RATF Analysis using the RAT (Random Analysis Tool) and RD (Random Dump)

Synopsis:

The RAT Random Analysis Tool

Rat (C) Copyright Bill Buckels 2013. All Rats Reserved.
Random Analysis Tool to determine record length, field layout, view data,
dump data and obtain stats for DOS 3.3 Random Access Text Files (RATF's).
Usage: rat filename -1(record length 1-256) (-options)

rat filename configfilename (-options can be in config file)
Options: -n(number of records to list) -r(from record 0-32767) -r(to record)

-b (byte offset field list) i.e. -b0,10,20

note: byte offset can be used to select fields of interest only

-a select all records (by default only active records are displayed)
-s -d -v slot drive volume i.e. -s6 -dl -v254
command line record length and options are preceded by a dash as shown.
config file options are of the form l=(record length), etc. (name=value pairs)

additional config file option i.e. h=FieldName, FieldName,h FieldName
field header option when used with i.e. b=0,10,20
Output: 7 bit ascii to the screen, can be redirected: rat > tofile

The RAT is a command line program for the Aztec C65 DOS 3.3 "Unix-like" Shell
written in Aztec C65 (CII Version). It is both a diagnostic tool for

determining the contents of a DOS 3.3 Random Access Text File (RATF) and a

file dump utility for RATF's.

The RAT's file dump comes in 3 flavors:

Diagnostic: Long List of Annotated Field Data Based on Record Length Only.

Export: Comma Separated Value (CSV) Format Based on a "field map".
Suitable for importing into a DataBase.
Rescue: A Long List of each active text field in the RATF.

The RAT's options can be specified using the command line, a config file, or
a combination of the two. When using a config file, only the file name of
the RATF being read followed by the config file name needs to specified...
all other information that can be entered on the command line can be in the
config file, which uses the same single character commands as their command
line equivalent.

RD Random Dump Hex Viewer

RD (random dump) (C) Copyright Bill Buckels 2013. All Rats Reserved.
Usage: rd options filel [options] [file2] ... [> myfile.txt]

This program performs a dump in hex and ascii of the specified
file(s) to the standard output. Default is to the screen but can
also be redirected to a file, a printer, or through a filter program.
Options: r pw 1l o h t - options with values cannot be combined.

+ switch on - options without values can be combined i.e. +rpt

+r switch - view file as random access text file

+p switch - view file a page at a time - Q or ESC to exit

+w(value - decimal) - display width 1-16 (default 16)

+1(value - decimal) - record length 1-256 (off by default)

+o(value - decimal) - view file beginning at offset (default is 0)
+h (value hexadecimal) - same as above

+t switch - view file as 7 bit values (strip hi-bits - all files)

- switch off - options can be combined or separate i.e. -rp or -r -p
Over-rides: +s(slot 4 5 6 7) +d(drive 1 2) +v(volume 1-255)

8/22/2013 RATF Analysis — the RAT and RD Page 1 of 9

RD is a command line program for the Aztec C65 DOS 3.3 "Unix-like"
Shell written in Aztec C65 (CII Version).

RD has more features than a typical hex viewer including user defined screen
width and has some of the same features as the RAT like record length, but
is more general and provides a view of all DOS 3.3 file types, although it
too works with RATF's.

Like the RAT, RD's output can be redirected to a disk file. But unlike the
RAT, RD's output is purely diagnostic.

CHTYPE Command Line Utility to Change DOS 3.3 File Type

Usage: chtype filename -tfiletype (-options)
Filetypes: -tT -tI -tA -tB -tR -tS -ta -tb (case sensitive)
Options: slot drive volume i.e. -s6 -dl -v254 (default)

Filetype and options are preceded by a dash as shown.

CHTYPE is included on the RANDOM33.dsk which is the DOS 3.3 distribution
disk the RAT and RD and their demo files are on. It is also distributed
separately. CHTYPE can be used to change a RATF from a text file to a type S
file for DOS 3.3 applications written in other languages like C that expect
sequential text files only.

Text File Storage Format in DOS 3.3 and Other 0Old Systems

So you want to work with RATF's? Or maybe "want" is too strong a word!

We'll talk about the RAT and RD shortly, but first if you are under the
impression that there are 3 types of 7 bit text files, all sequential; one
that lives on the Mac (or in ProDOS) with carriage returns at the end of
each line, one that lives in Unix and Linux with linefeeds at the end of
each line, and one that lives in Windows (and MS-DOS) with carriage returns
and linefeeds at the end of each line, you are generally correct with some
notable caveats.

Each system of the early days had its own text character set. For example,
in 1963 while IBM worked with the ASCII standardization committee, they
devised EBCDIC which extended BCDIC.

EBCDIC was described as [abridged] "An alleged character set ...in at least
six mutually incompatible versions, all featuring such delights as non-
contiguous letter sequences and the absence of several ASCII punctuation
characters... (exactly which characters are absent varies according to which
version of EBCDIC you're looking at) ...spurning the already established
ASCII standard. ...IBM's own description of the EBCDIC variants and how to
convert between them is still internally classified top-secret... a
manifestation of purest evil."

The Commodore 64's PETSCII evolved from that early 1963 Ascii Standard
and not the 1967 version, which most if not all other computer character
sets based on ASCII use.

ASCII was the most commonly used character encoding on the World Wide Web
until December 2007, when it was surpassed by UTF-8. By that time decades
had passed and systems (including DOS 3.3 and ProDOS) had come and gone.

The Ascii Standard encoded only 7 bits (0-127), with the 8th bit added and
used as a parity bit to detect transmission errors over serial communication
lines. While the IBM-PC and MS-DOS had used the upper characters 128-255 to
extend 8 bit Ascii for such uses as graphics characters for display, and
allowed the storage of the higher characters in its text files, DOS 3.3's
BASIC operating system did not.

8/22/2013 RATF Analysis — the RAT and RD Page 2 of 9

And unlike later Apple Systems like ProDOS and on the Mac, or MS-DOS and the
Unises of the day, DOS 3.3 did not simply store its low ascii as 7 bit low
ascii text in its text files (although DOS 3.3 made its text appear like 7
bit text to a BASIC programmer) .

The Text in DOS 3.3 text files is 7 bit Ascii with the parity bit set.

An Overview of the RATF format

The RATF (Random Text File) was even a neater idea than misrepresenting 7
bit Ascii by storing 7 bit text with the parity bit set!

* Extending the same format used for storing strings in sequential text

files complete with carriage returns in fixed length records padded with
Ascii 0's was another neat idea, because the resulting RATF extended DOS
3.3's BASIC "sandbox" beyond the realm of sequential storage without the
need to open (and expose) the other DOS 3.3 file types!

* Allowing BASIC programmers to write past the end of records in a RATF was
even a neater idea! Records without borders!

* Even neater yet was using byte offsets at random to put random text
strings into random records and not bothering with fixed length fields.

* Not storing the number of records anywhere in the file gave the BASIC
programmer of the day even more reason to ignore good programming practices
and the freedom to just put any old text at all anywhere in a file at
random. The data integrity problem was solved! For the BASIC programmer
there was no data integrity needed!

* Not putting a header in the RATF format with field lengths and record
lengths eliminated the need to have other file types in BASIC. Who needs
other filetypes when you are programming in BASIC anyway!

* And not having a file length in bytes eliminated the drudgery of worrying
about appending to the end of something. After all, DOS 3.3 really only had
sectors linked to other sectors. What would append have meant?

* Not needing to have data in a file was cool and being able to leapfrog
around empty records while writing data into others at random may have been

the greatest departure from structured database programming of all.

Protecting the DOS 3.3 File System from BASIC Programmers

So as you can see by all the neat things that Apple Computer allowed BASIC
programmers to do with text files, the use of other DOS 3.3 file types had
little purpose (with the exception of Binary Image Files created with BSAVE
and read into memory with BLOAD). The BASIC programmer (like the Aztec C65
programmer of the day) really needed only Text and Binary files. The DOS 3.3
system and the applications programmer's use of the other DOS 3.3 filetypes
was secured for those more capable of doing damage!

In order to protect BASIC programmers from themselves, DOS 3.3 BASIC opens
text files only and no other DOS 3.3 file types. A DOS 3.3 BASIC program
will generate a FILE TYPE MISMATCH error when it tries to open any DOS 3.3
file type other than a text file!

But if you are not a BASIC programmer, it is only necessary to keep RATF's

as text files to share with BASIC and other applications that expect a RATF
to be a text file.

8/22/2013 RATF Analysis — the RAT and RD Page 3 of 9

Changing RATF's to Type S Files

There is no other reason that a RATF cannot be a type S file. And if you
want to protect your RATF from DOS 3.3 BASIC programmers, change your RATF
to a type S and leave it that way. You can use the chtype utility that comes
with the RAT (or some other means) to change it to a type S file.

While you are at it, you could build yourself some sorted indices (also type
S to protect them from BASIC programmers) for key fields with record and
field offsets from your RATF to avoid the overhead of sequential searches.

And while you are at it you could write yourself a packing utility that
rebuilds your indices when done packing. And you could use an unprintable
character (like Ascii 1) to mark deleted records in your type S database and
deleted nodes in your type S indices, and consider converting these
permanently to 7 bit plain text and porting them to ProDOS for faster file
access.

While you are at it, you could also consider losing the carriage returns at
the end of the fields and create a header format for storing types other
than text.

Record Length Analysis:

If you are running in an emulator like AppleWin, and have your speed set to
fastest, drink your favorite beverage quickly... this will not likely take
too long if the BASIC programmer who created the RATF has not succumbed to
the inherent unstructured random laziness promoted by this file format's
flexibility.

Record Lengths

The RAT and RD both let you enter hypothetical (random) record lengths
between 1 and 256, and you get to see how it goes, while they dump the RATF
to the screen (or you can redirect output to a disk file since these are
shell programs).

The RANDOM33.dsk that the RAT, and RD (Random Dump) live-on contains a
sample RATF called RATF (of course). RATF provides a predictable test suite
that you can work with to try-out the RAT and RD yourself and follow along
if you wish.

8/22/2013 RATF Analysis — the RAT and RD Page 4 of 9

MKRAT BASIC program used to create RATF

100 REM CREATE TEST DATA FOR RAT
105 REM VALUES FOR FIELD DATA

110 A$ = "FIRST"

120 B$ = "SECOND"

130 C$ = "THIRD"

135 REM BYTE OFFSETS FOR FIELD DATA
140 X$ = ",BO"

150 Y$ = "WRITE RATF,B10"
160 Z$ = "WRITE RATF,B20"
170 D$ = CHRS (4)

190 REM WRITE RECORDS INTERLEAVED WITH BLANK RECORDS
200 PRINT D$;"OPEN RATF,L30"

210 FOR J = 0 TO 10

220 K =J * J

230 PRINT D$;"WRITE RATF,R"; STR$ (K) ;X$
250 PRINT A$

260 PRINT D$;Y$

270 PRINT BS$

280 PRINT D$;2z$

290 PRINT C$

300 NEXT J

310 PRINT D$;"CLOSE"

320 END

A Visual Chore

Determining the the Record Length of a RATF in DOS 3.3 is a visual chore.
Unlike in ProDOS, which stores the file length in bytes in the Volume
Directory or Subdirectory which is readable as a file, and which stores the

number of records in the Auxiliary Type field (ProDOS GetFileInfo Call),

You can use a hex viewer like RD (Random Dump) to determine if some of the
fields line-up (if you can find one like RD).

Example RD Output: Default Width - Record Length = 30 (+L30)

Command Line: RD +RT +L30 RATF > myfile.txt

00000 46 49 52 53 54 0D 00 00 00 00 53 45 43 4F 4E 44 FIRST..... SECOND
00010 OD 00 00 00 54 48 49 52 44 0D 00 00 00 00THIRD.....
0001E 46 49 52 53 54 0D 00 00 00 00 53 45 43 4F 4E 44 FIRST..... SECOND
0002E OD 00 00 00 54 48 49 52 44 0D 00 00 00 00THIRD.....

0003C 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0
0004C 00 00 00 00 00 00 00 00 00 00 00 00 OO0 OO ...

0005A 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0
0006A 00 00 00 00 00 00 00 00 00 00 00 00 00 OO

Note how RD's view splits records in the RATF with blank lines and provides
the starting offset for each record. This is a more useful view that you
would expect from a hex viewer. Like any other hex viewer RD can also
provide a standard view as well but the view above is somewhat more helpful
for this visual chore. Note also that the hex display on the left is in low-
ascii values. We even see the "real" Ascii values like carriage returns that
appear as unprintable characters on the right. And the characters on the
right are converted as well. This conversion of hex to low-Ascii is not RD's
default view.

8/22/2013 RATF Analysis — the RAT and RD Page 5 of 9

RD's default view of any file is the same as other hex viewers
like the one that is built into CiderPress; hex values are not converted to
low-ascii. But RD has more than one way to skin a RAT!

Sample RD Output: Width = 10 (4+W10)

Command Line: RD +RT +L30 +W10 RATF > myfile.txt

00000 46 49 52 53 54 0D 00 00 00 00 FIRST.....
0000A 53 45 43 4F 4E 44 0D 00 00 00 SECOND. . ..
00014 54 48 49 52 44 0D 00 00 00 00 THIRD.....
0001E 46 49 52 53 54 0D 00 00 00 00 FIRST.....
00028 53 45 43 4F 4E 44 0D 00 00 00 SECOND. . ..
00032 54 48 49 52 44 0D 00 00 00 00 THIRD.....

Note how RD's view of the same data is still split into records with blank
lines in between. But now we have adjusted the screen to fit the record
bounds and since the sample data that I have used has nicely aligned fields
the display is very pretty indeed!

RD has lots of other features too, and you are encouraged to explore them.
Refer to the document titled RDUMP.txt that came with all this for more
detail about RD, or see RD's source to see how it does what it does, and try
it out yourself on some different files to see how that goes!

But a hex viewer knows its place (and RD definetly is a team player in a
game of RAT quest), but when it comes to catching RATF's it doesn't hurt to
think like a RAT! So now let's have a look at what the RAT does with a RATF
and a record length.

Command Line: RAT -L30 RATF

========Record 2
0 FIRST

10 : SECOND

20 : THIRD
========Record 3
0 : FIRST

10 : SECOND

20 : THIRD
cont'd
========Record 51
0 : FIRST

10 : SECOND

20 : THIRD

52 records read (L = 30) 8 active.
partial record - 6 bytes...

Like RD, this works pretty well! And the RAT takes a somewhat different view
than a typical hex editor's display can provide; it breaks out only the
fields that it finds. You can see some additional information in the left
column beside the field data (above). Those are byte offsets in the records.

So it follows that if the text in the fields is recognizable and contains

some common content at the same relative position in the record, and if the
byte offsets line-up, you have likely found the RATF's file format, and

maybe you are even ready to extract the data using the RAT, and import it into
a real database. Or whatever your reason.

8/22/2013 RATF Analysis — the RAT and RD Page 6 of 9

Now let's see what happens when we pick the wrong record size with the RAT!

Command Line: RAT -1L20 RATF

========Record 2
0 : FIRST

10 : SECOND
========Record 3
0 : THIRD

10 : FIRST
========Record 4
0 : SECOND

10 : THIRD
========Record 8
0 : FIRST

10 : SECOND
========Record 9
0 : THIRD
========Record 15
10 : FIRST
========Record 16
0 : SECOND

10 : THIRD

etc...

As you can see above, if one iterates through a series of record lengths
using the RAT, a decipherable pattern should occasionally emerge. This is
also doable in the RD hex viewer, but the output is not formatted as
clearly. You have probably noticed by now that by default, the rat skips
records that are unused.

Using the Aztec C DOS 3.3 Shell's scripting capabilities, and redirection to
a disk file you could if you wished, automate a partial dump by calling the
RAT in the script repetitively with different record lengths to "zero-in" on
the record size by reviewing your output afterwards and determining your
"best fit".

Rescue Mode -1.911 and Negative Mode --

If someone has used a RATF for random information and variable length fields
at random, a hex editor (even RD) might be a little annoying or maybe even
useless for zeroing-in on what you got!

Remember, not only is a RATF for random access, but also for storing random
text strings with no notion of fields whatsoever. At some point it may be
time to cut your losses and use the RAT to dump every bit of text in a RATF
and call it a day.

The RAT actually has two settings for that (both unlisted in the RAT's
usage) and both settings take only the arguments provided below...

all other switches are cancelled:

Rescue Mode -L911

Usage: RAT -L911 RATF > icu.txt

A long list of all the text in the RATF. For field level recovery.

Negative Mode --

Usage: RAT -- -L(record length) RATF > dreamsoffields.txt

8/22/2013 RATF Analysis — the RAT and RD Page 7 of 9

Before setting the file length to 911, which is your last resort with the
RAT, if you are convinced that you have a RATF that has valid string data
that has been stored in records but in freeforms, or maybe several
particular orders (some buggers are creative and will mix several record
layouts in one file) you can use the "undocumented" -- switch.

This mode can be problematic because unlike Rescue Mode (-L911) you do not
end-up with a long list. Instead you end-up with a comma separated value
(CSV) list with a variable number of entries per line.

In the 1990's I programmed in a database language on the IBM-PC called
Clarion which allowed "unions" in database files called groupovers (I
think) . This meant that several structures could co-exist in a single file.

So all kidding aside if this is what you have, then the -- (negative mode)
switch is your only option for a RATF export. You will need to split your
records later manually... the RAT can't help you with that.

Soon we will look at the best case scenario! But now some features of the
RAT and some other information that we have skipped-over:

Record Counts

The RAT gives you counts, based on the random record length you entered;
active records, and number of records.

Tailing Bytes

There is one hitch of course, and since the DOS 3.3 file system is in sector
length rather than byte length like ProDOS, or for that matter, modern
filing systems, you can get a load of tailing bytes at the end of the
records. So the RAT lets you enter a number of records, or first record and
and last record so you are not spending humunguous amounts of time staring
at your screen watching the bytes after the "real" data flows past.

Unused Records

A RATF can contain huge chunks of unused records as well, so you may need to
make a number of short passes to zero-in on the right size (when the fields
in the records line-up) then make a final pass.

If you redirect your output to a disk file, you will end-up with a 7 bit
Ascii sequential file in ProDOS (Mac) format that you can even import into a

MS-Windows data base like MS- Access if you wish.

Field Length Analysis:

A well formed RATF with consistent fields, that has mostly data in it, and
terminates the data with carriage returns, and pads the data with NUL bytes,
can be an easy chore to analyze... one can hope!

The RAT also allows you to specify a field map either on the command line or
in a config file.

You will likely have varying degrees of success analyzing field sizes, since

a RATF is just a primitive flat file capable of storing only text mixed with
NUL bytes, whether in ProDOS or DOS 3.3.

8/22/2013 RATF Analysis — the RAT and RD Page 8 of 9

On the other hand, common Data like First Name, Last Name, Address, City,
Province, PostalCode, Phone etc. could be patterned in such a way that you
are likely to succeed, and all the better if you already know what the RATF
is all about. As I say, degrees of success can vary using RAT, but if the
first fields line-up and the data makes sense, even if all fields aren't
filled, the RAT can give you a pretty good idea what's in a RATF file.

Config Files and the RAT's Output - CSV (comma separated value) lists

RATF.CFG

#
RAT config file example

same as the rat command command line switches...
Additional Features can be added here too...

the following two are the same as their basic

counterparts as well.

#

* L - record length
1=30

* B - byte offsets (fields)
b=0,10,20

* H - header field names, for delimited lists.
h=FirstName,MiddleName, LastName

The command line to try this is as follows:

RAT RATFEF RATF.CFEG
or
RAT RATF RATF.CFG > disk.file

Sample Output

FIRSTNAME , MIDDLENAME , LASTNAME
FIRST, SECOND, THIRD
FIRST, SECOND, THIRD
FIRST, SECOND, THIRD
FIRST, SECOND, THIRD
FIRST, SECOND, THIRD
FIRST, SECOND, THIRD
FIRST, SECOND, THIRD
FIRST, SECOND, THIRD

Last Word

Good luck using the RAT, RD (Random Dump), CHTYPE, and the other programs
the RAT comes with.

Bill Buckels
bbuckels@escape.ca
Aug 2013

8/22/2013 RATF Analysis — the RAT and RD Page 9 of 9

mailto:bbuckels@escape.ca

