text mode.
hgr() sets the soft switch and brings the screen to Hi-resolution mode.
hgr() does not clear the screen as the color routines will.

8/25/2013 AztecC_minimanual2013 Page 71 of 77

fscreen()

gives you a full screen to work with in the graphics mode. This mean the you have 280
by 192 matrix to work with.

mscreen()

sets the screen so that in the Hi-resolution mode you have a 4 line caption for normal text
at the bottom of the screen. These 4 lines take up the bottom 32 rows of dots leaving a
280 by 160 matrix to work with.

8/25/2013 AztecC_minimanual2013 Page 72 of 77

Appendix C: DISKS

Manx Aztec C for Apple II DOS 3.3
SHELL version 2.4
from Manx Software Systems, 1983

Requires: 64k or larger Apple II with two 5.25" disk drives

There are nine diskettes:

Disk1_Start (not bootable as in the original package)
Disk1_StartBootable (boots DOS 3.3 and starts the SHELL)
Disk2_ARCH
Disk3_C65
Disk4_CCI
Disk5_LIB65
Disk6_LIBINT
Disk7_Graphics
Disk8_Save (mainly blank for saving programs)

These disks are distributed as AztecC_DOS33dsk.zip

8/25/2013 AztecC_minimanual2013 Page 73 of 77

Appendix D: Mini Manual Credits and Attributions

D.1 Rubywand

Thanks to Jeff Hurlbert (Rubywand) for the Manx Aztec C Mini-manual for DOS 3.3.
That was quite a lot of scanning, ocr’ing and typing. The information in this manual came
“from scanning/editing selected sections of the manual plus a few additions.” According
to Jeff.

Rubywand was active for years in the Apple II online community with such Apple II
efforts as the The official Csa2 (comp.sys.apple2) Usenet newsgroup Apple II FAQs:

http://apple2.org.za/gswv/a2zine/faqs/A2FAQs5MAINHALL.html

His “contributorship” extends to other Mini Manuals besides this one:

http://apple2.org.za/gswv/a2zine/faqs/Csa2DOSMM.html

Rubywand’s Aztec C Mini Manual is distributed in its original form as
AztecC_minimanual.txt

The “published” date is Jan 13th 2001, with an update on April 28th, 2006. According to
AztecC_minimanual.txt, the Aztec C65 Mini Manual was part of the GS WorldView
Winter 2001 Issue.

I have no idea what happened to the original manual for this compiler. Rubywand’s Mini
Manual (this manual) is all we have left.

D.1.1 The Compiler

These disks are distributed as AztecC_DOS33dsk.zip

Along with Rubywand’s distribution you may find different distributions of this same
compiler on several different internet sites. Two of the sites are:

http://www.aztecmuseum.ca The Official Aztec C Online Museum

The purpose of this website is to provide a free internet archive for various versions of
the now-discontinued Aztec C Compiler for older now-obsolete platforms, and to provide
related compiler documentation and Aztec C source code and samples that support the
Fair Use of these discontinued compilers for educational purposes by programmers,
researchers and enthusiasts.

ftp://ftp.apple.asimov.net/pub/apple_II/ The Asimov Apple II Collection

8/25/2013 AztecC_minimanual2013 Page 74 of 77

ftp://ftp.apple.asimov.net/pub/apple_II/
http://www.aztecmuseum.ca/
http://apple2.org.za/gswv/a2zine/faqs/Csa2DOSMM.html
http://apple2.org.za/gswv/a2zine/faqs/A2FAQs5MAINHALL.html

The ASIMOV Apple II FTP Archive is the largest public repository of Apple II disk
images and support materials related to the Apple family of home computers. Continually
updated and loaded with thousands of disk images

The distribution of this compiler that RubyWand documents in this Mini Manual is the
most complete distribution of this version in its original form that is known to still exist.
The Aztec33 distribution extends Rubywand’s to include a shared environment with an
equivalent cross-compiler of the same vintage with extensions and extras.

Other distributions of the same version may not include the Graphics disk, and a single
disk distribution (sides A and B) was even distributed as part of the White Disk
Collection on disk 39:

ftp://ftp.apple.asimov.com/pub/apple_II/images/games/collections/White_Disks/

8/25/2013 AztecC_minimanual2013 Page 75 of 77

ftp://ftp.apple.asimov.com/pub/apple_II/images/games/collections/White_Disks/

D.1.2 Other Attributions

When Rubywand updated this Mini Manual on April 28, 2006 he thanked Bill Malcolm
for spotting an error.

Thanks to Michael J. Mahon for ocr error and other corrections around and before
December 6, 2009.

I hope with this latest version I have got most of the few errors that remained sorted-out.

D.2 Manx Software Systems

Manx Software Systems of Shrewsbury, New Jersey, produced C compilers beginning in
the 1980s targeted at professional developers for the Apple][(DOS 3.3 and ProDOS) and
a variety of platforms up to and including PC's and Mac's.

Manx Software Systems was started by Harry Suckow, with partners Thomas Fenwick,
and James Goodnow II, the two principle developers. They were all working together at
another company at the time. Harry had started several companies of his own anticipating
the impending growth of the PC market, with each company specializing in different
kinds of software. A demand came for compilers first and he disengaged himself from the
other companies to pursue Manx and Aztec C.

Harry took care of the business side, Fenwick specialized in front-end compiler
development, and Goodnow specialized in back-end compiler development. Another
developer, Chris Macey, worked with them for awhile on 80XX development and in
other areas.

The name "Manx" was selected from a list of cats for no particular reason except that the
name Harry wanted to use was taken by one of his other start-up companies.

One of the main reasons for Aztec C's early success was the floating point support for the
Z80 compiler which was extended to the Apple II shortly after. Harry insisted on adding
floating point.

During the move to ANSI C in 1989, Robert Sherry who was with Manx at the time and
interested in the minutiae of standards represented them on the ANSI committee but left
shortly after.

By this time Microsoft had targeted competitors for their C compiler and Aztec C was
being pushed-out of the general IBM-PC compiler market, followed by competition with
Apple's MPW C on the MacIntosh side and Lattice C on the Amiga after SAS bought
them.

By the early 1990s Thomas Fenwick had left to work for Microsoft, and James Goodnow
worked on Aztec C occasionally but was pursuing other projects outside the company

8/25/2013 AztecC_minimanual2013 Page 76 of 77

and eventually left the company altogether. Harry employed about 20 people at that time.
Chris Macey returned as a consultant but eventually left to become chief scientist for
another company. Mike Spille joined Manx as a developer along with the late Jeff Davis
(embedded systems).

Throughout the 1990s they continued to make their Aztec C. As their market share
dropped, they tried to make the move to specializing in embedded systems development,
but it was too late. They disappeared a few years back following the loss of market
presence of some of their target platforms (various 6502 machines, Atari and Amiga
68xxx, etc.).

In the end, Jeff Davis and Mike Spille helped Harry Suckow keep the company going
before Harry finally closed it. Harry Suckow is still the Copyright holder for Aztec C.

Many professional developers used Aztec C compilers from Manx Software Systems
before they vanished from the planet.

e.o.f. Rubywand 13Jan2001 amdg

8/25/2013 AztecC_minimanual2013 Page 77 of 77

	1. TUTORIAL INTRODUCTION T0 AZTEC C65
	1.1 Getting Started
	1.2 Configuring the SHELL
	1.3 Two Drive Environment
	1.4 Creating the Program
	1.5 More SHELL Goodies
	1.6 C65 and CCI, The Speed Versus Size Dilemma
	1.7 Compiling and Assembling
	1.8 A Few Utilities
	1.9 Linking with the Library
	1.10 Running the Program
	1.11 More Choices
	1.12 Going to the Source
	1.13 Where to Go From Here

	2. THE SHELL
	2.5 General Use
	2.6 Built-in Commands
	2.6.1 boot

	2.6.2 bye
	2.6.3 call
	2.6.4 cat
	2.6.5 cd
	2.6.6 ce
	2.6.7 cp
	2.6.8 load
	2.6.9 lock
	2.6.10 ls
	2.6.11 maxfiles
	2.6.12 mv
	2.6.13 rm
	2.6.14 run
	2.6.15 save
	2.6.16 unlock

	2.7 Batch Facilities
	2.7.1 loop
	2.7.2 set

	2.8 Configuration
	2.8.1 Keyboard
	2.8.2 Screen
	2.8.3 Printer

	3. PROGRAMS
	3.1 C65 Native Code Compiler
	3.2 CCI Pseudo-code Compiler
	3.3 AS65 6502 Assembler
	3.3.1 Overview
	3.3.2 Syntax

	3.4 ASI Pseudo-code Assembler
	3.5 LN Linker
	3.6 MKLIB
	3.7 VED Screen Editor
	3.8 ARCH Source Archive Utility
	3.9 OD Hex Dump Utility
	3.10 CMP Byte for Byte File Compare
	3.11 NM Name List Generator
	3.12 TABSET
	3.13 CONFIG
	3.14 LDEV

	4. LIBRARIES
	4.1 Introduction
	4.2 Summary of Library Functions
	4.2.1 Standard I/O
	4.2.2 System I/O
	4.2.3 Utility Routines
	4.2.4 Math Routines

	APPENDIX A: Compiler Error Codes
	APPENDIX B: The Graphics Disk
	B.1 FILES ON THE GRAPHICS DISK (DISK7)
	B.2 GRAPHIC FUNCTIONS
	B.2.2 plotchar
	B.2.3 circle
	B.2.4 line routines
	B.2.5 page
	B.2.6 color
	B.2.7 plot
	B.2.8 mode

	Appendix C: DISKS
	Appendix D: Mini Manual Credits and Attributions
	D.1 Rubywand
	D.1.1 The Compiler
	D.1.2 Other Attributions

	D.2 Manx Software Systems

	e.o.f. Rubywand 13Jan2001 amdg

