

APPLE GRAPHICS &
ARCADE GAME DESIGN

BY JEFFREY STANTON

THE BOOK 0.
11223 S. HINDRY AVE.
LOS ANGELES, CA 90045

ACKNOWLEGEMENTS

A book like this was a long and difficult undertaking. I would like to thank
my publisher, James Sadlier for having faith in the book despite its long
development time, Don Worth and Lou Rivas for reading the book for
technical accuracy, and John Dickey and Gary Kevorkian who edited this
book. I would also like to thank Dale Washlake, Phil Wasson, Jim Nitchals,
and others who answered many of my graphics questions, and Shannon Hogan
who did the cover art from one of my far fetched ideas.

Apple and DOS Tool Kit are trademarks of Apple Computer Co.
Pacman is a trademark of Bally.

Sneakers and Gamma Goblins are trademarks of Sirius Software.
Galaxian is a trademark of Williams.

Scramble is a trademark of Stern.

Space Invaders is a trademark of Namico.

Rip Off is a trademark of Sega.

Threshold and Gamma Goblins are trademarks of On Line Systems.
Missile Command is a trademark of Atari.

Copyright © 1982 by Jeffrey Stanton and The Book Company. All rights
reserved. Printed in the United States of America. No part of this publication
may be reproduced or distributed in any form or by any means, or stored in a
data base or retrieval system, without the prior written permission of the
publisher, with the exception that the program listings may be entered, stored,
and executed in a computer systern, but they may not be reproduced for
publication.

TABLE OF CONTENTS

INTRODUCTION — 6

CHAPTER 1 APPLESOFT HI-RES — 9

G O =

7.
8.

. Description and Screen Layout
. Screen Switches and Control

. Memory Considerations

. Colors and Background Fill

. Page Flipping

. Apple Shape Tables

A: Designing Shapes

B: Assembling a Directory
Graphic Animation Using Shape Tables
Character Generators

CHAPTER 2 LO-RES GRAPHICS — 35

1.
2.
3.
4.
3.

Introduction

Basic Assembly Language
Lo-Res Screen Architecture
Plotting Dots and Lines
Designing the ‘‘Breakout Game’

b

CHAPTER 3 MACHINE LANGUAGE ACCESS TO APPLESOFT

1.
2.
3.

HI-RES ROUTINES — 69

Description and ROM Addresses
HPLOT Shapes and Animation
Apple Shape Tables in Animation

CHAPTER 4 HI-RES SCREEN ARCHITECTURE — 87

1.
2.

Screen Design and Layout
Raster Graphics (Bit Mapped) Shape Tables
A: Pros and Cons

B: Forming Bit Mapped Shape Tables
C: Shifted Tables for Precise Positioning
D: Color Problems

CHAPTER 5 BIT MAPPED GRAPHICS — 111
1. Drawing Bit Map Shapes to the Hires Screen

2. Color Problems with Horizontal Movement
3. Screen Erase

4. Selective Drawing Control & Drawing Movement Advantages

5. Interfacing Drawing Routines to Applesoft
CHAPTER 6 ARCADE GRAPHICS — 147

. Introduction

. Paddle Routines

. Dropping Bombs and Shooting Bullets
. The Invaders Type Game

. Steerable Space Games

. Steerable and Free Floating Space Ships
. Debug Package

. Laser Fire & Paddle Button Triggers
9. Collisions

10. Explosions

11. Scorekeeping

12. Page Flipping

RO O WON =

CHAPTER 7 GAMES THAT SCROLL — 237

1. Games That Scroll

2. Hi-Res Screen Scrolling
A: Vertical Scrolling
B: Horizontal Scrolling

CHAPTER 8 WHAT MAKES A GOOD GAME — 281

1. What Makes A Good Game
2. Successful Game Examples

INTRODUCTION

A programmer’s ability to create Apple graphics can be compared to an ar-
tist’s ability with a sketchpad or an animator’s skill with animation. Each in
their own way creates images that are in some way entertaining. The viewer,
however, is only interested in the final effect, not the tedious technical process
that the artist or programmer had to apply to produce that effect.

The Apple II is a wonderful graphics tool, but unfortunately highly complex
to use at any level other than Applesoft BASIC. The scattered magazine ar-
ticles covering Apple graphics have shown the machine’s complexity without
presenting an adequate solution to the problem of graphics programming con-
cepts. Those who understand the process and have mastered it are too busy
writing programs to share their knowledge.

Magical references like ‘‘Raster Graphics’’ and ““Bit Mapping’’ are spoken
of as if they are secret techniques practiced only by the top programmers. Their
games, such as ‘‘Raster Blaster’’, ‘‘Galaxian’’, ‘‘Sneakers’’, and ‘“‘PacMan’’
have both awed wishful game designers and shown them the limitations of their
own programming techniques.

This book will allow you to enter the world of Apple graphics, in which your
most imaginative ideas can be animated. The various chapters will attempt to
present a4 comprehensive course in Hi-Res graphics and high speed arcade
animation. The major part of this material requires the ability to do assembly
language programming. However, since this book was designed to increase the
novice programmer’s graphics skill, it assumes no prior knowledge of Apple
graphics. The book begins with the bare bones graphic techniques of Applesoft
BASIC and goes on to teach elementary machine language techniques that will
enable the reader to program simple high speed games using the ROM’s built
in graphics routines.

Bit mapping (or raster graphics) and its use in high speed arcade animation
will be covered in great detail. The approach throughout the book is to teach by
example. The techniques required to program the three classic game types, (1)
Space Invaders, (2) Asteroids, and (3) scrolling games like Defender, are ex-
plored. There are sections on paddle control, firing lasers, dropping bombs,
explosions and scoring. Page flipping and scrolling techniques are also discuss-
ed.

The only requirements for this book are an inquisitive mind, perseverance,
and a good assembler. Although prior assembly language programming ex-
perience is not necessary, you won’t be able to write code without an
assembler. The Apple’s mini-assembler is totally inadequate for such a task.

I will attempt to explain the ideas in this book through a combination of text,
drawings, and flow charts. The concepts in this book may seem easy at times,
and somewhat difficult at other times. The Apple with its many idiosyncrasies
is a strange beast to master. My advice is to read the book in stages and try the
examples. Learn how they work.

While my goal for presenting this material was to educate a new generation
of arcade game designers, I dread the proliferation of copy cat games. The
world doesn’t need an eighth Asteroids game, or a tenth PacMan game. They
have been done. I do hope that programmers both young and old will use their
imaginations to create something novel and exciting.

o Fm

JEFFREY STANTON
VENICE, CALIFORNIA
APRIL 16, 1982

PROGRAM LISTINGS AVAILABLE ON DISK

The majority of the code listed in this book is available on diskette to readers
who disdain typing long computer programs. The disk is unprotected. The cost
of this disk is a nominal $15.00 plus $1.50 postage to U.S. residents (foreign
orders please add $5.00 for air mail). California residents add 6% state sales
tax (Los Angeles County residents add 6% % sales tax). Available from The
Book Co., 11223 S. Hindry Avenue, Suite 6, Los Angeles, CA 90045. (See
order card at back of this book.)

A bit-mapping utility program, which was mentioned briefly in Chapter 4, is
available to readers who purchase the above disk for an additional $10.00 plus
tax. It enables the user to design any multi-colored bit-mapped shape on a grid
49 pixels wide by 32 lines deep. The program calculates the subsequent shape
table in hexadecimal for both even and odd starting offsets, plus six additional
shifted tables if that option is selected. Shapes can be displayed in their actual
size and color as well as saved to disk. The program supports a line printer but
it is not required.

The Applesoft and machine language object files provided will run on any
standard Apple II Computer, but the assembly language source code requires
one of three assemblers to interpret them. Big Mac and TED II + assemblers
are available from Call A.P.P.L.E. Additionally, Merlin is available from
Southwestern Data Systems. These binary source files can also be reformated
for use in other assemblers like Lisa 2.5 or Tool Kit by using a text editor such

as Apple Pie.

CHAPTER 1

APPLESOFT HI-RES

The Apple II computer has the ability to display color graphic images on a
video monitor or television screen. It displays these images through a process
known as Memory Mapped Output. Various circuits scan specific areas of
Random Access Memory (RAM) to determine what should be displayed on
the screen. These circuits convert memory information into images containing
pixels or dots that are either turned on or off at particular screen positions.
Each memory location contains a coded series of instructions for a particular
segment of the Hi-Res screen. Thus the hardware maps the image coded in
memory to the video screen.

The Apple II computer has two distinct graphics modes. Lo-Res graphics,
which occupies the memory space reserved for the text page ($400 - $800), has
a resolution of 40 dots horizontally by 48 dots vertically. Each dot is very coarse
(7 X 8) pixels. Any one of sixteen colors can fill each of the 1920 positions on
the screen. Hi-Res graphics, on the other hand, is much more detailed or
dense. The resolution is 280 horizontal dots by 192 vertical dots. This gives
53,760 points on the screen. However, only six different distinct colors are
available in this graphics mode. (There are actually eight colors including two
whites and two blacks.)

Both graphics modes can either be full screen or they can be a mix of
graphics and four lines of text at the bottom of the screen. This format reduces
the Lo-Res screen to 40 lines and the Hi-Res screen to 160 lines.

Each of the graphics modes has two distinct pages or screens. They reside in
specific areas of memory which are hardware set. Each screen can be viewed
separately by setting a series of software switches that are located in Read Only
Memory (ROM). These are not real physical switches but switches that can be
toggled by POKEing values to their ROM reserved memory locations. These
switches tell the video hardware to display either text or graphics, Lo-Res or
Hi-Res, full screen graphics or mixed text and graphics, and either page 1 or
page 2.

When you execute the GR statement in BASIC, the computer turns on the
Lo-Res graphics mode, clears display memory so that the screen is black, and
defaults to four lines of text at the bottom of the screen. The text window can be
eliminated by typing the statement POKE -16302,0, thus giving full screen
Lo-Res graphics. Similarly, the HGR statement turns on page one Hi-Res
graphics, clears Hi-Res memory so that the screen is black, and defaults to the
mixed text and graphics mode. Full screen graphics can be achieved by the
statement, POKE -16302,0. And if you wish to view page 2 of Hi-Res

10

GRAPHICS FULL SCREEN PAGE1 LO-RES

-16304 -16302 -16300 -16298

$C050 $C052 $CO54 3CO056

TEXT MIXED TEXT PAGE2 HI-RES
& GRAPHICS

-16303 -16301 -16299 -16297

$CO51 $CO53 $C055 $C057

memory, the command HGR2 turns it on. The statement POKE - 16301,0
sets full screen graphics for page 2.

The principal disadvantage of using HGR or HGR2 is that executing either
of these commands clears the Hi-Res page selected, regardless of your wishes.
There are times when you have produced a display and want to switch to a full
page of text. If you return from text mode through the above commands, your
display will be erased.

It is possible to enter the Hi-Res graphics mode without erasing the display
screen. If you set the following soft switches which reside in reserved memory
locations -~ 16304 through -16297 ($C050 through $C057), you can display
Hi-Res graphics page 1 without erasing its previous contents.

POKE -16304,0 SETS GRAPHICS MODE
POKE -16297,0 SETS HI-RES MODE
POKE -16300,0 SELECTS HI-RES PAGE 1

Hi-Res page 2 can be displayed with the following commands:

POKE -16304,0 SETS GRAPHICS MODE
POKE -16297,0 SETS HI-RES MODE
POKE -16299,0 SELECTS HI-RES PAGE 2

If you wished only to switch displays from Hi-Res page 1 to Hi-Res page 2,
only the last command is necessary because the first two commands were
previously set.

I should point out that the command “TEXT’’ will normally return you to
page one of the text mode in Applesoft, but may not do so in Integer BASIC. If
page two graphics were previously being displayed, the computer would return
to page 2 of the text mode. Since this isn’t the screen where the commands that
you are typing are being displayed, the keyboard would consequently appear to
be dead. Page one text can be selected with the statement, POKE - 16300,0.

MEMORY CONSIDERATIONS

The two Hi-Res screens reside at memory locations 8192 - 16383
($2000 - $3FFF) for page 1, and at 16384 — 24575 ($4000 — $5FFF) for page 2.
These locations are permanently set. When programming in either BASIC,
some considerations must be made as to where you should put your programs
so that they don’t conflict with the Hi-Res graphics screens.

If we examine an Integer BASIC program memory map below, we see that
the program begins at HIMEM:, which is set by the computer to be just below
DOS. Variables are stored beginning at LOMEM:, which is normally set just
above the text page at location 2048 ($800). Unless you have some huge storage
arrays or a very long program, neither the program nor its variables will cross
the Hi-Res screen memory boundary. For safety’s sake, it is often better to set
LOMEM:16384 ($4000) so that no conflict could arise. This is especially true if
both Hi-Res screens are being used. In that case, set LOMEM:24576 ($6000).

«HIMEM:
PROGRAM LINES LOCATIONS (202,203)
BUILD DOWN
v
y -
VARIABLE STORAGE
BUILDS UP LOCATIONS (204,205)
<] .OMEM:

INTEGER BASIC PROGRAM MEMORY MAP

Applesoft, on the other hand, stores its program just above the text page at
2048 ($800). Program lines build upwards towards the top of memory. As the
program gets longer, LOMEM:, which is the end of the Applesoft program, is
pushed upwards. Simple variables and array variables begin just above
LOMEM:, and string storage beginning at HIMEM:, builds downward.
Thus, setting LOMEM: to a value above the Hi-Res screen would not relocate

the Applesoft program nor prevent a long program from occupying the same
memory space as the Hi-Res screens.

11

12

<-HIMEM:
STRING STORAGE
BUILDS DOWN

ARRAY VARIABLES &
STRING POINTERS

STRING VARIABLES &
STRING POINTERS

< .OMEM:
PROGRAM LINES
PUSH LOMEM: UP

APPLESOFT BASIC PROGRAM MEMORY MAP

The solution is to set the pointers to the beginning of program text to a value
above the Hi-Res screen(s) which you are using. These pointers must be set
prior to loading or running the Applesoft program.

The easiest method for accomplishing this is to write an EXEC file which
will automatically set these pointers and load or run your program in the pro-
per position. The two pointers that must be set are at locations 103 and 104
decimal, lo byte and hi byte respectively. These are the pointers to the begin-
ning of program text. A reset of the pointers and linkage to either firmware
Applesoft ROM or Applesoft in the language card can be assured with a call to
the subroutine at 54514 ($D452). One of the idiosyncrasies of this method re-
quires that a zero byte precede the main program. Therefore the pointers are
set one byte higher than requested, and the zero byte is poked into the first
position. The following short program will create an EXEC file that will put
your Applesoft program in the proper place, free of interference from your
graphics.

10
20
25
26
27
30

45
ER
50
55
60
65
70
80
85
87
90
95

D$ = CHR$ (4): PRINT D$;'"NOMON C,I,0

HOME

PRINT
PRINT
PRINT

"THIS PROGRAM CREATES AN EXEC FILE THAT"
"RELOCATES AN APPLESOFT PROGRAM TO SOME"
"ADDRESS OTHER THA $800 (2048 DECIMAL)"

VTAB 6: INPUT "NAME OF APPLESOFT PROGRAM? ";FILE$: IF FI
LE$ = "" THEN 30
40 PRINT : PRINT "ENTER THE DECIMAL ADDRESS FOR THE START":
INPUT "OF THE PROGRAM:";START
IF START < 2047 THEN PRINT : PRINT "VALUE MUST BE GREAT
THAN 2047": PRINT : GOTO 40

PRINT :

INPUT "NAME OF EXEC FILE: ";EFILE$

S = START + 1:HB = INT (S / 256):LB = S - HB * 256

PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT
PRINT

D$;"OPEN ";EF$: PRINT D$;"DELETE" ;EF$
D$;"OPEN ";EF$: PRINT D$;"WRITE ":EF$
"FP": PRINT "HOME: POKE 50,128"
"POKE103,";LB;"

"POKE104,";HB;"

"POKE " ;START;",0"

"LOAD ";FILE$

"CALL54514": PRINT "POKES50,255"

100 PRINT "RUN": PRINT D$;"CLOSE"
105 END

COLOR & BACKGROUND FILL

There are eight color choices (0-7) on the Hi-Res screen. These are selected
by the HCOLOR statement. Since the screen is arranged in alternating col-
umns of either violet-green or blue-orange colors, depending on whether the hi
bit is set in a screen memory byte, the absence of color produces two different
blacks, and the presence of two adjacent lit pixels produces two different
whites. (See chapter 5 for a more detailed explanation.) Thus, only six distinct
colors are available. These are listed in the following chart.

13

COLOR NUMBER

BLACK
GREEN
VIOLET
WHITE
BLACK
ORANGE
BLUE
WHITE

NOUPWN-=O

Sometimes it is desirable to clear the screen to a background color other than
black. This can be accomplished by calling an Applesoft ROM subroutine
located at decimal 62454. This clears the screen you used last, regardless of
switch settings, to the color most recently HPLOTed. Of course, a call to this
subroutine must be preceded by a HPLOT statement. For example, to clear
the background to green, try the following:

100 HCOLOR =1:HPLOT 0,0 :CALL 62454

PAGE FLIPPING

Using both Hi-Res screens is an effective way of smoothing animation, or
creating an image on one screen while viewing the alternate screen. When a
group of objects or lines are drawn successively to the screen during an anima-
tion frame, the last object drawn is on screen only a fraction of the time that the
first object is on the screen. And if there are many large objects, the continuous
drawing becomes noticeable.

Page flipping is an effective method to reduce flicker between animation
frames. However, one assumes a reasonable animation frame rate of at least 10
frames per second, or the animation appears slow and jerky. The trick to this
method is controlling the screen that is drawn to, regardless of the screen
switch positions. There is a pointer in zero page, decimal location 230 ($E6),
that sets which screen-is plotted to. A POKE 230,32 indicates screen #1, and
POKE 230,64 indicates screen #2.

The following example demonstrates the technique. The program HPLOTs
thirty random line segments on one screen while the other screen is viewed. It
then changes viewing screens to the screen where the image had just been
drawn, and erases the opposite screen before randomly drawing thirty new line
segments. The result is a series of completed line drawings that change from
one image to the next without anyone being aware that they are being drawn
elsewhere.

When screen #1 is viewed by toggling the switch with POKE -16299,0 , the
statement, POKE 230,64 , tells the computer to draw to screen #2. Since $E6
points to screen #2 when the clear screen is called at line 52, it clears screen #2
before plotting our thirty random line segments. When we switch viewing
screens to the completed picture with a POKE -16300,0 ,we reset $E6 to the
opposite screen with a POKE 230,32. Now we are viewing screen #2, and
drawing on screen #1.

5X1 =0:Y1 =0

10 REM CLEAR BOTH SCREENS

20 HOME : HGR : HGR2 : HCOLOR= 3

30 REM NOW LOOKING AT PAGE #2

40 REM SET DRAWING MODE POINTER (E6) TO SCREEN #1
50 POKE 230,32

51 REM LEAR SCREEN #1

52 CALL 62450

60 FOR I =1 TO 35

70 X2 = INT (RND (1) * 280)

80 Y2 = INT (RND (1) * 192)

90 HPLOT X1,Y1 TO X2,Y2

100 X1 = X2:Y1 = Y2

110 NEXT I

120 REM LOOK AT SCREEN #1 FULL SCREEN
125 POKE - 16300,0: POKE - 16302,0
130 REM SET DRAWING MODE POINTER (E6) TO SCREEN #2
135 POKE 230,64

136 REM CLEAR SCREEN #2

137 CALL 62450

145 FOR I =1 TO 35

150 X2 = INT (RND (1) * 280)

160 Y2 = INT (RND (1) * 192)

170 HPLOT X1,Y1 TO X2,Y2

180 X1 = X2:Y1 = Y2

190 NEXT I

200 REM LOOK AT SCREEN #2

210 POKE - 16299,0

230 GOTO 50

15

As you view the different supposedly random screens, you will notice that
the screens appear to repeat every few frames. The repetition, although not
perfect, is due to a faulty random number generator in Applesoft. This pro-
gram graphically illustrates the fault.

A demonstration of the same program without page flipping can be shown.
If you take the previous listing and make the following changes, the images can
be seen as they are drawn.

DELETE LINES 50 & 135
52 HGR2 : POKE-16302,0
125 POKE -16299,0

137 HGR : POKE-16302,0
210 POKE -16300,0

230 GOTO 52

APPLE SHAPE TABLES

The Apple II offers a very powerful feature in Applesoft BASIC called shape
tables. They are essentially figures or shapes that use tiny vectors to quickly
generate their form. They are very flexible in that they can be plotted anywhere
on the Hi-Res screen without destroying the background, and they can be
scaled (expanded) and rotated. These shapes are often used in animation and
game design.

A shape table can consist of up to 255 different shapes. Each shape in the
table is generated by outlining it with tiny unit vectors which are all the same
length, but may take any of four directions (up,down,left,right). The vectors
are placed head to tail until the entire shape is outlined. These vectors can also
be of two types: plot vectors or move-without-plotting vectors. Then, using a
key, these direction vectors are encoded into a string of hexadecimal bytes
which are stored in memory as part of a shape table.

The procedure for creating a shape table isn’t difficult, but it is time-
consuming and quite prone to error if you aren’t careful. The method, due to
the nature of its encoding, has several peculiarities that the programmer should
be aware of. The most important point, one that is rarely explained, is that the
first vector is the position that the shape is drawn when X,Y coordinates are
specified. For example, if you wish to draw a square shape to the screen that is
two vector units per side, you will prefer to have the shape drawn so that it is
centered at the coordinates specified. But if you start your string of vectors at
the upper left corner instead of at the center, the shape’s center will be at the
corner. If the shape is rotated, it will pivot about that point instead of neatly
rotating about the square’s center. The solution to this misconception is to start
at the shape’s center and make a move upwards without plotting to the outline
of the square’s shape.

| S S
|
§
°

A

e

DESIGNING AND FORMING SHAPES

The first step in this procedureis to define your shape or shapes on a piece of
graph paper. Direction vectors are drawn to indicate the sequence of coded in-
structions that will become our shape table. You can start your vectors around
your shape in either a clockwise or counterclockwise direction; it doesn’t mat-
ter. Next, we unwrap these vectors, starting with vector one at the left. This se-
quence forms a graphic list of our plotting vectors. Solid vectors indicate moves
while plotting, and dotted vectors indicate moves without plotting. These vec-

tor codes range in value from 0-7 and are summarized in the table below.

SYMBOL ACTION BINARY | DECIMAL
| CODE | CODE

* | MOVE UP WITHOUT PLOTTING 000 0
~—-> | MOVE RIGHT WITHOUT PLOTTING| 001 1

! | MOVE DOWN WITHOUT PLOTTING| 010 2
4_4' —- | MOVE LEFT WITHOUT PLOTTING | 011 3

T MOVE UP WITH PLOTTING 100 4
—— | MOVE RIGHT WITH PLOTTING 101 5

l MOVE DOWN WITH PLOTTING 110 6
<— | MOVE LEFT WITH PLOTTING 111 7

17

Each shape table byte (8 bits) is divided into three sections. Sections one and
two. are three bits each and contain any plotting vector. But section three,
which contains only two bits, can only hold certain plotting vectors. The three
vectors allowed are down, left and right without plotting. Most of the time this
section remains unused. - This is acceptable, because if section three of the
shape definition byte is zero, Applesoft ignores the section and advances to the
next byte of the shape.

SECTION 3 SECTION 2 | SECTION 1

BIT 7 6 51413 0
M = MOVEMENT BIT M M PIM|M PIM M
P = PLOT /NO PLOT BIT

There is some ambiguity with plotting vectors that are equal to zero. In sec-
tions one or two, a zero specifies that you can ““move up without plotting’’, but
in section three it means ‘‘no movement and no plotting’’. This also means
that you can’t have a ““move up without plotting”’ in the third section or it will
be misinterpreted.

When all three sections are set to zero, Applesoft interprets it as an end of the
shape. This limits the number of ‘“move up without plotting’’ vectors that can
be present in a row. If, for example, sections' one and two both contained
‘“‘move up without plotting”” vectors and the next instruction was a plot, sec-
tion three would be zero also. The value for the byte would be zero, or an end
of shape. You can use the ‘‘move without plotting’’ vector in a byte as long as a
different plotting vector comes after it. So how do you move upwards several
vector units without plotting? By not moving in a straight line. You can move
up one, left one, right one, then up one again. This can be repeated a number
of times.

All these details may have left your head in a spin, but an example will show
that shape tables can be constructed by mere mortals. I should point out that
the final table is in hexadecimal, and that once the binary coded plotting vec-
tors for each segment are arranged in groups of two or three within a byte, it
becomes easier to divide that byte into two nibbles (4 bits each) for easier
encoding.

START

SHAPE #1

SHAPE #2

DRAWINGS OF BOTH SHAPES

SHAPE #1 00
00
00

00
00
00
SHAPE #2 00
00
00
00

ASSEMBLING A SHAPE TABLE DIRECTORY

Shape tables are preceded by a shape table directory which contains infor-
mation concerning the number of shapes in the table, and pointers to the
beginning of each shape. The first byte contains the number of shapes (0-255),
the second byte is unused, and the remaining pairs of bytes contain the offsets
to each shape in the table. The actual number of pairs depends on the number

101
111
000

101
101
111
111
111
101
000

of shapes in the table’s first byte.

Although space may be defined for a certain number of shapes when the
directory is constructed, there is no rule that says all these shapes need be in the
table. Most programmers leave extra space because it is somewhat difficult to
expand the table later if extra shapes are needed. A summary of the directory is

shown below.

100
110
000

100
110
110
110
100
100
000

0010
0011
0000

0010
0010
0011
0011
0011
0010
0000

1100

1110 =

0000

1100
1110
1110
1110
1100
1100
0000

e e R e

2C
3E
00

2C
2E
3E
3E
3C
2C
00

19

20

DISPLACEMENT

0 NUMBER OF SHAPES
IN TABLE ($0 -FF)
1 UNUSED
2 OFFSET TO SHAPE 1
LO ORDER BYTE
3 OFFSET TO SHAPE 1
HI ORDER BYTE
2N+2 OFFSET TO SHAPE N
LO ORDER BYTE
2N+3 OFFSET TO SHAPE N
HI ORDER BYTE
2N+4 PLOTTINé VECTORS

SHAPE 1

PLOTTING VECTORS
SHAPE N

LENGTH DEPENDS
ON NUMBER OF
SHAPES IN TABLE
(2 BYTES/SHAPE)

If we construct a directory for our previous two shape examiples, it takes the
following form.

BYTE
0 02 NUMBER OF SHAPES
1 00 UNUSED
2 06 LO BYTE OF OFFSET TO SHAPE #1
3 00 HI BYTE
4 09 LO BYTE OF OFFSET TO SHAPE #2
5 00 HI BYTE
6 2C
7 3E } SHAPE #1
8 00
9 2C
A 2E
B 3E
C 3E SHAPE #2
D 3C
E 2C
F 00

This procedure is very time-consuming and, if the shape is complex, prone
to error. Fortunately, there are a number of commercial programs that can
perform this chore automatically. Most of these, in addition to the standard
shape creator, incorporate an editor for merging shapes from several different
tables.

Several products that I would recommend are Higher Graphics (Synergistics
Software), The Complete Graphics System (CO-Op Software), and Shape
Builder and Editor (Telephone Transfer Connection). These packages range in
price from $35 to $60.

The shape table creator which I’ve included below lacks an editor for merg-
ing, inserting, or deleting shapes. It is also limited to shapes with a maximum
size of 25 X 15 pixels. This is inherent in the design, which allows you to define
shapes precisely on an oversized grid.

The program is menu-driven and somewhat user-proofed to prevent ‘‘bom-
bing’’ the program in the midst of a hundred-shape-long table, which the user
in this case, might have neglected saving periodically to the disk. Once a shape
table is initialized, shapes are created one at a time with the command,
(C)reate. A starting point is chosen for the shape’s center. These values have
no relationship to the coordinates where the shape is plotted later, but is the
center of the shape and the point about which the shape is rotated with the
ROT command. Your shape doesn’t have to start there, but can be offset from
it or completely surround it.

21

22

The current cursor position can be moved by the 1,],K,M keys. If you want
to plot a point, press the P key after a move. If you make a mistake, the E key
will erase the last plotted point; however,this must be done before the cursor is
moved again. Sorry, but it doesn’t step back through your keystrokes. When
you are finished with the shape, you simply (Q)uit.

When you are returned to the main menu, you have a choice of (V)iewing
the shape or (A)dding the shape to the table. Look at the shape first, because if
it is incorrect, you can try again with the (C)reate command rather than add it
to the table. You can also save the table or load a new table at any time.

This Applesoft program must be relocated above Hi-Res screen page 1. Use
the program discussed earlier to create an EXEC file which will reset the
pointers. Set the loading address at 16385 decimal. The Shape Creator stores
its shape tables at $800, or 2048 decimal. If you choose to put your tables
elsewhere, you must give the program a specific starting location address (e.g.,
LOAD SHAPE, A$7000).

Some of the readers who attempt to decipher my code will notice that I stored
a value in the second position of the shape table directory. This location is nor-
mally unused. I chose to use the location to keep track of the number of shapes
currently in the table. The first location contains the maximum number of
shapes that the table can hold. This notation is entirely compatible with
Applesoft.

1 D$ = CHR$ (4):B$ = CHR$ (7)

3 AFLAG = 1:N =0

5> POKE 232,0: POKE 233,3

14 FORI =0 TO 9

16 READ A: POKE 768 + I,A: NEXT I
18 DATA 1,0,4,0,62,36,45,54,4,0
20 TEXT : HOME

24 HTAB 13: PRINT "COMM A N D S": PRINT

26 HTAB 9: PRINT "(I)NITILIZE SHAPE TABLE": PRINT

27 HTAB 9: PRINT "(C)REATE NEW SHAPE": PRINT

28 HTAB 9: PRINT "(A)DD SHAPE TO TABLE": PRINT

29 HTAB 9: PRINT "(V)IEW SHAPES": PRINT

30 HTAB 9: PRINT "(L)OAD SHAPE TABLE": PRINT

31 HTAB 9: PRINT "(S)AVE SHAPE TABLE": PRINT

32 HTAB 9: PRINT "(Q)UIT": PRINT

33 PRINT " ": POKE 34,1
7: HOME

34 REM MENU COMMANDS

39 VTAB 19: HTAB 4: PRINT "COMMAND? ";: GET Q$:PK = PEEK (
- 16384): POKE - 16368,0

41 IF PK = 73 THEN 50

42
43
44
45
46
47
48
49
50
52
54
56
58
59
60
64
65
67
70
76
78
99
100

101 ADDR = 2048 + PEEK (2050 + 2 * N) + 256 * PEEK (2051 +

IF PK = 67 THEN 100
IF PK = 65 THEN 500
IF PK = 86 THEN 600
IF PK = 76 THEN 65
IF PK = 83 THEN 700
IF PK = 81 THEN 2000
GOTO 39

REM INITILIZE TABLE

HOME : PRINT : INPUT " NO. OF SHAPES IN TABLE? ";MAX
POKE 2048, MAX

FOR I = 1 TO 2 * MAX + 1: POKE 2048 + I,0: NEXT I
ADDR = 2050 + PEEK (2048) * 2
M = 2 + MAX * 2: POKE 2050,M — 256 * INT (M / 256)
POKE 2051, INT (M / 256)

HOME : GOTO 39

REM LOAD SHAPE TABLE

HOME : PRINT : INPUT " SHAPE TABLE NAME ? ";NAME$
PRINT D$;"BLOAD";NAME$;",A$800"
N = PEEK (2049):MAX = PEEK (2048)

HOME : IF MAX > N THEN 39

PRINT "SHAPE TABLE FULL!": GOTO 2000

REM CREATE NEW SHAPE

IF N = MAX THEN 450

2 % N)

102
103
104
106
108
110
112
114
115
116
117
118
120
122
124
41

126
128
130
132

IF N = O THEN ADDR = 2050 + MAX * 2

IF AFLAG = 1 THEN N =N + 1

POKE 2049,N

HGR : HCOLOR= 3: SCALE= 1: ROT= O:CYCLE = O

FOR X = 0 TC 250 STEP 10: HPLOT X,0 TO X,150: NEXT X

FOR Y = O TO 150 STEP 10: HPLOT O,Y TO 250,Y: NEXT Y

HOME : VTAB 22

INPUT "ENTER STARTING COORDINATES X,Y? ";X,Y

IF X < 1 OR X > 25 THEN 112

IF Y <1ORY > 15 THEN 112
X=10%X-5:Y=10%Y -5

DRAW 1 AT X,Y:XS = X:YS =Y

HOME : VTAB 22: PRINT "MOVE PLOT CURSOR WITH KEYS"

PRINT "J -LEFT, K -RIGHT , I -UP, M - DOWN"

PRINT "P -PLOT ,E -ERASE LAST PLT , Q -QUIT": POKE 36,

KY$ = "":KSVE$ = "": GOTO 145
IF FLAG = 1 THEN 132

XDRAW 1 AT X1,Y1
X1 = X:Y1 = Y:FLAG = O

23

135 XDRAW 1 AT X,Y

140 KI$ = KSVE$:KSVE$ = KY$

145 GET KY$

150 IF KY$ < > "I" THEN 160

I55 SYMBOL = 0:Y = Y - 10: IFY = > Q THEN 225
157 Y = Y + 10: CALL - 1052: GOTO 145

160 1IF KY$ < > "K" THEN 170

165 SYMBOL = 1:X = X + 10: IF X < = 250 THEN 225
167 X = X - 10: CALL - 1052: GOTO 145

170 IF KY$ < > "M" THEN 180

175 SYMBOL = 2:Y = Y + 10: IF Y < = 150 THEN 225
177 Y =Y - 10: CALL - 1052: GOTO 145

180 IF KY$ < > "J" THEN 190

185 SYMBOL = 3:X = X - 10: IF Y = > 0 THEN 225
187 X = X + 10: CALL - 1052: GOTO 145

190 IF KY$ < > "P" THEN 200

195 FLAG = 1: GOSUB 300: GOTO 135

200 IF KY$ = "Q" THEN 400

205 TIF KY$ < > "E" THEN 145

210 HCOLOR= 0:FLAG = 0: GOSUB 300

220 KSVE$ = KI$: HCOLOR= 3: GOTO 130

225 IF KSVE$ = "P" THEN SYMBOL = SYMBOL + 4

230 CYCLE = CYCLE + 1

235 IF CYCLE < > 1 THEN 245

240 BYTE = SYMBOL: GOTO 128

245 IF CYCLE < > 2 THEN 270

250 BYTE = BYTE + 8 * SYMBOL

255 1IF BYTE > 7 THEN 128

260 BYTE = BYTE + 8: POKE ADDR,BYTE:ADDR = ADDR + 1
265 BYTE = 24:CYCLE = 2: GOTO 128

270 IF SYMBOL > 3 THEN 280

275 BYTE = BYTE + 64 * SYMBOL

280 POKE ADDR,BYTE:ADDR = ADDR + 1

285 IF SYMBOL = O OR SYMBOL > 3 THEN 295

290 CYCLE = 0: GOTO 128

295 CYCLE = 1:BYTE = SYMBOL: GOTO 128

300 FOR Y2 =Y - 3 TO Y + 3 STEP 6: HPLOT X -1,Y2TO X +1
,Y2: NEXT Y2

305 FOR Y2 =Y - 2TOY + 2 STEP 4: HPLOT X - 2,Y2 TO X + 2
,Y2: NEXT Y2

310 FOR Y2 =Y -1 TO Y + 1: HPLOT X - 3,Y2 TO X + 3,Y2: NE
XT Y2

315 IF X = XS AND Y = YS THEN RETURN

320 XDRAW 1 AT X,Y: RETURN

400 IF KSVE$ < > "P" THEN 430

405 IF CYCLE < > 2 THEN 415

410 POKE ADDR,BYTE:ADDR = ADDR + 1

415 1IF CYCLE < > 1 THEN 425

420 BYTE = BYTE + 32: GOTO 430

425 BYTE = 4

430 POKE ADDR,BYTE:ADDR = ADDR + 1

435 POKE ADDR,O:ADDR = ADDR + 1

440 POKE - 16303,0: HOME : VTAB 22: PRINT " (A)DD SHAPE TO
TABLE IF CORRECT":AFLAG = 0: GOTO 39

450 HOM : VTAB 22: PRINT " SHAPE TABLE FULL!!!": GOTO 39
499 REM ADD SHAPE TO TABLE

500 HOME : IF AFLAG = 1 THEN 540

502 OFF = ADDR - 2048:AFLAG =1

505 IF N < > MAX THEN 515

510 HOME : VTAB 22: PRINT "TABLE FULL WITH THIS SHAPE!!!"
515 1IF N > MAX THEN 550

520 POKE 2050 + 2 * N,OFF - 256 * INT (OFF / 256)

525 POKE 2050 + 2 * N + 1, INT (OFF / 256)

530 GOTO 39
540 VTAB 22: PRINT "NO SHAPE TO ADD!": GOTO 39
550 VTAB 22: PRINT "TABLE FULL CAN'T ADD SHAPE!!!": GOTO 39

599 REM VIEW SHAPES

600 HOME : VTAB 20: INPUT "VIEW LAST SHAPE Y/N? ";Q$
605 IF Q$ = "Y" THEN 627

610 VTAB 20: INPUT "WHICH SHAPE NUMBER TO VIEW? ";:K
615 IF K = < N THEN 625

620 PRINT "SHAPE #";K;" DOESN'T EXIST!": GOTO 39

625 M = K: GOTO 630

627 M = N

630 HGR : POKE 233,8: SCALE= 1: DRAW M AT 50,75

635 SCALE= 3: DRAW M AT 165,75

638 VTAB 21: PRINT " SCALE=1 SCALE=3 SHAPE# "M

640 SCALE= 1: POKE 233,3: VTAB 23: PRINT " PRESS ANY
KEY!": POKE 36,41

645 GET Q$: POKE - 16368,0: POKE - 16303,0

650 HOME : VTAB 22: IF AFLAG = O THEN PRINT " (A)DD SHAPE
TO TABLE IF CORRECT"

655 GOTO 39

699 REM SAVE

700 HOME : PRINT : INPUT "SHAPE TABLE NAME? ";NAME$

705 PRINT D$;"BSAVE";NAME$;",A2048,L" ; ADDR

710 HOME : GOTO 39

2000 TEXT : END

25

26

SIMPLE GRAPHIC ANIMATION USING APPLE SHAPE TABLES

Apple shape tables can be incorporated very easily into games to produce
animation. The principle is elementary. A shape is drawn to the screen in one
position, then erased before moving it to the next position. If the move is in
small increments, and if the animation frame rate is fast enough, the object will
appear to have fluid motion. This is exactly how cartoons are animated.

Applesoft has a number of commands which work with shape tables. Any
shape in a table can be drawn to the screen with the command, DRAW N AT
X,Y , where N is the shape number in the table, and X and Y are the screen
coordinates to plot the shape. The DRAW command plots —over the
background, thus erasing whatever was there previously. There is an alternate
command: XDRAW, which exclusive-or’s the screen where the shape is plot-
ted. This means if the background is black, the pixels are lit (white) when the
shape is XDRAWn to the screen, and they revert back to black when
XDRAWn again. But if the background is white and a white shape is
XDRAWn to the screen, the pixels are reversed, so that the shape becomes
black. Similar complementary effects occur if the background color is green,
blue, orange or violet.

Shapes can be rotated with the ROT command or scaled with the SCALE
command. Values can range from 0-255. Values for both SCALE and ROT
must be set to some value before drawing a shape for the first time.

When a shape is drawn at a scale larger than one (SCALE =0 is equivalent
to 256) , the computer will draw more than one point for each unit vector. If
the scale is four, four points will be drawn for each single plotting vector.

Although rotation angles can range from 0-63, the actual number of rotation
angles depends on the shape’s scale. When the scale is set to 1, rotations can
only occur in 90 degree increments (0 =0 degrees, 16 =90 degrees, 32 =180
degrees, and 48 =270 degrees). Shape rotations at SCALE =2 can be in-
cremented by 45 degrees, and by specifying SCALE 5 or greater, all 64 rota-
tional angles are possible.

62
10

48 16

32

ROTATION ANGLES

When a shape is plotted to the screen, Applesoft needs to know the location
of the stored shape table. Locations 232 and 233 decimal contain the starting
address of the table, lo byte first. Thus, if the table were stored in memory at
$300 or 768 decimal, Applesoft would be informed with POKE 232,0 : POKE
233,3 (00 being the lo order byte and 03 being the hi order byte).

It is important to find a safe spot in memory for your table, a place where it
won’t be overwritten by either the Applesoft program or its variable storage
space. Short shape tables can be placed in page three of memory (locations
$300 - $3CF) as long as you aren’t using those locations for any other
machine language routine, such as sound. An alternate location would be
above the string storage space at HIMEM:. This involves resetting the
pointers to a lower value. Addresses 115 and 116 ($73 and $74) contain the
latest HIMEM: values, stored as lo byte first. The new address can be com-
puted by the following statements.

PRINT PEEK(116) %256 +PEEK(115) -X
where X is the length of the shape table.

HI = INT (HIMEM/256)

LO = HIMEM - 256 % HI

Then use the statements POKE 116,HI : POKE 115,LO to reset HIMEM:.
The shape table is then BLOADed at this address and locations 232 and 233
are set to point to the table.

Sometimes it is best to illustrate a concept with an example. Many animated
shapes like gun crosshairs are moved around the screen by paddle or joystick
control. We can take shape #2, which is shaped like a cross, from our previous
shape table example, and XDRAW it to the screen at a position determined by
the settings of the two paddles. Remember that if you XDRAW a shape to the
screen the first time, the shape appears. But if you XDRAW a shape that is on
the screen, it will disappear.

The paddles in this example do more than just position the crosshair. If but-
ton #0 is depressed, the paddle setting changes the SCALE, and if paddle #1 is
depressed, that paddle setting varies the ROT (rotation). Thus, you are able to
observe the various effects that occur when varying the drawing parameters.
Wrap-a-round is the most observable effect. This occurs when part of a shape
crosses the screen’s borders. This feature, which is performed automatically,
can be either a help or a hindrance depending on the desired effect. There are
times when you would like your shape to exit cleanly off one side of the screen
without appearing at the opposite side. In those cases, you will have to test the
screen coordinates so that wrap-a-round doesn’t occur. Others who have, for
example, a freely-floating spaceship, will be pleased by the convenience.

For convenience sake, I poked the shape table into memory at location 768

27

28

($300) with a FOR-NEXT loop that reads the values in a DATA statement.
The hexadecimal shape table values have been converted to decimal values for
the data. The alternate method is to enter the monitor and put the values into
memory directly at $300, then BSAVE the table (BSAVE SHAPE,
A$300,L.$10 or BSAVE SHAPE, A768,L16).

Several of the paddle-controlled variables are scaled in the program. Paddle
values range from 0 - 255. To obtain X coordinate values, which range from
0-279, the paddle values are multiplied by 1.09, and Y values are divided by
1.6 to keep them within the screen boundaries of 0-191. The SCALE was also
trimmed to values 0 to 32 by dividing by 8. I think you will find the code and
the accompanying flow chart clear.

no no
SWITCH #0 PRESSED? > SWITCH #1 PRESSED? >

yes yes

SCALE = PDL(0)/8 + 1 > ROT = PDL(1) / 4

yes yes
| SWITCH #0 PRESSED? SWITCH #1 PRESSED?
no no
<
X = INT(PDL(0)*1.09)
Y = INT(PDL(1) / 1.6)

XDRAW2 AT X,Y

DELAY

XDRAW2 AT X,Y

1 POKE 232,0: POKE 233,3

5 FORI =0 TO 15: READ V: POKE 768 + I,V: NEXT I
10 HGR : POKE - 16302,0: HCOLOR= 3

15 SCALE= 4: ROT= O

20 BUT = PEEK (- 16287): IF BUT < 128 THEN 60
30 SALE= INT (PDL (O) / 8 + 1)

32 XDRAW 2 AT X,Y

34 FOR DE = 1 TO 50: NEXT DE

36 XDRAW 2 AT X,Y

40 BUT = PEEK (- 16287): IF BUT > 127 THEN 30
50 GOTO 90

60 BUT = PEEK (- 16286): IF BUT < 128 THEN 90
70 ROT= 1INT (PDL (1) / 4)

72 XDRAW 2 AT X,Y

74 FOR DE = 1 TO 50: NEXT DE

76 XDRAW 2 AT X,Y

80 BUT = PEEK (- 16286): IF BUT > 127 THEN 70
90 X = INT (PDL (0) * 1.09)

100 Y = INT (PDL (1) / 1.60)

110 XDRAW 2 AT X,Y

120 FOR DE = 1 TO 50: NEXT DE

130 XDRAW 2 AT X,Y

140 GOTO 20

200 DATA 2,0,6,0,9,0,44,62,0,44,46,62,62,60,44,0

Drawing shapes to the screen with XDRAW commands isn’t the only
method of drawing if erasing background is not a concern. The DRAW com-
mand works just as well for putting an object on the screen. The XDRAW
command is still used for erasing the object. However, the DRAW command
doesn’t work properly at certain combined rotation angles and scale factors.
This can be demonstrated in the last program by changing the XDRAWs in
lines 32, 72 and 110 to DRAW commands. Now if the program is run, pixels
from the shape sometimes aren’t erased at some rotation angles with large scale
factors. Thus, it is safer to always use the XDRAW command.

29

30

CHARACTER GENERATORS

Character generators are designed to assist the programmer in placing text
on the Hi-Res screen. Their ability to mirror the print functions on the text
screen makes them extremely easy to use from BASIC programs. Once the
character generator is engaged (usually by a CALL to its starting address) any
print statements within the BASIC program are printed on the Hi-Res screen
instead of the text page. The HTAB and VTAB functions are fully supported,
so that Hi-Res text can be accurately positioned.

Since the character set is in memory rather than in a ROM chip on the
keyboard, character sets can be changed at will. An Old English or Gothic
character set could easily be substituted for the standard ASCII character set
used in the ROM.

This versatility in character set design has led to users creating character sets
consisting of playing cards, alien monsters for games, or electrical symbols
used in schematics. While each character is only 7 X 8 pixels, groups of
characters can be arranged in a block to form larger shapes. A playing card
could easily consist of nine different characters, forming a three by three block.
If the Q WE A S D Z X C letters were used to define the queen of hearts,

printing them to the screen in the following form would produce the playing
card:

QWE
ASD
ZXC

With 96 different characters available in one character set, you could easily
represent the 13 card values, if two of the diagonal character elements defined
the suit. '

Many programmers have taken advantage of the high speed drawing ability
of these machine language character generators to do animated graphics. Since
sequences of characters representing shapes can be rapidly ‘‘printed’’ on the
Hi-Res screen, each animated frame consists of characters ‘‘printed’’ at a new
position.

Animating with character generators is relatively easy; however, it does have
several disadvantages. First, the speed advantage gained by the machine
language routine is badly offset by interfacing it with Applesoft. BASIC pro-
grams need to be compiled into machine code in order to produce marginal
frame rates. Second, animation appears to be Jerky due to the nature of the
character position boundaries. There are only 40 horizontal positions and 24
vertical positions for placing a character on the Hi-Res screen. Since characters
can’t be drawn in-between positions, they tend to Jjump 8 pixel positions ver-
tically and 7 pixel positions horizontally. Lastly, as a rule, character generator
animation lacks color. Most limit color because of the peculiarities of the Hi-
Res screen. If, for example, a green character were ‘‘printed’’ in column one,
it would appear violet in column two. This would require two character sets to

compensate for this annoying effect between even and odd columns. It is easier
to buffer the color to white.

The need to design new character sets has spawned a number of commercial
character set editors and character set generators. One versatile package is in-
cluded in the DOS TOOL KIT that is available from Apple Computer Incor-
porated. It has a program called ‘‘Animatrix’’ that enables you to construct
shapes consisting of a number of user-defined characters. The illustration
below shows a shape drawn on the enlarged grid, while the display in the upper
right shows which characters these represent. When the character set is attach-
ed to their character generator (also in this package), animated drawings or
games can be produced. They include an example of an animated game in
which a joystick-controlled frog leaps in the air to catch passing butterflies.

o liilliillimi =

...
...
IS UBUUIG U UnY

.........................

ANIMATRIX DRAWING

Other available character generators are HIGHER TEXT from Synergistics
Software and SCREEN MACHINE from Softape. Neither is suited for large
character animation, but HIGHER TEXT can produce very nice color text
displays.

31

HOW CHARACTER GENERATORS WORK

Character generators incorporate high speed machine language routines that
calculate the character’s position, then draws it on the screen one byte at a
time. Characters consist of eight bytes in memory, where each byte represents
the on/off positions of seven adjacent pixels. Each character is 7 pixels wide by
8 pixels deep. There are 96 characters in a set, each eight bytes in length, for a
total of 768 bytes of memory.

The program has an index to the character set. Each character fits in a par-
ticular position within the set depending on its ASCII assigned value. The
character numeric values range from decimal 160 to 255, includirg both upper
and lower case characters. When the character generator begins processing the
PRINT statement within the BASIC program, it reads a character, determines
its ASCII value, then indexes to the proper eight bytes in its table to obtain the
character shape bytes to be drawn to the screen. For example, the program
says to print an H, which is interpreted as the ASCII character 200. That
character is 40 characters past the tables first character value. Therefore, the H
shape begins 40 X 8 bytes into the character set storage table. Now those eight
bytes which will be plotted on the screen don’t have to represent an H. They
may have been redefined with a character editor to be a section of a much
larger shape.

$800 {00 [00 000000 [00 00 [00] ASCII 160 (blank)

$900 [1C[22]2a[3a]1a]02][3C]00] ASCIT 192 (@)

$908 [08]8C[14]92[38] 22[22] 00| ASCIT 193 (A)

. .

$910 [1EJ22[22[1E[22] 22[1IE] 00] ASCIT 194 (B)

Char A = 2048 + (193-160)%*8 = 2312 ($908)

Most character generators use control characters to set various modes. The
Apple II lacks a true lower/upper case shift key; control characters are used for
this function. Sometimes, control characters are used to put the user in ‘‘Block
Mode’’. This saves inserting numerous VTABs and HTABs when printing a
multi-character shape such as playing cards. Other control characters are often
used to clear to the end of a line or even an entire page. This facilitates erasing
the old characters before drawing new ones on the screen.

Screen animation is obtained by drawing the characters at one position, then
moving them to the next position. Unlike Apple shape tables, you don’t need
to XDRAW to erase characters. Instead, leading or trailing blanks are added
to help erase characters from the old string that may not be erased when draw-
ing the new string. It is equivalent to using a DRAW command, with spaces
inserted on either side of the shape. The other alternative is to erase the
character shape entirely using blanks. This method is more likely to increase
screen flicker since an extra step is involved.

The TOOL KIT character generator has one feature not found in other
packages. It has the ability to preserve background while drawing characters.
A good example of this is the demo game, RIB sk BIT. The character generator
stores the background picture on Hi-Res page two, and ORs the characters
against it while drawing on Hi-Res page one. This technique also facilitates
erasing the characters in their previous position. One is relieved of the task of
printing blanks to the Hi-Res screen before repositioning the character shape.

In summation, although a character generator is capable of animating sim-
ple games from BASIC for beginners, it doesn’t offer the speed, flexibility,
color, and smoothness that is required for quality arcade games. Although

character generators have their place, there are better methods presented later
in this book.

33

CHAPTER 2

LO-RES GRAPHICS

The words, machine language and/or assembly language, evoke visions of
indecipherable code to the novice BASIC language programmer. The code
looks unfamiliar. But so was BASIC when it was first learned. While BASIC
has its roots in the English Language and algebraic expressions, assembly
language appears to consist of unfamiliar op codes or mnemonics that are used
in conjunction with an unfamiliar base 16 number system called hexadecimal.

It is my intent in this chapter to teach you the fundamentals of assembly
language programming by comparing it to similar code written in BASIC.
Rather than try to teach all aspects of the language, I'll concentrate only on the
operations needed to do simple Lo-Res plotting and, later, additional opera-
tions to enable you to write a Lo-Res Breakout game.

A good assembler is needed to write assembly language programs. Although
owners of Apple II Integer BASIC machines have mini-assemblers built-in,
they don’t offer the flexibility needed to write anything other than short pro-
grams. A good assembler allows you to enter assembly language code by line
number and later edit, insert or delete particular lines. Since any line of code
can have a label in its first field, the assembler will automatically calculate the
branches or ““GOTOs’’ to lines referenced with these labels. Also, if you wish
to store a value in a variable called ““ZAP’’, the assembler which assigns a
memory storage location for the variable, and will automatically furnish the
correct memory address for any subsequent store or load operations using that
variable.

Readers who already own assemblers may use the one they have. For those
of you who are new programmers, I would recommend one of two types of
assemblers. One type of assembler evolved out of the Apple Computer
organization and the Apple Puget Sound Programming Library
(CALL - A.P.P.L.E.). These are mostly co-resident assemblers, wherein both
the assembler and text editor reside in memory simultaneously. They are
marketed under names like TED II + , BIG MAC , MERLIN, and TOOL
KIT. Only the TOOL KIT is the exception. It is disk-based and loads either
the assembler or text editor to memory. Its prime advantage lies in writing
larger programs; however, its disadvantage is that it is time-consuming to shift
files back and forth to the disk when testing short programs. I chose and used
BIG MAC for writing the programs for this book. The other popular assembler
that I would recommend is the LISA series by Randall Hyde. It is a co-resident
assembler with a mediocre text editor and fast assembler, but its mnemonics
are not completely compatible with the other assemblers. It also complements
Randy’s ““Using 6502 Assembly Language”’ book, which I would recommend

35

36

reading for a more comprehensive introduction to assembly language program-
ming. However, it does not cover graphics.

BASIC ASSEMBLY LANGUAGE

The Apple II contains a central processing unit (CPU), a 6502
microprocessor. It accepts instructions to perform various operations, like tak-
ing a value and storing it somewhere in memory, adding a number to another
number located in one of its internal registers, or comparing two values. What
makes programming in assembly language rather difficult (or at least tedious)
is that it can only execute one tiny instruction at a time, and only perform its
operations in three internal registers. These three addressable registers are
known as the X register, Y register and Accumulator. Each can hold eight
binary digits called bits, which are individually valued at 0 or 1. The eight bits,
collectively called a byte, have values ranging from 0 to 255 decimal or ($00 to
$FF in hexadecimal notation).

Essentially, the computer, which is an eight bit microprocessor, can
manipulate data whose values range from all eight bits off (00000000) to all
eight bits on (11111111). The average person has great difficulty in thinking of
values represented by 0’s and 1’s. Fortunately, someone invented a number
system called hexadecimal, which is base 16 instead of binary or base 2.

Since 16is 2 x 2 x 2 x 2, we can divide our eight bits into two four bit groups.
If you determine each of the decimal equivalents of all the combinations of base
two representations, you obtain the following table. These values range from 0
to 15 decimal. In the hexadecimal numbering system, values above 9 are
represented by the letters A - F. In order to prevent confusion between decimal
and hexadecimal numbers, hexadecimal numbers are preceded by a “‘$”’.

BINARY DECIMAL HEXADECIMAL
0000 0 $0
0001 1 $1
0010 2 $2
0011 3 $3
0100 4 $4
0101 5 $5
0110 6 $6
0111 7 $7
1000 8 $8
1001 9 $9
1010 10 $A
1011 11 $B
1100 12 $C
1101 13 $D
1110 14 $E
1111 15 $F

Hexadecimal numbers are very much like decimal numbers. They can be
added and subtracted in like manner. The only difference is that instead of
having units, tens and hundreds, etc, the hexadecimal numbers have units,
sixteens and 256’s, and so forth. Each successive digit is 16 times the position to
the right instead of ten times as in our decimal system.

DECIMAL HEXADECIMAL

1 6 5 $1 3 A
1 HUNDRED 1- 256

6 TENS 3 SIXTEENS
5 ONES A - ONES

1 x (100) = 100 1 x (256) = 256
+ 6x (10) = 60 + 3 x (16) = 48
+ 5x(1)= 5 + Ax (1) = 10

165 DECIMAL $ 13A = 314 DECIMAL

Hexadecimal numbers are used to address the Apple II’s 48000 + memory
locations. Each group of 256 bytes ($00 - $FF) is called a page, starting with
page zero. In 48K Apples, memory is directly addressable from locations $0000
to $BFFF (0 - 49050). Locations above $BFFF are also addressable, but these
locations don’t contain RAM. These locations, from $C000 — $FFFF, either
address physical connections like the speaker and game switches at locations
$C000 - $CFFF, or address the ROM (Read Only Memory) beginning at
$D000 and extending to $FFFF. The latter area contains machine language
monitor routines and either Integer or Applesoft BASIC, depending on
whether you have an Apple II or Apple II Plus.

37

38

MEMORY MAP

$CO00 - $FFFF HARDWARE & ROM
192
191
$9600 ~ $BFFF DOS
150
149
$6000 - $95FF FREE RAM
96
95
HI-RES PAGE #2
$4000 - $5FFF OR
FREE RAM
64
63
$2000 - $3FFF HI-RES PAGE #1
OR
FREE RAM
32
31
$CO0 - $1FFF FREE RAM
12
11
$800 - $BFF FREE MEMORY OR
PAGE #2 TEXT & LO RES
8
7
$400 - $7FF PAGE #1 TEXT & LO RES
4
3 $300 - $3FF MONITOR VECTOR LOCATIONS
2 $200 - $2FF GETLN INPUT BUFFER
1 $100 - $1FF SYSTEM STACK
0 $00 - $FF ZERO PAGE - SYSTEM VARIABLES
PAGE HEX RANGE USEAGE

The lowest eight pages of memory, locations $0000 to $07FF, are very im-
portant; programs should not be stored there. The upper four pages of this sec-
tion of memory, $0400 to $07FF, are the memory locations of the text screen
page. Storing values in these locations directly affects the text display. Page
two, $200 to $2FF, is the keyboard buffer. Inputting data from the keyboard
tends to wipe out stored data here. Page one, $100 to $1FF, is called the stack.
It is used by a special purpose register in the 6502 microprocessor for keeping
track of return addresses when calling subroutines. This scratch area for the
Stack Pointer is sometimes used for temporary register storage. Page zero, $00
to $FF, is a very special area. There are a number of zero page addressing in-
structions. These instructions are two bytes long instead of the usual three,
because they address a memory location from $00 to $FF instead of $0000 to
$BFFF. The latter takes an extra byte to address the larger addresses. Also,
these instructions execute faster. Page zero is used extensively for variable
storage by the monitor, BASIC interpreters, and DOS. Only some of these
memory locations are free for your use. You should consult the chart in the Ap-
ple Reference manual for usable locations.

When a microprocessor processes a machine language program, it keeps
track of which instruction it is executing with an internal 16 bit register called
the program counter. The program counter contains the current address of the
instruction that is being processed. When the computer finishes with an in-
struction, it sets a flag or condition in a seven bit, Program Status Word, which
is a register. For example, if you want to test if a value in the Accumulator is
equal to zero, you can compare the Accumulator to zero. If true, the zero flag
will be set and the instruction Branch Equal to Zero (BEQ) will be executed.
Other flags that can be set are the carry flag, overflow flag, and the negative
flag. A diagram of the Program Status Word is shown below.

7 6 5 4 3 2 1 0
N A% B D I zZ C
SIGN OVERFLOW BREAK DECIMAL INTERRUPT ZERO CARRY

PROGRAM STATUS WORD

The 6502 microprocessor accepts only machine language instructions. These
are called op-codes. When the computer encounters a $4C, it performs a
equivalent to a GOTO in BASIC. The machine language instruction $4C 00
08 tells the computer to jump to memory location $800. (Remember, addresses
require two bytes with the low order byte containing $00 and the high order
byte, $08 — in effect, the reverse order of the actual values. Unfortunately,

39

40

machine language is difficult to remember, so programmers invented a
substitute called Assembly language, wherein each op-code is assigned a
mnemonic such as JMP, BRK, and LDA. The above example looks like this:
JMP $0800.

If you were to type the following machine code into the monitor, you would
see how the monitor disassembler interprets the code, as in the following exam-

ple:

>CALL-151
*800:A9 05 8D 00 09 CE 00 09 AD 00
09 C9 00 DO F6 60 < CR >

If you enter a 800L from the monitor you will see the following:

0800 A9 05 LDA #8305

0802 8D 00 09 STA $0900
0805 CE 00 09 DEC $0900
0808 AD 00 0S LDA $0900
080B C9 00 CMP #$00

080D DO F6 BNE $0805
080F 60 RTS

The disassembler translates the machine code to easier understood
mnemonics. In the first line of code, LDA is the mnemonic for Load
Accumulator. It is the instruction for the 6502 to load the Accumulator with an
mmmediate value -in this case, $05. The # sign signifies that it is an ‘“im-
mediate’’ instruction; the ($05) is the data portion of the instruction. The STA
in line two is an ‘‘absolute’” instruction. It specifies the address in memory for
storing the byte of data that is in the Accumulator.

The difference between ‘‘immediate’” and ‘‘absolute’’ instructions is an
important point. Let us take the example LDA #$05. In this ‘‘immediate’’
instruction, the computer takes the operand ($05) as a value and places it in the
Accumulator. However, with LDA $05, which is an ‘‘absolute’’ instruction,
the computer takes the operand as an address from which to load data in the
computer. In both cases, we get a value in the Accumulator. You can tell the
modes apart because ‘‘immediate’’ instructions have a # sign before the
operand.

You might wonder, what does this code do? It puts the value of 5 in memory
location $900. Line two stores it there, then the value of that memory location
is decremented by one in line three. It is then reloaded into the Accumulator to
be compared against the value zero. If it is zero it falls through to a return-
from-subroutine and ends; but if it isn’t zero it branches back to memory loca-
tion $805. That location tells the computer to decrement the value in $900 once

again. The code will perform this small loop until the value in $900 becomes
zero. At that time, the test for a zero becomes true and the program returns to
whatever called it. In our case, we called the code from the monitor - thus it
returns to the monitor. If we had called it from within a program, it would have
returned to the appropriate place in the code to continue the program.

Does it work? First, type 900:AA <CR> to place something in that
memory location, then type 800G <CR > from the monitor. The code will
return you back to the monitor when it finishes. Type 900 <CR > and a 00 is
returned. This is the value in memory location $900. If you have an Integer
machine that has STEP and TRACE, you can do a 800S <CR > instead,
followed by a S <CR > each time and watch the code single step. The value in
the Accumulator is the first value displayed. When it finally reaches zero the
program will reach the RTS and finish.

This program has a direct analogy to the following BASIC program:

10X =5

20X =X -1

30 IF X <> 0 THEN 20
40 RETURN

The major differences between the two programs is that in assembly
language there are no line numbers, and you have to take care of every detail.
BASIC automatically assigns the storage locations of all variables and the loca-
tion of each instruction in memory. In assembly language programming, we
have to assign the X variable to memory location $900 and have to calculate
the relative branch or GOTO so that it references the memory location $805.
This is done by branching back $F6 bytes, or -8 bytes, to the proper address.
Yet, many of these details can be greatly simplified if we use an assembler to do
our programming.

The same program using an assembler looks like the following:

LINE LABEL INSTRUCTION COMMENT

FIELD FIELD FIELD
1 ORG $800 ;ASSEMBLE CODE AT $800
2 OBJ $6000
3 X EQU $900 ;X IS STORED AT $900
0800: A9 05 4 LDA #$05
0802: 8D 00 19 5 STA X
0805: CE 00 09 6 LOOP DEC X X=X -1
0808: AD 00 09 7 LbA X
080B: C9 00 8 CMP #3$00
080D: DO F6 9 BNE LOOP
080E: 60 10 RTS

41

42

The assembler generates identical machine code, but many of the tedious
details are simplified. Once X is equated to the memory location in line 3,
references to that variable in lines 5 through 7 are handled automatically. If X
were assigned to a different memory location because our program was
lengthened, you would only have to change line 3. Also, labels are allowed.
They act like line numbers in BASIC. Since the assembler assigns the line of
code labeled LOOP to a particular memory location, it can calculate the cor-
rect relative branch automatically when it encounters line 9 during assembly.
The ORG and OB] in lines one and two are pseudo-opcodes, understood only
by the assembler. These do not generate machine code, but tell the assembler
where the code is to be run and stored, respectively.

Although the ORG can be specified anywhere in memory, the OBJ is
peculiar to older assemblers. The OBJ, or the place in memory where the code
that is built is stored, must not overwrite either the assembler or the text file
containing your source program.

Older assemblers, like TED II +, need to be told where the location is.
Default values are recommended. Newer assemblers like BIG MAC,
MERLIN, and TOOL KIT don’t use OBJ pseudo-opcodes since they default
to those values automatically.

When an assembler builds its code for an ORG different from its OB]J (as in
the above example), the code has addresses and relative branches that will only
execute at the proper ORG runtime address. The assembler, however, saves
the code that is physically stored, beginning at address $6000. It will not ex-
ecute if run at that address, so that you need to load or run it at $800 using a
“,A$800”" after the name of the program.

Now that you have had a taste of assembly language programming and have
seen that it isn’t as bad as you thought, there are a number of fundamental
operations that must be learned. The most important operation is to move
numbers from one memory location to another. This can be accomplished by
loading a value into any one of the three internal 6502 registers, the Ac-
cumulator, X or Y registers, and storing that number somewhere in memory.
A LDA (Load Accumulator) instruction can be carried out in several different
ways depending on its addressing mode. First, we can load the Accumulator
with a real hexadecimal value (LDA #$05). This is called Immediate Mode Ad-
dressing. Sometimes, we need to be able to load the Accumulator with a
variable stored in a memory location (LDA $900). This is called Absolute Ad-
dressing. The only other addressing mode which we will discuss for the time
being is the indexed addressing mode. It takes the form of LDA $900,X or
LDA $900,Y depending on whether the X or Y register is used as an index. If,
for example, the X register contains #$05, then the instruction above loads the
value from location $900 + $5 or $905. This addressing mode is used primarily
for indexing into tables stored at particular memory locations.

Store operations are similar to load operations. You can store a value into an
‘“absolute’” memory location, or you can store indirectly into a memory loca-
tion, offset by the value contained in either the X or Y register.

In summary, the table below shows the various load and store operations.

ACCUMULATOR X REGISTER Y REGISTER

LOAD LDA #$05 LDX #8$05 LDY #$05
LDA $900 LDX $900 LDY $900
LDA $900,X LDX $900,Y
LDA $900,Y LDY $900,X
STORE STA $900 STX $900 STY $900
STA $900,X STY $900,X
STA $900,Y STX $900,Y

Sometimes it is necessary when counting cycles or looping through code to
increment or decrement a value directly - similar to a FOR-NEXT loop in
BASIC. In assembly language, either the X and Y registers or any memory
location can be incremented or decremented. If the X register contained $FE,
then it would contain $FF when incremented. But if it contained $FF, it would
wrap around to become $00. The computer informs you by setting a zero flag
in its Program Status Register.

ACCUMULATOR X -REG Y -REG MEMORY LOCATION

INC BY 1 NOT AVAILABLE INX INY INC $900
DEC BY 1 NOT AVAILABLE DEX DEY DEC $900

Program flow can be altered, as in BASIC, with equivalent instructions that
resemble GOTO, GOSUB, and IF-THEN statements. The JMP instruction is
equivalent to a GOTO statement in that it can go to any location in the
machine to continue executing code. JMP $AD6C instructs the computer to
continue executing code beginning at address $AD6C. The GOSUB statement
is identical to a JSR (Jump Subroutine) in machine language. When the com-
puter executes the instruction JSR $FCAS, it pushes the two-byte memory
address of the instruction onto the stack, so that when it returns from the
subroutine at $FCA8 via an RTS (ReTurn from Subroutine), it will know the
address of where to continue the program. When it returns, it pulls that return
address off the stack and increments it by one, so that it points to the next
executable instruction. The stack is like a dish dispenser. Bytes are pushed on
the stack in order and pulled off in reverse order. New bytes are added to the
top, while the rest of the bytes on the stack are pushed deeper.

The IF-THEN statement is simulated by a number of branch instructions
which test the Program Status Register for which flags are set. Flags are usually
set by compare operations. You can compare a value against the value stored
in either the Accumulator or X and Y Registers. The mnemonics are CMP,
CPX and CPY, respectively. For example,

43

44

LDA $900 ;LOAD ACCUMULATOR WITH VALUE AT $900
CMP #$05 ;COMPARE $5 WITH ACCUMULATOR

Different flags are set depending on the result.

Branch instructions are very similar to a JMP instruction (which is an
unconditional branch), except that only under certain circumstances will it
cause program flow to continue at a different location. For example, if we were
to test for that wrap-a-round case when we incremented the X- register that
contained $FF, we would want to test the Zero F lag with a Branch Equal Zero (
BEQ) instruction, and go to some label if the condition is true.

LDX ~ $900 ;LOAD X REGISTER WITH VALUE IN MEMORY

INX ; INCREMENT X- REGISTER
BEQ SKIP ;TEST IF 0, AND IF TRUE GO TO SKIP
RTS sRETURN TO MAIN PROGRAM

SKIP LDA #$05

This short example loads a value from the memory location into the X
register, then increments it. If wrap-a-round occurs, the test for a zero flag
causes the program to jump to a label called SKIP, and the code does not return
to the program that called it via the RTS. There are numerous tests on each of
the flags in the Program Status Register. A summary is shown below.

BCC Branch if the carry flag is clear.
BCS - Branch if the carry flag is set.
BEQ - Branch if the zero flag is set
BNE - Branch if the zero flag is clear
BMI - Branch if minus

BPL - Branch if plus

BVS - Branch if overflow is set

BVC Branch if overflow is clear

<<ZzZNNOO
Bonowon Ny
O O O D

Most assemblers offer alternative mnenomics for BCC and BCS. Since, dur-
ing comparisons, the carry flag is set when the value is equal or greater than the
value compared, BCS might be called BGE (Branch Greater or Equal).
Likewise, BCC is equivalent to BLT (Branch Less Than)- Why use these alter-
natives? Because they are easier to remember and visualize, and they make it
clear that you are doing logical comparisons rather than testing the results of an
addition or subtraction.

There is one other important concept that should be understood when doing
comparisions. I implied that the subsequent branch was like a GOTO in
BASIC or like a JMP instruction in machine language. This is not entirely
true, since the range of the branch can not exceed —126to + 129 bytes. This is
because the branch instruction is only two bytes long. The first byte is the in-
struction code and the second the relative address. It takes a two byte address
to branch to any place in memory (Except Page Zero). The JMP instruction
has the advantage that it is three bytes long. In most cases, this limitation will
not cause problems. But if a branch out of range error occurs, you must reverse
the test so that it will reach the required destination via a JMP instruction.

EXAMPLE: If BEQ SKIP is out of range then substitute the following:

BNE *+$5 or BNE A
JMP SKIP JMP SKIP
. A NOP

This change causes the program to drop through to the JMP instruction if
the zero flag was set, and then jump to location SKIP. However, if the zero flag
is not set, it will advance ahead five bytes to the instruction following the JMP.
All of the other branch instructions work in a similar manner. This gives the
equivalent of a Long Branch.

Simple addition and subtraction of unsigned numbers is easily accomplished
in machine language. All addition and subtraction must be performed one byte
at a time. Thus, large numbers or multi-byte numbers (those that exceed $FF),
must be added or subtracted one byte at a time, and the carry flag must be
accounted for. It’s actually not much different than addition of two multi-digit
long decimal numbers. Those numbers have a digit in the one’s column,
another in the ten’s, etc. If you add 65 to 78, you add the one’s column first.
Five plus eight equals 13. The value in the one’s column is 3; you then carry
the one into the tens digit before you add the two numbers in the ten’s column.
Hexadecimal addition is similar. You clear the carry before you add. If the sum
of the two values exceeds $FF, the carry is set. Since you don’t clear the carry
when adding the next higher byte, the resultant answer will be the sum plus the
previously computed carry, as in the following example:

EXAMPLE : +CARRY
63 F4
+ 02 + 16

66 OA ; SETS CARRY

45

46

The code for additions and subtractions is as follows:

ADDITIONS
CLC :
LDA #$F4
ADC #$16 ;
STA LOW
LDA #$63 ;
ADC #3502 ;
STA HIGH ;

SUBTRACTIONS
SEC :
LDA #$F4
SBC #$16 ;
STA VALUE;

CLEAR CARRY

LOAD LO ORDER BYTE
ADD WITH CARRY
STORE LO BYTE
LOAD HI ORDER BYTE

ADD WITH CARRY (NOTE DON'T CLEAR CARRY)
STORE HI BYTE

; SET CARRY FLAG

LOAD VALUE
SUBTRACT WITH CARRY
STORE ANSWER

You should be aware that the rules for subtraction are different than for ad-
dition. The carry must be set first. This is equivalent to a borrow in subtrac-
tion. After the subtraction operation, the carry will be clear if an underflow
(borrow) occurred. The carry will be set otherwise. Setting the carry is very im-
portant, a step that many beginners forget. The results are invariably incorrect
if this step is skipped - and possibly even “‘random’’, since the status of the
carry flag can be on or off when the subtraction operation is performed. This
can make debugging difficult.

LO-RES SCREEN

The Lo-Res screen occupies the same memory locations as the text page:
$400 to $7FF for page one and $800 to $BFF for page two. When the Lo-Res
graphics mode is toggled, the 1024 memory locations are presented as colored
blocks rather than ASCII characters. Each ASCII character becomes two col-
ored blocks, stacked one upon the other. Since the text page contains 24 lines of
forty characters, the Lo-Res screen shows 48 rows of blocks, 40 blocks wide.
Each block can be any one of 16 colors.

LOW - RESOLUTION GRAPHICS COLORS

DECIMAL HEX COLOR DECIMAL HEX COLOR
0 $0 BLACK 8 $8 BROWN
1 $1 MAGENTA 9 $9 ORANGE
2 $2 DARK BLUE 10 $A GREY I
3 $3 PURPLE 11 $B PINK
4 $4 DARK GREEN 12 $C LIGHT GREEN
5 $5 GREY I 13 $D YELLOW
6 $6 MEDIUM BLUE 14 $E AQUAMARINE
7 $7 LIGHT BLUE 15 $F WHITE

Since each screen memory location represents two colored blocks in Lo-Res,
each byte is divided into two equal halves called nibbles (4 bits). The value
which is in the lower nibble of the byte determines the color for the upper
block, and the higher order nibble determines the color for the lower block.
Thus, if memory location $400, which is the first position in the first row, con-
tains $D1, then the upper block is magenta and the lower block is yellow.

MAGENTA VALUE
LOCATION $400 $D1
YELLOW

I would like to point out that the map of the text screen is not sequential in
memory. Like its big brother, the Hi-Res screen, the first 40 bytes map across
the first row, but the second 40 bytes represent a row which is a third of the way
down the screen. The third 40 bytes consitute a row in the bottom third of the
screen. The exact order is not important at this time, because monitor
subroutines calculate the base address for any Lo-Res color plotting
automatically. To plot any Lo-Res point you need only give the monitor
subroutine located at $F800 the row and column to plot and the proper color.
The column is loaded into the Y register, the color into memory location $30,
and the row into the Accumulator. A call to $F800 will plot a Lo-Res dot to the

47

screen, and will be seen if the Lo-Res graphics display is activated first. The
dot’s value is always placed into Lo-Res memory by this subroutine, even if
you are viewing Hi-Res screen memory.

I would like to interject a word of caution when inputting color values for Lo-
Res plotting subroutines. Because setting the proper color nibble depends on
whether you are plotting on an odd or even row, it is safer to put the color
desired in both low and high nibbles. To illustrate the point, let’s assume we
placed a $01 in the color register and we wanted to plot the point on row 0, col-
umn 0. The plotting subroutine would use the lower order nibble $1 to plot the
magenta dot, then it would ignore the higher order nibble. However, if we
choose instead to plot at row 1, column 0, the subroutine will use $0 for the col-
or and ignore the lo order nibble. Thus, the screen would remain black. The
solution is to put the color in both nibbles. Placing $11 in the color register will
always plot the proper color in the above example anywhere on the Lo-Res
screen.

FUNCTION . Y REG ACC. $0030 $002C $002D

$FC58 | CLEAR SCREEN -- - - - -

$F¥B40 | SET GRAPHICS -- - - - -

$F800 | PLOT A POINT COLUMN ROW COLOR -- --

$F819 | HORIZ. LINE START ROW COLOR END --
COLUMN | COLUMN

$F828 | VERT. LINE START | COLOR - END
ROW ROW
$F871 | SCRN (X,Y) COLUMN | ROW s - - .

* (NOTE: COLOR RETURNED IN ACC))

It is time to get your feet wet; we’re going to plot your first few dots and lines
on the Lo-Res screen. The code that I’l] present is written on the TED II +
- assembler. However, the code is simple enough to type in on the mini-
assembler if you haven’t purchased an assembler as yet.

ORG $6000 ;ASSEMBLE CODE AT $6000
O0BJ $6000

JSR $FB4O ;SET LO-RES GRAPHICS MODE
JSR $FC58 ;CLEAR SCREEN

LDA #$66 ;SET COLOR BLUE

STA $30 ;STORE IN COLOR LOCATION
LDY #$05 ;COLUMN

LDA #$03 ;ROW

JSR $F800 ;PLOT POINT

LDA #$99 ;SET COLOR ORANGE

STA $30 ;STORE IN COLOR LOCATION
LDA #$08 ;END COLUMN

STA $2C ;STORE END COLUMN

LDY #$02 ;START COLUMN

LDA #$06 ;ROW

JSR $F819 ;PLOT HORIZ ROW

RTS ;RETURN TO MONITOR

The above program plots a blue dot at location X =5, Y =3. It then draws a
horizontal orange line from X =2 Y =6 to X =8 ,Y =6. The program can be
run by typing a 6000G <CR> from the monitor. If the ORG is assembled
elsewhere with another assembler type, the appropriate start. For example, if
LISA assembles your code at $800, then type 800G <CR >.

As you can see, plotting with Lo-Res graphics is relatively easy but involves
tedious details. The same code in BASIC, as listed below, would have taken a
mere five statements. Yet the machine language program will run at least
twenty times faster.

10 GR: COLOR =6:PLOT 5,3
20 COLOR =9:HLIN 2,8 at 6
30 END

The ability to plot several horizontal lines having the same color is useful in
setting up our ‘‘Breakout’” game. The code is also instructive in that it
simulates the FOR-NEXT loop in BASIC. We will need a counter which we
will appropriately call COUNTER. We will first initialize COUNTER to
zero. Since we aren’t going to begin plotting our horizontal lines at row zero
but instead at row five, we will use a variable called ROW to keep track of our
vertical row position. The object is to plot four horizontal red lines beginning at
row 5 and extending through row 8. The beginning column for each row is $5
and the ending column is $22.

As we plot each row successively, we increment our variables, COUNTER
and ROW. The variable COUNTER is then tested to see if it has reached the
value #$04. If it has, the code exits the loop. Otherwise, it branches back to
LOOPA so that it plots the next row. When it has plotted all four red lines, it
exits. The code and flow chart are shown below.

49

50

LOOPA

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
LDY
JSR
INC
INC
LDA
CMP
BNE
RTS

COUNTER

=0
ROW = 5

PUT COLOR INTO $30

PUT END COLUMN INTO $2C

—> LOAD ROW INTO ACCUMULATOR

PLOT HORIZ. LINE

ROW = ROW + 1 |

COUNTER

]

COUNTER + 1

no

IS COUNTER = 47 |

#$00
COUNTER
#$05
ROW
#$11
$30
#$22
$2C

ROW
#$05
$F819
ROW
COUNTER
COUNTER
#$04
LOOPA

yes

DONE

; START FIFTH ROW

;RED COLOR FIRST 4 ROWS
;COLOR STORAGE
;END COLUMN

s START COLUMN

sPLOT HORIZ LINE

sNEXT ROW

;COUNTER = COUNTER + 1

;HAVE WE DONE ALL FOUR ROWS
;NO! GOTO LOOPA
: DONE!

The ‘‘Breakout’’ game involves the simplest animation technique available
on the Apple. We have a ball or, in Lo-Res graphics, a dot, that bounces
around the screen. It will ricochet off a moveable paddle, the walls, or any of
the two-by-two sized color bricks. Movement is accomplished by erasing the
ball at its old position and redrawing it at its new position. The ball is very
predictable. It changes direction only upon collision, and in all cases (except
contact with the paddle), simply reverses its direction. The position of contact
with the paddle determines the ball’s direction. Balls striking the left end travel
upwards and to the left at a 45 degree angle, while balls striking the inside left
travel in the same direction but at a 60 degree angle. Balls striking the paddle’s
right side travel at similar angles but to the right.

Determining where the ball struck the paddle is easy. The four block-wide
paddle is always drawn at row 35 decimal or $23, and the first block begins at
PADX, a variable controlled by the paddle. The ball’s position is always at
BX,BY , and it has a velocity VX, VY. By comparing the ball’s vertical posi-
tion to PADX first, and then PADX + 1, etc, when a collision is detected, the
ball’s velocity components VX and VY are reset. VY is always reset to -1 so
that the ball travels upwards. However, VX varies with which block was hit.
As we mentioned earlier, the two outside blocks would cause the ball to travel
at 45 degree angles. This would mean a VX of +1 or - 1. The inside blocks
would cause the ball to bounce at 60 degree angles or VX at +1/2 or ~1/2.

Incrementing the ball’s position by 1/2 is not possible in machine code. But
if the incremented value was first doubled before calculating the ball’s new
position, and the result divided by two, the same result would be obtained with
the loss of the fractional part. This doesn’t matter since the ball can only be
placed at whole number positions.

For example: BX = 6 and VY = 1/2

BX

BX + VY =6 + 1/2 = 6 (ROUNDED).
If the numbers were doubled and the result divided by two,then
BX =12 +1 = 13/2 = 6 (ROUNDED).

If the doubled position is kept rather than discarded and we wished to move
the ball another 1/2 position, then

BX =13 +1 = 14/2 = 7.
This would result in the ball moving in the X direction every other cycle.

With VY = -1, it would travel at a 60 degree angle upwards and towards the
right.

51

52

PADDLE DEFLECTOR

2227

)
PLEFT PRT

no
< IS BY = $23
yes

r

yes

COMPARE BX TO PADX =t VY=-1 : VX=-2
no l

s — —

yes

COMPARE BX TO PADX+1 =1 VY=-1 ; VX=-1

no

P —

yes
COMPARE BX TO PADX+2l—— st VY=_1 ; VX=tl
no
e I

yes
COMPARE BX TO PADX+3 VY=-1 : VX=42

—>- 110

~

*Note all VX values doubled.

Multiplication and division by powers of two is easy in machine language.
The mnemonic ASL is used for multiplication by two. The Arithmetic Shift
Left (ASL) instruction shifts all of the bits in the Accumulator one position to
the left. Thus, bit 0 is shifted into bit 1, bit 1 into bit 2, etc. Bit seven is shifted
into the carry bit so that you can use the BCC and BCS instructions to test for
overflows. For example, if only bit two was on (4 decimal) and we did an ASL,
the bit would be shifted to bit three (8 decimal). Thus, it is easy to multiply by
powers of two by doing repeated ASL instructions.

Conversely, division is performed by the Logical Shift Right (LSR) instruc-
tion. Bits are shifted to the right and the bit 0 is shifted into the carry. This is
equivalent to dividing by two with loss of the fractional part.

LDA #$05 ;LOAD ACCUMULATOR WITH 5
LSR ;DIVIDE NUMBER BY TWO
STA $900 ;VALUE STORED IN $900 IS 2

In order to update the ball’s position, we take the ball’s old BX,BY position
in each direction and add the change in position or its directional velocity.
Negative values are converted to their two’s complement equivalent so that all

operations are simple additions. A negative one becomes a $FF, so that $FF
plus $02 = $01.

NEW POSITION = OLD POSITION + CHANGE IN POSITION

BX
BY

BX + VX X DIRECTION
BY + VY Y DIRECTION

The ball’s X position is calculated using doubled position values DBX and
doubled velocities values VX to avoid 1/2 values

Thus, DBX = DBX + VX and BX = DBX/2.

\¥§::i Wiz vl BB ven p
/,

_N W E ®

N - =77

N = v,
| %
1\\ h 71

PADX__ _

33

54

LDA DBX ;OLD DOUBLED X POSITION

CLC

ADC VX ;X DIRECTION VALUE

STA DBX ;THIS DOUBLED VALUE WILL RETAIN FRACTION
LSR sDIVIDE BY 2 , WILL LOSE FRACTION

STA BX ;NEW BALL X POSITION

LDA BY ;OLD Y POSITION OF BALL

CLC

ADC VY ;ADD Y DIRECTION VELOCITY

STA BY ;NEW BALL Y POSITION

As the ball bounces around the screen, it will soon collide with one of the col-
ored 2 by 2 bricks at the top of the screen. Since these are colored blocks, colli-
sions can be detected between the ball and these blocks with the SCRN func-
tion. This monitor subroutine will return the value of the color at any position.
This test is performed before the ball is drawn to the screen, or the test becomes
meaningless at the ball’s position since the ball will plot over the background
color blocks.

We will want to delete the block if a non-black (background) color is return-
ed during the test. The brick is four times larger than our ball, so we must
delete all four blocks at once. This is a troublesome operation, since we might
have collided with any of the four color blocks that comprise the brick. The
block that we hit is BX,BY. If we hit the top left block of the brick we will want
to delete block BX,BY ,BX +1,BY , BX + 1LBY +1 , and BX,BY +1. The
other three possible collisions with the brick have completely different se-
quences of blocks to be removed.

Bricks always begin in an odd row, at an odd column. A test can be made to
see'if our ball is in an odd or even row, or an odd or even column. That will
determine which of four sequences of blocks to remove. An odd even test can
be done on BX using a division by two or LSR instruction. Odd values always
have a one in the bit zero position. An LSR operation shifts them to the carry
bit. Therefore, odd values set the carry. A BCC (Branch Carry Clear) test will
determine if the value is odd or even.

LDA BX
LSR ;DIVIDE BY TWO

BCC EVEN ;BX IS EVEN IF CARRY IS CLEAR
ObD JMP SKIP

EVEN NOP ;CONTINUE WIH EVEN CODE

even evenodd

|BX/2 :‘|BY 2
odd eeven
oddeven
BY/2
oodd
\ y
REMOVE REMOVE REMOVE REMOVE
X, Y X, Y X, Y X, Y
X+1, Y X, Y-1 X, Y-1 X-1, Y
X, Y+1 X+1, Y X-1, Y X, Y+1
X+1, Y+1 X+1, Y-1 X-1, Y-1 X-1, Y+1
—_— X
ODD
ROW
Y
X,Y || EVEN
XJ{ ROW
ODD EVEN \
COLUMN COLUMN INTERSECTION
WITH BALL

Once the block is removed, the score must be incremented by the point value
for each block. In this game, yellow is worth one point, blue two points, and
red three points. The score is kept in a memory location called SUM. There
has been no attempt in this example to convert the hexadecimal value of SUM
to a decimal value. That type of scorekeeping routine is outlined in Chapter 6.

The scorekeeping routine first checks the color of the block hit for yellow. If it
is equal to #$0D (Yellow) it will add #$01 to SUM. Otherwise, it will branch to
the label NEXT. There it encounters a test for the color blue. If the block isn’t
blue it branches to the label NEXT1. If it is blue, #$02 is added to SUM,
otherwise #$03 is added to SUM because it must be red.

36

SCORE LDA COLOR

CMP #$0D sHIT YELLOW?
BNE NEXT
LDA SUM
CLC
ADC #$01
STA SUM
JMP SCORE1
NEXT LDA COLOR
CMP #$%06 sHIT BLUE?
BNE NEXT1
LDA SUM
CLC
ADC #$02
STA SUM
JMP SCORE1
NEXT1 LDA COLOR
CMP #3%01 ;HIT RED?
BNE SCORE1
LDA SUM
CLC
ADC #8303
STA SUM
SCORE1 ~ JSR PRINT
CMP #$FO ;SUM=240 FOR ALL BLOCKS
BGE END

This score will be printed in the text window below the Lo-Res graphics. We
want to print the letters SCORE followed by the value in SUM. There is a
monitor subroutine called COUT that outputs a single character to the screen.
If the cursor position has been previously set, any ASCII character placed into
the Accumulator will be outputted to the screen. Since strings are usually more
than one character, the code must be looped so that each character is retrieved
in its turn, then placed on the screen by COUT. The string can be stored as a
hexadecimal table in memory beginning at a location labeled STRING. Each
time we load the Accumulator, we index into the table X bytes where X is the
value in the X-Register. They call the operation LDA STRING, X ,Indirect
Addressing. The X-Register begins at #$00 and is incremented after each byte
is outputted to the screen.

A test is needed to detect the end of the string. Since a general purpose print
output routine is desired for any length string up to 255 characters , it is best
not to restrict the test to detecting the length of the string, but to detect a
character that is never sent to the screen. The hexadecimal 00 (the reverse @
sign) is rarely used and is a good choice for a test byte. When the code detects

this byte, it knows it has completed the string and exits the print loop. The
value of SUM is then outputted by the monitor subroutine PRBYTE, which
prints a single hexadecimal byte. The print subroutine is shown below.

PRINT LDX #$00 ; INDEX INTO STRING BEGINS AT O
LDA #$05
STA $24 ; HTABS
LDA #$17
JSR TABV ; VTAB23
PRINT1 LDA STRING,X ;GET Xth ELEMENT OF STRING
BEQ DONE s FINISHED?
JSR COUT ; PRINT LETTER
INX sNEXT ELEMENT
JMP PRINT1 ; LOOP
DONE LDA SUM
JSR PRBYTE ;OUTPUT BYTE SUM
RTS
STRING ASC "SCORE = "
HEX 00

The ““Breakout’’ game needs paddle control. The paddle is used both to in-
itially start the game by a button press, and to move the deflector back and
forth at the bottom of the screen. Button presses are the easiest to detect. There
are three paddle switches that are located at $C061 - $C063. The lowest hard-
ware location is for paddle #0. If the button is pushed, the value loaded into the
Accumulator is negative. The program can be put into an endless loop waiting
for a button press with the following code:

BUTTON LDA $C061
BPL BUTTON

The code will only exit the loop if the button is pressed.

The paddle’s output value (0-255) can be read by accessing a monitor
subroutine called PREAD, located at $FB1E. The paddle number is placed in-
to the X-Register and the value of the paddle is outputted to the Y-Register. It
is directly equivalent to the BASIC command PDL/(0). In our case, we need the
output clipped to a value (0-31). It is first necessary to divide the value by four.
This gives a value between 0-64. This range was chosen rather than 0-32, so
that the player has better control with half the amount of paddle turning. The
value is then tested to be within that range. If it is less than $05 it is set to $05,
and if greater than $1F (decimal 31), it is set equal to $1F. This is called clipp-
ing.

We have covered all of the pertinent code that is necessary to write a
“‘Breakout” game. The only thing left is the flowchart, and that is shown
below. The complete assembled code follows.

57

58

DRAW COLOR TARGET BLOCKS & FIELD

LINITILIZE START POSITION OF BALLA}f

L;DRAW INITIAL POSITION OF BALL

DRAW INITIAL POSITION OF PADDLEW

-

nQ._
<——LBUTTON PRESSED?
\ yes

XDRAW OLD POSITION OF PADDLE

XDRAW OLD POSITION OF BALL

| READ PADDLE |

TRIM PADDLE VALUE (5-31)

| DRAW PADDLE |

UPDATE POSITION OF BALL
Y

y

TEST IF BALL HIT PADD

LE

yes

no

| TEST IF BALL HIT LEFT

y
SIDE —>J REVERSE vX

no

> NEW VX & VY

es

yes

TEST IF BALL HIT RIGH

T SIDE

>4 REVERSE VX

no
4

TEST IF BALL HIT TOP

yes

no

yes

TEST IF BALL HIT BOTT

OM

REVERSE VY

no

> SUBTRACT 1 BALL

§

ot —

TEST IF BY < 17/
yes

[

no

no

TEST BY SCRN FUNCTION
IF BALL HIT COLOR BLO

yes

TEST IF OUT

CK

yes

|_REMOVE BLOCK]

TEST FOR WHICH COLOR
AND UPDATE SCORE

REVERSE VY |

OF BALLS

END
GAME

no

Y

ERASE BALL
& PADDLE

DRAW BALL

60

23 27

10

23

6000: 4C 17 60

////W

CONOOTVNDWN -

ot ot ot
WN = O

| E—

BREAKOUT SCREEN

* BREAKOUT GAME #

ROW
COUNTER
BX

BY

BBX

BBY

VX

VY

DBX

PDX

OR
JM

G $6000
P PROG ;JMP TO MAIN PROGRAM

Pt fot ot ot ot ik et ok et ok

6017:
601A:

601D:
601F:
6021:
6023:
6025:
6027:
6029:
602C:
602E:
6030:
6032;
6034
6037:
6039
603B:
603E:
6040:
6043
6045:
6048:
604A:
604C:
604E:
6050:
6053:
6055
6058:
605B:
605E:
6061 :
6063:
6065:
6067:
6069
606C:
606E:
6071:
6074
6077:
607A:
607C:
607E:
6080+

FB
FC

F8

F8

F8
60
60

60

F8
60

60

F8
60

60

PADX
PRT
PLEFT
SUM
BALL
COLOR
CBALL
CPDL
PITCH
TIME
PREAD
COUT
TABV
PRBYTE
PROG

EQU
EQU
JSR
JSR

*DRAW SCREEN

LOOPA

LOOPB

LDA
STA
LDA
STA
LDA
LDY
JSR
LDA
STA
LDA
LDY
JSR
LDA
LDY
JSR
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
LDY
JSR
INC
INC
LDA
CMP
BNE
LDA
STA
LDA
LDY
JSR
INC
INC
LDA
CMpP
BNE
LDA
STA

el

1
$FB1E
$FDFO
$FBSB
$FDDA
$FB40
$FC58
& BLOCKS
#$88
$30
#$23
$2C
#$00
#304
$F819
#$27
$2D
#3$01
#304
$F828
#3501
#$23
$F828
#$00
COUNTER
#3$05
ROW
#$11
$30
#$22
$2C
ROW
#$05
$F819
ROW
COUNTER
COUNTER
#$04
LOOPA
#$66
$30
ROW
#$05
$F819
ROW
COUNTER
COUNTER
#$08
LOOPB
#$DD
$30

;SET LORES GRAPHICS MODE
;CLEAR SCREEN

sSET COLOR BROWN
;END COLUMN

;TOP ROW

;START COLUMN
sPLOT HORIZ LINE
sEND ROW

s START ROW

s COLUMN

sPLOT VERT LINE
s START ROW

s COLUMN

sPLOT VERT LINE
sSTART S5TH ROW
sRED COLOR FIRST 4 ROWS
;END COLUMN

s START COLUMN

+PLOT HORIZ LINE
s NEXT ROW

sBLUE COLOR NEXT 4 ROWS

s START COLUMN
sPLOT HORIZ LINE

s YELLOW COLOR

61

62

6082:
6085:
6087:
608A:
608D:
6090:
6093:
6095:
6097
6099:
609C:
609E;

60Al:
60A3:
60A6:
60A9:
60AB:
60AE:
50BO:
60B3:
60B5:
60B8:
60BA:
60BD:
60BF:
60C2:
60C4:
60C7:
60C9:

60CC:

60CF:
60D2:
60D4 :
60D7:
60DA:
60DD:
60EO:
60E2:
60E5:
60E7:
60EA:
60EC:

60EF:
60F2:

60F4 s
60F6:
60F8:
60FB:
60FE:
6101:
6104
6106:

A9 00
85 30
AC 05
AD 06
20 00
AD OE
85 2C
AC OD

60
F8
60

60
60

60

60

60

2 60

60
60
60
60
60
63
60
60
60

F8
60

F8
co

119
120
121
122
123
124
125
126
127
128
129
130

132
133

LOOPC

LDA
LDY
JSR
INC
INC
LDA
CMP
BNE
LDA
STA
LDA
STA

ROW
#$05
$F819
ROW
COUNTER
COUNTER
#$0C
LOOPC
#305
BALL
#300
SUM

*INITIALIZE VARIABLES

START

LDA
STA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA

#$14
BX
BY
#$28
DBX
#3$00
VX
#3$01
vy
#$11
PADX
#$14
PRT
#$FF
CBALL
#$CC
CPDL

*PRINT INITIAL SCORE

JSR

PRINT

s START COLUMN

s INITIAL POSITION BALL

+ INITIAL VELOCITY BALL

s INITTIAL PADDLE POSITION

sWHITE BALL

;GREEN PADDLE

*DRAW INITIAL POSITIONS BALL& PADDLE

*START GAME WITH BUTTON

BUTTON

*

LDA
STA

LDY
LDA
JSR
LDA
STA
LDbA
STA
LDY
LDA
JSR

LDA
BPL

** MAIN

3*

CBALL
$30
BX

BY
$F800
CPDL
$30
PRT
$2C
PADX
#$23
$F819

$C061
BUTTON

; COLUMN
s ROW
sPLOT BALL

s START COLUMN
s PADDLE ROW
sPLOT PADDLE

sNEG IF BUTTON PRESSED

PROGRAM LOOP #*

*XDRAW OLD POSITIONS BALL& PADDLE

MAIN

LDA
STA
LDY
LDA
JSR
LDA
STA
LDY

#$00
$30
BX

BY
$F800
PRT
$2C
PADX

s XPLOT BALL

6109: A9 23 134 LDA #$23

610B: 20 19 F8 135 JSR $F819 s XPLOT PADDLE
136 *READ PADDLE
610E: A2 00 137 LDX #$00 ; PADDLE 0
6110: 20 1E FB 138 JSR PREAD
6113: 98 139 TYA ;PADDLE VALUE(0-255) IN Y REG
6114: 4A 140 LSR ;DIVIDE BY 4
6115: 4A 141 LSR
6116: C9 20 142 CMP #$20 ;CLIP TO (5-31)
6118: 90 05 143 BLT SKIPP
611A: A9 IF 144 LDA #$1F
611C: 8D OD 60 145 STA PADX
611F: C9 05 146 SKIPP CMP #$05
6121: BO 02 147 BGE SKIPP1
6123: A9 05 148 LDA #$05
6125: 8D OD 60 149 SKIPP1 STA PADX
6128: 18 150 CLC
6129: 69 03 151 ADC #$03
612B: 8D OE 60 152 STA PRT
153 *DRAW NEW POSITION PADDLE
612E: AD 14 60 154 LDA CPDL
6131: 85 30 155 STA $30
6133: AD OF 60 156 LDA PRT
6136: 85 2C 157 STA $2C
6138: AC OD 60 158 LDY PADX
613B: A9 23 159 LDA #$23 sROW
613D: 20 19 F8 160 JSR $F819 ; PLOT HORIZ PADDLE

161 *UPDATE POSITION BALL
162 *NOTE ALL VX VALUES DOUBLED TO AVOID 1/2 VALUES

6140: AD OB 60 163 LDA DBX ;OLD DOUBLED X POS VALUE

6143: 18 164 CLC

6144: 6D 09 60 165 ADC VX ;X DIRECTION VELOCITY

6147: 8D OB 60 166 STA DBX ; THIS DOUBLED VALUE WILIL, KEEP FRACT-
167 *- ;TIONAL PART OF NEW POSITION

614A: 4A 168 LSR sHALF VALUE WILL LOSE FRACTION

614B: 8D 05 60 169 STA BX sNEW BALL X POS

614E: AD 06 60 170 LDA BY ;OLD Y POS

6151: 18 171 CLC

6152: 6D 0A 60 172 ADC VY $ADD Y DIRECTION VELOCITY

6155: 8D 06 60 173 STA BY ;NEW BALL Y POSITION
174 *TEST IF BALL HIT SIDES OR PADDLE

6158: AD 06 60 175 PADDLE LDA BY

615B: C9 23 176 CMP #$23 sAT PADDLE ROW?

615D: FO 03 177 BEQ PAD1 ; YES!

615F: 4C B7 61 178 JMP LEFT

6162: AD OD 60 179 PAD1 LDA PADX

6165: 8D OF 60 180 STA PLEFT

6168: AD 05 60 181 FIRST LDA BX

616B: CD OF 60 182 CMP PLEFT

616E: DO 0A 183 BNE SECOND

6170: A9 FF 184 LDA #$FF

6172: 8D 0A 60 185 STA VY 3VY=-1

6175: A9 FE 186 LDA #S$FE

6177: 8D 09 60 187 STA VX sVX=-2

617A: EE OF 60 188 SECOND INC PLEFT

617D: AD 05 60 189 LDA BX

6180: CD OF 60 190 CMP PLEFT

6183: DO 08 191 BNE THIRD

6185: A9 FF 192 LDA #$FF

6187: 8D 0A 60 193 STA VY 3VY=-1

64

618A:
618D:
6190:
6193:
6196:
6198:
619A:
619D:
619F:
61A2;
61A5:
61A8:
61AB:
61AD:
61AF:
61B2:
61B4:
61B7:
61BA:
61BC:
61BE:
61C1:
61C3:
61C6:
61C9:
61CC:
61CE:
61D0:
61D3:
61D5:

61DB:
61DE:
61E0:
61E2:
61ES:
61E7:
61EA:
61ED:
61F0:
61F2:
61F4:
61F7:
61F9:
61FC:
61FF:
6202:
6204
6207:
620A:
620C:
620E:

6211:
6213:
6215:
6218:
621B:
621E:

8D

co
DO
AD
49
8D
EE
AD
(]
DO
CE
A9
8D
8D
20
A9
20
AD
C9
DO
4C

A9
85
AC
AD
20
AD

60
60
60
60

60
60
60
60
60
60
60
60
60
60

60
60

60

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

09 60 223
618: EE 09 60 224
AD 06 60 225

60
60
60
60
60
60
60
63
FC
60

62

226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
24]
242
243
244
245
246
247
248
249
250
251
252

STA
THIRD INC
LDA
CMP
BNE
LDA
STA
LDA
STA
FOURTH INC
LDA
CMP
BNE
LDA
STA
LDA
STA
LEFT LDA
CMP
BGE
LDA
EOR
STA
INC
RIGHT LDA
CMP
BLT
LDA
EOR
STA
INC
TOP LDA
CMP
BNE
LDA
EOR
STA
INC
BOTTOM LDA
CMP
BNE
DEC
LDA
STA
STA
JSR
LDA
JSR
LDA
CMP
BNE
JMP
*ERASE BALL &
CONT LDA
STA
LDY
LDA
JSR
LDA

PADDLE
#3$00
$30
BX

BY
$F800
PRT

3V =-1

;VY=-1

s VX=2

;HIT LEFT SIDE?
s NO!

sREVERSE VX

; COMPLEMENT

sVALUE CORRECTED

;HIT RIGHT SIDE?
;NO!t

;REVERSE VX

s COMPLEMENT

;VALUE CORRECTED

sHIT TOP?
sNO!
sREVERSE VY
; COMPLEMENT

;s VALUE CORRECTED

sBAD SOUND FOR MISSING

3 SHORT DELAY

;ALL BALLS GONE?

; XPLOT BALL

6221:
6223:
6226:
6228:
622B:
622E:
6231:
6233:
6235:

6238:
623B:
623E:
6241:
6244 :
6246:
6248:

624B:
624E:
624F
6251:
6254
6255:
6257:
625A:
625D:
6260:
6263:
6266:
6267
6269:
626C:
626F:

6272:
62752
6277
627A:

627D:
6280:
6282:
6284
6287:
6288:
628A:
628D:
6290:
6293:
6295:
6297:
629A:
629B:
629D;
62A0:
62A3:
62A6:
62A8:

60
F8
60

63
62
63
60

60

60

60

60
62
60

60

60
62

253
254
255
256
257
258
259
260
261
262
263
264
265
266

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286

288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

STA $2C
LDY PADX
. LDA #$23
JSR $F819 ; XPLOT PADDLE
JMP START
BLOCKS LDA BY
CMP #$11 ; IN AREA OF BLOCKS?
BLT Sk2 ;s YES!
JMP DRAW
*TEST COLLISION WITH BLOCK VIA SCRN FUNCTION
SK2 LDY BX ; COLUMN
LDA BY sROW
JSR $F871 ;SCRN(X,Y)
STA COLOR ;RETURNS OLOR IN ACC.
CMP #$00 ; IS BLACK?
BNE NBLACK
JMP DRAW s YES!

*FIND WHICH OF FOUR SUBBLOCKS HIT
NBLACK LDA BX
LSR ;BX/2
BCC EVEN
)] LDA BY
LSR ;BY/2
BCC ODDEVEN
00DD JSR 00DDS
JMP REV
ODDEVEN JSR ODDEVENS
JMP REV
EVEN LDA BY
LSR ;BY/2
BCC EEVEN
EVENODD JSR EVENODDS
JMP REV
EEVEN JSR EEVENS
*REVERSE VY
REV LDA VY
EOR #$FF
STA VY
INC VY
*CHECK COLOR & UPDATE SCORE
SCORE LDA COLOR
CMP #$0D ;HIT YELLOW?
BNE NEXT
LDA SUM
CLC
ADC #3501
STA SUM
JMP SCORE1
NEXT LDA COLOR
CMP #$06 sHIT BLUE?
BNE NEXT1
LDA SUM

ADC #$02
STA SUM
JMP SCOREL
NEXT1 LDA COLOR
CMP #3501 ;HIT RED?
BNE SCORE1

65

66

62AA:
62AD:
62AE:
62B0:
62B3:
62B6:
62B8:

62BA:
62BC:
62BF:
62C1:
62C4:

62C7:
62CA:
62CC:
62CF:
62D2:

62D5:
62D7:
62DA:
62DD:

62DE:
62EO:
62E2:
62E5:
62E8:
62E9:
62EC:
62EF:
62F2:
62F5:
62F8:
62FB:
62FE:
6301:
6304
6307:
630A:
630D:
6310:
6313:
63163
6317:
6319:
631B:
631E:
6321:
6322;
6325:
6328:
632B:
632E:

60

60
63

60

63
60
60

F8

FC

60
60

60
F8
60
60
F8
60
60
60

60
F8

60
60
F8

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
3h4
365
366
367
368
369
370
371

SCORE1 JSR

SUM

#$03
SUM
PRINT
#$FO
END

*SOUND FOR HITTING BLOCK

LDA
STA
LDA
STA
JSR
*DRAW BALL
DRAW LDA
STA
LDY
LDA
JSR
*DELAY
LDA
JSR
JMP
END RTS
3*

#$50
PITCH
#$25
TIME
SOUND

CBALL
$30
BX

BY
$F800

#$80
$FCA8
MAIN

*# SUBROUTINES
*

*ERASE BLOCK
#

00DDS LDA
STA
LDA
STA
TAY
LDA
STA
JSR
INC
LDY
LDA
JSR
INC
LDY
LDA
JSR
DEC
LDY
LDA
JSR
RTS
ODDEVENS LDA
STA
LDA
STA
TAY
LDA
STA
JSR
DEC
LDY

SUBROUTINES

#3500
$30
BX
BBX

BY
BBY
$F800
BBX
BBX
BBY
$F800
BBY
BBX
BBY
$F800
BBX
BBX
BBY
$F800

#$00
$30
BX
BBX

BY
BBY
$F800
BBY
BBX

;SUM=240 FOR ALL BLOCKS

s COLUMN
sROW
s PLOT BALL

s SHORT DELAY

sRETURN TO MONITOR AT END OF GAME

#3t

s BLACK

sTEMP VALUE

s COLUMN

s ROW

;TEMP VALUE
;ERASE PT X,Y

; COLUMN

sROW

;ERASE PT X+1,Y

s COLUMN

s ROW

;ERASE PT X+1,Y+1
s COLUMN

s ROW
;ERASE PT X,Y+1

sBLACK

s COLUMN
s ROW
sERASE PT X,Y

; COLUMN

6331:
6334:
6337:
633A:
633D:
6340;
6343
6346:
6349:
634C:
634F:
6350:
63522
6354
6357:
635A:
635B:
635E:
6361:
6364
6367:
636A:
636D:
6370:
6373:
6376:
6379:
637C:
637F:
6382:
6385:
6388:
6389:
638B:
638D:
6390:
6393:
6394
6397
639A:
639D:
63A0:
63A3:
63A6:
63A9:
63AC:
63AF:
63B2:
63B5:
63B8:
63BB:
63BE:
63C1:

63C2:
63C4
63C6:
63C8:

A2
A9
85
A9

60
60

60
F8
60
F8
60
F8
60

F8

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

EEVENS

EVENODDS

3*

LDA
JSR
INC
LDY
LDA
JSR
INC
LDY
LDA
JSR
RTS
LDA
STA
LDA
STA
TAY
LDA
STA
JSR
DEC
LDY
LbA
JSR
DEC
LDY
LDA
JSR
INC
LDY
LDA
JSR
RTS
LDA
STA
LDA
STA
TAY
LDA
STA
JSR
DEC
LDY
LDA
JSR
INC
LDY
LDA
JSR
INC
LDY
LDA
JSR
RTS

BBY
$F800
BBX
BBX
BBY
$F800
BBY
BBX
BBY
$F800

#300
$30
BX
BBX

BY
BBY
$F800
BBY
BBX
BBY
$F800
BBX
BBX
BBY
$F800
BBY
BBX
BBY
$F800

#$00
$30
BX
BBX

BY
BBY
$F800
BBX
BBX
BBY
$F800
BBY
BBX
BBY
$F800
BBX
BBX
BBY
$F800

*PRINT SUBROUTINE
*

PRINT

LDX
LDA
STA
LDA

#$00
#3$05
$24

#$17

s ROW
sERASE PT

s COLUMN
s ROW
sERASE PT

; COLUMN
sROW
;ERASE PT

; COLUMN
s ROW

;ERASE PT

s COLUMN
s ROW
;ERASE PT

; COLUMN
s ROW
;ERASE PT

sCLUMN
s ROW
sERASE PT

s COLUMN
s ROW

;ERASE PT

s COLUMN
s ROW
sERASE PT

;COLUMN
sROW
;ERASE PT

s COLUMN

sROW
sERASE PT

;HTABS

X,Y-1

X+1,Y-1

X+1,Y

X,Y

X,Y-1

X-1,Y-1

X-1,Y

X,Y

X-1,Y

X-1,Y+1

X,Y+1

67

68

63CA:
63CD:
63D0:
63D2:
63D5:
63D6:
63D9:
63DC:
63DF:
63E0:
63E3:
63E6:
63E8:

63E9:
63EC:
63ED:
63EF:
63F2:
63F4:
63F5:
63F7:
63FA:
63FD:

20
BD
FO
20
E8
4C
AD
20
60

b2
BD

AD
88
DO
CE
FO
CA
DO
AE
4C
60

5B
EO
07
FO

Cb
10
DA
C3

C5
AO

30
05
16
F5

E9

FB
63

FD
63
60
FD

CF

co

432
433
434
435
436
437
438
439
440

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455

ASSEMBLY--

JSR TABV s VTAB23
PRINT1 LDA STRING,X

BEQ DONE

JSR COUT

INX

JMP PRINT1
DONE LDA SUM

JSR PRBYTE

RTS

STRING ASC "SCORE = "
HEX 00

#
#*SOUND SUBROUTINE
#*

SOUND LDA $C030
S1 DEY
BNE S2
DEC TIME
BEQ SEND
S2 DEX
BNE Sl
LDX PITCH
JMP SOUND
SEND RTS

1022 BYTES

CHAPTER 3

MACHINE LANGUAGE ACCESS TO
APPLESOFT HI-RES ROUTINES

The Applesoft ROM contains a full set of Hi-Res graphics routines. But Ap-
plesoft, being an interpretive language rather than a compiled language, ac-
cesses these routines rather inefficiently as far as speed is concerned. This is
because the interpreter has to determine where to go and what to do with each
tokenized BASIC instruction as it encounters it. The speed penalty for this ad-
ded overhead is considerable. The interpreter runs these routines from four to
six times slower than if they were called directly from machine language.

At first glance, it appears to be rather simple to call to graphics subroutines
located in the ROM. In retrospect, it is, provided that you understand how the
interpreter handles the data structure both internally and externally as it ex-
ecutes these graphics subroutines. Since the information has never been fully
documented, it is some help if you have the Programmer’s Aid Manual, where
a source listing of that ROM chip is quite similar to the ROM Applesoft Hi-
Res subroutines.

I’'m quite reluctant at this stage to attempt an explanation of how these
routines actually work. A solid grounding both in machine language and in the
Hi-res screen’s peculiarities won’t come until much later in the book. I will,
however, discuss the data structure in regards to what you need to input, and
how you input these parameters when calling the subroutines.

There are a series of memory locations stored in zero page that specify a
point on the Hi-Res screen. Some people call these locations External Cursor
Data. They are as follows:

$E0: Lo order byte of the horizontal screen coordinate

$E1: Hi order byte of the horizontal screen coordinate

$E2: Vertical screen coordinate

$E4: Color masking word from the color table ($F6F6-$F6FD)
$E6: Page indicator ($20 page 1, $40 for page 2).

In addition, three other memory locations hold information regarding
shape table data for the drawing subroutines:

$E7: Scale factor for drawing shapes
$E8: Lo byte pointer to beginning of shape table
$E9: Hi byte pointer to beginning of shape table.

70

There are also a number of zero page page locations that the Hi-Res
subroutines use internally when doing the actual screen plotting of points, or
strings of points called lines. Some of these contain the memory address of the
byte to plot on the screen, while others contain the color and masking informa-

tion, so that only the correct pixel within that seven-pixel byte is turned on or
off.

$1C: The color masking byte, which is shifted for odd addresses but other
wise remains unchanged.

$26: Lo address for the leftmost byte in a particular vertical row.

$27: Hi address for the leftmost byte in a particular vertical row.

$E5: The integer part of the horizontal screen coordinate divided by
7, or the horizontal offset into row.

$30: The bit position taken from the Bit Position table.

This corresponds to remainder from horizontal coordinate divided by 7 or
which bit in the byte is to be lit.

What I should point out is that after a series of other subroutines set up the
position to plot on the screen, the actual plotting of the point is done with a five
line subroutine called PLOT located at $F45A, as in the following:

LDA $1C
EOR ($26),Y
AND $30

EOR ($26),Y
STA ($26),Y
RTS

The internal cursor data is more important than the external cursor data if
speed is the consideration. There are internal subroutines within the ROM
that set the external cursor data to correspond with the internal data, and
several more that can manipulate the screen cursor directly. However, for plot-
ting points and drawing shapes from Apple shape tables, you need not concern
yourself with any internal workings of these subroutines. Instead, I’'ve sum-
marized all of the necessary subroutines in the table below, and will
demonstrate examples using them. '

NAME ADDRESS ‘ ACC. XREG YREG NOTES
HGR $F3E2 | e e
HGR2 $F3D8 | -] e
BKGND $F3F4 COLOR | - |
FROM
COLOR
MASK
TABLE
HCOLOR $F6F0 | @ - COLOR | -
0-7
HPLOT $F457 VERT HORIZ LO HORIZ HI | THIS CALLS
HPOSN
HLINE $F53A HORIZ LO HORIZ HI VERT DRAWS
FROM INT
CURSOR
POS. TO PT.
IN INPUT
HPOSN $F411 VERT HORIZ LO HORIZ HI ALWAYS
CALL
BEFORE
DRAW
SHPTR $F730 | 0 - SHAPE # | - SETS $1A,
$1B SHAPE
POINTERS
DRAW $F601 ROTATION $1A $1B
XDRAW $F65D ROTATION $1A $1B

Simple shapes can be plotted to the Hi-Res screen in BASIC by HPLOTting
from point to point. Their speed, in comparison to Apple shapes (vector
shapes), is rather slow. However, in machine code, HPLOTed shapes become
a viable alternative if the shape is rather large and complex. Their disadvan-
tage is that they can’t be scaled or rotated, but they are easier to plot if you
choose to place the coordinate pairs into a table.

Our first example will plot a simple triangle by accessing the Applesoft Hi-
Res ROM routines directly. It is equivalent to the following BASIC program.

71

72

10 HGR

20 HCOLOR =3

30 HPLOT 100,50 TO 150,100 TO 50,100 TO 100,50
40 END

The program sets the mode to Hi-Res graphics page one, mixed text and
graphics, by calling HGR at $F3E2. The plotting color is set to white (3) by
a call to HCOLOR at $F6F0. Then, by loading the Accumulator and the X
& Y registers with the correct screen coordinates, the point at 100,50 is
plotted to the screen with a call to HPLOT at $F457. Each of the triangle’s
lines are drawn by calling HLINE at $F53A. This subroutine draws a line
from the internal cursor position (last point) to the point defined by the in-
put to HLINE. Since the last point was at 100,50 and we are inputting the
coordinates 150,100 , the line is drawn between these two points. After
drawing the next two lines, the triangle is completed and the program
ends. The complete code follows.

IMPORTANT NOTE: The programs in this chapter access the Applesoft
ROM. While this is no problem to Apple II Plus owners, those of us that have
an Integer machine with an Applesoft ROM card, or Applesoft in RAM on a
16K memory board, should understand that if they enter the monitor by hit-
ting reset, they have lost Applesoft. The machine reverts to the Integer ROM
on the motherboard. If you try to restart the programs they won’t run unless

the ROMs are reconnected by a 9DBFG and you return to the monitor by a
CALL -151.

100,50

® @

50,100 150,100

1 *PLOT TRIANGLE

2 ORG $6000
6000: 20 E2 F3 3 JSR $F3E2 ;HGR
6003: A2 03 4 LDX #$03 ;COLOR=WHITE
6005: 20 FO F6 5 JSR $F6FO ; HCOLOR

6 *PLOT FIRST PT
6008: A0 00 7 LDY #$00 ;sHORIZ POS HI BYTE
600A: A2 64 8 LDX #$64 sHORIZ POS LO BYTE
600C: A9 32 9 LDA #$32 sVERT POS
600E: 20 57 F4 10 JSR $F457 s HPLOT

11 *DRAW TO SECOND POINT
6011: A2 00 12 LDX #$00 ;HORIZ POS HI1 BYTE
6013: A9 96 13 LDA #8$96 ;HORIZ POS LO BYTE
6015: AO 64 14 LDY #3$64 ;VERT POS
6017: 20 3A F5 15 JSR $F53A sHLINE

16 *DRAW TO THIRD POINT
601A: A2 00 17 LDX #$00 ;HORIZ POS HI BYTE
601C: A9 32 18 LDA #$32 ;HORIZ POS LO BYTE
601E: A0 64 19 LDY #$64 s VERT POS
6020: 20 3A F5 20 JSR $F53A sHLINE

21 *DRAW TO FIRST POINT
6023: A2 00 22 LDX #$00 ;HORIZ POS HI BYTE
6025: A9 64 23 LDA #$64 ;HORIZ POS LO BYTE
6027: AQ 32 24 LDY #$32 ;s VERT POS
6029: 20 3A F5 25 JSR $F53A ;HLINE
602C: 60 26 RTS

~-END ASSEMBLY--

The HPLOT technique can be used to draw shapes of greater complexity.
Since these shapes require numerous calls to HLINE for each line segment of
the completed shape, it is best to design the code to access the coordinate pairs
from a stored table and put the drawing routine into a loop.

For the sake of simplicity, I decided to store the X-Y coordinates as two byte
pairs. This limits the range along the horizontal axis, since values greater than
255 would require using the hi byte, too. If you wanted to use the entire screen,
you would have to use three byte coordinate pairs and modify the code accor-
dingly. A test was needed to determine when all the shape’s points had been
plotted. I used an $FF as a flag for the last point. The test is on the vertical
coordinate, since Y coordinate values don’t exceed $BF. Actually, the pair’s
first byte can be anything, since it is the last byte of the pair that is the flag.
When the loop detects this flag, it skips plotting the last line segment and exits
the loop.

73

74

The technique for accessing elements of a shape table involves loading the
first of a pair of bytes into the Accumulator, and the second byte into the X
register before calling HLINE to draw the line segment. Each element of the
table is stored at a particular two-byte address. In our example, the very first
element is called the Oth element of the table and is located at $6044. Elements
of a table can be accessed by using a zero page indexing system called Indexed
Indirect Addressing. It takes the form LDA (SHPL,X). If the X-register were
zero, it would load a byte from an address indicated by a pair of bytes, SHPL
and SHPH stored in zero page. For example, if location $FC and $FD, which
are equivalent to SHPL and SHPH respectively, contain a #$44 and #$60 in
that order, then LDA (SHPL,X) will load a #$61 from location $6044 into the
Accumulator.

INDEXED INDIRECT ADDRESSING

LDA (SHPL,X) INDIRECT ADDRESS

<

+ ($FC | #$44| sHPL
X |#$00 |7
$FD | #$60| SHPH
A |#$61
DATA

$6044 | #%61 BASE ADDRESS

J

As you will soon discover, there are never enough registers in the 6502. Cer-
tainly, the Accumulator and X and Y registers are not enough when all three
need to be loaded to call a subroutine, and you also need to use two of them
simultaneously for retrieving data from a table. The solution is to temporarily
store your data in a memory location. When you’re done with the table and
your registers are free, the data can be moved to the proper registers just before
calling the subroutine. The important thing is to be careful that you do not
clobber your working registers.

In the example below, the X-register must be set to zero each time the index-
ed indirect load is used to retrieve a value from the table. This is no problem
the first time through the loop, but this value for the horizontal position lo byte
eventually needs to reside in the X-register before calling HLINE. Since we

need to do another indirect indexed load using both the Accumulator and
X-register for the next byte, we temporarily store our data in XLOW. If we in-
crement SHPL, the lo byte pointer to our shape data, it will point to the next
byte in our shape table. At this point, since we haven’t disturbed the
X-register, we don’t need to put zero into it to perform our next indirect index-
ed load. This second value retrieved — the vertical coordinate is transferred to
the Y-register. The horizontal hi byte is placed into the X-register and the
horizontal lo byte, which was temporarily stored at XLOW, is moved into the
Accumulator before calling the subroutine HLINE.

l 50 60 70 80 90 100 110
Y

80

90

100

110

75

DECIMAL HEX

PT X Y X Y
1 69 65 45 41
2 80 52 50 34
3 106 57 6A 39
4 87 57 57 39
5 76 71 4C 47
6 88 77 58 4D
7 81 85 51 55
8 72 77 48 40
9 59 88 38 58

10 64 108 40 6C
11 50 84 32 54
12 63 72 3F 48
13 59 67 3B 43
14 58 64 3A 40
15 60 62 3C 3E
16 64 62 40 3E
17 69 65 44 41

FF FF

1 *HPLOTS A BIRD SHAPE ON SCREEN ONCE

2 ORG $6000

3 XLOW DS 1

4 HPLOT EQU $F457

5 HLINE EQU $F53A

6 HCOLOR EQU $F6F0

7 HGR EQU $F3E2

8 SHPL EQU $FC

9 SHPH EQU SHPL+$1

10 *PROGRAM
6001: 20 E2 F3 11 JSR HGR
6004: A2 03 12 LDX #$03 ;WHITE COLOR
6006: 20 FO F6 13 JSR HCOLOR ;SET WHITE COLOR
6009: A9 44 14 LDA #<SHAPE
600B: 85 FC 15 STA SHPL
600D: A9 60 16 LDA #>SHAPE
600F: 85 FD 17 STA SHPH

18 *PLOT FIRST POINT
6011: A2 00 19 PLOT LDX #3500

6013: Al FC 20 LDA (SHPL,X) ;THIS IS HOR POS LO BYTE
6015: 8D 00 60 21 STA XLOW

6018: E6 FC 22 INC SHPL sNEXT BYTE IN SHAPE TABLE
601A: Al FC 23 LDA (SHPL,X) ;THIS IS VERT VALUE FOR PT
601C: AE 00 60 24 LDX XLOW ;HORIZ POS LO BYTE

601F: A0 00 25 LDY #$00 sHORIZ POS HI BYTE

6021: 20 57 F4 26 JSR HPLOT

6024: E6 FC 27 INC SHPL sNEXT BYTE IN TABLE

28 *DRAW NEXT POINT

6026: A2 00 29 LooP LDX #$00

6028: Al FC 30 LDA (SHPL,X) ;HORIZ POS LO BYTE
602A: 8D 00 60 31 STA XLOW
602D: E6 FC 32 INC SHPL sNEXT BYTE IN TABLE
602F: Al FC 33 LDA (SHPL,X) ;THIS IS VERT VALUE FOR PT
6031: C9 FF 34 CMP #$FF
6033: FO OE 35 BEQ DONE 3 IF BYTE CONTAINS 255, DONE
6035: A8 36 TAY sVERT IN Y REG
6036: A2 00 37 LDX #$00 ;HORIZ POS IN HI BYTE
6038: AD 00 60 38 LDA XLOW sHORIZ POS IN LO BYTE
603B: 20 3A F5 39 JSR HLINE
603E: E6 FC 40 INC SHPL s NEXT BYTE
6040: 4C 26 60 41 JMP LOOP
6043: 60 42 DONE RTS

43 ®

6044: 45 41 50
6047: 34 6A 39
604A: 57 39 44 SHAPE HEX 454150346A395739
604C: 4C 47 58
604F: 4D 51 55
6052: 48 4D 45 HEX 4C47584D5155484D
6054: 3B 58 40
6057: 6C 32 54
605A: 3F 48 46 HEX 3B58406C32543F48
605C: 3B 43 3A
605F: 40 3C 3E

6062: 40 3E 47 HEX 3B433A403C3E403E
6064: 44 4] FF
6067: FF 48 HEX 4441FFFF

Shape tables that cross page boundaries (256 byte sections of memory where
the hi byte is constant) can cause problems. If, for example, our table began at
$60FC instead of $6044, after incrementing four times, the lo byte would be
#8$00. The program would attempt to load the byte at location $6000 instead of
the byte at location $6100. This can be prevented if a test is performed after
you increment SHPL. If SHPL were equal to zero, it would increment SHPH;
otherwise, it would skip this step.

INC SHPL ; INCREMENT LO BYTE

LDA SHPL

CMP #$00 ;IS IT O ?

BNE SKIP ;NO

INC SHPH ;YES INCREMENT HI POINTER
SKIP LDA (SHPL,X) ;NEXT BYTE IN TABLE

The object of this fast machine language algorithm is to enable you to
animate your shapes smoothly and quickly. While one would never attempt to
animate HPLOTed shapes in Applesoft BASIC, it is completely feasible in
machine language. Speed increases on the order of 6 to 8 times are the rule.

77

78

The code to animate our HPLOTed bird in Applesoft follows. Try it, then try
the same algorithm written in machine language. I should point out that the
speed differences can not be directly correlated, since to keep the object on the
screen longer than off, a delay loop of 7 milliseconds per frame was used. If you
remove the delay or set the value in the Accumulator to #$01 before calling the
delay subroutine at $FCAS8, the speed increases to 8 times that of the Applesoft
version. However, screen flicker becomes more noticeable.

10 DIM X(20),Y(20)

30 FORI =1 TO 50

40 READ X(1),Y(I)

50 IF Y(I) = 255 THEN 65

60 NEXT I

65 HGR :0FF = - 50:I =1

70 HCOLOR= 3

80 HPLOT X(I) + OFF,Y(I) T0 X(I + 1) + OFF,Y(I + 1) TO X(I
+ 2) + OFF,Y(I + 2) TO X(I + 3) + OFF,Y(I + 3) TO X(I + 4) +
OFF,Y(I + 4) TO X(I + 5) + OFF,Y(I + 5) TO X(I + 6) + OFF,Y
(I +6) TO X(I + 7) + OFF,Y(I + 7) TO X(I + 8) + OFF,Y(I + 8
) TO X(I + 9) + OFF,Y(I + 9)

90 HPLOT X(I + 9) + OFF,Y(I + 9) TO X(I + 10) + OFF,Y(I + 1
0) TO X(I + 11) + OFF,Y(I + 11) TO X(I + 12) + OFF,Y(I + 12)
TO X(I + 13) + OFF,Y(I + 13) TO X(I + 14) + OFF,Y(I + 14) T
0 X(I + 15) + OFF,Y(I + 15) TO X(I + 16) + OFF,Y(I + 16)

100 HCOLOR= 4

110 HPLOT X(I) + OFF,Y(I) TO X(I + 1) + OFF,Y(I + 1) TO X(I
+ 2) + OFF,Y(I + 2) TO X(I + 3) + OFF,Y(I + 3) TO X(I + 4)
+ OFF,Y(I + 4) TO X(I + 5) + OFF,Y(I + 5) TO X(I + 6) + OFF,
Y(I + 6) TO X(I + 7) + OFF,Y(I + 7) TO X(I + 8) + OFF,Y(I +
8) TO X(I + 9) + OFF,Y(I + 9)

120 HPLOT X(I + 9) + OFF,Y(I + 9) TO X(I + 10) + OFF,Y(I +
10) TO X(I + 11) + OFF,Y(I + 11) TO X(I + 12) + OFF,Y(I + 12
) TO X(I + 13) + OFF,Y(I + 13) TO X(I + 14) + OFF,Y(I + 14)

TO X(I + 15) + OFF,Y(I + 15) TO X(I + 16) + OFF,Y(I + 16)
130 OFF = OFF + 5

140 IF OFF = 155 THEN OFF = - 50

150 GOTO 70

160 DATA 69,65,80,52,106,57,87,57,76,71,88,77,81,85,72,77
,59,88,64,108,50,84,63,72,59,67,58,64,60,62,64,62,69,65,255,
255

The code for the moving bird is quite similar to the stationary bird, except
that once we plot the bird, it must be erased before replotting it at a different
position. It becomes rather convenient to place the entire plotting program in a
subroutine. An offset is added to each horizontal point of the bird to position it
properly on the screen. This offset starts at - 50 or #$CE in order to position
the bird’s left-most point at X =0. The offset is incremented by five for each
additional frame and tested each time so that it doesn’t exceed 150 or #$96. If it
does, the bird’s right-most point will exceed 255 decimal. The test must be ex-
actly at 150 rather than equal or greater, because our negative numbers #$CE
and larger would also meet the test. Be careful in this kind of test. If your hex-
adecimal addition isn’t correct when choosing the test position, the number
will never meet the test conditions and therefore never reset the offset back to
the beginning position after traversing the screen’s width. One hint is to use
the monitor when adding two hexadecimal single byte numbers. For example,
the monitor command 03 + FE <CR> will return the hexadecimal value
$02.

When alternating between drawing and erasing, the color shifts between
white and black, respectively. The pointers to the shape table must also be reset
for each plot/erase cycle because these pointers are incremented when retriev-
ing bytes within the table. The flow chart and machine code for the moving
bird follows.

PLOT BIRD

DELAY |

ERASE BIRD |

UPDATE OFFSETH

79

80

6002:
6005:
6007
600A:
600C:
600E:
6010:
6012:
6014:
6017:
601A:
601C:
601F:
6021:
6023:
6025:
6027:
6029:
602C:

602F:
6032:
6033:
6035:
6037:
6039:
603B:
603E:

6041:
6043:
6045:
6046
6049
604C:
604E:
6050:
6053:
6055:
6058:

605A:
605C:
605E:
605F 2
6062:
6065:
6067
6069:

AD 01

69 05
C9 96
DO 02
A9 CE
8D 01
4C 0A

Al FC

6D 01
8D 00
E6 FC
Al FC
AE 00

20 57
E6 FC

F3

F6
60

FC

F4

BN = et b e bt it e bt b \D OO N O U1 P WO R e
OQVvwoO~NOLEBEWN-=O

*MOVING HPLOTTED BIRD ACROSS SCREEN

ORG
XLOW DS
HPLOT EQU
HLINE EQU
HCOLOR EQU
HGR EQU
SHPL EQU
SHPH EQU
OFFSETH DS
*PROGRAM
JSR
LDA
STA
MAIN LDA
STA
LDA
STA
LDX
JSR
JSR
LDA
JSR
LDA
STA
LDA
STA
LDX
JSR
JSR
*UPDATE HORIZ
LDA
CLC
ADC
CMP
BNE
LDA
SKIP STA
JMP

$6000

1

$F457
$F53A
$F6FO
$F3E2
$FC
SHPL+$1
1

HGR
#$CE
OFFSETH
#<SHAPE
SHPL
#>SHAPE
SHPH
#3$03
HCOLOR
PLOT
#$50
$FCA8
#<SHAPE
SHPL
#>SHAPE
SHPH
#304
HCOLOR
PLOT
OFFSET
OFFSETH

#$05
#$96
SKIP
#$CE
OFFSETH
MAIN

*PLOT FIRST POINT

PLOT LDX
LDA
CLC
ADC
STA
INC
LDA
LDX
LDY
JSR
INC

#300
(SHPL,X)

OFFSETH
XLOW
SHPL
(SHPL, X)
XLOW
#$00
HPLOT
SHPL

*DRAW NEXT POINT

LOOP LDX
LDA
CLC
ADC
STA
INC
LDA
CcMp

#3$00
(SHPL,X)

OFFSETH
XLOW
SHPL
(SHPL, X)
#$FF

;-50 DECIMAL

sWHITE COLOR
;SET TO WHITE

s DELAY

sBLACK COLOR
sSET TO BLACK

;150 DECIMAL

;OFF RT SIDE OF SCREEN

;THIS IS HOR POS LO BYTE

;NEW HORIZ POS LO BYTE
;NEXT BYTE IN SHAPE TABLE
sTHIS IS VERT VALUE FOR PT
;HORIZ POS LO BYTE

sHORIZ POS HI BYTE

;NEXT BYTE IN TABLE

sHORIZ POS LO BYTE

sNEW HORIZ POS LO BYTE
sNEXT BYTE IN TABLE
;THIS IS VERT VALUE FOR PT

606B: FO OE 61 BEQ DONE ; IF BYTE CONTAINS 255, DONE

606D: A8 62 TAY ;VERT IN Y REG
606E: A2 00 63 LDX #$00 ;HORIZ POS IN HI BYTE
6070: AD 00 60 64 LDA XLOW ;HORIZ POS IN LO BYTE
6073: 20 3A F5 65 JSR HLINE
6076: E6 FC 66 INC SHPL sNEXT BYTE
6078: 4C 5A 60 67 JMP LOOP
607B: 60 68 DONE RTS
69 *

607C: 45 41 50
607F: 34 6A 39
6082: 57 39 70 SHAPE HEX 454150346A395739
6084: 4C 47 58
6087: 4D 51 55
608A: 48 4D 71 HEX 4C47584D5155484D
608C: 3B 58 40
608F: 6C 32 54
6092: 3F 48 72 HEX 3B58406C32543F48
6094: 3B 43 3A
6097: 40 3C 3E

609A: 40 3E 73 HEX 3B433A403C3E403E
609C: 44 41 FF

609F: FF 74 HEX 4441FFFF

—-END ASSEMBLY-- 160 BYTES

APPLE SHAPE TABLES IN ANIMATION

The advantage of accessing Apple shape tables (vector shape tables) directly
from machine language results in a sixfold increase in animation speed. For
many applications and simple games, this speed increase may be sufficient. If it
isn’t, you should use raster or block shape animation.

I think that beginning machine language programmers, whose prior
experience is with Apple shapes in BASIC, should attempt the techniques in
this section before learning more complicated methods shown later in this
book.

If you were to DRAW or XDRAW a shape in BASIC, you would set the
color, scale, and rotation before doing a DRAW 1 at 10,10. The location of the
shape table would have been indicated by poking the address to locations
decimal 232 and 233. These two locations are $E8 and $E9, respectively.

However, before calling the DRAW subroutine at $F601 or XDRAW at
$F65D, the pointers to the correct shape number must be set through a
subroutine that I call SHPTR (short for shape pointer). This subroutine
located at $F730 takes the shape number, which is inputted via the X-register,
and sets the pointers to the shape in locations $1A (lo byte) and $1B (hi byte).

This subroutine is deeply linked into the Applesoft interpreter. It calls
subroutines that increment the Applesoft ‘‘Get Next Character’’ Routine.
Although I don’t believe that this subroutine located at $B7 will cause any pro-

81

82

blems, before you clobber anything, I would pay attention to the chart of
available zero page locations in the Apple Reference Manual. Don’t touch the
locations used by Applesoft. You can also disconnect that routine by placing a
#860 (RTS) in location $B7 (its first location), but be sure to put the original
value, #$AD, back when you’re done, or you will hang the computer when it
returns the Applesoft prompt, and doesn’t understand anything that you type.
In short, don’t make the change unless you think it is causing you grief.

The second thing that must be set before calling the DRAW subroutine is
the internal cursor position, or where you want to plot your shape. This is easi-
ly accomplished with the HPOSN subroutine at $F411. Once the horizontal
and vertical locations are inputted, the subroutine sets locations $26, $27, $30,
and $E5 to begin plotting. When you finally call the DRAW or XDRAW
subroutine, the only inputs that are required are the rotation value in the Ac-
cumulator and the pointers to the correct shape that are stored at $1A and $1B
in the X and Y registers. It may sound complicated but if you examine the
following code, you will see that it is relatively straight-forward. The following
routine XDRAWs two shapes. The first, a square, is plotted at X =64, Y =64,
and the second shape, a cross, is plotted at X =128, Y =50. The scale is 4.

1 *PLOTS TWO APPLE SHAPE TABLE SHAPES
2 ORG $6000
3 HGR EQU $F3E2
4 HCOLOR EQU $F6FO
5 HPOSN EQU S$F411
6 XDRAW EQU $F65D
7 SHPTR EQU $F730
6000: 20 E2 F3 8 JSR HGR
6003: A9 00 9 LDA #$00
6005: 85 E8 10 STA $E8 ;LO BYTE OF SHAPE TABLE
6007: A9 08 11 LDA #$08
6009: 85 E9 12 STA $E9 ;HI BYTE OF SHAPE TABLE
600B: A2 03 13 LDX #$03 sWHITE
600D: 20 FO F6 14 JSR HCOLOR
6010: A9 02 15 LDA #$02
6012: 85 E7 16 STA $E7 ;SCALE
6014: A2 O1 17 LDX #$01 ;SHAPE #1
6016: 20 30 F7 18 JSR SHPTR ;SET UP POINTER TO 1ST SHAPE
6019: A2 40 19 LDX #$40 ;HOR LO
601B: A0 00 20 LDY #$00 ;HOR HI
601D: A9 40 21 LDA #$40 ;VERT
601F: 20 11 F4 22 JSR HPOSN
6022: A6 1A 23 LDX $1A ;LO BYTE SHAPE ADDRESS
6024: A4 1B 24 LDY $1B sHI BYTE SHAPE ADDRESS
6026: A9 00 25 LDA #$00 ;ROT
6028: 20 SD F6 26 JSR XDRAW
27 *PLOT SECOND SHAPE
602B: A2 02 28 LDX #$02 ;SHAPE #2
602D: 20 30 F7 29 JSR SHPTR ;SET UP POINTER TO 2ND SHAPE
6030: A2 80 30 LDX #$80 ;HOR LO
6032: A0 00 31 LDY #$00 ;HOR HI
6034: A9 32 32 LDA #$32 ;VERT

6036: 20 11 F4 33 JSR HPOSN

6039: A6 1A 34 LDX $IA ;LO BYTE SHAPE ADDRESS
603B: A4 1B 35 LDY $1B ;HI BYTE SHAPE ADDRESS
603D: A9 00 36 LDA #$00 ;ROT

603F: 20 5D F6 37 JSR XDRAW

6042: 60 38 RTS

--END ASSEMBLY-- 67 BYTES

Animating a shape is simple. You plot it once, erase it, move it to a new posi-
tion, and then replot it at its new position. The procedure is accomplished via a
loop. There is very little to say about the method. It is the same in Applesoft. I
think the only thing you should be aware of is that HPOSN doesn’t need to be
called twice, since the erase is done at the same screen position as the
XDRAW. In the example, shape #2 moves horizontally to the right, while
shape #1 is stationary. The move routine checks for wrap-a-round at X = #$FF
as it moves the shape across the screen. The flow chart and code follows.

DRAW SHAPE #1

DRAW SHAPE #2

ERASE SHAPE #2

l

MOVE SHAPE #2

SHAPE #1 SHAPE #2

C[Il: SHAPE @ $800

83

SHAPE TABLE:02 00 06 00 09 00 2C 3E 00 2C 2E 3E 3E 3C 2C 00
W L A S RV) —~—

| J | |

TWO OFFSET OFFSET SHAPE SHAPE #2
SHAPES TO TO #1
SHAPE SHAPE
#1 #2
1 ¥MOVES APPLE SHAPE TABLE SHAPE ACROSS SCREEN
2 ORG $6000
3 HGR EQU $F3E2
4 HCOLOR EQU $F6F0
5 HPOSN EQU $F411
6 XDRAW EQU $F65D
7 SHPTR EQU $F730
8 XLOW DS 1
6001: A9 05 9 LDA #$05
6003: 8D 00 60 10 STA XLOW
6006: 20 E2 F3 11 JSR HGR
6009: A9 00 12 LDA #$00
600B: 85 E8 13 STA $E8 ;L0 BYTE OF SHAPE TABLE
600D: A9 08 14 LDA #$08
600F: 85 E9 15 STA $E9 ;HI BYTE OF SHAPE TABLE
6011: A2 03 16 LDX #3$03 sWHITE
6013: 20 FO F6 17 JSR HCOLOR
6016: A9 04 18 LDA #3$04
6018: 85 E7 19 STA $E7 3 SCALE
601A: A2 01 20 LDX #$01 ;SHAPE #1
601C: 20 30 F7 21 JSR SHPTR ;SET UP POINTER TO 1ST SHAPE
601F: A2 40 22 LDX #$40 ;HORIZ POS LO BYTE
6021: A0 00 23 LDY #$00 ;HORIZ POS HI BYTE
6023: A9 50 24 LDA #$50 sVERT POS
6025: 20 11 F4 25 JSR HPOSN
6028: A6 1A 26 LDX $1A ;LO BYTE SHAPE ADDRESS
602A: A4 1B 27 LDY $1B ;HI BYTE SHAPE ADDRESS
602C: A9 00 28 LDA #3500 sROT
602E: 20 SD F6 29 JSR XDRAW
30 *PLOT SECOND SHAPE
6031: A2 02 31 LOoP LDX #$02 s SHAPE #2
6033: 20 30 F7 32 JSR SHPTR ;SET UP POINTER TO 2ND SHAPE
6036: AE 00 60 33 LDX XLOW ;HOR POS LO BYTE
6039: A0 00 34 LDY #$00 ;HOR POS HI BYTE
603B: A9 32 35 LDA #$32 s VERT POS
603D: 20 11 F4 36 JSR HPOSN
6040: A6 1A 37 LDX $1A ;LO BYTE SHAPE ADDRESS
6042: A4 1B 38 LDY $1B sHI BYTE SHAPE ADDRESS
6044: A9 00 39 LDA #$00 sROT
6046: 20 5D F6 40 JSR XDRAW ;DRAW SHAPE #2
6049: A9 50 41 LDA #$50
604B: 20 A8 FC 42 JSR $FCA8 sDELAY
604E: A2 02 43 LDX #$02 sSHAPE #2
6050: 20 30 F7 44 JSR SHPTR

45 *DON'T HAVE TO DO HPOSN BEFORE ERASE

46 *BECAUSE POSITION HASN'T CHANGED
6053: A6 1A 47 LDX $1A ;LO BYTE SHAPE ADDRESS
6055: A4 1B 48 LDY $1B ;HI BYTE SHAPE ADDRESS

6057:
6059:

605C:
605F:
6060:
60622
6064 :
6066
6068:
606B:

A9 00
20 5D

AD 00
18

69 05
C9 FF
DO 02
A9 OA
8D 00
4C 31

F6

49
50
51
52
53
54
55
56

58
59

LDA

JSR XDRAW

#3500

sROT
;sERASE SHAPE #2

*MOVE SHAPE TO NEW POSITION

SKIP

LDA
CLC
ADC
CMP
BNE
LDA
STA
JMP

XLOW

#$05
#$FF
SKIP
#3$0A
XLOW
LOOP

85

CHAPTER 4

HI-RES SCREEN ARCHITECTURE

The Apple II has two Hi-Res graphics screens, a primary and a secondary,
each with a resolution of 280 dots horizontally (columns) and 192 dots or lines
vertically. This gives an effective screen resolution of 53,760 picture elements
or pixels per screen.

The large number of pixels presented a dilemma to the Apple II designers.
Using one memory location for each dot would far outstrip the Apple’s 48K
memory; besides, they wanted to have two screens. Their solution was to
divide the screen horizontally into 40 groups of 7 pixels. Each memory location
would represent information for seven adjacent pixels. This lowered the
memory requirement to 7680 bytes per screen. Since it was easier to work in
8K blocks of memory, this left an unused 512 bytes of memory per page.

In 1977, when memory chips were expensive, most Apple II computers were
sold with only 16K of memory. With various monitor areas, zero page, the
stack, and the text page using the first 2K (2048) bytes of memory, it seemed
logical to place Hi-Res graphics screen # one at the upper end of memory, loca-
tions 8192 to 16383 ($2000- $3FFF). Screen # two of Hi-Res graphics was plac-
ed in the 8K block of memory just beyond locations 16384 to 24575 ($4000
-$5FFF). It was usable by owners who purchased extra memory. Both of these
screen’s locations are hardwired into the machine and, unfortunately, are not
relocatable. In those days, before DOS and Applesoft made their debut, In-
teger BASIC programmers whose machines contained 48K of memory could
start their program at the top of memory and write 32K of code.

Today, Applesoft programmers face the dilemma of where to place their pro-
grams without overwriting the information stored in the Hi-Res screen areas.
Since Applesoft loads a program immediately above the text screen which
begins at $800 or 2048 decimal, only small programs fit, if they are using Hi-
Res graphics commands. The solution is to set the Applesoft pointers so that
the program loads above the Hi-Res screen. Unfortunately, you waste the 6K
of usable memory between the operating system and the beginning of Hi-Res
screen one. In retrospect, what seemed to be a logical choice in 1977 is cumber-
some today. _

The Apple’s Hi-Res screen is considered memory-mapped. If you were to
change the values of the first 40 bytes of screen memory so that each turned on
all 7 pixels, then the screen would display a solid white line at the top. Chang-
ing any particular byte in Hi-Res memory directly affects the resultant picture.

87

88

Any byte in screen memory consists of a sequence of eight individual bits. If
a bit is on, it has a value of 1; if it is off, it has a value of 0. This on-off system of
numbers is called ‘‘Binary’’. Binary numbers, represented by strings of 0’s
and 1’s, have their least significant numbers starting at the right, as shown:

128 64 32 16 8 4 2 1
0 0 0 00001 =801

Each successive move of a bit to the left results in the value of the byte being
multiplied by two.

128 64 32 16 8 4 2 1
0 0 0 0001 0 =802

Eventually, the on bit would be shifted to the far left with a value of $80 or
128 decimal.

The Hi-Res screen’s convention is in reverse. Pixel values increase from left
to right. This can be verified by poking values into the primary screen’s first
memory location, $2000. To do this it, is best to enter the monitor with a
CALL -151 from BASIC. Hi-Res graphics with mixed text can be invoked
with the following commands:

% C050 <CR> SET GRAPHICS MODE
% C053 <CR> SET MIXED TEXT AND GRAPHICS
%k C057 <CR> SET HI-RES GRAPHICS

Most likely, the screen is not clear. Although an HGR from Applesoft would
clear it before entering the monitor, you should learn to perform this operation
from the monitor. Typing a 2000:00 <CR > will place a zero or no lit pixels in
the first screen location. Doing the following memory move shifts the 0 to all
other locations in a cascade effect on Hi-Res screen page one:

% 2001 <2000.3FFFM <CR > .

If you enter 2000:01 <CR>, a single dot appears at the top left. If you
enter 2000:02 <CR>, the dot moves one position to the right. A 2000:04
<CR > moves it right once again. Since seven dots are controlled by one byte,
you can do this seven times. The value $40 shifts it to the seventh position. If
you shift the dot one extra time with the value $80, nothing happens. This
eighth bit position doesn’t activate any pixels.

PIXEL POSITIONS BINARY
128 64 32 16 8 4 2 1
(@ [[T T [] st [0JoJoJoloJolo]1]
1@ T T T [Jso2 [0]0]0]0]0]0]i]0]
L] [® [[[]so4 [0]oJoJoJo[1]0]0]
]
-

[@J@®[@] [| [] so7 [O]oJojoJoli]i[1]
[| [@] T T 7 s8 [0JoJoJo[1]0]0]0]
lo/@]@[@] [[] sor [OJoJoJo[iJI[1]T]
(@/@]@/@[@] [] s1F [OJoJo[Ii[iJ1[i[1]
(0/o/@/@[@[®[@®] s7v [O[1[i[1[1[1]1]1]
LI I [[[[]Jso [T]o]JoJolo]o]o]0]
|o/o/@[e[@[@]@] s7F [T[I[T[T[T{1[1]1]

Rl

Rl

R

You can see from the diagram that 2000:07 turns on the first three pixels and
either 2000:7F (127) or 2000:FF (255) turns on all seven dots. As you shall see
shortly, the eight bit, the high bit or most significant bit, is used for color con-
trol. While it is not important to use the hi bit in black and white graphics, it
does explain why there is a WHITE1 and WHITEZ2, as well as a BLACK1 and
BLACK2. The difference between WHITE1 and WHITEZ is whether or not
the hi bit is set.

Those using a color TV as a monitor will notice that some of the lit pixels are
a violet like color (magenta) while others are green. The Apple II’s designers

89

90

alternated the colors every other column. The leftmost column in any row
always starts with violet if the high bit is off, followed by green in the next col-
umn. Thus, there are 140 violet-green pairs in any row. Since the leftmost col-
umn is column 0, violet pixels are always in even columns, (i.e., 0,2,4 ... 278).
Conversely, green pixels are always in odd columns (i.e. 1,3,5 ... 279).

There is a logical reason for alternating the Apple’s colors from column to
column. The pairs of colors are related to the square wave pulses in respect to
the colorburst reference signal in television receivers. If the Apple sends a pulse
that corresponds with the peak of the color signal, you get one color; if the pulse
corresponds to the low point of the color signal, you get the complementary col-
or. The Apple can send a pulse shifted 1/4 cycle (in between). That generates
two other complementary colors, also in adjacent pairs. I should note that this
arrangement is completely independent of the physical locations of the colored
phosphors on the television picture tube.

HI- BIT OFF (0)
VIiG|lV]GlV]|G|VI]Gg]|Vv]|c]|Vv]c]|Vv]c

$2000 $2001
0TH BYTE (EVEN) 1ST BYTE (ODD)

When the hi-bit is set in any byte, the pixel colors shift to blue (cyan) and
orange.
HI- BIT ON (1)
[BlojBl|o|B]o]B]OoTBJO[B]O[B]O
$2000 $2001
0TH BYTE (EVEN) 1ST BYTE (ODD)

When color is considered, there are three primary colors; green, blue and
red. Each primary color has a complement. These are magenta (violet),
yellow, and cyan (blue) respectively. If a primary color plus its complement are
projected on a screen, the result is white, as shown:

PRIMARY COLOR SECONDARY COLOR
GREEN + MAGENTA (VIOLET) = WHITE
BLUE + YELLOW = WHITE
RED + CYAN (LIGHT BLUE) = WHITE

What happens on a color monitor is quite similar. If only the first pixel is lit,
you get a violet dot. If only the second pixel is lit, you get a green dot. If the
first and second pixels are lit, the colors cancel each other and you get an
elongated white dot, which is actually two dots wide. The same is true with the
blue-orange pairs, except the hi bit is set. :

If you want to draw a solid line of one color over the length of the byte, you
must turn on the correct sequence of bits.

v/B |G/0| v/B| G/O| v/B| Gro| v/B |HI-BIT
OPT | $000r $80 | BLACK
°® °® °® °® $55 "VIOLET
) ® °® $2A GREEN
- o ® ®| @ [$D5 BLUE
Py o °® @ [$AA ORANGE
® 06 0| 0| @@ @| ® | OPT|$7For$FF| WHITE
t [2| 4] 8] 16| 32| 64| 128 |VALUE (DECIMAL)

EVEN BYTE

One of the first things you notice, is that although violet and green pixels can
be mixed in the same byte, violet and orange pixels can’t. The hi-bit is either
on or off. You must settle for combinations of violet and green, or blue and
orange.

Applesoft users might recall some of the color problems they have en-
countered in the past. If you were plotting an orange horizontal line starting at
column 0 that extended some 20 pixels across the screen and then attempted to
plot a white line vertically in column 0 that crossed that orange line, the first
few pixels would suddenly turn green. This is because the white color chosen,
WHITEI], turned the hi bit off.

The unfortunate result in choosing seven pixels per byte is that the starting
color of every other byte alternates. The even bytes start with violet, while the
odd bytes start with green. If you were to poke a $55 into location $2000, you
would get a violet line. But if you poked $55 into location $2001, you would get
a green line, as indicated below:

<
@

vic|v|c
® e [LA o o o

<
@
<
Q
<
Q
<
@

$55 @ location $2000 $55 @ location $2001

91

92

In order to correct this effect, the pixels in the second byte would have to be
shifted over one position so that the value of $2A would produce violet, as
shown below. We will continue this discussion later, when we discuss shape

tables.

G|V |G

G

G

G|V |G G

\4
o

\4
®

\4
o

\4
®

\4
o o

$55 @ location $2000

$2A @ $2001

The following table lists the values needed to display solid colored lines:

EVEN ODD
COLOR OFFSET | OFFSET
VIOLET $55 $24
GREEN $2A $55
BLUE $D5 $AA
ORANGE $AA $D5
WHITE $7F $7F
$FF $FF
BLACK $00 $00
$80 $80

It is an understatement to say that if you were to map the sequential memory
locations of the Hi-Res display, they would not map row by row down the
screen as you would expect the television’s raster scan to plot these pixels. To
illustrate this point, let’s plot white line segments on a screen by poking a $FF
or decimal 255 into each sequential byte of the Hi-Res page one screen

memory.

10 HGR : POKE -16302,0
20 FOR I = 8092 TO 16384
30 POKE 1,255
40 NEXT I

50 END

As you would expect, the computer plotted the first 40 bytes across row 0,
but the next 40 bytes appeared 1/3 of the screen below on line 64. The third
group of 40 bytes appeared 64 rows below that in the bottom third of the

screen. You would then expect the 4th line to plot directly below line 0 but no,
it appears as line eight. Soon the whole display fills up first by thirds, then in
groups eight lines apart. If the plotting is stopped with a control C when the
screen is half filled, you will notice that there are 24 groups of eight lines.

Perhaps the most frequently asked question about the Hi-Res screen is: Why
would the designers make programming the screen so difficult? In 1977, com-
puter components were much more expensive. In an effort to produce a com-
puter for a mere $1200, several short cuts were taken in the video circuits. Two
OR gates were saved by incorporating this strange interlacing with the televi-
sion’s raster scan.

If you look at the memory addresses for the beginning of each of the 192
screen lines, you begin to detect a pattern. The difference in base addresses
between any two lines in one of the 24 subgroups is + 1024 bytes, or $400. The
differences between each subgroup in each third of the screen is + 128 bytes.
And finally, the difference between lines between each third section is + 40
bytes.

93

LINE ADDRESS

0 $2000 8192 + 1024
& 1 $2400 9216 { BYTES
o 2 $2800 10240
& 3 $2C00 11264
Q /¢ $3000 12288 + 128
D 5 $3400 13312 BYTES
o 6 $3800 14336
2] 7 $3C00 15360

8 $2080 8320

(9 $2480 9344

: + 40 BYTES

: : : (THIRDS)
5 48 $2300 8960} + 1024
o |4 $2700 9984 § BYTES
?3‘ 50 $2B00 11008
g)5t $2F00 12032 + 128
2 52 $3300 13056 BYTES
o)53 $3700 14080
B[54 $3B00 15104
= 55 $3F00 16128
0. (56 $2380 9088} +1024
o [57 $2780 10112 § BYTES
O \ 58 $2B80 11136
&)59 $2F80 12160
8 Y60 $3380 13184
2 |6t $3780 14208
T [62 $3B80 15232
£ 63 $3F80 16256

64 $2028 8232

ETC

A formula can be derived from the preceding such that, given any line
number, the starting memory address for that line can be found. If Y is the line
number from 0 to 191, then the section of the screen that the line is in is A =
INT(Y/64). To find which subsection the line is in, use B = INT(D/8), where
D =Y -64%A. And to find which line Y is on within the subsection, use C

=D -8%B.

94

Memory Location = 8192 % SN + 1024k C + 128% B +40 %A

where SN = HI-RES PAGE # (1-2).

Thus, if Y =93 then A

If SN =1 then
memory Location = 8192 + 1024 %5 + 128%3 + 405 = 13796.
An assembly language implementation of this algorithm is shown below.

6009:
600C:
600D:
600E:
600F :
6010:
6011:
6014
6015:
6016:
6017:
6018:
6019:
601C:
601F:
6020:
6023:
6026:
6027:
6028:
6029:
602C:
602D:
602E:
602F:
6032:
6035:
6036:
6039:

8D 03

8D 05
AD 02

ED 05
8D 04

[YolNe IR NN WV, IF_ NN SR g

D
B
C

INT (93/64) = 1
93-64 =29
INT (20/8) = 3

-29-8%3 =5

*MEMORY ADDRESS FOR START OF SCREEN LINE

ORG
DS

DS

DS

DS

DS

DS

DS

DS

DS

EQU
EQU
LDA
LSR
LSR
LSR
LSR
LSR
STA
ASL
ASL
ASL
ASL
ASL
STA
LDA
SEC
SBC
STA
LSR
LSR
LSR
STA
ASL
ASL
ASL
STA
LDA
SEC
SBC
STA

$6000
1
1
1
1
1
1
1
1
1
$01
HIRESH+$01
Y ;Y=LINE #
sDIVIDE BY 32
A
sMULTIPLY BY 64
TEMP ; TEMP=64%*A
Y
;SET CARRY TO SUBTRACT
TEMP
D 3 D=Y-(64%*A)
;3 COMPUTE D/8
B s B=INT(D/8)
; COMPUTE 8*%B
TEMP ; TEMP=8%*B
D
sSET CARRY
TEMP s SUBTRACT TEMP
c ; C=D-(8%*B)

95

96

603C: A9 00 43 LDA #$00 sCLEAR WORKING REGISTER

603E: 8D 07 60 44 STA WORKL

6041: 8D 08 60 45 STA WORKH

6044: AD 06 60 46 LDA SN ;LOAD SCREEN #

6047: OA 47 ASL sMULT BY 32

6048: OA 48 ASL

6049: 0OA 49 ASL

604A: OA 50 ASL

604B: OA 51 ASL

604C: 8D 08 60 52 STA WORKH ;STORE IN HIGH ORDER
604F: AD 04 60 53 LbA C ; LOAD C

6052: OA 54 ASL s MULTIPLY BY 4

6053: OA 55 ASL

6054: 6D 08 60 56 ADC WORKH ; ADD TO PREVIOUS HI ORDER
6057: 8D 08 60 57 STA WORKH ; STORE BACK IN HI ORDER
605A: AE 03 60 58 LDX B s RECALL B

605D: E8 59 CONT INX

605E: CA 60 DEX

605F: FO 14 61 BEQ SKIPO ; CHECK FOR B=0

6061: CA 62 DEX

6062: FO OC 63 BEQ SKIP1 ; CHECK FOR B=1

6064: CA 64 DEX

6065: A9 01 65 LDA #3$01 ; ADD 1 TO HIGH ORDER
6067: 6D 08 60 66 ADC WORKH

606A: 8D 08 60 67 STA WORKH

606D: 4C 5D 60 68 JMP CONT s CONTINUE COUNTING
6070: A9 80 69 SKIPL LDA #$80 ;LOAD ACC WITH 128
6072: 8D 07 60 70 STA WORKL ; ADD TO LOW ORDER
6075: AD 01 60 71 SKIPO LDA A 3 RECALL A

6078: OA 72 ASL ; MULTIPLY BY 32

6079: OA 73 ASL

607A: OA 74 ASL

607B: OA 75 ASL

607C: OA 76 ASL

607D: 6D 07 60 77 , ADC WORKL ; ADD TO LOW ORDER
6080: 8D 07 60 78 STA WORKL s STORE BACK IN LOW ORDER
6083: AD 01 60 79 LDA A ; RECALL A

6086: OA 80 ASL ; MULTIPLY BY 8

6087: OA 81 ASL

6088: OA 82 ASL

6089: 6D 07 60 83 ADC WORKL ; ADD TO LO ORDER
608C: 8D 07 60 84 STA WORKL

608F: AD 08 60 85 LDA WORKH ; MOVE RESULTS TO ZERO PAGE
6092: 8D OA 60 86 STA HIRESH

6095: AD 07 60 87 LDA WORKL

6098: 85 01 88 STA HIRESL

609A: 60 89 RTS

-~END ASSEMBLY--

This implementation is rather lengthy in that it takes 79 instructions. It was
chosen more for its clarity rather than for its speed. Notice that the multiplica-
tions are tricky, and that 40k A is split into two easier multiplications,
(8 +32) %k A. A much faster algorithm, taking only 24 instructions to calculate
the screen position for the Yth line, and an additional 18 instructions for the X

offset, is listed in the Programmer’s Aid Chip at $D02E under the label
HPOSN. It is also listed under HPOSN in the Applesoft ROM at $F411. The
Y coordinate is placed in the Accumulator, the lo byte of the X coordinate in
the X- register, and the hi byte in the Y- register. The screen position is return-
ed in HBASL and HBASH in zero page locations $26 and $27, respectively.
HMASK is stored in $30.

I would like to make the point that even 24 instructions is far too many if you
are doing fast screen animation. Consider the problem of simply plotting a
moving star background for your space game. Twenty stars are scattered about
the screen. It takes 480 instructions just to locate the starting memory locations
for each line where the star is to be plotted. This doesn’t even consider the
algorithm needed to decide which pixel in which of 40 bytes on the line needs to
be activated. Clearly, a much faster method must be devised. That method is
called Table Lookup, and it will be thoroughly discussed in the next chapter.

The X coordinate calculation is much clearer, since the 40 bytes in each line
are stored sequentially in memory. Recalling that there are 7 bits per byte
times 40 bytes per line gives us 280 bits per line.

Given X, the byte offset is
E = INT (X/7).
and the position within the byte is
F =X - 7%E
For example, if the X coordinate is 152
E = INT (152/7) = 21 and F = 152 -7 %21 = 5.

So, for the screen coordinate (152,93), the memory
location is 13896 + 21 = 13917, the 5th bit activated.

While the formulas for finding the proper byte and bit positions for the X
direction are rather simple; dividing by seven normally requires a complicated
divide subroutine. Again, speed is a problem. Although I’ll present a complex
subroutine below to accomplish the job, it is much faster and simpler to resort
to Table Lookup algorithms. Still, it is a matter of trade-offs, using speed ver-
sus memory. The tables require 384 bytes plus some code; the subroutine re-
quires only the code.

The subroutine below accepts the X coordinate as a hexadecimal value in the
A and X registers. The X register contains the hi byte value. It returns the
horizontal byte offset in the Y register and the bit position within that byte in
the Accumulator. The theory behind the algorithm is rather simple, but the im-
plementation is complicated because to divide the X position (0-279) by 7 to
obtain the horizontal offset is tedious in machine language, in addition to being

97

98

complicated by the use of a double precision X value (X values >255 require

two bytes).

The division is accomplished by successive subtraction. The idea is subtract
140 to find which half of the screen the point lies, then narrow it to which
quarter of the screen. When we have located the position within four bytes,
seven is subtracted successively until a zero is crossed. The remainder is the bit
position within that screen byte. The hexadecimal plotting value is returned

from a table.

XCOR LDY
DEX

BNZ
SUB
LDY
BNZ
XCOR2 SEC
SBC
BCC
LDY
BNZ
XCOR3 ADC
XCOR4 SEC
SBC
BCS
ADC
JMP
XCOR5 PHA
TYA
CLC
ADC
TAY
PLA
XCOR6 SEC
SBC
BCS
CLC
ADC
JMP
XCOR7 PHA
TYA
CLC
ADC
TAY

#$00

XCOR2
#$FC
#$24
XCOR8

#$8C
XCOR3
#$14
XCOR4
#$8C

#$46
XCOR5

#$46
XCOR6

#$0A

#$23
XCOR7

#$23
XCOR8

#3$05

;TEST IF X COORDINATE >255. X COORDINATE
;WOULD CONTAIN A ONE IF TRUE

;TEST FOR SPECIAL CASE

; SUBTRACTS LARGEST MULTIPLE OF 7 IN 255
s SET PROVISIONAL QUOTIENT

;LEFT OR RIGHT HALF SCREEN?

;RIGHT HALF, SET QUOTIENT

;WHICH QUARTER OF SCREEN

;SKIP TO 8THS STAGE
;SAVE ACC
;GET QUOTIENT

; INCREMENT FOR QUARTER

;WHICH 8TH OF SCREEN?

; RESTORE DIVIDEND

; INCREMENT FOR EIGHTS
; RESTORE QUOTIENT

PLA
XCOR8 SEC
SBC #$07 ;NOW KEEP SUBTRACTING 7
BCC XCOR9 ;UNTIL ZERO IS CROSSED
INY
- BNZ XCOR8
XCOR9 CLC
ADC #$07 ;RESTORE TO GET REMAINDER
TAX
LDA BITS,X;GET BIT FROM TABLE
RTS
BITS HEX 01 02 04 08 10 20 40 ;BIT POSITION TABLE

To complete the discussion of the Hi-Res screen’s architecture, I'd like to
mention what happened to the 512 unused bytes in Hi-Res screen memory. Se-
quential memory is plotted in lines separated into thirds on the screen. The top
line of the bottom third (line #128) uses memory locations 8272 through 8311.
It then jumps to the top of the screen, but eight lines down, or line #8. These
forty memory locations are 8320 through 8359. Notice there is a gap of eight
unused bytes. These unused bytes are at the end of every line in the bottom
third of the screen. These 64 lines times 8 bytes accounts for the missing 512
memory locations.

99

100

RASTER GRAPHICS

Programmers talk about Raster Graphics and Vector Graphics on the Apple
II. In reality, due to the nature of the hardware, vector graphics is a misnomer.
Television sets and monitors are raster scanners. Starting at the top of the
screen, they scan one line at a time and turn pixels on or off as needed. True
vector graphics generators have an electron gun that can move in any direc-
tion, so that the beam draws directly between end points.

What is meant by Vector Graphics on the Apple is that a line consisting of a
string of pixels is drawn by the television’s raster scan. However, raster
graphics differs in that entire bytes representing parts of the shape or line are
placed into Hi-Res memory locations to obtain a Hi-Res picture. You don’t
deal in individual pixels per se, but in manipulating Hi-Res shapes a byte at a
time. The entire shape is plotted as a block. In some literature, it is referred to
as the block shape method.

RASTER SHAPE TABLES (PROS AND CONS)

Raster Graphics shape tables, which are bit-mapped shape tables, differ
substantially from Apple’s Hi-Res shape table routines. Apple’s shape table
routines, as described in Chapter 1, are plotting vectors that control direction
of either plot or no-plot commands. These shape tables can be scaled, rotated,
or colored entirely to one of six Hi-Res colors. Bit-mapped shapes, however,
are precise instructions used to determine which pixels to activate in a par-
ticular section of the screen. Although the shape’s detail and color control are
superior, they can’t be easily scaled or rotated.

At first glance, the pros and cons of using one versus the other appear to be a
toss up, but the real advantage in using bit-mapped shape tables is the speed of
implementation. Placing a bit-mapped shape table on the screen involves only
moving bytes of that table stored in memory to the specific screen memory
locations where you want that shape to be drawn. Apple shape tables, on the
other hand, require time-consuming machine language routines to translate
these plotting vectors into a shape on the screen.

FORMING A BIT MAPPED SHAPE TABLE

The shape’s size must be decided before forming a bit-mapped shape table.
A shape can be as large as the entire screen, or as small as one byte wide by one
line deep. But in each case, the shape’s width is N bytes wide, or a multiple of
seven pixels wide. A shape doesn’t have to be 7,14,21... pixels wide, but if a
shape were, say, 16 pixels wide, it would require a width of 3 bytes. The re-
maining five pixels would be zeroed.

The second step is to plot the shape’s pixels on a sheet of graph paper. A
rocket whose shape table can be used later for an arcade game is shown below.

1st Byte 2nd Byte 3rd Byte

®

00

® 00

/00 e

/000 o0 o000 0000 00

o 0000 00O|O0OGOGOG O 00

o/ 0000000 o0000OOGOGOOGGOGES
o0 00000000 0|0OCOGOGOGOG O

WHITE SHIP

As a first example, we shall plot this shape in white, thus ignoring color pro-
blems for the time being. Recall that the color white is produced when adjacent
violet and green pixels, or blue and orange pixels, are activated simultaneous-
ly. To produce a white ship, all of the pixels will be used to form the table.
Some of the readers will question whether the ship is entirely white where bytes
have an odd number of pixels, such as in the first and third lines. If you took a
magnifying glass to the ship’s shape on the TV screen, you would see fringes of
violet or green at the edges of an otherwise white ship. This, of course, would
not matter on a black and white monitor.

For those that have difficulty converting pixel patterns into hexadecimal
values, it is easier if you split the byte’s seven bits into a 4-3 pattern.
Remember that the right most three dots plus its hi bit is the first part of the
byte, or ‘‘hi nibble’’, as four bit halves of a byte are called.

1 2 3 4|5 6 7 PIXEL POSITION
® L AN @ 4—
HI BIT

101

102

Encoding the rocket’s first byte, the first row is as follows:

1 2 3 4 | 5 6 7 PIXEL POSITION

° “—
Lyt BT

1 2 3 4 | 5 6 7 PIXEL POSITION

L\
HI BIT

The rocket ship’s shape table becomes:

01 00 00
03 00 00
07 00 00
OF 00 00
7F 7F 00
7F 1F 07
7F - 7F 1F
78 7F 7F

Producing a shape table for the same ship in a particular color presents a
more difficult problem. To produce a violet color, all of the green pixels (or
those dots in odd columns) must be suppressed. The revised drawing of the
ship’s shape table is shown below.

VIOLET SHIP
(EVEN OFFSET)

e

o -

® -0

@ -0-

® 0 -0 0-06-0/-0- /0

® -0 :-0-0-0-0- -0

® -0 -0 -0/ -0-0-0-|0-0¢-|0
@@ ® -0 -0 -|O-|0-(0-|0

VGV GV VGV GV GV VGV GV v

where @ — indicates pixel on
— indicates suppressed dots of original shape

Taking the 5th row, 1st byte as an example:

PIXEL POSITION

1 3 4015 6 7
® @ ® ®
\./V\\/

$55

<«
HI BIT

The complete shape table for the violet colored space ship is:

01
01
05
05
35
35
35
50

00
00
00
00
2A
0A
2A
2A

00
00
00
00
01
05
15
55

103

104

At this time it would be instructive to actually plot both white and violet
space ships on the Hi-Res screen. This can be done by poking the appropriate
bytes into Hi-Res memory.

When we talked about how the screen was mapped, we showed the starting
addresses for the first eight lines of the screen. The starting addresses of each
line are 1024 bytes or $0400 apart. Enter the monitor with a CALL - 151,
then turn on the Hi-Res graphics page 1 and clear the screen as follows:

% C050 <CR> ;SET GRAPHICS MODE

% C053 <CR> ;SET MIXED TEXT & GRAPHICS
% C057 <CR> ;SET HI-RES GRAPHICS

% 2000:00 <CR>

% 2001 <2000.3FFFM <CR> ;CLEAR PAGE 1 GRAPHICS

Now poke in the shape table for the white ship. It will appear at the upper
left corner of the Hi-Res screen.

% 2000:01 0000
% 2400:03 0000
% 2800:07 0000
% 2C00:0F 0000
% 3000:7F 7F00
% 3400:7F 1F07
% 3800:7F 7F1F
% 3C00:78 7F7F

A white ship appears. Now clear the screen and poke in the shape table of the
violet ship. The violet ship’s table starts at the screen’s far left, which is the Oth
byte or offset into a particular 40 byte row. Since 0,2,4 are considered even
numbers, this is an even offset. As an experiment, poke the violet ship’s values

into an odd offset, one byte over. First, clear the screen, then type the follow-
ing:

%2001:01 0000
%2400:01 0000
%2800:05 0000

Instead of a violet ship, you get a green space ship. This is because the even
offsets start with violet as the first pixel, and the odd offsets start with green.
Turning the first pixel on in the odd byte no longer turns on a violet dot, but a
green dot. The solution is to use two sets of shape tables; one for even offsets
and one for odd offsets. Another solution would be to shift the shape’s bit
pattern one bit when going from even to odd offsets; however, this is too time
consuming for fast animation.

OTH OFFSET(EVEN) IST OFFSET(ODD)

o

[1)

@@

@O .

@ 0. (O - @0|-0 -0 -0:°]0

@ @O @l ® @ L IENT)

0|0 |@® O 000100 -@

¢ @ |@|*|®||® O -:]O -0 0- -0

VGVGVGVGVGVGVGVCVGVGVGVGVGVG

If the original (white) ship’s shape is placed so that it begins in an odd offset
(above diagram), and the green-columned pixels (the odd columns) are sup-
pressed, the shape becomes:

00 00 00
02 00 00
02 00 00
0A 00 00
2A 55 00
2A 15 02
2A 55 0A
28 35 2A

The first thing that you notice is that the two plotted shapes (even and odd)
aren’t identical. This can be observed by plotting the even offset table beginn-
ing at $2000, and the odd offset table beginning at $2005. You will see that the
odd offset ship is slightly shorter and the peak of the tail lacks a pixel in row
one. This is caused by a lack of symmetry.

This problem can be partially remedied by planning the shape so that the
violet column and its adjacent green column are identical in form. For exam-
ple, if an extra pixel were placed in row 1, column 2 of the orginal white shape
of the ship, the peak of the tail would look identical for both the even and odd
offsets.

To reinforce the concept of keeping a shape symmetrical and identical while
moving it a byte at a time to the right or left, we will consider the following
shape, a green alien:

105

106

V6V GV GV GV GVGEGV G HEX

e 1@ @ |O® 28 01
e @@ |® 28 01
EVEN - @ | @ 08 01
OFFSET |, o ' @ T) 22 04
(GREEN) | 4 o .| @ ! @ 22 04
@ e | @ e | ® 22 04
@ o | @ | @® 22 04
v | @ | @ v | @® 22 04

G VGV GV GV GV GV GV HEX
® 10 O 54 00
L JENL JENE 1 54 00
ODD Q. C 0 44 00
OFFSET |@] o Qo . o - 11 02
(GREEN) | @] » ® . @ - 11 02
@ ® - @ 11 02
@ - Q- @® - 11 02
@ @ - @ 11 02

The even and odd offset shapes have been plotted directly below each other
to show that the shapes are indeed identical, but the lower shape has been
shifted one dot to the left. This effect is inherent in the hardware, because the
colors alternate from column to column. Black and white shapes, however,
don’t require any shifts and, therefore, do not need both odd and even shape
tables.

It is important to design your shape with pixels of double width. Otherwise,
when you block out the columns of the non-needed color, part of the shape may
be absent in the designated color. While this isn’t likely to happen if you form
shape tables by hand, those ambitious programmers who write a utility to do
this automatically might be surprised when plotting their utility generated
shape tables.

What we have discussed so far is fine for simply plotting a shape on the
screen, or even moving a shape left or right one byte or seven pixels at a time.
But what would happen if you wanted to move a shape only one pixel or one
horizontal position to the rightp If the shape is moved to the right, it no longer
has the same bit patterns in each byte.

Consider the alien shape plotted entirely in whlte Each time it is shifted
right it forms a new bit pattern. By the sixth rightward shift, only the first col-
umn of the shape remains in the first byte. Shift it right once more, and we are
back to the beginning pattern, but one entire byte to the right.

o000 0|0
o000 |O0|O White - Oth Shift
L JL o0
(I) L 3 L L
o0 o0 L 3)
[2 J L () o0
L 3L oo L 10
(2 oo LI
o/0/00|00
0000 O White - 1lst Shift
o0 o0
e o0 LIl J
o0 o0 LI
e o0 L L
o0 L 3L oo
LI L JL) o0

Since the width of a byte is seven pixels, there are seven shifted tables (0-6)
for each of the seven positions. When the shape is shifted the fifth time, the pix-
els extend into a third byte. This requires each of the seven shifted tables to be
three bytes wide.

107

108

White — 6th Shift

Color shape tables, as you might have guessed, have a similar logic for odd
and even offsets. But, as we shall demonstrate, only seven offset tables are
needed rather than the expected fourteen.

If you take a simple horizontal line, six pixels wide, as a shape and form a
shape table for its green color, you would always have three green pixels lit. As
you shift this line over the seven positions, starting first with the even offset,
then continuing over the odd offset, you will notice a pattern. Every other time
that you shift, the pixel pattern remains the same.

If you were to shift this shape to the right one column for each screen cycle
using 14 shape tables, the shape would remain static for two cycles, then move,
then stay put for two, then move once again. This produces a very Jjerky mo-
tion. Since the shape tables duplicate themselves in pairs, it would be easier to
use the Oth even, 2nd even, 4th even, 6th even, 1st odd, 3rd odd, and 5th odd
for a total of 7 shifted tables. The 6th odd shape in the above figure, which ap-
pears to be the eighth shape, isn’t. It is actually a duplicate of the Oth even
shape, but beginning at the next even-odd pair.

In summary you have learned how bit-mapped shape tables are formed. In
the next chapter, we shall learn how to draw and animate these shape tables.

G vV G V

v 6V G6GVG6GVG6V GV GV 6V GV GV

EVEN

s @+ @
fl-|@®-|@® - @

{

{

Saef...g..

ame)| * @] < [@] <]@®

45 e @ @ @
Q-

o
o] & | o
9000 ~
o | o) o| @ o
000 0o
o o e} © a.
LI N i
o | o =1
o[- |
]
0
£ 8 T T £ £ 60 A &8 @ P s oo ou
f o > B = S T~ = I/, N~ Vi S e]
O —~ N M 3 N © O O —~ N M F NP

109

CHAPTER 5

BIT MAPPED GRAPHICS

Drawing a bit-mapped shape table anywhere on the Hi-Res screen is a sim-
ple procedure once the basic concept is understood. The shape table is stored
sequentially in memory, either by rows or by columns. The technique,
therefore, is to load each of the bytes, one at a time, into the Accumulator, find
the position in memory for the screen location where you want to plot that byte,
then store it in that memory location.

ABC
DEF A|B|C|D}JE|F

Shape
Shape Table
in memory

HI-RES SCREEN

The difficulty, as shown in the previous chapter, lies in finding a particular
memory location, given an X,Y screen coordinate. Speed is the critical factor
in doing arcade animation; therefore, a technique known as Table Lookup is
used to locate the starting address of any single line on the Hi-Res screen.

Each of the 192 screen lines has a starting address for the first position (left
most) or the Oth offset. The first line or line #0 is located in memory at location
$2000. The second line is at $2400, etc. Each address takes two bytes. The first
part is the hi-byte, which in the later case is $24. The second byte, $00 ,is the
lo-byte. These can be separated into two tables, one containing the lower order
address of each line (call it YVERTL) and the other containing the higher
order address of each line, YVERTH. Each table is 192 bytes long (0-191).

You can access any element in either table by absolute indexed addressing.
The effective address of the operand is computed by adding the contents of the
Y register to the address in the instruction. That is:

EFFECTIVE ADDRESS = ABSOLUTE ADDRESS + Y REGISTER.

111

If our YVERTH table were stored at $6800 and we wanted to find the start-
ing address of line 1 (remember lines are numbered 0-191), we would index in-
to the table one position and load that value into the Accumulator,

6800:20 24 28 2C 30 34 YVERTH TABLE

so LDA YVERTH,Y where Y =$01 will fetch the value $24 from memory
location $6800 +$01 = $6801, and place it in the Accumulator.
Similarly, if YVERTL were stored immediately after the first table, then:

68C0:00 00 00 00...................... Y VERTL TABLE
Y Register = $01

LDA YVERTL,Y will take the value $00 stored in memory location
$68C0 + $01 = $68C1, then place it in the Accurnulator.

Eventually, we will want to store the first byte from the shape table into
memory location $2400. This can be done efficiently if the two byte address is
stored sequentially in zero page. Let’s store the lo byte half of the address,
HIRESL, at location $26, and the hi byte half, HIRESH, at location $27 in

zero page:

LDY #$01 ;Y REGISTER CONTAINS LINE
LDA YVERTH,Y ;LOOKUP HI BYTE OF START
;OF ROW IN MEMORY

STA HIRESH ; STORE ZERO PAGE

LDA YVERTL,Y ;LOOKUP LO BYTE OF ROW IN
s MEMORY

STA HIRESL ; STORE ZERO PAGE

We can change a particular Hi-Res screen memory location using zero page
by indirect indexed addressing in the form:

STA (HIRESL),Y Y Reg =$03
If the computer finds a $00 in location $26 (HIRESL) and a $24 in location

$27 (HIRESH), then the base address is $2400. The Accumulator stores a
value into memory location $2400 + $03, or location $2403, as shown:

112

INDIRECT INDEXED ADDRESSING

STA (HIRESL),Y
o~~~

INDIRECT ADDRESS

. $26 | $00 |} HIRESL
Y | $03 5
$27 | $24 | \HIRESH
"5 < <

$2400 BASE ADDRESS

e
N

<

$2403 | $FF | EFFECTIVE
ADDRESS

The final addressing mode that we must consider is Indexed Indirect Ad-
dressing. It is of the form:

LDA (SHPL,X)

It is very similar to the the Indirect Indexed addressing mode except the in-
dex is added to the zero page base address before it retrieves the effective ad-
dress. It is primarily used for indexing a table of effective addresses stored in
zero page. But in the form we are going to use it, the X register is set to 0; thus,
it simply finds a base address:

113

114

INDEXED INDIRECT ADDRESSING

LDA (SHPL,X)
(O, o)

\ INDIRECT ADDRESS
+

X [$00 / $50 | $20 | LO BYTE

$51 | $70 | HI BYTE
A {$55
DATA $7020 | $55

The reason we must use this second form of indirect addressing is a shortage
of registers in the 6502 microprocessor. We are already using the Y register in
the store operation and there isn’t an indirect indexed addressing mode of the
form LDA (SHPL),X. Thus, we must go to the alternative addressing mode
LDA(SHPL,X).

What this all boils down to is that we want to load a byte from a shape table
into the Accumulator and store it on the screen with the following instructions:

LDA (SHPL,X) ;STORE BYTE FROM SHAPE TABLE
STA (HIRESL),Y ;STORE BYTE ON HI-RES SCREEN

We can index into the shape table by incrementing the low byte SHPL by
one each time, then store that byte into the next screen position on a particular
line by incrementing the Y register. This zero page method is faster than doing
the equivalent code with absolute index addressing, because two byte addresses
can be handled with fewer instructions, less memory space, and with fewer
machine cycles.

Obviously, a generalized subroutine must be developed to find the screen
memory address (HIRESL & HIRESH), given a line number and a horizon-

tal displacement. We will call this subroutine GETADR, short for Get Ad-
dress:

0 1

HORIZ. OFFSET

P wWwN - O

191

234567J\/3839

Each time a row of shape table bytes is transferred to successive memory
locations on the Hi-Res screen, the program will call the subroutine
GETADR. The line’s starting memory address is then offset by the horizontal
location of the shape on the screen.

Memory address = Line # starting address + horizontal offset

GETADR LDA
CLC
ADC
STA
LDA
STA
RTS

YVERTL,Y ;LOOK UP LO BYTE OF LINE

HORIZ ;ADD DISPLACEMENT INTO LINE
HIRESL ;STORE ZERO PAGE

YVERTH,Y ;LOOK UP HI BYTE OF LINE
HIRESH

where the Y register has the vertical screen value (0-191).

If you are designing an arcade game, you will probably have several dif-
ferent shapes on the screen at the same time. Perhaps your defending space
ship is paddle-controlled to move vertically but always remains at one par-
ticular horizontal offset; while the aliens, attacking in zig-zag fashion, always
move horizontally from one side of the screen to the other. Keeping track of
each shape’s variables, which are inputted into a generalized drawing routine,
is more easily done if a setup subroutine is incorporated into your program.
This assures that you haven’t forgotten to initialize anything before entering
the drawing subroutine.

115

116

Only a few variables need to be defined in the setup routine: the location of
the shape table, the horizontal displacement on the screen, and the width and
depth of the shape.

The following example is for the space ship that we designed a shape table
for in the last chapter. A word on the notation used for determining the lo and
hi addresses for the shape called SHIP is suitable here. In the TED II + and
BIG MAC assemblers from CALL APPLE, MERLIN from Southwestern
Data Systems, and TOOL KIT from Apple, LDA #<SHIP obtains the lower
order address of the table called SHIP. LDA #> SHIP returns the higher order
byte of the address. In the LISA assembler from ON-LINE Systems, LDA
#SHIP loads the lower order byte and LDA /SHIP loads the higher order byte,
as shown:

*SHIP SETUP
SSETUP LDA #<SHIP ;LOAD LOWER ORDER BYTE OF SHAPE TABLE
STA SHPL
LDA #>SHIP ;LOAD HIGHER ORDER BYTE OF SHAPE TABLE
STA SHPH '
LDA #3$08
STA DEPTH ;SHAPE IS 8 LINES DEEP
LDA #$09
STA HORIZ ;SHAPE STARTS IN 10TH COLUMN
LDA #$03

STA SLNGH ;SHAPE IS 3 BYTES WIDE

STA TEMP ;STORED HERE ALSO BECAUSE DRAWING
;ROUTINE DECREMENTS SLNGH ON EACH
;LINE AND VARIABLE MUST BE RESTORED
;AT START OF NEXT ROW

RTS

The drawing routine is more efficient the fewer times it accesses the
GETADR subroutine. Therefore, it is much faster to load and store on the
same screen line until the end of the shape’s width is reached. Drawing our
spaceship a byte at a time across its width will only require calling GETADR
Eight times. But if we plotted down instead, GETADR would be called for
each byte, or 24 times, an unnecessary waste of time.

As we load and store across a particular screen line, we decrement SLNGH,
the ship’s width until SLNGH equals zero. When we are finished with a row,
we increment TVERT to the next screen line down and decrement the
DEPTH. When DEPTH reaches zero, we have plotted all rows of the shape
and we are finished.

INPUT:

SHAPE ADDR: SHPL,SHPH

X POSITION: HORIZ

DEPTH OF SHAPE: DEPTH

WIDTH OF SHAPE: SLNGH
& TEMP

—>| PUT TVERT(vertical pos.)IN Y REG.

JSR TO GETADR
RETURN WITH HIRESH,HIRESL

!

[RESET SLNGH = TEMPJ

l

GET BYTE FROM SHAPE TABLE
- LDA (SHPL,X)

PLOT ON SCREEN
STA (HIRESL),Y

INC POINTER TO NEXT
SHAPE IN SHAPE TABLE
SHPL = SHPL + 1

NEXT SCREEN POSITION

INY
ISLNGH = SLNGH ’_EJ Map of elements in
o shape table as they
*'—-__"I TS SLNGH = 07 | appear on the screen
} yeS
TVERT = TVERT + 1 0 1 2
DEPTH = DEPTH - 1
3 4 5
nol
< { 1S DEPTH = 0 7| 6 7 8
yes
Y 9
mNE * 00

117

118

o
=
o
o

DRAW LDY
JSR

LDX
LDA
STA
DRAW2 LDA
STA
INC
INY
DEC
BNE
INC
DEC
BNE
RTS

TVERT
GETADR

#$00

TEMP

SLNGH
(SHPL,X)
(HIRESL),Y
SHPL.

SLNGH
DRAW?2
TVERT
DEPTH
DRAW

—— i —— ——— ——— —— v

PLANE

I ! I 1
| SLNGH | |

; VERTICAL POSITION
; FIND BEGINNING HI-RES SCREEN ADDRESS
;OF ROW

;RESTORE VALUE OF WIDTH FOR NEXT ROW
;GET BYTE OF SHAPE TABLE

;PLOT ON SCREEN

; NEXT BYTE OF SHAPE TABLE

s NEXT POSITION ON SCREEN

; DECREMENT WIDTH

; FINISHED WITH ROW YET?

; IF SO, INCREMENT TO NEXT LINE
; DECREMENT DEPTH

s FINISHED ALL ROWS?

;YES, END

Although the first row of the shape can be plotted at any TVERT (0-191)
position, if TVERT began at 190, the computer would attempt to plot the third
line at TVERT, which would equal 192. Indexing into the table that far would
most likely produce garbage, as you would index beyond the end of the table.
You should be always careful that:

TVERT < = 192 - DEPTH

A simple test somewhere before the draw subroutine would suffice. Normal-
ly, this should be incorporated into a paddle read-routine. This will be discuss-
ed further in the next chapter.

XDRAWING SHAPES

Objects that move on the screen are shifted in position by erasing the object’s
first position before drawing it at its new position. The simplest method to ac-
complish this is to draw the shape by exclusive-oring it before shifting it.

The exclusive-or instruction (EOR) is primarily used to determine which
bits differ between two operands, but it can also be used to complement
selected Accumulator bits. The way it works is elementary. If neither a par-
ticular memory bit or Accumulator bit is set or their values are zero, the result
is zero. If either one is set, then the result is on. But if both are set, they cancel
and the result is zero.

MEMORY BIT ACCUMULATOR RESULT BIT IN
BIT ACCUMULATOR
0 0 0
EOR 0 1 1
1 0 1
1 1 0

If we take a byte on the screen and EOR it with the same byte

0110011 SHAPE ON SCREEN
EOR 0110011 SHAPE
0000000 RESULT

from the shape table, the result is zero or a screen erase. A similar effect would
happen if a blank screen were EORed with a shape then EORed once again.

0000000 BLANK SCREEN
EOR 0110011 WITH SHAPE
0110011 RESULT IS SHAPE ON SCREEN
EOR 0110011
0000000 RESULT IS BLANK SCREEN

Another use for EORing is that it doesn’t damage the background if a shape
is EORed on the screen, and then off again. However, it does distort the shape
slightly.

119

120

EOR

EOR

0000001 BACKGROUND
0101100 WITH SHAPE
0101101 RESULT ON SCREEN (SHAPE
DISTORTED LAST BIT)
0101100 WITH SHAPE
0000001 GET BACKGROUND BACK

In the above example, an extra pixel in the shape’s last bit position distorts
the shape drawn on the screen. In the example below, the fourth bit position
becomes a hole in the shape.

EOR

EOR

0001000 BACKGROUND

0101100 WITH SHAPE

0100100 RESULT ON SCREEN
A hole here

0101100 WITH SHAPE

0001000 GET BACKGROUND BACK

There are techniques to avoid distorting the shape wherein the background
is likely to interfere during the drawing process. This involves a combination of
EORing and ORing the Hi-Res screen, with the background stored on a sec-
ond Hi-Res screen. An alternate method is to store the screen memory bytes in
a temporary table equal in size to your shape, while you draw your shape.
When erasing, you replace the shape with the background stored in your temp-
orary table. This is a little complicated, but it works. An example using this
method is presented at the end of this chapter.

The OR memory with Accumulator (ORA) instruction differs from the
EOR instruction in that if both memory and Accumulator bits are on, then the
result is one, or on.

MEMORY BIT ACCUMULATOR RESULT BIT IN
BIT ACCUMULATOR
0 0 0
ORA 0 1 1
1 0 1
1 1 1

If the background were as follows, and you ORed it with the shape, the
shape is correct.

BACKGROUND PAGE 1

0 10
1 00 WITH SHAPE

1010

ORA 1110

1111010 GETSHAPE + BACKGROUND WITH
NO HOLE IN SHAPE

Unfortunately, if you EOR this result with the shape again, the background
is flawed.

1111010 SHAPE + BACKGROUND
XOR 1111000 WITH SHAPE
0000010 FLAWED BACKGROUND

Another solution is to take the shape with the background above and EOR it
with itself, then EOR it with the background stored on page 2. However, it is

probably quicker and easier to just copy the background stored on page 2
directly to screen 1.

1111010 SHAPE + BACKGROUND
XOR 1111010 WITH ITSELF
0000000 LOSE EVERYTHING
XOR 0101010 WITH BACKGROUND STORED
PAGE 2
0101010 GET BACKGROUND BACK

We can incorporate the exclusive-or instruction in our XDRAW routine. If
we EOR the shape we had previously drawn on the screen, nothing remains.

XDRAW LDY TVERT s VERTICAL POSITION
JSR GETADR
LDA TEMP
STA SLNGH ;RESTORE VALUE OF WIDTH FOR NEXT ROW
LDX #$00

XDRAW2 LDA (SHPL,X) ;GET BYTE FROM SHAPE TABLE
EOR (HIRESL),Y ;XOR WITH BYTE ALREADY ON THE SCREEN
STA (HIRESL),Y ;DRAW ON SCREEN
INC SHPL s NEXT BYTE OF SHAPE TABLE

121

122

INY
DEC
BNE
INC
DEC
BNE
RTS

SLNGH
DRAW2
TVERT
DEPTH
DRAW

;NEXT POSITION ON SCREEN

; DECREMENT WIDTH

;FINISHED WITH ROW?

; IF SO, INCREMENT TO NEXT LINE
s DECREMENT DEPTH

; FINISHED ALL ROWS?

;YES, END ROUTINE

Now that we know how to DRAW and XDRAW a bit-mapped shape
anywhere on the Hi-Res screen, the principle for animating these shapes is the
same as for Apple shapes discussed previously in Chapter 1. A shape is erased
from the screen, its new position is calculated, then it is redrawn at this new
position. The procedure is outlined below:

INITILIZE STARTING POSITION

DRAW SHAPE

SMALL DELAY |

XDRAW SHAPE

UPDATE SCREEN POSITION

l

A delay has been inserted between the DRAW and the XDRAW to allow
the object to be on the screen longer than it is off. Without the delay, the object
is erased immediately after it is drawn. This does not give the shape’s image
sufficient time to remain on screen during one animation frame. The result is a
badly flickering image. The necessary delay can be a accomplished by a call to
the monitor WAIT subroutine. A hundredth of a second delay is sufficient, but

LDA

#$3C

it could be doubled by changing the value in the Accumulator to $56.

JSR $FCA8 ;CALL TO WAIT SUBROUTINE

COLOR PROBLEMS WITH HORIZONTAL MOVEMENT

When colored shapes are moved vertically, as with our paddle driven space

ship,

they remain in either the same even or odd offset in which they started.

However, when an object moves horizontally a byte at a time, colors shift, or
alternate, as the shape moves from an even to an odd offset. As we saw in the
last chapter, two different shape tables are needed, one for the even offsets and
another for the odd offsets.

An algorithm must be devised to determine whether the HORIZ offset is
odd or even. You can ascertain if a value is odd or even by right-shifting the
value in the Accumulator so that the low bit enters the carry bit. Since only odd

1281641321168 |4 [2 |1 C

numbers contain a one in the first bit position, only odd numbers will set the

carry. Of course, the carry must be cleared first or this operation will be
meaningless.

In
even

byte

order to make the example more meaningful, we will assume we have an
and an odd shape stored in a table called SHAPES. Each shape is one
wide by eight bytes deep. The even offset shape occupies the first eight

bytes, and the odd offset shape follows in the next eight bytes. Let us also
assume that the shape table doesn’t cross a page boundary (the hi byte is

constant).

1 *EXAMPLE:COLOR OFFSET PROBLEM & SOLUTION

2 ORG $6000

3 HORIZ DS 1

4 SHPL EQU $50

5 SHPH EQU SHPL+$1
6001: 18 6 CLC ;CLEAR CARRY
6002: AD 00 60 7 LDA HORIZ ;LOAD HORIZ VALUE STORED AT $6000
6005: 4A 8 LSR s LOGICAL SHIFT RIGHT INTO CARRY
6006: BO 07 9 BCS ODD ;s IF CARRY SET, GOTO ODD CODE
6008: A9 18 10 EVEN LDA #<SHAPES ;LO BYTE OF EVEN SHAPE TABLE
600A: 85 S0 11 STA SHPL
600C: 4C 13 60 12 JMP CONT
600F: A9 20 13 ODD LDA #<SHAPES+8 ;LO BYTE OF ODD SHAPE TABLE
6011: 85 50 14 STA SHPL
6013: A9 60 15 CONT LDA #>SHAPES ;HI BYTE OF TABLE
6015: 85 51 16 STA SHPH
6017: 60 17 RTS

18 *
6018: 00 01 02
601B: 03 04 05
601E: 06 07 19 SHAPES HEX 0001020304050607 ;@88 OFFSET SHAPE
6020: 08 09 OA &en
6023: OB OC OD
6026: OE OF 20 HEX 08090A0BOCODOEOF ;0DD OFFSET SHAPE
--END ASSEMBLY--

123

124

You can easily see in the above example that the pointers to the proper shape
table will be used correctly by our drawing subroutine. You can put a HORIZ
value in location $6000 and single step the code in the monitor. If you don’t
have the single step and trace feature because you have an APPLE II PLUS,
type a 6001G, then check locations $50 and $51 for the values of SHPL, and
SHPH, respectively. Thus, if both the even and odd offset tables are generated
for a violet colored object, the object will always remain violet at any horizontal
screen position 0 - 39 if the correct table is used.

Color shifting problems become more intricate if you intend to do very fine
movement or single pixel moves to the left or right, versus coarse movements of
a byte or seven pixels at a time. As we discovered in the last chapter, single
pixel movements in color aren’t effective due to the alternating columns of
complementary colors. The shape tends to lag a cycle, then jumps two pixels.

EVEN OFFSET ODD OFFSET

SCREEN

XPOS 0 1 2 3 4 5 6 7 8 9 A B C D

SHAPE O 1 2 3 4 5 6
TABLE

7\
o000
*®

You can see from the above illustration that our shape stays in the same posi-
tion for two cycles, then moves. It would be easier to move a shape two pixels
horizontally at a time and use only seven shape tables for a shape instead of
fourteen.

The simplest method for keeping track of which offset table is to be used at a
particular horizontal position is through tables. One table (XBASE) is needed
for the horizontal byte for any horizontal screen position, and another (XOFF)
is needed to determine which of the seven offsetted shape table is to be plotted.
The tables take the following form:

XBASE HEX 00000000000000
HEX 00010101010101
HEX 02020202020202
HEX 02030303030303

.

HEX 26262626262626
HEX 26272727272727

XOFF HEX 00000101020203
HEX 03040405050606
HEX 00000101020203
HEX 03040405050606
ETC

Oth 1st 2nd 3rd 4th 5th 6th 7th
SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE SHAPE
AN A A A N AN N A

XOFF |00|00(01]|01{02|02[03§03]|04]|04]05|05/06|06f0000

XBASE |00}00[00{00[00}00}j00jo0|01]01|01}01}01{01}02]02

01 2 3 4 5 6 8 9A B CDEF
m

Oth Horiz. Offset lst Horiz. Offset

X COORDINATE VALUE

While the XOFF table is straight-forward in that two adjacent X positions
reference the same shape in the table, the XBASE table, which references the
horizontal byte offset, requires some explanation. You would assume that all
shapes plotted in the first seven horizontal screen positions (X =0 to 6) would
be plotted in the Oth, or even offset, and all shapes plotted in the second seven
positions (X =7 to 13) would be plotted in the first or odd offset. The problem
occurs at the boundary of even-odd offset pairs. The third shape table is plotted
for both X =6 and X =7. But, if the 3rd shape is plotted first in the Oth (even)
offset for X =6, then plotted in the 1st (odd) offset at X =7, you would get a red
shape in the first case, and a blue shape in the second case. The shape would
also be shifted over one whole byte, because the shape at X = 7, which is
equivalent to that at X = 6 in the odd offset, would instead have an offset of 2;
thus it would appear to be at the end of the byte instead of at the beginning.

125

126

Therefore, the shape at X =7 must also be plotted in the Oth (even) offset. I'll
be frank and say that the first time I encountered the problem, I spent some
time looking for the error by stepping through my code. The solution was that
the XBASE tables had to be modified to account for the inconsistency.

The following example will make this clearer. To determine the proper offset
and which shape to plot at X =2, you would calculate as follows:
Look up the third position of XBASE for the offset

or XBASE,2 = $00

Look up the third position of XOFF for the shape number
or XOFF,2 = $01

So plot the first shape in Oth offset.

For X =7

Look up the eighth position of XBASE for the offset
or XBASE,7 = $00

Look up the eighth position of XOFF for the shape number
or XOFF,7 = $03

So plot third shape in Oth offset.

This can be formalized into code as part of a setup routine prior to accessing
our drawing routine.

SETUP LDY XVALUE
LDA XBASE,Y ;GET BYTE OFFSET FROM TABLE

STA HORIZ ; STORE OFFSET

LDX XOFF,Y sTABLE TO FIND SHAPE NUMBER

LDA SHPLO,X ; INDEX TO GET LO BYTE OF SHAPE TABLE
STA SHPL ;STORE LO BYTE IN ZERO PAGE

LDA #>SHAPES ;GET HI BYTE OF SHAPE TABLE

STA SHPH ;STORE HI BYTE IN ZERO PAGE

SHPLO is a table seven bytes long that contains the lo order byte address of
our shapes. Assuming that there are seven shapes, each containing 24 bytes,
which are stored at $800 in a table called SHAPES, then the table takes the
following form. The HEX pseudo-op in most assemblers informs the assembler
to place hexadecimal data bytes beginning at the location SHPLO. It is
equivalent to directly assigning storage space and filling in the values, as
follows:

SHPLO HEX 00 18 30 48 60 78 90

OTH 1ST
SHAPE SHAPE ETC.

The obvious intent of the previous method was to save shape table space. Ifa
shape were three bytes wide by eight rows deep, seven tables would require 168
bytes of storage. Requiring the use of all fourteen shapes would double that.
While 336 bytes isn’t much memory, ten shapes use nearly 3.5K and if any of
these were to be rotating shapes, much of memory would be wasted with shape
tables.

For those readers who would feel more comfortable calculating and using all
fourteen shapes in their table, the code is the same but the tables differ slightly.
The tables are more straight-forward because there are no boundary problems.

XBASE HEX 00000000000000
HEX 01010101010101
HEX 02020202020202

HEX 26262626262626
HEX 27272727272727

XOFF HEX 00010203040506
HEX 0708090A0BOCOD
HEX 00010203040506
HEX 0708090A0BOCOD

SHPLO HEX 00183048607890
HEX A8COD8F0082038

In this case the shape table extends beyond a page boundary, so a table to
reference the Hi byte as well must be included.

SHPHI HEX 08080808080808
HEX 08080808090909

Replace the last two instructions for the hi byte in our setup routine with the
following:

127

128

LDA SHPHI,X ;INDEX TO GET HI BYTE OF SHAPE TABLE
STA SHPH ;STORE HI BYTE IN ZERO PAGE

There is an alternate way to avoid modifying the XBASE table. You could
test for the combination of drawing the third shape while at an odd offset.

At first it seemed plausible that using fourteen shape tables might be the
better method if,say, the gun were in color and its bullets were in B&W. But
since the gun shifted two dots per move, the bullet should do likewise. Besides,
the same drawing routines could be accessed.

THE SCREEN ERASE

Erasing an entire Hi-Res screen quickly without the viewer being aware is
very important in some games. One well known Asteroid game resorted to a
partial (160 line) screen erase instead of XDRAWing the shapes. No one notic-
ed because the frame rate was fast enough, and the animation was page-
flipping between graphics screens.

The process is simple and can be used for setting an entire screen to a
background color. The Accumulator is loaded with a value (#$00 for black) and
stored successively in all 8192 screen memory locations. If we had a sixteen-bit
machine and could index all 8192 locations in one gigantic loop, things would
be easy. But it has to be done in 256 byte blocks, or in what is called pages of
memory. The flow chart is shown below.

Remember that the instruction STA (HIRESL),Y uses a two byte address in
zero page

HIRESL
HIRESH

$26
$27

#3$00
#$20

then increments it by Y. If Y = $07, then STA (HIRESL),Y stores what is
in the Accumulator in location $2000 + $03 = $2003.

HIRESL EQU $26
HIRESH EQU HIRESL +$01

CLRSCR LDA #$00 s SETUP POINTERS TO CLEAR SCREEN
STA HIRESL ;s BEGINNING A $2000 (PAGE1)
LDA #$20
STA HIRESH
CLR1 LDY #$00 ; PAGE BEGINS AT O
LDA #$00 ; LOAD ZERO TO ERASE TO BLACK
CLR2 STA (HIRESL),Y;STORE IN SCREEN MEMORY
INY s NEXT BYTE

BNE CLR2 ;DO ALL 256 BYTES; AT 256TH BYTE WRAPS
;BACK TO O IN Y REGISTER,FALLS THROUGH
INC HIRESH ;DO NEXT PAGE

LDA HIRESH

CMP #$40 ; FINISHED WITH SCREEN?

BLT CLR1 ;NO, START NEXT 256 BYTE PAGE
RTS ;YES, ALL DONE

STORE POINTERS TO HIRES
SCREEN IN ZERO PAGE
HIRESL = #$00
HIRESH = #$20

>{ SET Y REGISTER = 0O

|_LOAD #$00 IN ACCUMULATOR |

»| STORE IN SCREEN MEMORY
STA (HIRESL),Y

[INCREMENT Y REGISTER

no
< DONE ALL 256 BYTES?|
yes

\

DO NEXT PAGE BY
INCREMENTING HIRESH

no
"&—————— IS HIRESH = #$407?

yes

A
RETURN OR END

This routine takes 35 milliseconds. Note: Screen #2 could be cleared just as

easily by storing #$40 in HIRESH and comparing it to #$60 to test for the
finish.

129

130

The screen can be cleared somewhat faster if inline code is used. This is
sometimes desirable if part of a screen must be cleared quickly, but becomes a
very long and tedious routine if every line is to be cleared. A zero is stored in
each screen memory location indicated for a particular column or offset. When
it is finished with that column, it increments to the next and clears that, also.
Since the code contains the addresses for each line sequentially, precise control
can be achieved over what portion of the screen is to be cleared. Of course,
other colors can be used too. For instance:

LDA #00 s BLACK

LDY #$00 ; START WITH OTH COLUMN
LOOP STA $2000,Y ;ADDRESS OF OTH LINE

STA $2400,Y ;ADDRESS OF 1ST LINE

STA $2800,Y ;ADDRESS OF 2ND LINE

;Other lines

INY
CPY #$28 ; RIGHT SIDE SCREEN?
BEQ END
JMP LOOP s NEXT COLUMN
END RTS

Sometimes it is desirable to set a Hi-Res screen to a particular color. But
color has its inherent odd-even offset problems. For example, to set a screen to
blue, a2 #$D5 would be stored in all even offset memory locations, while a #$AA
would be required in all odd offset memory locations. Therefore, we have to
load and store in pairs as we completely fill the screen memory with bytes that
cause only the blue pixels to be activated.

Fortunately, this routine only changes our clear screen routine slightly. You
load a #8D5 for the even offset in the Accumulator, store it at the appropriate
screen location referenced by HIRESL & HIRESH, then increment the index
or pointer in the Y register. Then #$AA is loaded and stored for the odd offset
in the next screen location. The Y register pointer is then incremented again.
Because the BNE test only falls through when the Y register reaches 0 (or
actually 256), this can only happen on an even increment. Therefore, the test
isn’t needed after the first INY, as it can’t happen when Y is an odd value.

1 *CLEAR SCREEN COLOR TO BLUE
2 ORG $6000
3 HIRESL EQU $26
4 HIRESH EQU HIRESL+$1
6000: A9 00 5 CLRSCR LDA #3%00
6002: 85 26 6 STA HIRESL
6004: A9 20 7 LDA #%20
6006: 85 27 8 STA HIRESH

6008: A0 00 9 CLR1 LDY #$00

600A: A9 D5 10 CLR2 LDA #$D5 sBLUE (EVEN)

600C: 91 26 11 STA (HIRESL),Y

600E: C8 12 INY

600F: A9 AA 13 LDA #$AA ;BLUE (ODD)

6011: 91 26 14 STA (HIRESL),Y

6013: C8 15 INY

6014: DO F4 16 BNE CLR2

6016: E6 27 17 INC HIRESH ;DO NEXT PAGE

6018: A5 27 18 LDA HIRESH

601A: C9 40 19 CMP #3$40 sFINISHED WITH SCREEN?
601C: 90 EA 20 BCC CLR1 ;NO,START NEXT 256 BYTE PAGE
601E: 60 21 RTS ;YES! DONE

--END ASSEMBLY--

SELECTIVE DRAWING CONTROL & DRAWING MOVEMENT
ADVANTAGES

We have seen how background is preserved by EORing shapes on and then
off the Hi-Res screen. However, there are times when this is not effective. For
instance, complex backgrounds make a mess of a shape, often making it
unrecognizable. In these cases, it is best to draw the shape on the screen
normally. Naturally, background is lost, but it can be redrawn from memory.

There is another function that is quite important in selective drawing con-
trol. That is the And Memory with Accumulator (AND) instruction. It is
primarily used to filter or mask out certain bits in the Accumulator or, in the
case of the Hi-Res screen, mask out certain pixels. Both the memory bit and
the Accumulator bit must be set (on) for the result to be one. If either memory
bit or Accumulator bit is off, or both bits are off, the result is zero.

Example:

Hi bit
10101011 LDA #8D5
00001111 AND #$F0
00001011 RESULT #$D0

The above example effectively stripped off the first four pixels of the byte.
While it is difficult to design a simple case for using the AND instruction in
selective drawing, it is used for “making a hole’” in a background before
ORing a colored shape into the hole. It is a tricky procedure for beginners,
because the complement of an equivalent white shape is used during the AND
operation.

131

132

We have the following background and colored shape:

1111000 110111 1 BACKGROUND
1010101 010000 0 SHAPE
First we need the complement of the white shape.

1111111 110 0 0 0 0 WHITE SHAPE CONTAINS
VIOLET & GREEN
1111111 111111 1 EOR#FF

011111
0 00 1101 1 1 1 ANDWITHBACKGROUND

—- O
o
(=l
S
=)

00
11

—_ O

0 0000 0O0 O0O0O0OT1 11 1 RESULTANT HOLE

Now OR the shape into the hole.

[y
—

11 BACKGROUND HOLE
0 0 0 0O ORACOLORED SHAPE INTO
HOLE

0 00
1 01

OO

000 0O0O
101 010

1010101 0101111 RESULTANT COLORED SHAPE
& BACKGROUND

Notice that the background doesn’t interfere with the colored shape but
surrounds it.

The AND instruction is also quite useful in detecting collisions. The pro-
cedure will be discussed in detail in the next chapter.

The goal of any programmer is to write fast and efficient code. You can do
this by taking advantage of the way the screen is mapped and manipulated in
memory. Because it is faster to change a byte, or group of seven pixels rather
than each of the pixels separately, it is easier to have separate shapes for each
movement to the right or left within a byte. It is also easier to move a shape or
object one byte, or seven pixels at a time, horizontally.

Likewise, it is easier during horizontal movement to keep a shape within one
of the 24 - eight row subgroups on the Hi-Res screen. If you adhere to that
restriction, only the memory address of the first line of the shape need be
accessed by tables. Each succeeding line is + $400 in memory at any given
horizontal offset. This method saves many machine cycles by not accessing the
GETADR routine for each and every horizontal line in the shape. If your
shape is three bytes wide by eight lines deep, the drawing algorithm only has to
call the GETADR routine once. Each successive byte in that offset or column is
plotted at a location incremented by + $400 bytes in screen memory. After all

eight bytes have been plotted in that column, screen memory is decremented
by $2000 bytes to return to the top of the subgroup in order to plot in the next
column. It is a very fast method, one that many games, like Apple Invaders,
uses. If you examine that game, the aliens move slowly across the screen, each
character being eight lines deep. When they advance closer to landing, they
jump a full eight lines, to be plotted within the next lower eight line subgroup.
Although moving 40 aliens may appear slow in the game, there is a very long
delay loop. Perhaps some readers have seen ‘the modified version with the
hyperspeed option. The game is quite capable of running ten times faster.

The subroutine shown below has the following inputs which can be set in
another subroutine called SETUP.

* X POSITION IN Y REGISTER

* BASE ADDR: HIRESL , HIRESH
* SHAPE ADDR: SHPL, SHPH

* LENGTH IN X DIRECTION: LNGH:

DRAW LDX #$00 ; X-REG MUST BE 0O

DRAW2 LDA (SHPL,X) ;GET BYTE FROM SHAPE TABLE
EOR (HIRESL),Y ;EXCLUSIVE OR IT WITH WHAT IS ON SCREEN
STA (HIRESL),Y ;PUT IT ON HI-RES SCREEN

LDA HIRESH ;WANT TO REACH NEXT LINE BY ADDING $400
CLC ;BY ADDING 4 TO HI BYTE OF BASE ADDR.
ADC #304 ;ADD AFTER CLEARING CARRY
STA HIRESH ;SAVE IT
INC SHPL s NEXT BYTE OF SHAPE ADDR.
CMP #$40 ;ARE WE FINISHED WITH THAT COLUMN
BCC DRAW2 ;NO, DO NEXT BYTE
SBC #$20 ; YES,BACK TO BASE ADDR (OR TOP)
STA HIRESH sSAVE IT '
DEC LNGH ;s NEXT COLUMN SO DECREMENT LENGTH
BEQ DRAW3 sARE WE FINISHED
INY ;DRAW AT NEXT X POSITION
BNE DRAW2 ;THIS BRANCH IS ALWAYS TAKEN
DRAW3 RTS ; DONE!

Another way of keeping the code simple is to use only the first 256 horizontal
screen positions. This simplifies horizontal paddle routines and eliminates the
problem of multi-byte additions to reach screen positions between X =256 and
X =279. A large number of games like GAMMA GOBLINS and ASTEROID
FIELD have resorted to this technique. The 256 position field need not be left
Justified, but could be centered using a fixed left margin displacement.

133

134

INPUT:

X POS. IN Y REGISTER
BASE ADDR: HIRESL,HIRESH
SHAPE ADDR: SHPL,SHPH
LENGTH IN X DIR: LNGH

GET BYTE FROM SHAPE TABLE
LDA (SHPL,X)

EOR WITH SCREEN MEMORY
STA (HIRESL),Y

HIRESH = HIRESH + $04

"POINTER TO NEXT BYTE
OF SHAPE TABLE
SHPL = SHPL + 1

‘%EI;IS HIRESH < #3407 |

yes

HIRESH = HIRESH - $20

LNGH = LNGH - 1 |

no

INY <— IS LNGH = 07

NEXT SCREEN yes
POSITION

DONE

Map of elements in
shape table as they
appear on the screen

0 8
1 9
2 10
3

7 15

INTERFACING THE DRAWING ROUTINES TO AN APPLESOFT
PROGRAM -

Bit-mapped shape tables, as we have seen, are much more detailed and more
colorful than APPLE shape tables. There are many programmers not writing a
high speed animated game who would like to use these shape drawing routines
in an Applesoft program.

If you wanted to control the vertical movement of our space ship by paddle
control from an Applesoft program, it can be accomplished in the following
manner:

The machine language drawing routine and the setup routine require only
the inputs of where to start drawing the ship on the screen. The ship’s horizon-
tal location is called HORIZ in the machine language subroutine. The ship can
be positioned horizontally from the far left (0) to nearly the right hand side of
the screen (37). At 37, the ship’s nose touches the right screen boundary.
Larger values would produce a very strange wrap-a-round, especially at 38 and
39. HORIZ is located at $6001 or 24577 decimal. A value has only to be poked
in at this location to change the ship’s horizontal location. The ship’s vertical
position is set by TVERT. Its value is trimmed to 0-183 to prevent vertical
wrap-a-round. It is located at $6000 or 24576 decimal. TVERT can be directly
driven by a paddle routine in the Applesoft program.

HORIZ

TVERT— 5

The machine language subroutine with code, lookup and shape tables is only
502 bytes long. It starts a $6006 or 24582 decimal. It sets up the drawing
routine before calling it. The drawing routine EOR’s the ship’s shape to the
screen, one byte at a time.

This routine is quite versatile and could handle multiple shapes from
Applesoft with little modification to the code. The variables for each shape in
the setup routine; lo and hi bytes of the shape, as well as its depth and length,
would have to be poked in from Applesoft. The JSR to SSETUP would be
removed and the new shapes would be added to the end or in a table elsewhere
in memory, in a location where it wouldn’t be overwritten by your Applesoft
program.

135

136

You must be careful with zero page pointers when interfacing BASIC pro-
grams to machine language programs. Although I've been lax in choosing loca-
tions $52 through $58, these conflict with both BASICS. There is a chart in the
Apple IT Reference manual which shows which zero page locations are free.
Safe locations for either BASIC are $6 to $9 , $1A to $1F , $EB to $EF, and
$F9 to $FF. There are others, but I would consult the manual .

Our small Applesoft interface routine is listed below and the machine
language code follows.

10
15
20

25
30
40
45
50
60

6006
6009:
600C:

600D:
6010:
6013:
6015:
6017:
6019:
601B:
601D:
601E:
6021:
6023:
60262
6029:
602B:

HGR: POKE-16302,0 ;SET GRAPHICS
H=10 : POKE 24577,H ;SET HORTIZONTAL POSITION
TVERT = PDL(1) :IF TVERT >183 ;SET VERTICAL POSITION
THEN TVERT = 183 WITH PADDLE
POKE 24576, TVERT ;
CALL 24582 ;CALL DRAWING ROUTINE
FOR DE = 1 TO 5: NEXT DE ;SHORT DELAY
POKE 24576, TVERT ;REFRESH VERTICAL POSITION
CALL 24582 ; XDRAW SHIP
GOTO 20 ;LOOP AGAIN

1 *CODE FOR APPLESOFT PADDLE INTERFACE

2 ORG $6000

3 TVERT DS 1

4 HORIZ DS 1

5 DEPTH DS 1

6 LNGH DS 1

7 SLNGH DS 1

8 TEMP DS 1

9 HIRESL EQU $1A

10 HIRESH EQU HIRESL+$1

11 SSHPL EQU $1iC

12 SSHPH EQU SSHPL+$1

13 *MAIN CODE
20 43 60 14 START JSR SSETUP

20 OD 60 15 JSR SXDRAW
60 16 RTS

17 *SUBROUTINES

18 *SHIP DRAWING SUBROUTINE
AC 00 60 19 SXDRAW LDY TVERT ;PADDLE VALUE
20 2C 60 20 JSR GETADR
A2 00 21 LDX #$00 ;NEED O IN X REG. FOR INDEX
Al 1C 22 SXDRAW2 LDA (SSHPL,X) ;LOAD BYTE FROM SHAPE TABLE
51 1A 23 EOR (HIRESL),Y ;EOR IT AGAINST SCREEN
91 1A 24 STA (HIRESL),Y ;STORE RESULT ON SCREEN
E6 1C 25 INC SSHPL sNEXT BYTE IN SHAPE TABLE
Cc8 26 INY ;NEXT SCREEN POSITION IN ROW
CE 04 60 27 DEC SLNGH s DECREMENT WIDTH
DO F2 28 BNE SXDRAW2 ;FINISHED WITH ROW?
EE 00 60 29 INC TVERT ;IF SO, INCREMENT TO NEXT LINE
CE 02 60 30 DEC DEPTH ;DECREMENT ROW
DO E2 31 BNE SXDRAW sFINISHED ALL ROWS?
60 32 RTS

602C:
602F:
6030:
6033:
6035
6038:
603A:
603D:
6040:
6042:

6043
6045:
6047
6049:
604B:
604D:
6050
6052:
6055:
6057:
6054
605D:
605E:
6061:
6064
6066
6069:
606C:
606E:
6071:
6074
6076:
6079:
607C:
607E:
6081:
6084
6086:
6089:
608C:
608E:
6091:
6094 :
6096
6099:
609C:
609E:
60A1:
60A4:
6046
60A9:
60AC:
60AE:
60B1 :
60B4 :
60B6:
60B9:
60BC:

60
61
60

60
60
60
00
00
80
80
00
80
00
00

80
80

00
80
80

28
28

A8
A8

28
28

A8
A8

58

59

60

61

62

63

64

65

66

67

68

*GETADR SUBROUTINE

GETADR

LDA
CLC
ADC
STA
LDA
STA
LDA
STA
LDY
RTS

YVERTL, Y

HORIZ
HIRESL
YVERTH, Y
HIRESH
TEMP
SLNGH
#$00

*SHIP SET UP SUBROUTINE

SSETUP

YVERTL

LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
STA
RTS

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

#<SHIP"
SSHPL
#>SHIP
SSHPH

#$08 ;DEPTH 8 LINES

DEPTH

#309 ; STARTING HORIZ POSITION

HORIZ

#$03 ;SHIP 3 BYTES WIDE

SLNGH
TEMP

0000000000000000

8080808080808080

0000000000000000

8080808080808080

0000000000000000

8080808080808080

0000000000000000

8080808080808080

2828282828282828

ABABABABABABABAS

2828282828282828

ABABABABABABABAS

;LOOK UP LO BYTE OF LINE
;ADD DISPLACEMENT INTO LINE

;LOOK UP HI BYTE OF LINE

sRESTORE VARIABLE

sOCATION OF SHIP SHAPE TABLE

137

138

60BE: 28 28
60C1i: 28 28
60C4: 28 28
60C6: A8 A8
60C9: A8 A8
60CC: A8 A8
60CE: 28 28
60D1: 28 28
60D4: 28 28
60D6: A8 A8
60D9: A8 A8
60DC: A8 A8
60DE: 50 S50
60El: 50 50
60E4: 50 50
60E6: DO DO
60E9: DO DO
60C: DO DO

60EE: 50 50
60F1: 50 50
60F4: 50 50
60F6: DO DO
60F9: DO DO
60FC: DO DO
60FE: 50 50
6101: 50 50
6104: 50 50
6106: DO DO
6109: DO DO
610C: DO DO
610E: 50 50
6111: 50 50
6114: 50 50
6116: DO DO
6119: DO DO
611C: DO DO

611E: 20 24
6121: 2C 30
6124: 38 3C
6126: 20 24
6129: 2C 30
612C: 38 3C
612E: 21 25
6131: 2D 31
6134: 39 3D
6136: 21 25
6139: 2D 31
613C: 39 3D
613E: 22 26
6141: 2E 32
6144: 3A 3E
6146: 22 26
6149: 2E 32
614C: 3A 3E
614E: 23 27
6151: 2F 33
6154: 3B 3F
6156: 23 27
6159: 2F 33

69

70
28
28

71
A8
A8

72
50
50

73

DO
74

50
75

DO
76
50

77

DO

78
50
50

79

80

81
28
34

82
28
34

83
29
35

84
29
35

85
2A
36

86
2A
36

87
2B
37

88
2B
37

YVERTH

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

2828282828282828
ABABABABABABABAS
2828282828282828
ABABABABABABABAS
5050505050505050
DODODODODODODODO
5050505050505050
DODODODODODODODO
5050505050505050
DODODODODODODODO
5050505050505050

DODODODODODODODO

2024282C3034383C
2024282C3034383C
2125292D3135393D
2125292D3135393D
22262A2E32363A3E
22262A2E32363A3E

23272B2F33373B3F

615C:
615E:
6161:
6164:
6166:
6169:
616C:
616E:
6171:
6174
6176:
6179:
617C:
617E:
6181:
6184:
6186:
6189;
618C:
618E:
6191:
6194:
6196
6199:
619C:
619E:
61A1:
61A4:
61A6:
61A9:
61AC:
61AE:
61B1:
61B4:
61B6:
61B9:
61BC:
61BE:
61C1:
61C4:
61C6:
61C9:
61CC:
61CE:
61D1:
61D4:
61D6:
61D9:
61DC:
61DE:
61E1:
61E4:
61E6:
61E9:
61EC:
61EE:
61F1:
61F4:

——END

82

00
80
95
D5
D5

ASSEMBLY--

28
34

28
34

29
35

29
35

2A
36

2A
36

2B
37

2B
37

28
34

28
34

29
35

29
35

2A

2A
36

2B
37

2B
37

00
00

00
D5

AA
A8

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

SHIP

502 BYTES

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

23272B2F33373B3F

2024282C3034383C

2024282C3034383C

2125292D3135393D

2125292D3135393D

22262A2E32363A3E

22262A2E32363A3E

23272B2F33373B3F

23272B2F33373B3F

2024282C3034383

2024282C3034383C

2125292D3135393D

2125292D3135393D

22262A2E32363A3E

22262A2E32363A3E

23272B2F33373B3F

23272B2F33373B3F

8000008200008200

O08AOOO0AADS80AA

9582AAD58AA8DSAA

139

140

When raster or block shapes are plotted against a complex background by
EORing them to the screen, the shape is often difficult to discern. As we men-
tioned in our discussion of the OR function, if a shape is ORed to the screen
instead, the shape would be intact. However, this isn’t entirely true. The
background will affect the shape if either the shape has a window in it, or if true
color is always to be preserved. If we had a red locomotive with a black window
in the cab and we ORed it against a blue background, the window would not
remain black, but would become blue. The color of the train is likely to shift to
white because pixels in both the even and odd columns will be activated. A
more effective solution would be to AND the complement of a white locomotive
shape with the background and then OR the red locomotive to the screen. (See
similar example, page 132.

Background can be saved when ORing a shape to the screen by saving the
bytes to a scratch table just before plotting our shape. This is done a byte at a
time in sequence with the shape plotting operation rather than as a seperate
subroutine. Then, when the shape is to be removed from the screen, it isn’t
XDRAWR ; instead, the original background is replotted from this scratch
table. I modified the last example to perform this technique and set the
background to a color in the Applesoft program so that you could observe the
effect. It might be more interesting to load a Hi-Res picture as a very busy
background. The code and flow chart are shown below.

READ PADDLE
FROM APPLESOFT

SHIP DRAWING
SETUP ROUTINE

DRAW SHIP WHILE
SAVING BACKGROUND

DELAY

SHIP DRAWING
SETUP ROUTINE

RESTORE BACKGROUND
FROM DUMMY TABLE

|

> PUT TVERT IN Y REGISTER]

JSR TO GETADR
RETURN WITH HIRESH,HIRESL

| GET BACKGROUND BYTE
FROM SCREEN

STORE IN SCRATCH TABLE
CALLED BACKGND

SHAPE TABLE

|

| OR IT WITH HIRES SCREEN |

| STORE BYTE ON SCREEN|

INCREMENT LO BYTE
POINTERS BACKL & SSHPL
FOR NEXT BYTE

|

INY FOR NEXT SCREEN
POSITION

] LOAD BYTE FROM SHIP'S

I SLNGH = SLNGH - 1

no

<—{ IS SLNGH = 0?
Y

yes

| TVERT = TVERT + 1 |

| DEPTH = DEPTH - 1|

no r

l&—— | IS DEPTH = 07 |
|
yes

[0

141

10 HGR : POKE - 16302,0

12 HCOLOR= 1

13 HPLOT 100,100: CALL 62454

15 H = 10: POKE 24577,H

20 TVERT = PDL (1): IF TVERT > 183 THEN TVERT = 183
25 POKE 24576,TVERT

30 CALL 24582

40 FOR DE =1 TO 5: NEXT DE

45 POKE 24576 ,TVERT

50 CALL 24589

60 GOTO 20
1 *CODE FOR APPLESOFT PADDLE INTERFACE
2 *WHILE SAVING BACKGROUND
3 ORG $6000
4 TVERT DS 1
5. HORIZ DS 1
6 DEPTH DS 1
7 LNGH DS 1
8 SLNGH DS 1
9 TEMP DS 1

10 HIRESL EQU $1A

11 HIRESH EQU HIRESL+$1
12 SSHPL EQU s$1C

13 SSHPH EQU SSHPL+$1
14 BACKL EQU $1E

15 BACKH EQU BACKL+$1
16 *MAIN CODE

6006: 20 6D 60 17 START JSR SSETUP

6009: 20 14 60 18 JSR SDRAW sDRAW SHIP WHILE SAVING BACKGROUND
600C: 60 19 RTS
600D: 20 6D 60 20 JSR SSETUP
6010: 20 39 60 21 JSR BKDRAW sREPLACE BACKGROUND
6013: 60 22 RTS
23 *SUBROUTINES
6014: AC 00 60 24 SDRAW LDY TVERT ;PADDLE VALUE
6017: 20 56 60 25 JSR GETADR
601A: A2 00 26 LDX #$00 ;NEED O IN X REG. FOR INDEX
601C: Bl 1A 27 SDRAW2 LDA (HIRESL),Y ;LOAD BYTE ON SCREEN
601E: 81 1E 28 STA (BACKL,X) ;STORE BACKGROUND TABLE
6020: Al 1C 29 LDA (SSHPL,X) ;LOAD BYTE FROM SHIP SHAPE TABLE
6022: 11 1A 30 ORA (HIRESL),Y ;ORA WITH SCREEN
6024: 91 1A 31 STA (HIRESL),Y ;STOR RESULT ON SCREEN
6026: E6 1E 32 INC BACKL sNEXT BYTE IN BACKGROUND TABLE
6028: E6 1C 33 INC SSHPL sNEXT BYTE IN SHIP TABLE
602A: C8 34 INY ;NEXT SCREEN POS. IN ROW
602B: CE 04 60 35 DEC SLNGH s DECREMENT WIDTH
602E: DO EC 36 BNE SDRAW2 sFINISHED WITH ROW?
6030: EE 00 60 37 INC TVERT ;IF SO, INCREMENT TO NEXT LINE
6033: CE 02 60 38 DEC DEPTH ;s DECREMENT DEPTH
6036: DO DC 39 BNE SDRAW sFINISHED ALL ROWS?
6038: 60 40 RTS sYES, END ROUTINE

142

6039:
603C:
603F:
6041:
6043:
6045:
6047
6048:
604B:
604D:
6050:
6053
6055:
6056
6059:
605A:
605D:
605F ¢
6062
6064
6067:
606A:
606C:

606D:
606F:
6071:
6073:
6075:
6077:
6079:
607B:
607D:
607F:
6082:
6084
6087:
6089:
608C:
608F:
6090:
6093
6096:
6098:
609B:
609E:
60A0:
60A3:
60A6:
60A8:
60AB:
60AE:
60B0:
60B3:
60B6:
60B8:
60BB:
60BE:
60CO:
60C3:

AC 00 60 41
20 56 60 42
A2 00 43
Al 1E 44
91 1A 45
E6 1E 46

CE 04 60 48

EE 00 60 50

B9 90 60 54
6D 01 60 56

‘B9 50 61 58

AD 05 60 60

8D 05 60 79

00 00 00
00 00 00

80 80 80
80 80 82

00 00 00
00 00 83
80 80 80
80 80 80
80 80 84

00 00 00
00 00 85
80 80 80
80 80 80
80 80 86
00 00 00
00 00 00

BKDRAW LDY
JSR
LDX
BKDRAW2 LDA

STA
INC
INY
DEC
BNE
INC
DEC
BNE
RTS
GETADR LDA
CLC
ADC
STA
LDA
STA
LDA
STA
LDY
RTS
*SHIP SET UP
SSETUP LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
STA
RTS

YVERTL HEX

HEX

HEX

HEX

HEX

HEX

TVERT s PADDLE VALUE

GETADR

#$00

(BACKL,X) ;LOAD BYTE FROM BACKGROUND TABLE

(HIRESL),Y ;STORE ON HIRES SCREEN
BACKL sNEXT BYTE IN TABLE
sNEXT SCREEN POSITION IN ROW
SLNGH
BKDRAW2
TVERT
DEPTH
BKDRAW

YVERTL,Y ;LOOK UP LO BYTE OF LINE

HORIZ sADD DISPLACEMENT INTO LINE
HIRESL

YVERTH, Y ;LOOK UP HI BYTE OF LINE
HIRESH

TEMP

SLNGH sRESTORE VARIABLE

#3$00

#<SHIP ; LOCATION OF SHIP SHAPE TABLE
SSHPL

#>SHIP

SSHPH

#<BACKGRD ;LOCATION OF BACKGROUND TABLE
BACKL

#>BACKGRD

BACKH

#3$08 ;DEPTH OF SHAPE
DEPTH

#$09 ; STARTING HORIZ. POSITION
HORIZ

#$03 ;SHIP 3 BYTES WIDE
SLNGH

TEMP

0000000000000000
8080808080808080
0000000000000000
8080808080808080
0000000000000000
8080808080808080

143

144

60C6:
60C8:
60CB:
60CE:
60D0:
60D3:
60D6:
60D8:
60DB:
60DE:
60E0:
60E3:
60E6:
60F8:
60EB:
60EE:
60F0:
60F3:
60F6:
60F8:
60FB;
60FE:
6100:
6103:
6106:
6108:
610B:
610E:
6110:
6113:
6116:
6118:
611B:
611E:
6120:
6123:
6126:
6128:
612B:
612E:
6130:
6133:
6136:
6138:
613B:
613E:
61403
6143:
6146:
6148
614B:
614E:

6150:
6153:
6156:
6158:
615B:
615E:
6160:

20
2C

20
2C
38
21

80
80

28
28

A8
A8

28
28

A8
A8

28
28

A8
A8

28
28

A8
A8

50
50
DO

50

DO
50
50
DO

50
50

DO
DO
28
34

28
34

29

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104
105

106

107

YVERTH

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

0000000000000000

8080808080808080

2828282828282828

ABABABABABABA8BAS

2828282828282828

ABABABABABABASAS

2828282828282828

ASABABABABABABAS

2828282828282828

ABABABABABABA8BAS

5050505050505050

DODODODODODODODO

5050505050505050

DODODODODODODODO

5050505050505050

DODODODODODODODO

5050505050505050

DODODODODODODODO

2024282C3034383C

2024282C3034383C

6163:
6166:
6168:
616B:
616E:
6170:
6173:
6176:
5178:
617B:
617E:
6180:
6183:
6186:
6188:
618B:
618E:
6190:
6193:
6196:
6198:
619B:
619E:
61A0:
61A3:
61A6:
61A8:
61AB:
61AE:
61BO:
61B3:
61B6:
61B8:
61BB:
61BE:
61CO:
61C3:
61C6:
61C8:
61CB:
61CE:
61D0:
61D3:
61D6:
61D8:
61DB:
61DE:
61EO:
61E3:
61E6:
61E8:
61EB:
61EE:
61F0:
61F3:
61F6:
61F8:
61FB:
61FE:
6200:

35

29
35

2A
36

2A
36

2B
37

2B
37

28
34

28
34

29
35

29
35

2A
36

2A
36

2B
37

2B
37

28
34

28
34

29
35

29
35

2A
36

2A

2B

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

2125292D3135393D

2125292D3135393D

22262A2E32363A3E

22262A2E32363A3E

23272B2F33373B3F

23272B2F33373B3F

2024282C3034383C

2024282C3034383C

2125292D3135393D

2125292D3135393D

22262A2E32363A3E

22262A2E32363A3E

23272B2F33373B3F

23272B2F33373B3F

2024282€3034383C

2024282C3034383C

2125292D3135393D

2125292D3135393D

22262A2E32363A3E

22262A2E32363A3E

145

146

6203:
6206:
6208:
620B:
620E:
6210:
6213:
6216:
6218:
621B:
621E:
6220:
6223:
6226:

2F 33 37
3B 3F

23 27 2B
2F 33 37
3B 3F

80 00 00
82 00 00
82 00

00 8A 00
00 A D5
80 AA

95 82 AA
D5 84 A8
D5 AA

128

129

130

131

132
133

--END ASSEMBLY--

ERRORS: 0O

576 BYTES

HEX

HEX

SHIP HEX

HEX

HEX
BACKGRD DS

23272B2F33373B3F

23272B2F33373B3F

8000008200008200

00BAO000AADS80AA

9582AADS8AA8DS5A2
24

CHAPTER 6

ARCADE GRAPHICS

INTRODUCTION

Arcade game animation uses many of the graphics techniques introduced in
the previous chapter. Their requirement for high frame rates, coupled with
smooth yet detailed animation, necessitates raster shape tables using their
inherent high speed drawing routines. Yet, to produce quality games requires
game designers to pay particular attention to the smallest programming
details.

The fundamentals of any arcade game, in the broad sense, are easy to grasp.
It is the details that elude the average programmer. While it is obvious that any
object that can be moved must also be controlled, it isn’t obvious how that
motion is programmed in machine language.

This chapter and the next will discuss the three major types of arcade games
and the algorithms that make them work. First, there is the Invaders-type
game, wherein a movable gun in the horizontal plane defends against attackers
from above. Second, there is the fully maneuverable spaceship from the Space
War and Asteroid-type games. These ships fly or float freely in both the X and
Y axis. Finally, there are the games that simulate horizontal or vertical motion
by scrolling the background. These games have ships that are usually
maneuverable in the non-scrolling axis only. Apple games like Pegasus II and
Phantoms Five fall into this category.

There are numerous details to consider in game design, such as paddle con-
trol, bullets firing and bombs dropping. A game must also include a scorekeep-
ing device for determining a winner, and an explosion subroutine for ridding
the screen of losers. And, sometimes, page-flipping techniques are needed to
smooth the flickering effects of complex animation. It is hoped that by my first
flow charting these routines, then presenting and explaining commented
machine language subroutines, you will be able to use these techniques in your
own games. And for those who need an example of a working game, many of
these routines are combined in a functioning yet unfinished arcade game.

PADDLE ROUTINE

We previously controlled our moveable plane through an Applesoft inter-
face. While it is easy to access the paddle routine directly from machine
language, a more realistic subroutine that would prevent almost instantaneous
jumps in position needs to be developed. It is the purpose of this section to
develop a useable paddle subroutine.

147

148

The Hi-Res screen’s vertical axis ranges only from 0-191. Paddle values, on
the other hand, range from 0-255. An attempt to plot a shape on any horizontal
line exceeding 191 would result in unpredictable consequences, because the
YVERT tables for the screen address of any line contains only 192 values.
Your program might store the shape anywhere in memory, depending on what
values might be stored in the locations following our YVERT tables.
Therefore, the maximum paddle value can be 191 minus the shape’s depth. In

the case of our ship, which is eight lines deep, you must clip the paddle value to
183 or $B7.

Bottom Screen = 191 $BF

A paddle value is read by accessing a monitor subroutine called PREAD,
located at $FBIE. The monitor reads the paddles by writing a strobe to start
the selected paddle timer, then increments the Y register until the timer goes
off. The paddle value is returned in the Y register. You access PREAD by plac-
ing the selected paddle number (0-3) in the X-register. You should be aware
that what was previously stored in the Accumulator is destroyed when calling
PREAD.

The following paddle subroutine prevents instantaneous jumps of the
plane’s position by rapid paddle movement. It accomplishes this by adjusting
VERT, the ship’s vertical position, rather than storing the paddle position
(PDL) directly as VERT. This adjustment is based on the relationship of PDL
to VERT.

There is a certain maximum paddle-driven movement that is desirable in
any game. If the movement, in this case, is set to ten units per frame and the
animation was twenty frames per second, then the plane will require approx-
imately one second to move from top to bottom. Slower movement factors will
take more time. The speed constant is subjective, and is determined by what
you think is a suitable and a controllable speed.

VERT is initialized at 90 decimal to position the ship initially at the center of
the screen. If the paddle value is less than VERT, it subtracts ten from VERT
and, if greater, adds ten. There are other safeguards to make sure VERT is
greater than zero and less than the maximum paddle value, 183 decimal.

There is another test to make sure that VERT actually homes in on the PDL
value. Let us assume that VERT was at 70 and the paddle (PDL) is set to 63.
Since PDL is less than VERT, ten is subtracted from VERT. VERT is now
60, which is beyond, or less than PDL. But if VERT is less than PDL, it sets

VERT = PDL so that the resulting VERT position is exactly that of the
paddle value. The same type of test is performed if PDL is greater than VERT,
and VERT is homing in on the paddle value from a higher value.

CYCLE PDL VERT CYCLE PDL VERT
0 90 0 90
1 63 80 OR 1 112 100
2 63 70 2 112 100
3 63 63 3 112 112

The flow chart is shown below.

READ PADDLE
1
CLIP VALUE
0-183 ($B7)
no
IF PADDLE<VERT
| yes
paddle3
VERT = VERT -10 \ yes
IF PADDLE = VERT
yes * no
IF VERT<O | no
VERT = VERT + 10
VERT=0 no
[no
>| IF VERT<PADDLE IF VERT => PADDLE
Vyes yes
VERT = PADDLE | VERT = PADDLE [<—
/ . ra

Rather than proceed with the development of what is to become a very com-
plex game using our ship, I would like to digress to another paddle routine.
This one controls a moveable gun turret in the horizontal plane. It is used quite
frequently in most Invaders-type games.

The screen range on the horizontal axis is 0-279. Our paddle range is, as
usual, limited to 0-255. In Applesoft, it was easy to multiply by 1.1 to obtain

149

150

the proper range. However, in machine language the multiplication and divi-
sion routines are too complex, and require numerous machine cycles to
execute. Besides, they return the result as two byte values, which means that
all of our adding and subtracting would require two byte operations.

It is much easier to accept the fact that the right 10% of the screen is
unusable or can’t be reached by paddles, unless we center the screen by
adjusting the horizontal offsets. Actually, if our gun is large, we can use part of
this space without adjustment. Take the gun turret illustrated below. It is 14
pixels, or two bytes wide.

PADDLE=255 I l 10 PIXEL

! <— GAP —>
I

]

255 269 279

f— 14 PIXELS —]

When the paddle value is at zero, the gun plots between 0-13 on the horizon-
tal axis, and when the paddle is at 255, the gun plots between 255 and 269.
That leaves only a ten pixel gap, which is hardly noticeable.

In order to use the paddle routine already developed for the vertical axis, it
must be modified. The paddle’s full range is needed, so clipping is removed
Just after the paddle is read. Instead, we must place a test in the code to prevent
it from incrementing past $FF (255 decimal) as it homes in on the actual
paddle value. In this case, we have slowed the turret’s movement to five units
per animation cycle. Again, the value of five is based on the frame rate, and
what appears to be a reasonable movement rate on the screen.

After testing the various possibilites of whether the paddle is set to a value
greater than PHORIZ (the horizontal position) you must prevent it from
adding five to PHORIZ if PHORIZ > 250. In this case, the PADDLE value is
251 to 255, and PHORIZ is set equal to the PADDLE.

CYCLE PADDLE PHORIZ

2 253 240
1 253 245
2 253 250
3 253 253

The following chart and corresponding code is shown below.

READ PADDLE

no
IF PADDLE < PHORIZ
yes paddle3 yes
IF PADDLE = PHORIZ
PHORIZ = PHORIZ-5 o
, [yes
yes IF PHORIZ >250
IF PHORIZ < 0 | no
: no
PHORIZ = PHORIZ +5
PHORIZ=0 {»{ IF PHORIZ < PADDLE
ye€s no
) IF PHORIZ => PADDLE
| PHORIZ = PADDLE | ves
paddles4
| PHORIZ = PADDLE p&—

39 *READ PADDLE #1
6028: A2 01 40 RPDL LDX #$01
602A: 20 1E FB 41 JSR PREAD
602D: 8C 07 60 42 SKIPP STY PDL
6030: 98 43 TYA
6031: CD OB 60 44 CMP PHORIZ ;s PADDLE<HORIZ POS THEN SUBTRACT 5
6034: BO 1E 45 BGE PADDLE3
6036: AD 0B 60 46 LDA PHORIZ
6039: 38 47 SEC
603A: E9 05 48 SBC #$05
603C: BO 08 49 BGE PADDLE1 sMAKE SURE =>0
603E: A9 00 50 LDA #$00
6040: 8D OB 60 51 STA PHORIZ
6043: 8D 0C 60 52 STA TPHORIZ
6046: CD 07 60 53 PADDLEl CMP PDL sDON'T WANT TO GO PAST PADDLE POS
6049: BO 03 54 BGE PADDLE2
604B: AD 07 60 55 LDA PDL
604E: 8D OB 60 56 PADDLE2 STA PHORIZ
6051: 4C 71 60 57 JMP PADDLE6
6054: CD OB 60 58 PADDLE3 CMP PHORIZ s PADDLE>PHORIZ POS THEN ADD 5
6057: FO 12 59 BEQ PADDLE4
6059: AD OB 60 60 LDA PHORIZ
605C: C9 FA 61 CMP #$FA s IS PHORIZ>250
605E: BO OB 62 BGE PADDLE4
6060: AD OB-60 63 LDA PHORIZ
6063: 18 64 CLC

151

152

6064: 69 05 65 ADC #$05

6066: CD 07 60 66 CMP PDL ;DON'T WANT TO GO PAST PADDLE POS
6069: 90 03 67 BLT PADDLES

606B: AD 07 60 68 PADDLE4 LDA PDL

606E: 8D OB 60 69 PADDLES STA PHORIZ

6071: 8D OC 60 70 PADDLE6 STA TPHORIZ

PADDLE CROSSTALK

Many readers will attempt at some future time to combine two paddle read
routines together to control a ship, or a gun crosshair with a joystick. They will
be dismayed to learn that the paddle values don’t read properly. This is called
paddle crosstalk.

When a paddle trigger is strobed, all the timers start. If the first paddle that
you read has a low value, it will return quickly from PREAD with a paddle
value. But the timers are still counting. If you immediately call PREAD again,
the timers aren’t restarted at zero, so that you may see a value from the first
paddle trigger instead of the second. The solution is to wait a sufficient time
before reading the second paddle. How long is sufficient? Not more than 255
machine cycles is needed. It is best to space your paddle reads with other code
in between.

An alternate solution is to read two paddles simultaneously by triggering
both strobes (or timers) together. Since the code takes longer to execute while
the paddle timers count down, the full paddle range can not be expected. The
code shown below is suitable for joystick control, but only has a range of 40 to
127. Clever programmers will either adjust these values or offset them to suit
their needs.

1 *THIS DUAL PADDLE RFAD RETURNS
2 *VALUES AS FOLLOWS
3 *PADDLE(O),PADDLE(I)
4 *
5 %126,127 —mmmme o ____ 44,127
6 %1 !
7 #* 1
8 * 1 '
9 % '
10 * 1 !
11 * 1 '
12 #126,47 —moommeee____ 44,47
13 *
14 ORG $300
15 ZERO DS 1
16 ONE DS 1

0302: A2 00 17 LDX #$00

0304: 8E 01 03 18 STX ONE

0307: 8E 00 03 19 STX ZERO

030A: A2 7F 20 LDX #$7F

030C: AD 70 CO 21 LDA $C070 ;STARTS BOTH TIMERS

O30F: AD 64 CO 22 LOOP LDA $C064 ;PADDLE O TIMER

0312: 29 80 23 AND #$80
0314: OA 24 ASL

0315: 2A 25 ROL

0316: 6D 00 03 26 ADC ZERO
0319: 8D 00 03 27 STA ZERO
031C: AD 65 CO 28 LDA $C065 ;PADDLE 1 TIMER
031F: 29 80 29 AND #$80
0321: 0A 30 ASL

0322: 2A 31 ROL

0323: 6D 01 03 32 ADC ONE
0326: 8D 01 03 33 STA ONE
0329: CA 34 DEX

032A: DO E3 35 BNE LOOP
032C: A9 7F 36 LDA #$7F
032E: 38 37 SEC

032F: ED 00 03 38 SBC ZERO
0332: 8D 00 03 39 STA ZERO
0335: A9 7F 40 LDA #$7F
0337: 38 41 SEC

0338: ED 01 03 42 SBC ONE
033B: 8D 01 03 43 STA ONE
033E: 60 44 RTS

-—END ASSEMBLY--

Many game designers choose keyboard controls instead of joystick controls.
There are two reasons for this. The first is speed. Obviously, a test for a specific
keypress only takes three instructions. A paddle, on the other hand, can take as
long as 255 machine cycles. Two paddles (joystick) take nearly twice as long if
you avoid crosstalk. There are many games where reading two paddles slows
the program down. Several games resort to reading one paddle direction on
alternate frames, and the other on the opposite frame; however, the controls
seem sluggish. The only sensible solution is to write fast, efficient code, so that
reading paddles does not affect the game’s speed.

The second reason for keyboard control is that, until recently, few computer
owners had joysticks. If the latter is the reason, the designer should offer a
choice of control modes. Certainly playability is more important than
monetary gain from a wider audience.

153

154

DROPPING BOMBS AND SHOOTING BULLETS

Simulating a bomb drop realistically involves some knowledge of how a body
in motion reacts to a constant force; in this case, gravity. The physics of a body
in motion requires advanced mathematics, mainly calculus. But calculus
actually involves the summation of many bits and pieces of a body’s velocity
and acceleration to determine the actual distance an object travels. The com-
puter, fortunately, automatically divides our time frame into small units, or
animation frames, wherein the force vectors can be displayed as direction vec-
tors.

Let’s examine an object in simple linear motion. The object is initially at
rest. It is then given a horizontal velocity of one unit to the left. Thus, the
velocity is +1 unit/time frame. During each animation frame, the object
moves + 1 units to the right.

An object’s direction of travel and its magnitude is represented by a line seg-
ment called a vector. An object’s velocity vector always points in the direction
of travel. Our object shown below has a velocity of + 1 units/ time frame, so
that the velocity is pointing to the right. Since the velocity vector is to the right,
the object moves to the right.

54
Y =
x.0) S 4y
—_— =
| v o
S
i &
| < 37
|
3 4 2t
X + t + + t
Frame #3 2 3 4 5 6
y FRAMES
(X,Y)
—_— Velocity = Const.
} Vv Dt
a
! 8 1 s v S S——
1 —
| =
3 4 '. + + J—
2 3 4 5 6
X
Frame #4 FRAMES

This can be formalized into equations for each of the
two screen directions X and Y.

VX = +1 velocity is constant in X direction
X =X + VX new position is the old position plus
the change in position (velocity).
Likewise

VY =0 velocity is stationary in Y direction.
Y=Y + VY

Therefore, the object remains stationary in the Y direction.

If a force were suddenly applied to our moving object so that the velocity in
the X direction were to increase by one with each time frame, the distances
traveled would grow substantially.

TIME VELOCITY POSITION (distance)
0

0 0
1 1 1
2 2 3
3 3 6 VX = VX +1
4 4 10 X = X +VX
5 5 15
6 6 21
5 15
s 4 12
=
o 3% S 9
Q <€
5_.‘-’ [
> 21 a6
[am]
1» 3
0O 1 2 3 4 5 ¢ 0O 1 2 3 4 5
TIME TIME
W
2 — >y
]
5 10 20

15
X POSITION

155

156

This driving force that speeds up our object is called acceleration (V=V+
A ') . The acceleration in the previous example was +1 units/frame. The
acceleration in space games is a rocket’s thrust and, for falling bombs, it is
gravity. To simplify things, when working with a falling bomb, we will neglect
variables like wind resistance, and assume that the bomb has a small forward
velocity equal to that of the plane. The plot of the trajectory of a falling bomb is
shown below. The trajectory forms a curve that is often called ‘‘parabolic’’.
You should note that although the velocity in the X direction remains constant,
the velocity in the Y direction (VY) grows larger with time. It grows larger
because gravity accelerates the object constantly in the downward direction.
This same effect can be observed by dropping a ball from the second or third
story of a building. At first, the ball falls slowly, but then it begins falling faster.
Observers at ground level will note an accelerated moving ball just before it
bounces.

The velocity of the falling bomb has two components represented by velocity
vectors - one in the X direction and the other in the Y direction. These two
velocity vectors can be graphically added together to form a total velocity
vector. The summation of the two vectors determines the resultant direction of
an object’s motion for each animation frame. Since the VY vector grows larger
with each frame, the total velocity vector begins to point downward. Eventual-
ly, the bomb will be falling almost straight down. Thus:

VX = CONST
VY = VY + GRAVITY

S F» Ve BOMB TRAJECTORY
N\
N

If you are programming the motion of a falling bomb, the equations or
algorithm are as follows.

VX
VY

CONST X
VY + GRAVITY Y

o
>
+
<
>

For all practical purposes, a gravity constant of 3 to 5 will produce realistic
curves on the Apple’s Hi-Res screen, but this, again, like our choice of a con-
stant for paddle movement, is dependent on factors like the animation frame
rate and the scale of other objects on the screen.

The trajectories of bullets and artillery shells are another useful feature in
games. Bullets in games like Apple Invaders and Galaxian travel straight up-

wards on the screen.

7

—-.X

X =0
VY = NEGATIVE CONSTANT
so that
X = CONST
Y =Y +(-VY)

Bullets that travel diagonally, but at a constant velocity in
the direction shown, have a VY that is negative and a VX
that is positive. The velocity vector determines the direc-
tion of travel.

VX = POSITIVE CONSTANT
VY = NEGATIVE CONSTANT
so that
X =X + VX

Y =Y +(-VY)

Our bullet is fired from a movable gun base at the bottom of the screen. Its
location, in relation to the gun barrel, is shown in the design at the right. The

BVERT
a

8 Lines

K3

PHORIZ' /

bullet’s shape is eight units tall by four units
wide and, like the gun base, uses seven
different offset shape tables. Although the
bullet is white, it is easier to use the same draw-
ing routine to move it in conjunction with the

1 Bullet gun base.

157

The bullet’s horizontal velocity is VX = 0 and its vertical velocity is VY =
-8. Thus, X = X + VX orX = const,andY =Y - VY. The bullet’s
vertical position is defined as BVERT. Therefore, BVERT = BVERT -8 for
each frame. If the bullet’s horizontal position is to remain constant once it is
fired, it must be set free of PHORIZ (the gun’s horizontal position), because
its value would undoubtedly change if the gun turret moves after the bullet is
fired. The bullet’s horizontal position, BPHORIZ, is set equal to PHORIZ
when the gun fires, and is used to determine the horizontal offset into the
screen line while it plots the bullet. The value is also used to index into the
XOFF table, which in turn acts as an index to the proper shape table when the
bullet is plotted on the screen.

The bullet travels further toward the top of the screen during each screen
frame. Notice that it travels exactly eight lines upwards per cycle. This allows
us to begin drawing at the start of one of the 24 eight line subgroups.

The code also prevents you from firing more than one bullet at a time. When
a bullet is on the screen, a flag called BON (short for ‘‘bullet on’’) is set to pre-
vent you from firing again. There is more than a casual reason for doing this. If
more than one bullet were fired at one time, you would need to keep track of
each bullet’s position separately. While two bullets might be manageable, a
large number would involve storing the position values into tables, then access-
ing them in sequence during the bullet setup routine.

A flow chart of the algorithm and the code is shown below.

yes

IS BULLET ON SCREEN
no \

no | ERASE BULLET]
IS BUTTON PRESSED? [
I yes
MOVE BULLET
RESET BULLET VERTICAL BVERT=BVERT-8
POSITION ABOVE GUN
BVERT = $A8
IS BULLET STILL| no
ON SCREEN? »
DRAW INITIAL POSITION IS BULET =>0
OF BULLET yes
\
TURN OFF BULLET-ON
SET BULLET-ON SCREEN FLAG. BON=0
FLAG BON = 1

[) Y

158

616D:
6170:
6173:
6176:
6179:

617C:
617E:
6180:
6182:
6184:
6187:
618A:
618C:
618F:
6192:
6195:

6196:
6199:
619B:
619D:
61A0:
61A2:
61A5:
61A7:
61AA:
61AD:

61B0:
61B3:
61B6:
61B9:
61BC:
61BE:
61C1:
61C4:
61C7:
61CA:
61CB:
61CE:
61D0:
61D3:
61D5:
61D7:
61DA:
61DD:
61E0:
61E3:

AD 0D 60
8D OF 60

AC
BE
BD

85
A9
85
A9
8D
8D
A9
8D
AD
8D
60

AD
c9
BO
AD
30
4C
A9
8D
AC
8C

OE
7C
A2

50
67
51

15
0A

16
01
27
62

60
64
65

60

co
61

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

#*BULLET SETUP

BSETUP LDA
STA
LDY
LDX
LDA

#o
STA
LDA
STA
LbA
STA
STA
LDA
STA
LDA
STA
RTS

BHORIZ

HORIZ

BPHORIZ

XOFF, Y ;INDEX TO WHICH SHAPE TABLE

BSHPLO,X ;INDEX TO GET LO BYTE OF BOMB -
;SHAPE TABLE

SHPL

#>BSHAPES ;GET HI BYTE OF SHAPE

SHPH

#$02

SLNGH

TEMP

#$07 +SHAPE 7 LINES DEEP

DEPTH

BVERT

TVERT

*BULLET SUBROUTINE

BULLET LDA
CcMp
BGE
LDA
BMI
JMP
FIRE] LDA
STA
LDY
STY

LDA
STA
JSR
JSR
LDA
STA
JMP
BULUPD JSR
JSR
SEC
LDA
SBC
STA
BCS
LDA
STA
JMP
SKIP JSR
JSR
NOSHOOT RTS

BON sTEST BULLET ON SCREEN

#301

BULUPD

$C062 3 NEG BUTTON PRESSED

FIREl

NOSHOOT

#3A8

BVERT

PHORIZ

BPHORIZ sBULLET HORIZ POS CONSTANT AT -
s INITIAL FIRING POSITION(0-255)

XBASE,Y ;FIND HOR BYTE OFFSET

BHORIZ ; (CONSTANT DURING VERTICAL TRAVEL)

BSETUP

GDRAW

#$01

BON sSET BULLET ON SCREEN FLAG

NOSHOOT

BSETUP

GDRAW

BVERT

#3508

BVERT sTHE CARRY FLAG IS SET IF POS
SKIP

#$00 +SET BULLET DEAD FLAG

BON

NOSHOOT

BSETUP

GDRAW

159

160

If you consider a bullet that is traveling diagonally upwards and to the right,

and allow gravity to take effect, then the trajectory resembles that of an artillery
shell.

|
VELOCITY
GUN \\ N
VELOCITY,”l GRAVITY GRAVITY

NEW

NEW VELOCITY
VELOCITY

Y%

The gravity vector tends to bend our velocity vector so that it no longer
travels at its initial 45 degree angle. By the time our bullet reaches the peak of
its flight, the gravity vector has incrementally subtracted our vertical velocity
vector to zero. At that point, there is only the horizontal velocity component.
Since gravity affects our bullet at every time increment, it soon causes our

velocity vector to have a negative vertical component. The bullet then begins to
fall.

I
=<
+
<
~<

VY = VY + (-G) Y =
VX = CONST X =X + VX

Once you understand the vector concept of how an object falls, the bomb
drop routine becomes elementary. The bomb must fall from the center of our
plane because, by design, bomb bays are located at the plane’s center of gravi-
ty. Since the tail of our plane is the vertical paddle position (VERT) and the

plane is eight lines deep, the first available plotting position beneath the plane
is at (VERT + 9).

The bomb can be defined by the following shape table.

o 00 07
000 0e -t
L AL) 07
OFFSET
9 A B C D E
VERT- ’
! | | | |
/ \
VERT
-
=
N\
2 \
ACCEL = 5 \
VY = VY + ACCEL @:{
YB = YB + VY 3
\ | |
\
CYCLE VY YB OFFSET \
\
1 0 0 A
2 5 5 B §§§>£f? i
3 10 15 C 4
4 15 30 D \
5 20 50 E \
6 25 75 F

To simplify the graphics, it is easier to move the bomb horizontally one byte
(or seven pixels) at a time. Consequently, with the bomb plotted in white, the
even - odd offset color problems vanish. The flowchart and code follow.

161

162

bomb

no
[1s BUTTON PRESSED?]

yes

IS BO

I

yes
MB STILL FALLING?
S BMLOCK = 0 ?

no

[1s

YB > YTARGET?

iyes

YB = YTARGET
TMBLOCK =

nodrop
no

IS BOMB STILL FALLING?

IS BMLOCK = 1
yes

fallin

y

L—] VY = VY + ACCELERATION |

NEW VERTICAL POSITION
= YB + VY

|

NEW HORIZONTAL POSITION
BOMBH = BOMBH + 1

no

[IS YB > YTARGET?

yes
SET FLAGS ON Y
BMLOCK = = YTARGET
TBMLOCK= 1 TBMLOCK = 0
DRAW FIRST DRAW BOMB AT
BOMB POSITION NEW POSITION
L Sl
REST OF PROGRAM
INCLUDING SCROLLING
bombx
IS BMLOCK = yes
SKIP IF ISN'T FALLING
no
NOTES:
XDRAW BOMB
BMLOCK: Bomb still falling.

TBML!

l1=yes O =no

OCK: Temporary flag set
to O if bomb struck
ground. Used in
BXDRAW subroutine to
test if BMLOCK is
set back to O.

[1s TBMLOCK)

\
| BMLOCK = OI

BOMB3

I RTSl

6489:
648C:
648E:
64913
6494
6496
6498:
649B:
649C:
649E:
64A1:
64AL:
64A6:
64A9:
64AB:
64AE:
64B0:
64B3:
64B6:
64B9:
64BC:
64BD:
64C0:
64C2:
64C53:
64C6:
64C8:
64CB:
64CE:
64D1:
64D4;
64D7:
64D6:

64DC:
64DF
64E1:
64E3:
64ES:
64E8:
64EB:
64ED:
64F0:
64F3;
64F6:

64F7
64FA:
64FC:
64FF:
6502
6505:
6508:
650B:
650D;
650F:
6512:

AD
FO
AD
18
69
8D
6D
8D
8D
AD
69
8D

AD
Cc9
90
A9
8D
8D
A9
8D
20
20
60

AD
FO
20
AD
8D
20
AD
DO
A9
8D
60

co
64
60
60
60
60
60
60
60
60
64
64
60

60

60

60
64
64

607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

654
655
656
657
658
659
660
661
662
663
664
665

*BOMB SUBROUTINE
#*

BOMB

BOMB1

DROP

NODROP

FALLIN

LDA
BMI
JMP
LDA
CMP
BGE
LDA
CLC
ADC
STA
STA
LDA
STA
LDA
STA
LDA
STA
STA
JSR
JSR
RTS
LDA
BEQ
LDA
CLC
ADC
STA
ADC
STA
STA
LDA
ADC
STA

*TEMP DETECT

BOMB2

BOMB3

LDA
CMP
BLT
LDA
STA
STA
LDA
STA
JSR
JSR
RTS

*BOMB XDRAW

BOMBX

BOMBX1

LDA
BEQ
JSR
LDA
STA
JSR
LDA
BNE
LDA
STA
RTS

$C061
BOMB1
NODROP
BMLOCK
#301
FALLIN
VERT

#$09
BVERT
TBVERT
#$0A
BHORIZ
#300
BVELY
#3$01
BMLOCK
TBMLOCK
BSET
BDRAW

BMLOCK
BOMB3
BVELY

#305
BVELY
BVERT
TBVERT
BVERT
BHORIZ
#$01
BHORIZ

;NEG TF BUTTON PRESSED

;IS BOMB STILL FALLING?
;YES, GOTO FALLIN

s INITTAL POSITION OF BOMB
s STARTING HORIZ POSITION

s INITTAL VERTICAL VELOCITY
sRESET TO ON

;RESET END OF FALL TO OFF

;DRAW BOMB

;IS BOMB STILL FALLING

;ADD ACCELERATION CONSTANT
sNEW VERTICAL VELOCITY
;BOMB'S NEW VERTICAL POSITION

;BOMB'S HORIZ. VELOCITY(CONSTANT)
sBOMB'S NEW HORIZ. POSITION

FOR BOMB LANDING

BVERT
#$BO
BOMB2
#$BO
BVERT
TBVERT
#$00
TBMLOCK
BSET
BDRAW

BMLOCK
BOMBX1
BSET
BVERT
TBVERT
BXDRAW
TBMLOCK
BOMBX1
#300
BMLOCK

;BOTTOM SCREEN?
;sNO! THEN BOMB2

;SET END OF BOMB FALL FLAG

;IS BOMB STILL FALLING?(1=YES)
;SKIP IF O

; XDRAW BOMB

;RESET BOMB FALLING TO OFF

163

164

574 *DRAWING ROUTINES FOR BOMB
#*

575
6445: A9 EF 576 BSET LDA #<SHBOMB ;ADDRESS BOMB SHAPE
6447: 85 56 577 STA BOMBL
6449: A9 68 578 LDA #>SHBOMB
644B: 85 57 579 STA BOMBH
644D: AD 19 60 580 LDA BHORIZ ;BOMB'S HORIZ. POSITION
6450: 8D OE 60 581 STA HORIZ
6453: A9 03 582 LDA #$03
6455: 8D 11 60 583 STA DEPTH
6458: 60 584 RTS
6459: AC 17 60 585 BDRAW LDY TBVERT ;sBOMB VERT POS
645C: 20 1C 63 586 JSR GETADR
645F: A2 00 587 LDX #$00
6461: Al 56 588 LDA (BOMBL,X) ;GET ADDRESS OF BOMB SHAPE
6463: 91 26 589 STA (HIRESL),Y ;PLOT
6465: EE 17 60 590 INC TBVERT
6468: E6 56 591 INC BOMBL
646A: CE 11 60 592 DEC DEPTH
646D: DO EA 593 BNE BDRAW
646F: 60 594 RTS
6470: AC 17 60 595 BXDRAW LDY TBVERT
6473: 20 1C 63 596 JSR GETADR
6476: A2 00 597 LDX #$00
6478: Al 56 598 LDA (BOMBL,X)
647A: 51 26 599 EOR (HIRESL),Y
647C: 91 26 600 STA (HIRESL),Y
647E: EE 17 60 601 INC TBVERT
6481: E6 56 602 INC BOMBL
6483: CE 11 60 603 DEC DEPTH
6486: DO E8 604 BNE BXDRAW
6488: 60 605 RTS

THE INVADERS TYPE GAME

Games of this type are classed as shoot-’em-up games. They generally
involve a movable gun turret, or space ship, that traverses the bottom of the
screen. The object is to defend against a horde of attacking aliens by firing
bullets up at them. The aliens can either advance in ranks, like they do in
Space Invaders, or they can swoop down singly or in groups, as they do in
Apple Galaxian. Sometimes, background stars, moving from top to bottom,
generate the feeling that your gun or ship is in motion. But these games still
involve a static screen in the sense that all objects are manipulated within the
screen space.

On the other hand, there are games that could be classed as dynamic
because the entire background is scrolling in some preset direction, while the
ship or other vehicle usually has controllable movement on the non-scrolling
axis only. Objects which are out of view can be manipulated and scheduled to
appear when your ship moves into their general vicinity. Moving your ship
involves scrolling the entire background, so that terrain and objects out of the
range of your display, suddenly appear. Of course, the terrain you previously

[INITILIZE ALL |

| DRAW GUN TURRET & ALIENS |

* READ PADDLEI

| _XDRAW GUN TURRET |

] no
{_IS BUTTON PRESSED? f--—ry
yes
1
[FIRE BULLET | MOVE BULLET IF

PREVIOUSLY FIRED

[xDRAW ALTENS |

MOVE ALIENS TO
NEW POSITION

| DRaW ALIENS |

no
[ALIEN HIT BY BULLET? }—m
yes

[
{ UPDATE SCORE |

{ XDrAW ALIEN]
e

MOVE ALIEN BULLETS TOWARDS SHIP

| DRAW GUN_ TURRET]

no
[GUN TURRET HIT?}—

yes

ILOSE SHIP

[SMALL DELAY I
|

165

166

occupied is now off screen. Arcade games like Pegasus II involve constant
terrain scrolling from right to left as your spaceship moves further into the
enemy’s territory. This type of animation will be discussed in the following
chapter.

The sequence of events in an Invaders game is diagrammed above. It is
typical of most games. While we aren’t going to develop the entire game, we
will integrate the paddle and bullet firing routines previously outlined in this
chapter with the color drawing routines discussed in Chapter 5.

Since this is the first time that we have actually put together developed
subroutines into a workable game, I should discuss the overall structure of a
machine language program. Programs begin with storage allocations for
variables, and zero page equates or assignments to specific memory locations
in zero page for others. These are followed by initialization routines that
activate Hi-Res graphics, clear the screen, and set specific variables to their
initial values. The main program loop comes next, followed by subroutines.
Your tables, both shape and reference, reside at the end.

DEFINE STORAGE LOCATIONS

INITILIZE STORAGE
& VARIABLES

MAIN PROGRAM

SUBROUTINES |
T

I
SHAPE TABLES

Using a good assembler makes the job of writing a program relatively easy.
All the tedious mechanical problems like relative addressing for branch instruc-
tions, references to variable storage, and memory storage assignments are
handled automatically. In fact, the assembler is so adept at calculating
addresses that I often use it for generating internal reference tables to the loca-
tions of my shapes.

Normally, it is good programming practice to put shape tables in some
specific yet safe place in memory. But while developing short programs, it is an
extra step to load your shape tables into memory each time that you want to
test the program. Sometimes, it is more convenient to incorporate shape tables
into your program, although their memory location changes with each
modification to your source code.

The assembler can be used to define a reference table to the low byte of each
shape in your shape table. In the TED II + assembler, DB defines a byte - the
lo byte. BIG MAC and MERLIN use DFB.

659B: 16 SHPLO DB SHAPES
659C: 2E DB SHAPES + $18
659D: 46 DB SHAPES + $30

DB SHAPES + $90

The assembler looks up the lo byte address for each of our shapes according
to the address that we give to it. Each shape is 24 (or $18) bytes long. This
accounts for the reason each succeeding shape address increases by $18. Notice
on the left of the above listing that the actual byte value is placed into our table
for each shape.(SHPLO 16 2E 46 5E ...). This corresponds exactly to the lo
byte values in our floating shape table. I’ll extend a word of caution about
using this method. Shape tables must not cross page boundaries, because the hi
byte, which is stored at SHPH in our drawing routine, must be kept constant.
Sometimes, extra space needs to be allocated in the code just before the shape
table for correcting this problem. The DS pseudo-op code to Define Storage
can be used.

The lo and hi bytes for a particular shape are determined by the following
code:

LDY PHORIZ ;PADDLE VALUE 0-255
LDX XOFF,Y ;INDEX TO FIND WHICH SHAPE IN TABLE
LDA SHPLO,X ;INDEX TO GET LO BYTE OF SHAPE IN TABLE

STA SHPL
LDA #>SHAPES ;GET HI BYTE OF SHAPE TABLE
STA SHPH

If you were to choose, instead, to put the shape table at $7000 in memory,
you would use a table called SHPADR to index to the proper shape. Each posi-
tion in the table would reference the lo byte of a shape in the shape table.

SHPADR HEX 00 18 30 48 60 78 90

167

168

The setup routine is modified as follows:

LDY PHORIZ ;PADDLE VALUE 0-256

LDX XOFF,Y ;INDEX TO FIND WHICH SHAPE IN TABLE
LDA SHPADR,X ;INDEX TO LO BYTE IN TABLE

STA SHPL
LDA $70 ;HI BYTE OF TABLE
STA SHPH

There are no speed advantages or disadvantages gained by using either
method. The former method is strictly for convenience to be used while
developing small programs. To avoid mistakes, large programs should
definitely have shape tables fixed in memory.

The Invaders routine which follows lacks alien targets. It does, however,
have a paddle-controlled gun turret which is capable of firing one bullet at a
time. It is a start, and as you will see later, putting aliens on the screen is not

difficult. A simple flow chart of the program and the actual code is shown
below.

INITILIZE

——>1 READ PADDLE

XDRAW GUN TURRET |

no

[BUTTON PRESSED? }_ﬁ
yes V

MOVE BULLET IF
FIRE BULLET PREVIOQUSLY FIRED

- |

XDRAW GUN TURRET

]

6000: 4C 17 60

6017;
601A:
601D:
6020:
6023:
6025:

6028:
602A:
602D:
6030:
6031:
6034
6036:
6039:
603A:
603C:
603E:
6040
6043:
6046
6049:
604B:
604E
6051:
6054:
6057:
6059:

AD
AD
AD
20
A9
8D

A2
20
8C
98
CD
BO
AD
38
E9
BO
A9
8D
8D
CD
BO
AD
8D
4C
CD
FO
AD

FB
60

60
60

VOO~ WN —

*CODE FOR PART OF INVADERS GAME

ORG $6000
JMP PROG

COUNT DS 1

INDEX DS 1

PADDLEL DS 1

PADDLEH DS 1

PDL DS 1

TEMP DS 1

VERT DS 1

TVERT DS 1

PHORIZ DS 1

TPHORIZ DS 1

BHORIZ DS 1

BPHORIZ DS 1

HORIZ DS 1

OBJ DS 1

LNGH DS 1

DEPTH DS 1

SLNGH DS 1

SHOT DS 1

BVERT DS 1

BON DS 1

HIRESL EQU $26

HIRESH EQU HIRESL+$1

SHPL EQU $50

SHPH EQU SHPL+$1

SSHPL EQU $52

SSHPH EQU $53

STESTL EQU $54

STESTH EQU STESTL+$1

PREAD EQU $FBIE

PROG LDA $CO50
LDA $CO52
LDA $CO57
JSR CLRSCR
LDA #$00
STA BON

#READ PADDLE #1

RPDL LDX #$01
JSR PREAD

SKIPP STY PDL
TYA
CMP PHORIZ
BGE PADDLE3
LDA PHORIZ
SEC
SBC #$05
BGE PADDLEL
LDA #$00
STA PHORIZ
STA TPHORIZ

PADDLEI CMP PDL
BGE PADDLE2
LDA PDL

PADDLE2 STA PHORIZ
JMP PADDLE6

PADDLE3 CMP PHORIZ
BEQ PADDLE4
LDA PHORIZ

;JUMP TO START OF CODE

; PADDLECHORIZ POS THEN SUBTRACT 5

sMAKE SURE =>0

;DON'T WANT TO GO PAST PADDLE POS

s PADDLE>PHORIZ POS THEN ADD 5

169

170

605C: C9
605E: BO
6060: AD
6063: 18
6064: 69
6066: CD
6069: 90
606B: AD
606E: 8D
6071: 8D
6074: 20
6077: 20
607A: 20
607D: 20
6080: A9
6082: 20
6085: 20
6088: 20
608B: 4C

608E: A9
6090: 85
6092: A9
6094: 85
6096: AO
6098: A9

609A: 91 :

609C: C8
609D: DO
609F: E6
60A1: AS
60A3: C9
60A5: 90
60A7: 60

60A8: AC
60AB: 20
60AE: A2
60BO: Al
60B2: 51
60B4: 91
60B6: E6
60B8: C8
60B9: CE
60BC: DO
60BE: EE
60Cl: CE
60C4: DO
60C6: 60

60C7: AC
60CA: 20
60CD: A2
60CF: Al
60D1: 51
60D3: 91
60D5: E6

60
60

60
60

60
60

113
114
115
116
117
118
119
120

PADDLE4
PADDLES
PADDLE6

3

*CLEAR SCREEN

CLRSCR

CLR1

CLR2

JSR
JSR
JSR
JSR
LDA
JSR
JSR
JSR
JMP

LDA
STA
LDA
STA
LDY
LDA
STA

INY
BNE
INC
LDA
CMP
BCC
RTS

#3FA
PADDLE4
PHORIZ

#$05
PDL
PADDLES
PDL
PHORIZ
TPHORIZ
GSETUP
GDRAW
BSETUP
BULLET
#$60
$FCA8
GSETUP
GDRAW
RPDL

** SUBROUTINES

#$00
HIRESL
#$20
HIRESH
#$00

#3$00
(HIRESL),Y

CLR2
HIRESH
HIRESH
#$40
CLR1

3 IS PHORIZ>250

;DON'T WANT TO GO PAST PADDLE POS

;BACK TO BEGINNING OF MAIN LOOP

3%

*DRAW GUN SHAPE DEPTH LINES BY LNGH

GDRAW

GDRAW3

LDY
JSR
LDX
LDA
EOR
STA
INC
INY
DEC
BNE
INC
DEC
BNE
RTS

TVERT
GETADR
#$00
(SHPL,X)
(HIRESL),Y
(HIRESL),Y
SHPL

SLNGH
GDRAW3
TVERT
DEPTH
GDRAW

*XDRAW GUN SHAPE

GXDRAW

GXDRAW2

LDY
JSR
LDX
LDA
EOR
STA
INC

TVERT
GETADR
#300
(SHPL, X)
(HIRESL),Y
(HIRESL),Y
SHPL

s VERTICAL POSITION

sGET BYTE OF SHIP'S SHAPE
sPLOT

s NEXT BYTE OF TABLE

;IF LINE NOT FINISHED BRANCH

;OTHERWISE NEXT LINE DOWN

s VERTICAL POSITION

60D7:
60D8:
60DB:
60DD:
60F0:
60E3:
60E5+:

60E6:
60E9:
60EA:
60ED:
60EF:
60F2:
60F4:
60F7:
60FA:
60FC:

60FD:
60FF:
6101:
6103:
6105
6106:
6108:
610A:
610C:
610E:
6110:
6112:
6114:
6117:
6119:
611A:
611C:

611D:
611F:
6121:
6123:
6125:
6127:
6128:
612A:
612C:
612E:
6130:
6132:
6134:
6136:
6139:
613B:
613C:
613E:

613F:
61422
6145:
6148:

El

0B
64
OF
7C

60

60
60

61
60
62

60
60

60

60
63
60
64

121

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

INY
DEC SLNGH
BNE GXDRAW2
INC TVERT
DEC DEPTH
BNE GXDRAW
RTS
*GETADR SUBROUTINE
GETADR LDA YVERTL,Y ;LOOK UP LO BYTE OF LINE
CLC
ADC HORIZ ;ADD DISPLACEMENT INTO LINE
STA HIRESL
LDA YVERTH,Y ;LOOK UP HI BYTE OF LINE
STA HIRESH
LDA TEMP
STA SLNGH
LDY #$00
RTS
*DRAW ALIEN SHIPS & TARGETS
DRAW LDX #3$00
DRAW2 LDA (SHPL,X)
STA (HIRESL),Y
LDA HIRESH
CLC
ADC #304
STA HIRESH
INC SHPL
CMP #$40
BCC DRAW2
SBC #$20
STA HIRESH
DEC LNGH
BEQ DRAW3
INY
BNE DRAW2
DRAW3 RTS
*XDRAW ALIEN SHIPS & TARGETS
XDRAW LDX #3%00
XDRAW2 LDA (SHPL,X)
EOR (HIRESL),Y
STA (HIRESL),Y
LDA HIRESH
CLC
ADC #3$04
STA HIRESH
INC SHPL
CMP #$40
BCC XDRAW2
SBC #$20
STA HIRESH
DEC LNGH
BEQ XDRAW3
INY
BNE XDRAW2
XDRAW3 RTS
#DRAWING ROUTINES SETUP
GSETUP LDY PHORIZ sPADDLE VALUE 0-256
LDA XBASE,Y ;GET BYTE OFFSET IN TABLE
STA HORIZ

LDX XOFF,Y ; INDEX TO FIND WHICH SHAPE TABLE

171

172

614B:
614E:
6151:
6153:
6155:
6157:
6159;
615C:
615F:
6161:
6164
6166:
6169:
616C:

616D:
6170:
6173:
6176:
6179:

617C:
617E:
6180:
6182:
6184:
6187:
618A:
618C:
618F:
6192:
6195:

6196:
6199:
619B:
619D:
61A0:
61A2:
61A5:
61A7:
61AA:
61AD:

61BO:
61B3:
61B6;
61B9:
61BC:
61BE:
61C1:
61C4:
61C7:
61CA:
61CB:
61CE:
61D0:
61D3:
61D5:
61D7:

BC
B9
85
A9
85
A9
8D
8D
A9
8D
A9
8D
8D
60

AD
8D
AC
BE
BD

85
A9
85
A9
8D
8D
A9
8D
AD
8D
60

AD
C9

65
65

60
60

60
60

60

Co

61

60

63
60
61
60

60
61

60

60

60

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

LDY
LDA
STA
LDA
STA
LDA
STA
STA
LDA
STA
Lo
STA
STA
RTS
*BULLET SETUP
BSETUP LDA
STA
LDY
LDX
LDA

SHPADR, X
SHPLO,Y
SHPL
#>SHAPES
SHPH
#$03
SLNGH
TEMP
#$08
DEPTH
#$B0
VERT
TVERT

BHORIZ
HORIZ
BPHORIZ
XOFF, Y
BSHPLO, X

STA
LDA
STA
LDA
STA
STA
LDA
STA
LDA
STA
RTS
*BULLET SUBROUTINE
BULLET LDA BON
CMP #$01
BGE BULUPD
LDA $C062
BMI FIREl
JMP NOSHOOT
LDA #$A8
STA BVERT
LDY PHORIZ
STY BPHORIZ

SHPL
#>BSHAPES
SHPH

#302
SLNGH
TEMP
#$07
DEPTH
BVERT
TVERT

FIREl

LDA
STA
JSR
JSR
LDA
STA
JMP
JSR
JSR
SEC
LDA
SBC
STA
BCS
LDA
STA

XBASE,Y
BHORIZ
BSETUP
GDRAW
#$01
BON
NOSHOOT
BSETUP
GDRAW

BULUPD

BVERT
#$08
BVERT
SKIP
#$00
BON

;X IS 0-6
; INDEX TO GET LO BYTE SHAPE TABLE

sGET HI BYTE OF SHAPE

s INDEX TO WHICH SHAPE TABLE
s INDEX TO GET LO BYTE OF BOMB -

;SHAPE TABLE

;GET HI BYTE OF SHAPE

;SHAPE 7 LINES DEEP

;TEST BULLET ON SCREEN

; NEG BUTTON PRESSED

sBULLET HORIZ POS CONSTANT AT -

s INITIAL FIRING POSITION(0-255)

;FIND HOR BYTE OFFSET
; (CONSTANT DURING VERTICAL TRAVEL)

sSET BULLET ON SCREEN FLAG

;THE CARRY FLAG IS SET IF POS

sSET BULLET DEAD FLAG

61DA:
61DD:
61EO0:
61E3:

61E4:
61E7:
61EA:
61EC:
61EF:
61F2:
61F4:
61F7:
61FA:
61FC:
61FF:
6202:
6204
6207:
620A:
620C:
620F:
6212:
6214:
6217:
621A:
621C:
621F:
6222:
6224
6227:
622A:
622C:
622F:
6232:
6234:
6237:
623A:
623C:
623F:
6242:
6244
6247:
624A:
624C:
624F
6252
6254
6257:
625A:
625C:
625F:
6262:
6264
6267:
626A:
626C:
626F:
6272:

4C
20
20
60

00
00
00
80
80
80
00
00
00
80
80
80
00
00
00
80
80
80
00
00
00
80
80
80
28
28
28
A8
A8
A8
28
28
28
A8
A8
A8
28
28
28
A8
A8
A8
28
28
28
A8
A8
A8
50
50
50
DO
DO
DO

E3
A8

61
61
60

00
00

80
80

00
00

80
80
00
80
00
00

80
80

28
A8
A8

28
28

A8
A8

28
28

A8
A8

28
28

A8
A8

50
50

241
242
243
244
245
246
247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

SKIP

JMP
JSR
JSR

NOSHOOT RTS
*

*TABLES

*

YVERTL

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

NOSHOOT
BSETUP
GDRAW

*

0000000000000000

8080808080808080

0000000000000000

8080808080808080

0000000000000000

8080808080808080

0000000000000000

8080808080808080

2828282828282828

ABABABABABABABAS

2828282828282828

ABABABABABABABAS

2828282828282828

ABABABASABABA8AS

2828282828282828

ABABABABABABABAS

5050505050505050

DODODODODODODODO

173

174

6274
6277
627A:
627C:
627F:
6282:
6284
6287
628A:
628C:
628F:
6292:
6294
6297:
629A:
629C:
629F:
62A2:

62A4:
62A7:
62AA:
62AC:
62AF:
62B2:
62B4:
62B7:
62BA:
62BC:
62BF:
62C2:
62C4:
62C7:
62CA:
62CC:
62CF:
62D2:
62D4:
62D7:
62DA:
62DC:
62DF:
62E2:
62E4:
62E7:
62EA:
62EC:
62EF:
62F2:
62F4:
62F7:
62FA:
62FC:
62FF:
6302:
6304
6307:
630A:
630C:
630F:

20
2C
38
21
2D
39
21
2D
39
22
2E
3A
22
2E

50
50

50
50

DO

50

DO
DO

28

34

28
34

29
29
35

2A
36

2A
36

2B
37

2B
37

28
34

28
34

29
35

29
35

2A

24
36

266

267

268

269

270

271
272

273

274

275

276

277

278

279

280

281

282

283

284

285

YVERTH

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

5050505050505050

DODODODODODODODO

5050505050505050

DODODODODODODODO

5050505050505050

DOLODODODODODODO

2024282C3034383C

2024282C3034383C

2125292D3135393D

2125292D3135393D

22262A2E32363A3E

22262A2E32363A3E

23272B2F33373B3F

23272B2F33373B3F

2024282C3034383C

2024282C3034383C

2125292D3135393D

2125292D3135393D

22262A2E32363A3E

6312:
6314:
6317:
631A:
631C:
631F:
6322:
6324
6327
632A:
632C:
632F:
6332:
6334:
6337:
633A:
633C:
633F:
6342:
6344
6347:
634A:
634C:
634F:
6352:
6354:
6357:
635A:
635C:
635F:
6362:
6364
6367:
636A:
636B:
636E:
6371:
6372:
6375:
6378:
6379:
637C:
637F:
6380:
6383:
6386:
6387:
638A:
638D:
638E:
6391:
6394:
6395:
6398:
639B:
639C:
639F:
63A2:
63A3:
63A6:

03
03

04

05

05

06

07
07

2B
37

2B
37

28
34

28
34

29
29
35

2A
36

2A
36

2B
37

2B
37

00
00

01
01

02
03
03

04
04

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

XBASE

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

22262A2E32363A3E

23272B2F33373B3F

23272B2F33373B3F

2024282C3034383C

2024282C3034383C

2125292D3135393D

2125292D3135393D

22262A2E32363A3E

22262A2E32363A3E

23272B2F33373B3F

23272B2F33373B3F

00000000000000

00010101010101

02020202020202

02030303030303

04040404040404

04050505050505

06060606060606

06070707070707

08080808080808

175

176

63A9:
63AA:
63AD:
63B0:
63B1:
63B4:
63B7:
63B8:
63BB:
63BE:
63BF:
63C2:
63C5:
63C6:
63C9:
63CC:
63CD:
63D0:
63D3:
63D4;
63D7:
63DA:
63DB;
63DE:
63E1:
63E2:
63E5:
63E8:
63E9:
63EC:
63EF:
63F0:
63F3:
63F6:
63F7:
63FA:
63FD:
63FE:
6401:
6404
6405:
6408:
640B:
640C:
640F:
6412:
6413:
6416:
6419:
641A:
641D:
6420:
6421
64243
6427:
64282
642B:
642E:
642F:
6432;

0A
0A

0B
0B

0C
0C

11
11

12
12

13
13

14
14

15
15

16
16

17
17

18
18

19
19

1A
1A

1B
1B

1C
1C

1D
1D

oC
oC

()]
0D

OE
OE

OF
OF

10
10

11
11

12
12

13
13

14
14

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

08090909090909

OAOAOAOAOAOAQA

OAOBOBOBOBOBOB

0cococococococ

0CODODODODODOD

OEOEOEOEOEQOEOE

OEOFOFOFOFOFOF

10101010101010

10111111111111

12121212121212

12131313131313

14141414141414

14151515151515

16161616161616

16171717171717

18181818181818

18191919191919

1A1A1A1A1A1AIA

1A1B1B1B1B1BIB

1CiC1C1CICICIC

6435:
64363
6439:
643C:
643D:
6440:
6443
6444
6447
644A:
644B:
644E:
6451:
64522
6455:
6458:
6459:
645C:
645F
6460:
6463:
6466:
6467:
646A:
646D:
646E:
6471:
6474
6475:
6478:
647B:
647C:
647F:
6482:
483
6486:
6489:
648A:
648D:
6490:
6491:
6494
6497:
6498:
649B:
649E:
649F:
64A2:
64A5:
64A6:
64A9:
64AC:
64AD:
64B0:
64B3:
64B4 ¢
64B7:
64BA:
64BB:
64BE:

1D
1E
1E
1E
1E
1F
1F
20
20
20
20
21
21
22
22
22
22
23
23
24
24
24
24
25
25
26
26
26
26
27
27
00
01
03
03
05
06
00
01
03
03
05
06
00
01
03
03
05
06
00
01
03
03
05
06
00
01
03
03
05

1E
1E

1F
1F

20
20

21

22
22

23
23

24
25
25

26
26

27

00
02

05
00
04
05

00
02

04
05

00
02

1E
1E

1F
1F

20

21

21

22
22

23
24
24

25
25

26
27
27

01
02

4 G4

06
01
04
06

01
02

04
06

01
02

04
01
02

04
06

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

XOFF

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

1C1D1D1D1D1D1D

1E1E1E1EIE1ELE

1EI1F1F1F1F1F1F

20202020202020

20212121212121

22222222222222

22232323232323

124242424242424

24252525252525

26262626262626

26272727272727

00000101020203

03040405050606

00000101020203

03040405050606

00000101020203

03040405050606

00000101020203

03040405050606

00000101020203

177

178

64C1:
64C2:
64C5:
64C8:
64C9:
64CC:
64CF:
64D0:
64D3:
64D6:
64D7:
64DA:
64DD:
64DE:
64E1:
64E4:
64E5:
64E8:
64EB:
64EC:
64EF:
64F2:
64F3:
64F6:
64F9:
64FA:
64FD:
6500;
6501 :
6504 :
6507:
6508:
650B:
650E;
650F:
6512:
6515:
6516:
6519:
651C:
651D:
65203
6523:
6524
6527:
6524
652B:
652E:
6531:
6532:
6535:
6538:
6539:
653C:
653F:
6540:
6543
6546
6547
654A:

00
02

04
05

00
02

04
05

00
02

04
05

00
02

04
05

00
02

04
05

00
02

04
05

00
02

04
05

00
02

04
00
02

04
05

00
02

04
05

02

04
06

01
02

04
06

01
02

04

06
01
04
06
01
04
06
01
04
06

01
02

04
06

01
04
06

01
02

04
06

01
02

04
06

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

03040405050606
00000101020203
03040405050606
00000101020203
03040405050606
00000101020203
03040405050606
00000101020203
03040405050606
00000101020203
03040405050606
00000101020203
03040405050606
00000101020203
03040405050606
00000101020203
03040405050606
00000101020203 ‘
03040405050606

00000101020203

654D: 06 366 HEX 03040405050606
654E: 00 00 01
6551: 01 02 02
6554: 03 367 HEX 00000101020203
6555: 03 04 04
6558: 05 05 06
655B: 06 368 HEX 03040405050606
655C: 00 00 01
655F: 01 02 02
6562: 03 369 HEX 00000101020203
6563: 03 04 04
6566: 05 05 06
6569: 06 370 HEX 03040405050606
656A: 00 00 01
656D: 01 02 02
6570: 03 371 HEX 00000101020203
6571: 03 04 04
6574: 05 05 06
6577: 06 372 HEX 03040405050606
6578: 00 00 01
657B: 01 02 02
657E: 03 373 HEX 00000101020203
657F: 03 04 04
6582: 05 05 06
6585: 06 374 HEX 03040405050606
6586: 00 00 01
6589: 01 02 02
658C: 03 375 HEX 00000101020203
658D: 03 04 04
6590: 05 05 06
6593: 06 376 HEX 03040405050606
377 *TABLES
6594: 00 01 02
6597: 03 04 05

659A: 06 378 SHPADR HEX 00010203040506
379 *
659B: 16 380 SHPLO DFB SHAPES
659C: 2E 381 DFB SHAPES+$18
659D: 46 382 DFB SHAPES#$30
659E: SE 383 DFB SHAPES+$48
650F: 76 334 DFB SHAPES+$60
65A0: 8L 385 DFB SHAPES+$78
65A1: A6 386 DFB SHAPES+$90
387 *
65A2: 3E 388 BSHPLO DFB BSHAPES
65A3: 4C 389 DFB BSHAPES+$0E
65A4: 5A 390 DFB BSHAPES+$1C
65A5: 68 391 DFB BSHAPES+$2A
6546: 76 392 DFB BSHAPES+$38
65A7: 84 393 DFB BSHAPES+$46
65A8: 92 394 DFB BSHAPES+$54
65A9: AO 395 DFB BSHAPES+$62
396 DS $6C

397 *SHAPE TABLE GUN
6616: A0 81 00
6619: A0 81 00
661C: AO 81 398 SHAPES HEX AO08100A08100A081
661E: 00 AO 81
6621: 00 A8 85
6624: 00 A8 399 HEX OOA08100A88500A8

179

180

6626:
6629:
662C:

662E:
6631:
6634
6636
6639:
663C:
663E:
6641:
6644

6646:
6649:
664C:
664E:
6651:
6654
6656
6659:
665C:

665E:
6661
6664
6666:
6669:
666C:
666E:
6671:
6674

66762
6679:
667C:
667E:
6681:
6684:
6686:
6689:
668C:

668E:
6691
6694
6696:
6699:
669C:
669E:
66A1:
66A4 3

66A6:
66A9:
66AC:
66AE:
66B1 :
66B4 ¢

85

85
95

A8
A8
00
94
D5
AO
AO

80
80
D4
00
00
00
00
82
94
94
00
00

8A
AA

DO

00
00

A8
AA

400
401

402

403

404
405

406

407

408
409

410

411

412
413

414

415

416
417

418

419

420
421

422

423

*2ND

*3RD

*4TH

*5TH

*6TH

*7TH

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

'HEX

8500849400849400

0085000085000085

00008500409500A0

9500A8D080A8DO80

0094000094000094

0000940000D58000

D580A0C182A0C182

00D08000D0O8000D0

8000D08000D48200

D48200858A00858A

€08200C08200C082

00C08200D08A00DO

8A0094A80094A800

008A00008A00008A

00008A00COAA00CO

AAOODOAO81D0A081

00A80000A80000A8

0000A80000AA8100

66B6: AA 81 CO
66B9: 82 85 CO

66BC: 82 85 424 HEX AA81C08285C08285
425 *
426 DS $80

427 #BULLET SHAPE TABLE

673E: 40 01 40

6741: 01 40 01

6744: 40 428 BSHAPES HEX 40014001400140

6745: 01 40 01

6748: 40 01 40

674B: 01 429 HEX 01400140014001
430 *2ND

674C: 00 06 00

674F: 06 00 06

6752: 00 431 HEX 00060006000600

6753: 06 00 06

6756: 00 06 00

6759: 06 432 HEX 06000600060006
433 *3RD

675A: 00 18 00

675D: 18 00 18

6760: 00 434 HEX 00180018001800

6761: 18 00 18

6764: 00 18 00

6767: 18 435 HEX 18001800180018
436 *4TH

6768: 00 60 00

676B: 60 00 60

676E: 00 437 HEX 00600060006000

676F: 60 00 60

6772: 00 60 00

6775: 60 438 HEX 60006000600060
439 *5TH

6776: 00 03 00

6779: 03 00 03

677C: 00 440 HEX 00030003000300

677D: 03 00 03

6780: 00 03 00

6783: 03 441 HEX 03000300030003
442 *6TH

6784: 00 OC 00

6787: 0OC 00 OC

678A: 00 443 HEX 000C000C000C00

678B: OC 00 OC

678E: 00 OC 00

6791: OC 444 HEX 0C000C000C0O00C
445 *7TH

6792: 00 30 00

6795: 30 00 30

6798: 00 446 HEX 00300030003000

6799: 30 00 30

679C: 00 30 00

679F: 30 447 HEX 30003000300030

~-END ASSEMBLY--
ERRORS: O

1952 BYTES

181

182

I’d like to emphasize that careful attention to detail is very important when
programming. Machine language is very unforgiving. Failure to initialize a
single variable could cause your graphics to go haywire. One of the most com-
mon mistakes is to clobber a register in your program or subroutine when call-
ing another subroutine. Some programmers automatically save the
Accumulator and X & Y registers by pushing them onto the stack before calling
a subroutine, and restore them afterwards. It requires six instructions in each
direction. Yet it makes more sense to have the called subroutine save the
registers that it knows will be clobbered, and restore them before returning.

The setup routine for the drawing program is often a source for error.
Although the setup is basically standard for a particular drawing subroutine,
accidentally omitting one variable or failure to place a variable, in say, the Y
register, can be disastrous. To give you an example of unexpected results,
remove the STA TVERT in line 190 by NOPing the code in memory.

6169: EA EA EA

Run the program and watch the results. Imagine how long it might take to
find this mistake. Debugging machine language graphics is difficult because
events happen too quickly for the eye to detect. An Integer machine or an
Integer ROM card with step and trace is almost a neccessity. There have been
times when I cleared the screen manually, set the graphics mode and put the
machine in trace mode, so that I could watch the graphics being drawn in slow
motion. Always remember to enter just after your CLRSCR or you will waste
four or five minutes while the computer clears all 8K of Hi-Res memory. The
commands for clearing screen #1 manually are as follows.

*2000: 00
*2001<2000. 3FFFM

Another debugging tool that is quite helpful is the single step debug module
which is discussed on page xx. It allows you to step through each animation
frame using the escape key. If your drawing routines are working as expected,

single stepping will allow you to verify shape movement between successive
frames.

STEERABLE SPACE SHIPS

The first game with a fully steerable space ship was developed at MIT. It
was called Space War. While most of the newer computer owners won’t recall
this game, practically everyone is familiar with Asteroids. Most versions of this
game have a steerable spaceship that can be thrusted in the direction that it is
headed. Although some versions invoke an automatic deceleration mode, some
Asteroid games require the player to turn his ship around so that it thrusts in
the opposite direction to slow down.

We previously demonstrated, with the topic of dropping bombs and shooting
bullets, that objects move in the direction of their velocity vector.

<

v
l /V=VX+VY

(X,Y)

X —

An object’s new position is its old position plus its change in position due to
velocity, as shown:

X =X + VX
Y =Y + VY.

Using the Apple screen coordinate system for the example above, VY is
negative and VX is positive. Therefore,

X = X + (VX)
Y =Y + (-VY)

While the velocity vector may remain constant for many animation cycles,
resulting in a ship moving in the same direction, sooaer or later a new velocity
vector will be inputted to change the object’s course. This new velocity is the
vector sum of the old velocity vector and the new velocity vector.

Those readers who have taken Physics will recall that a body’s velocity
changes due to external forces on it while it is in motion. In space ships, that

183

force is thrust. Thrust causes an acceleration of the object’s mass as shown in
the equation

F=ms%a=m*%xAV.

When thrust is applied to a space ship, it accelerates. If a ship is light and has
a big engine with considerable thrust, it will accelerate quickly. But if it is
heavy, it will accelerate much slower. This acceleration is essentially brought
about by a change in the object’s velocity if the object’s mass is ignored.

Unless you are doing an actual simulation, in which values of thrust or force
and an object’s mass is important, only acceleration values need to be con-
sidered. Suitable values for arcade games are small and scaled, so that objects
don’t move too fast relative to their size, or fly off the screen in a blink of the
eye.

If we consider a space ship that is in motion for two frames, then apply thrust
during the third frame, it will change direction depending on the vector sum of
its old and new velocity vectors. This is illustrated below. The applied thrust is
straight upwards, so that VX = 0 and VY = -2. The ship’s new velocity
vector is calculated as follows:

<

VX = VX + VX =2 +0 =2
VY = VY + VY = -1 + (-2) = -3

The ship’s new velocity vector causes it to move two units in the X direction
and three in the negative Y direction during each frame until a new thrust
vector is applied. The resultant position can be summarized in the table below.

184

FRAMEX Y VX VY

0 10 100 2 -1 X =X + VX

I 12 99 2 -1 Y =Y +VY

2 14 98 2 -1

3 16 97 2 -3 Thrust applied here.
4 18 94 2 -3

5 20 91

A paddle will control the ship’s direction in our simulation. The paddle’s
range (0-255) will be divided into eight directions (0-7). Dividing by 32 is sim-
ple in machine language. An arithmetic shift right (LSR, four times) will
accomplish the task. After the division, paddle values 0-31 are equal to direc-
tion one, 32-63 to direction two, etc.

Now that we can control our ship in eight directions, we need shape tables
for each of these directions. That means eight separate shapes. Rather than
complicate matters unnecessarily, we will use a white ship and move it horizon-
tally in one byte (7 pixel) increments, and vertically in eight line jumps. This
way, we won’t need extra sets of tables for the various offsets. Also, by conven-

iently keeping the shape within one of the 24 screen subsections, we can use an
abbreviated set of YVERT tables.

0
7 1
TROTATE
6 / 2 (0-7)
5 3
4

PADDLE DIRECTION

¢ = |4
& < | o

=

=]

185

186

The ship’s thrust vector is completely dependent on the ship’s paddle-
controlled direction. If TROTATE, our paddle direction’s value is four and
the ship points down, it’s thrust vector or velocity vectoris VX = 0 and VY =
1. If TROTATE were seven, the ship points diagonally upward and to the left.
The velocity vector is VX = -1and VY = -1.

Note that many of our ship’s directions produce negative velocity values,
while others produce positive values. Separate routines are required for adding
and subtracting in machine language. BASIC, however, just adds a negative
number (X =5 + (-1)). That’s the clue. Adding a negative number is ex-
actly the same as adding a positive number in machine language. Both use an
ADC instruction. The difference is that negative numbers, like -1, are
represented by the two’s complement which, for —1, is $FF. There is a limit
for signed numbers of + or —127, because the BMI instruction tests the carry
bit and considers the value negative if it is set.

If you add $FF to $03, the result is $02. Technically, the operation causes an
overflow and the carry is set. But this doesn’t concern us. With the simplifica-

tion of our thrust vector addition problem, we can construct a table of velocity
values for each TROTATE value.

THRUST VECTOR

O 1 [2 |3 |4 |5 |6 |7

XT]1 00[01]01 {01 }00|FF|FF]|FF

YT| FF{ FF |00 |01 [01 {01 |00 |FF

The thrust in this example is not cumulative. If the thrust button is on or
pressed, the ship moves; if off, it stops. The ship drives like a car rather than
floats, like it would in zero-gravity space. This is shown in the following:

XS = XS + XT and YS = YS +YT

where XS & YS is the ship’s current position and XT & YT are the ship’s
velocity vector components.

With XT and YT both a function of TROTATE, the equations become:

XS = XS + XT(TROTATE) and YS = YS + YT(TROTATE)

Thus, we can use table lookup to access the correct thrust for any ship direc-
tion.

LDX TROTATE

CLC

LDA XT,X ;GET X THRUST VECTOR FOR TROTATE VALUE
ADC XS ;ADD TO X POSITION

STA XS ; STORE NEW VALUE

Now that the ship can be moved around the screen by both steering and
thrusting, several tests must be implemented at the screen boundaries. Our
Apple screen is 40 bytes wide by 24 subgroups deep. To index beyond the end
of our tables would create unforeseen graphics, especially at the bottom of the
screen.

XS can be tested for values greater than 39 and less than 0. In our case, with
a ship moving only one position per frame, the test for less than 0 would be
equal to the value FF or - 1. If wrap-a-round is needed for an object leaving
the right side of the screen, just set XS = 0 and it will reenter on the left.
Likewise, setting XS = 39 works for objects leaving the left side of the screen.
If the wrap-a-round effect is not desired, it requires setting XS = 39 for any at-
tempt to leave the right side of the screen, and XS = 0 for any attempt to leave
the left hand side of the screen. Essentially, the ship gets stuck at the edge. The
boundary conditions at the top and bottom are similar.

Our drawing setup routine takes the paddle value into consideration to
obtain the correctly rotated shape from the shape table for plotting. We can
find the correct lo byte of the shape by the following formula:

SHPL = SHPLO (TROTATE)

SHPLO SHAPE TABLES

O| $74 | $6174 Oth Shape py

1{ $7C $617C 1st Shape Q

YREG =
TROTATE [—> 2| $84 [>$6184 2nd Shape [

3| $8C

7| $AC | $61AC 7th Shape >

187

188

LDY TROTATE ;USE VALUE FOR DIRECTION OF ROTATED SHAPE
LDA SHPLO,Y ;AS INDEX TO PROPER LO BYTE OF SHAPE

STA SHPL ;STORE LO BYTE POINTER ON ZERO PAGE
LDA #>SHAPES ;GET HI BTE OF SHAPE TABLE
STA SHPH ; STORE IN ZERO PAGE

If the ship were turned so that it was pointing right, then TROTATE = 2
and SHPLO (2) = $84. This lo byte of the shape table is stored as SHPL. The
drawing routine will now plot the second shape from our shape table.

As we mentioned earlier, the ship is being moved eight lines at a time
vertically to take advantage of plotting the ship within one of the 24 subsections
on the Hi-Res screen. We can use the eight-line deep plotting routine, which
was developed in the last chapter, if we don’t cross any screen boundaries. This
also simplifies and shortens our 192 element YVERT tables to two, 24 byte-
long tables. Each table, one for the hi byte and one for the lo byte, stores the
line address for the beginning of each of these blocks. The correct starting block
for plotting our shape is a function of the ship’s vertical position, YS (0-23). We
index into the tables as before, using the Y register.

LDY ¥YS ; SHIP'S VERTICAL POSITION (0-23)
LDA YBLOCKL,Y ;LOOK UP LO BYTE ADDRESS OF LINE
STA HIRESL
LDA YBLOCKH,Y ;LOOK UP HI BYTE ADDRESS OF LINE
STA HIRESH

Moving a space ship about the screen by paddle control is actually a simple
case in the overall design of a game. One XDRAWs (erases) the ship at the old
position, reads the paddle controller, calculates the ship’s new position, and
plots it at its new position. This is performed for each animation frame in an
endless loop. Because the code is rather short, a considerable delay is needed to
slow down the animation frame rate. With very short delays in the monitor
delay subroutine, the frame rate exceeds the 30 frame-per-second scan rate of
the television. The ship appears to blink at random during its movement. The
television hasn’t finished drawing the first animation cycle while you moved
your ship two or three times in between. A longer delay, wherein the WAIT
subroutine has a value of $CO0 to $FF in the Accumulator, works fine. The flow
chart of this steerable rocket program is shown below.

INITILIZE

POSITION

DRAW SETUP

DRAW ON

SCREEN

D

DRAW SETUP |

XDRAW ROCKET AT
OLD POSITION

READ PADDLE

XS = XS + XT(TROTATE)

no
| IS XS > 397 |-

TROTATE=PADDLE/32

no

[Is BUTTON ON? —sm

p

yes

yES

[5-7]

—

no

IS XS < 07?

CALCULATE NEW XS,YS

FROM

THRUST

)

DRAW SETUP |

DRAW ROCKET AT
NEW POSITION

] DELAY I

V€S
r

[AXS = 39

¥S = YS +

YT(TROTATE)

no

LES XS > 247 |—»

yes

XS =0 l
no

IS XS < 07 |

yes

XS = 24

ol
-

189

TROTATE
6 2 (0-7)

PADDLE DIRECTION

THRUST VECTOR

O (1 |2 |3 |45 |6 |7

XT[00| 01}|01|01[00}FF]|FF]|FF

YT| FF| FF |00 |01 {01]|01]|{00]|FF

DRAWING SETUP

LOOKUP LO BYTE OF LINE TO PLOT
HIRESL = YBLOCKL (YS)

l

LOOKUP HI BYTE OF LINE TO PLOT
IRESH = YBLOCKH (YS)

LOOKUP LO BYTE LOCATION OF SHAPE TABLE
SHPL = SHPLO (TROTATE}

LOOKUP HI BYTE OF TABLE
SHPH = HI BYTE OF SHAPES

190

6000: 4C 09 60

6009:
600C:
600F:
6012:

6015:
6017:
601A:
601C:
601F:
6021:
6024
6027:

602A:
602D:
6030:
6032:
6035:
6037:
6039:
603B:
603E:
603F:
6042:
6044 :
6047
6048
604A:
604C:
604E:
6051:
6054
60562
6059:
605C:
605F 2
60622
6064 :
6067:
6068
606A :
606D:
606F 2
6072:

WONOWULHWN =

Co 16
Co 17

61 19

60 27
60 30
60 31

FB 33

60 37
60 39

60 41

60 49

60 51
60 52

60 57

60 59

*ROCKET (DRIVES LIKE CAR)

XS

Ys

PDL
LNGH
ROTATE
TROTATE
HIRESL
HIRESH
SHPL
SHPH
PREAD

ORG
JMP
DS
DS
DS
DS
DS
DS
EQU
EQU
EQU
EQU
EQU

$6000
PROG
1

P bt

1

$FB
HIRESL+$1
$FD
SHPL+$1
$FB1E

*ENTER HERE FIRST TIME ACCESS

PROG

LDA
LDA
LDA
JSR

$COS0
$C052
$C057
CLRSCR

*INITILIZE ROCKET'S STARTING POSITION

* PADDLE
START

SKIPP

PADDLEL

PADDLE2

PADDLE3

PADDLE4
PADDLES

LDA
STA
LDA
STA
LDA
STA
JSR
JSR
READ
JSR
JSR
LDX
JSR
CPY
BLT
LDY
STY
TYA
CMP
BGE
LDA
SEC
SBC
BGE
LDA
STA
CMP
BGE
LDA
STA
JMP
CMP
BEQ
LDA
cLC
ADC
CMP
BLT
LDA
STA

#$14
XS
#3$0A
YS
#$00
ROTATE
DSETUP
DRAW

DSETUP
DRAW
#3$01
PREAD
#$F9
SKIPP
#$F8
PDL

ROTATE
PADDLE3
ROTATE

#$05
PADDLE1
#$00
ROTATE
PDL
PADDLE2
PDL
ROTATE
PADDLES
ROTATE
PADDLE4
ROTATE

#$05
PDL
PADDLES
PDL
ROTATE

sDRAW INITIAL POSITION ROCKET

sERASE ROCKET

;CLIP VALUE (0-250)

; PADDLE<ROTATE POS THEN SUBTRACT 5

;MAKE SURE =>0

;DON'T WANT TO GO PAST PADDLE POS

s PADDLE>ROTATE POS THEN ADD 5

;DON'T WANT TO GO PAST PADDLE POS

191

192

6075:
6076:
6077:
6078:
6079:
607A:

607D:
6080:
6082:
6085:
6088:
6089:
608C:
608F:
6091
6093;
6095:
6098:
609B:
609D:
609F:
60A1:
60A4:
60A5:
60A8:
€0AB:
60AD:
60AF:
60B1:
60B4:
60B7:
60B9;
60BB:
60BD:
60C0:

60C1:
60C4:
60C7:
60C9:
60CC:

60CF:
60D1 :
60D3:
60D6:
60D8:
60DA:
60DC:
60DE:
60DF:
60E1:
60E3:
60ES5 :
60E7:
60E9:
60EB:
60ED:
60F0:

Cco

60
60

61

60
60

60

61
60

60
60

60
60
60

FC
60

60

60

120

LSR

THRUST LDX

NWRAP1 CMP

NWRAP2 STA
NOWY CLC

NWRAP3 CMP
BNE
LDA
NWRAP4 STA
NOTHRUST NOP
*

JSR
JSR
LDA
JSR
JMP

TROTATE

$C062
THRUST
NOTHRUST
TROTATE

XT,X
XS
#$28
NWRAP1
#3$00
XS
NOWY
#$FF
NWRAP2
#$27
XS

YT,X
YS
#3$18
NWRAP3
#3$00
YS
NOTHRUST
#$FF
NWRAP4
#$17
YS

DSETUP
DRAW
#$70
$FCA8
START

;DIVIDE BY 32 TO GET ROTATION (0-7)

;NEG IF BUTTON PRESSED

;GET X THRUST VECTOR
sADD TO X POSITION
sCHECK IF OFF SCREEN RT
;0.K.

;NO! THEN WRAP-A-ROUND

sLESS THAN 0? (-1)
;0.K.
;sNO! THEN WRAP-A-ROUND

sGET Y THRUST VECTOR

sADD TO Y POSITION

sCHECK TIF OFF SCREEN BOTTOM
;0.K.

;NO! THEN WRAP-A-ROUND

sLESS THAN 0? (-1)
;0.K.
;NO! THEN WRAP-A-ROUND

sDRAW ROCKET

; SHORT DELAY

*SUBROUTINE TO DRAW ROCKET 1 BYTE BY 8 ROWS

DRAW LDX
LDA
STA
DRAW2 LDA
EOR
STA
LDA
CLC
ADC
STA
INC
CMP
BCC
SBC
STA
DEC

BEQ

#3$00
#$01
LNGH
(SHPL, X)

(HIRESL),Y
(HIRESL),Y

HIRESH

#3$04
HIRESH
SHPL
#3$40
DRAW2
#$20
HIRESH

;GET BYTE FROM SHAPE TABLE

sPUT ON HIRES SCREEN

sTHIS GETS TO NEXT ROW IN BLOCK

sNEXT BYTE OF SHAPE TABLE
;ARE WE FINISHED WITH 8 ROWS
;NO DO NEXT BYTE

;RETURN TO TOP ROW

; FINISHED?

60F2:
60F3:
60F5:

60F6:
60F9:
60FC:
60FE:
6101:
6103:
61062
6109:
610B:
610D:
610F:
6112:

6113:
6115:
6117:
6119:
611B:
611D:
611F:
6121:
6122:
6124:
6126:
6128:
612A:
612C:

612D:
6130:
6133:
6136:
6137;
613A:
613D:
6140:
6141:
6144:
6145:
6148:
614B:
614E:
614F:
6152:
6155:
6158:
6159:
615C:

615D:
6160:
6163:
6165:
6168:
616B:

c8
DO
60

AC
B9
85
B9
85
AC
B9
85
A9
85
AC
60

A9
85
A9
85
AO
A9
91
c8
DO
E6
A5
C9
90
60

20
21
23
20
21
22
20
21
22
23
00
80
00
A8
28
A8
50

50

01
FF
FF
01

80
80

A8
28

01

FF
01
FF

60
61

61

60
61

60

01

00
01

121
122
123
124
125
126
127
128
129
130
131
132
133
134

136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

153

154

155

156

157
158
159

160

161

INY
BNE
DRAW3 RTS

sNEXT COLUMN OF 8 ROWS
DRAW2

*DRAWING SETUP SUBROUTINE

DSETUP LDY
LDA
STA
LDA
STA
LDY
LDA
STA
LDA
STA
LDY
RTS

*CLEAR SCREEN
CLRSCR LbA
STA
LDA
STA
CLR1 LDY
LDA
CLR2 STA
INY
BNE
INC
LDA
CMP
BCC
RTS

YS ;SHIP'S VERTICAL POS (0-23)
YBLOCKL,Y ;LOOK UP LO BYTE OF LINE
HIRESL

YBLOCKH,Y ;LOOK UP HI BYTE OF LINE
HIRESH

TROTATE

SHPLO,Y

SHPL

#>SHAPES

SHPH

XS s DISPLACEMENT INTO LINE

SUBROUTINE
#$00
HIRESL
#$20
HIRESH
#$00

#300
(HIRESL),Y

CLR2
HIRESH
HIRESH
#340
CLR1

*TABLES OF STARTING VALUE OF EACH OF 24 BLOCKS

YBLOCKH HEX

HEX

HEX

YBLOCKL HEX

HEX

HEX

20202121222223232020

21212222232320202121

22222323

008000800080008028A8

28A828A828A850D050D0
50D050D0

*TABLES OF DIRECTION VECTORS FOR 8 ROTATION VALUES

XT HEX

YT HEX

0001010100FFFFFF

FFFFO001010100FF

193

162 #GENERATE SHPLO TABLE
163 #(INDEX TO LO BYTE OF EACH ROCKET SHAPE)

616D: 75 164 SHPLO DFB SHAPES

616E: 7D 165 DFB SHAPES+$08
616F: 85 166 DFB SHAPES+$10
6170: 8D 167 DFB SHAPES+$18
6171: 95 168 DB SHAPES+$20
6172: 9D 169 DFB SHAPES+$28
6173: A5 170 DFB SHAPES+$30
6174: AD 171 DFB SHAPES+$38

172 =

173 #*ROCKET SHAPES

6175: 00 08 08

6178: 08 1C 1C

617B: 36 00 174 SHAPES HEX 000808081C1C3600
175 *2ND

617D: 00 00 20

6180: 14 OF 1C

6183: 08 08 176 HEX 000020140F1C0808
177 *#3RD

6185: 00 00 02

6188: OE 7C OE

618B: 02 00 178 HEX 0000020E7COE0200
179 #4TH

618D: 00 08 08

6190: 1C OF 14

6193: 20 00 180 HEX 0008081COF142000
181 *#5TH

6195: 00 00 36

6198: 1C 1C 08

619B: 08 08 182 HEX 0000361C1C080808
183 *6TH

619D: 00 08 08

61A0: 1C 78 14

61A3: 02 00 184 HEX 0008081C78140200
185 *7TH

61A5: 00 00 20

61A8: 38 IF 38

61AB: 20 00 186 HEX 00002038F¥F382000
187 *8TH

61AD: 00 00 02

61B0O: 14 78 1C

61B3: 08 08 188 HEX 00000214781C0808

--END ASSEMBLY-- 437 BYTES

194

STEERABLE & FREE FLOATING

Objects in the real world, once started in motion, tend to remain in motion.
Isaac Newton stated it more formally in his first law of motion. Objects remain
at rest or in motion along a straight line unless a force is applied on them to
change that motion. The force in most games is thrust.

In the last section, we dealt with a spaceship that had a velocity only when
thrust was applied to it. We avoided any sustained velocity by zeroing our
velocity vector when there was no thrust. Normally, the equations for deter-
mining the velocity and position of an object in motion are as follows (They
were discussed briefly under the section on bullets and bomb drops.):

VNEW =VoLD + AV AV = CHANGE IN VELOCITY

DNEwW =DoLp + aAD AD = CHANGE IN POSITION
OVER AN ANIMATION
FRAME DUE

OR TO VELOCITY

DNEwW =DoLp + VNEW

This breaks down into components in the X and Y directions.
VXNEW =VXoLD + a VX
VYNEW =VYoLD + aVY

XNEW =XoLp +VX
YNEW =YoLp +VY

Now, when an object is thrusted in any direction, the increase in velocity is
cumulative. For example, if thrust were applied in the positive X direction with
a force of 1 unit/ frame, the new VX would increase from zero by units of one
for each animation frame.

CYCLE VX X CYCLE VY Y

0 0 0 0 0 0

1 1 1 1 2 2

VX =1 2 2 3 similarly VY =2 2 4 6
3 3 6 3 6 12

4 4 10 4 8 20

It becomes clear from our example that if you accelerate for too many anima-
tion frames, the space ship will be moving fairly fast. While the amount of
relative movement depends on your choice of scale, the ship moves to the left or
right seven pixels for every unit change instead of by individual pixels. If, by

195

196

the fourth frame, our velocity were 4 units/frame, we would actually be moving
28 pixels horizontally per frame. With a slow program, framing at 10 frames/
second, the ship would move entirely across the screen in 1 second. More
likely, with faster animation, it would take less than half a second. This may be
too fast.

A speed brake can be incorporated into the algorithm to prevent the velocity
from exceeding a preset value. This would be analogous to wind resistance on a
fast moving automobile. It prevents a vehicle from reaching ever-increasing
speeds. I chose a maximum velocity of 2 units/ frame. It was an arbitrary
choice based on keeping the animation smooth. Discontinuous jumps at higher
velocities produced degraded animation. The brake is placed just after the
velocity equations. If the value of VX or VY exceeds 2 units/frame, it is
trimmed back to 2 units/frame.

VX = VX + XT (TROTATE)

no
IS VX = 3?
yes
SET VX = 2
o
no
IS VX = FD (or -3)? >
ryes
SET VX = FE (or -2)
>
XS = XS + VX

The flow chart, as shown for the X direction (horizontal), is relatively
straight-forward. Again, the velocity vector is a function of the ship’s paddle-
controlled direction.

The paddle control in the non-free-floating ship was restrictive. It prevented
you from directly reaching the straight-up position (0) from a position pointing
upwards and to the left (7). When the paddle’s value was divided by 32, giving
TROTATE values 0-7, it lacked wrap-a-round capability. It would be better
to be able to turn the ship nearly twice around with one twist of the paddle.
This is accomplished by dividing the paddle reading by 16. This gives
TROTATE values 0-15.

0&8
7815 1&9

TROTATE
6&14 2812 (0-15)

5&13 3&11

4812

PADDLE DIRECTION

THRUST VECTOR

O] 1| 2f 3| 41 5| 6] 7{ 8| 9]10{11}12]13|14]15

XT{01]01101]|01{00|FF|FF|FF{00|01}01]01}|00|FF|FF| FF

YT|FF{FF{00|01|01]01}00{FF|FF{FF|00|01{01{01}00|FF

Since the proper shape is drawn from the correct section of the shape table by
setting the appropriate lo and hi byte pointers for that shape, the index to these
pointers must be corrected for the extra number of rotation angles. With
TROTATE doubled to 16 values, the SHPLO table, which contains the 16
pointers to each shape, must also contain 16 values. Since TROTATE values
are duplicated after 8 values, the SHPLO table, as well as the XT and YT
tables, are duplicated after eight values.

Except for the changes discussed above, the steerable and free-floating ship
routine is much like the former routine, in which the ship drives around like a
car. The flow chart and code are shown below. It might be instructive to
change the delay in line #129 to a small value like $05 to see what happens
when the animation frame rate exceeds the television’s scan rate.

197

no

| BUTTON PRESSED? }-

yes

VX = VX + XT(TROTATE)

]Is V{EEZ]__i,

no

yes

SET VX

= 2

no

IS VX = FD (or -3)?

Y

V€S

SET VX =

FE (or -2) |

YT(TROTATE) |

no

| 1S vy

= 3?}___€,.

yes

| SET VY

= 2 |

<

no
{ IS VY = FD? (or -3)? b—o

yes

SET VY

FE (or -2)

| XS = XS + Vx|

no
|_IS XS > 39?}——
yes
L XS = XS - 40]
e

198

6000: 4C OB 60

600B:
600E:
6011
6014:

6017:
6019:
601C:

AD 50
AD 52
AD 57
20 49

A9 14
8D 03
A9 0A

co
co
61

VoO~NOTULEWN-—

el el el el sl
ONO VNP WN=O

19
20
21
22
23

25

{ no
| 1S xS < 0 ?pb——
yes
Y
| XS = XS + 40|
| YS = ¥S + VY|
no
| IS YS > 23?7 }——
yes
lys = vs - 24]
- no
IS ¥S < 0 ?
yes
)
YS = YS + 24

#ROCKET (FREE FLOATING)

ORG $6000
JMP PROG
Xs DS 1
YS DS 1
VX DS 1
VY DS 1
PDL DS 1
LNGH DS 1
ROTATE DS 1
TROTATE DS 1
HIRESL EQU $FB
HIRESH EQU HIRESL+$1
SHPL EQU $FD
SHPH EQU SHPL+$1
PREAD EQU $FBIE
*ENTER HERE FIRST TIME ACCESS
PROG LDA $CO50
LDA $CO052
LDA $CO57
JSR CLRSCR
*INITILIZE ROCKET'S STARTING POSITION
LDA #$14
STA XS
LDA #$0A

199

200

601E:
6021
6023:
6026
6029:
602C:
602F:

6032:
6035:
6038:
603A:
603D:
603F:
6041:
6043:
6046
6047
604A:
604C:
604F;
6050:
6052:
6054
6056
6059:
605C:
605E:
6061:
6064
6067:
606A:
606C:
606F :
6070:
6072:
6075:
6077:
607A:
607D:
607E:
607F:
6080:
6081:

6084
6087:
6089:
608C:

608F:
6090:
6093:
6096
6098:
609A:
609C:
609F:
60Al:
60A3:

0OA

62
03
C1
0A

93
05
FD
05
FE
A5
03
02
02

60

61
61

61
61

FB

60
60

60

60
60

60
co

* PADDLE
START

SKIPP

PADDLE]

PADDLE2

PADDLE3

PADDLE4
PADDLES

THRUST

STA
LDA
STA
STA
STA
JSR
JSR
READ
JSR
JSR
LDX
JSR
CPY
BLT
LDY
STY
TYA
CMP
BGE
LDA
SEC
SBC
BGE
LDA
STA
CMP
BGE
LDA
STA
JMP
CMP
BEQ
LDA
CLC
ADC
CMP
BLT
LDA
STA
LSR
LSR
LSR
LSR
STA

LDA
BMI
JMP
LDX

YS
#300
VX

VY
ROTATE
DSETUP
DRAW

DSETUP
DRAW
#$01
PREAD
#3$F9
SKIPP
#$F8
PDL

ROTATE
PADDLE3
ROTATE

#3$05
PADDLE1
#3$00
ROTATE
PDL
PADDLE2
PDL
ROTATE
PADDLES
ROTATE
PADDLE4
ROTATE

#3$05
PDL
PADDLES
PDL
ROTATE

TROTATE

$C062
THRUST
NOTHRUST
TROTATE

;CLIP VALUE (0-250)

s PADDLE<ROTATE POS THEN SUBTRACT 5

sMAKE SURE =>0

sDON'T WANT TO GO PAST PADDLE POS
;PADDLE>ROTATE POS THEN ADD 5
;DON'T WANT TO GO PAST PADDLE POS
;DIVIDE BY 16 TO GET ROTATION(O-15)

;—(OR TWO ROATIONS AROUND)

;NEG IF BUTTON PRESSED

*UPDATE VELOCITY VX AND VY

NOCLIP

CLC
LDA
ADC
CMP
BNE
LDA
JMP
CMP
BNE
LDA

XT,X
VX
#$FD
NOCLIP
#$FE
NOCLIP1
#$03
NOCLIP1
#%02

;GET X THRUST VECTOR

sCLIP MAX VELOCITY AT 2

60A5:
60A8:
60A9:
60AC:
60AF:
60B1:
60B3:
60B5:
60B8:
60BA:

60BE;

60C1:
60C2:
60C5:
60C8:
60CA:
60CC:
60CD:
60CF:
60D2:
60D4:
60D6:
60D7:
60D9:

60DC:
60DD:
60EQ:
60E3:
60ES5:
60E7:
60E8:
60EA:
60ED:
60EF:
60F1:
60F2:
60F4:

60F7:
60FA:
60FD:
60FF:
6102:

6105:
6107:
6109:
610C:
610E:
6110:
6112:
6114:
6115:
6117:
6119:
611B:
611D:

28

28
03

28

06
04

06

18
F4
18
03

61

60

60

60

60

60

60
60

60

60

61
61

FC
60

136
137
138
139
140
141
142
143
144
145

NOCLIP1 STA
CLC
LDA
ADC
CMP
BNE
LDA
JMP
NOCLIP2 CMP
BNE
LDA
NOCLIP3 STA

VX

YT,X

VY

#$FD
NOCLIP2
#$FE
NOCLIP3
#303
NOCLIP3
#3502

VY

+STORE X VELOCITY

;CLIP MAX VELOCITY AT 2

;STORE Y VELOCITY

*UPDATE SHIP'S X POSITION XS

NOTHRUST CLC
LDA

ADC
CMP
BLT
CLC
ADC
JMP
NWRAP1 CMP
BLT
SEC
SBC
NWRAP2 STA

VX

XS
#$EO
NWRAP1

#$28
NWRAP2
#$28
NWRAP2

#$28
XS

sCHECK FOR WRAPAROUND LEFT

sFIX BY ADDING 40

;CHECK FOR WRAPAROUND RIGHT

;FIX BY SUBTRACTING 40
;STORE SHIP'S NEW X POS

*UPDATE SHIP'S Y POSITION YS

CLC
LDA
ADC
CMP
BLT
CLC
ADC
JMP
NWRAP3 CMP
BLT
SEC
SBC
NWRAP4 STA
#
JSR
JSR
LDA
JSR
JMP

VY

YS
#$EO
NWRAP3

#$18
NWRAP4
#$18
NWRAP4

#$18
YS

DSETUP
DRAW
#$CO
$FCA8
START

;CHECK FOR WRAPAROUND TOP

;FIX BY ADDING 24

CHECK FOR WRAPAROUND BOTTOM

; FIX BY SUBTRACTING 24
; STORE NEW Y POSITION

3 SHORT DELAY

*SUBROUTINE TO DRAW ROCKET 1 BYTEBY 8 ROWS

DRAW LDX
LDA
STA
DRAW2 LDA
EOR
STA
LDA
CLC
ADC
STA
INC
CMP
BCC

#$00
#$01
LNGH

(SHPL,X)
(HIRESL),Y
(HIRESL),Y

HIRESH

#304
HIRESH
SHPL
#3$40
DRAW2

;GET BYTE FROM SHAPE TABLE

;sPUT ON HIRES SCREEN

;THIS GETS TO NEXT ROW IN BLOCK

sNEXT BYTE OF SHAPE TABLE
sARE WE FINISHED WITH 8 ROWS
;NO DO NEXT BYTE

201

202

611F:
6121:
6123:
6126:
6128:
6129:
612B:

612C:
612F:
6132;
6134
6137:
6139;
613C:
613F:
6141:
6143:
6145:
6148:

6149:
614B:
614D:
614F:
6151;
6153:
6155:
6157:
6158:
615A:
615C:
615E:
6160:
6162:

6163:
6166:
6169:
616C:
616D:
6170:
6173:
6176:
6177:
617A:
617B:
617E:
6181:
6184
6185:
6188:
618B:
618E:
618F:
6192:

6193:
6196:
6199:

E9
85
CE
FO
c8

60
AC

85
B9
85
AC

85
A9
85
AC
60

A9
85
A9
85
AO
A9
91
c8

E6

9
90
60

20
2]
23

21
22

21
22
23

80
00
A8
28
A8
50
DO
50
DO

00
01
FF

01

FF

61
61
60

01
FF

146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182

183
184

185

186

187
188

189

SBC
STA
DEC
BEQ
INY
BNE
DRAW3 RTS

#$20 sRETURN TO TOP ROW
HIRESH
LNGH
DRAW3 ; FINISHED?

;NEXT COLUMN OF 8 ROWS
DRAW2

*DRAWING SETUP SUBROUTINE

DSETUP LDY
LDA
STA
LDA
STA
LDY
LDA
STA
LDA
STA
LDY
RTS
*CLEAR SCREEN
CLRSCR LDA
STA
LDA
STA
CLR1 LDY
LDA
CLR2 STA
INY
BNE
INC
LDA
CMP
BCC
RTS

YS

YBLOCKL,Y ;LOOK UP LO BYTE OF LINE
HIRESL

YBLOCKH, Y

HIRESH

TROTATE

SHPLO, Y

SHPL

#>SHAPES

SHPH

XS ; DISPLACEMENT INTO LINE

SUBROUTINE
#3$00
HIRESL
#$20
HIRESH
#3$00

#3$00
(HIRESL),Y

CLR2
HIRESH
HIRESH
#$40
CLR1

*TABLES OF STARTING VALUE OF EACH OF 20 BLOCKS

YBLOCKH HEX

HEX

HEX

YBLOCKL HEX

HEX

HEX

XT HEX

20202121222223232020

21212222232320202121

22222323

008000800080008028A8

28A828A828A850D050D0
50D050D0

0001010100FFFFFF

619B:
619E:
61A1:
61A3:
61A6:
61A9:
61AB:
61AE:
61B1:

61B3:
61B4:
61B5:
61B6:
61B7:
61B8:
61B9:
61BA:

61BB:
61BC:
61BD:
61BE:
61BF:
61CO:
61C1:
61C2:

6213:
6216:
6219;

621B:
621E:
6221:

6223
6226:
6229:

622B:
622E:
6231:

6233:
6236:
6239:

623B:
623E:
6241

6243:
6246:
6249:

00 01 01

01 00 FF

FF
FF
01
00
FF
01
00

13

23
2B
33
3B
43
4B

00
08
36

00
14
08

00
OE
02

00
1C
20

00
1C
08

00
1C
02

00
38
20

FF
FF
01
FF
FF
01
FF

00
01

00
01

02
OE

08
14

36
08

08
14

20
38

190

191

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

215
216

217
218

219
220

221
222

223
224

225
226

227
228

YT

SHPLO

*NEXT GROUP BECAUSE PADDLE (0-15) INDEXES

HEX

HEX

HEX

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

0001010100FFFFFF

FFFFO0O01010100FF

FFFFOO01010100FF

SHAPES

SHAPES+$08
SHAPES+$10
SHAPES+$18
SHAPES+$20
SHAPES+$28
SHAPES+$30
SHAPES+$38

*INTO SHAPE TABLE TWICE

®
SPACE

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

DS

SHAPES

SHAPES+$08
SHAPES+$10
SHAPES+$18
SHAPES+$20
SHAPES+$28
SHAPES+$30
SHAPES+$38

80

*ROCKET SHAPES

SHAPES
*2ND

*3RD

*4TH

*5TH

*6TH

*7TH

*8TH

HEX

HEX

HEX

HEX

HEX

HEX

HEX

000808081C1C3600

0000201 40F1C0808

0000020E7COE0200

0008081COF142000

0000361C1C080808

0008081C78140200

000020381F382000

203

624B: 00 00 02
624E: 14 78 1C

6251: 08 08 229 HEX 00000214781C0808

-~END ASSEMBLY-~ 595 BYTES

DEBUG PACKAGE

The debug package that was mentioned earlier is a very useful tool for pro-
grammers. It allows you to single step animation by stopping the animation
with the ESC key. Once the ESC key is pressed, the program goes into a tight
loop while waiting for another key press. Any key except the ESC key will
release it. But since every key, with the exception of the space bar, fails to clear
the keyboard strobe, the computer thinks a key has been pressed when it
encounters the debug subroutine during the next animation frame. Of course,
if the key last pressed was the ESC, it will be caught in that small loop once
again, and stop or single step. Yet if it is another key, it won’t stop the anima-
tion, but would proceed to other tests in the package. The space bar would
release it totally from the subroutine by clearing the keyboard strobe.

no
[KEY PRESSED?
=a
no
[IS ESC KEY? |
a | CLEAR STOBE |
| CLEAR STROBE]
yes [CLEAR STROBE |
| IS KEY PRESSED? —
no
\
no
IS SPACE BAR?
yes
/ OTHER
[CLEAR STROBE KEY
TESTS
J ,
ignore

204

The debug package is designed so that you can’t activate any other debug
test without first hitting the ESC key. This way, no matter what uses your keys
have during a game, they can’t activate debug functions inadvertently.

*DEBUG PACKAGE TO SINGLE STEP

LDA $CO00 :KEY PRESSED?
BPL IGNORE ;EXIT IF NO KEY PRESSED
CMP #$9B ;ESC KEY?
BNE IGNORE
CAUGHT BIT $C010 ;CLEAR STROBE
LDA $CO00 ;KEY PRESSED?
BPL #*-3 ;LOOP BY BRANCHING BACK 3 BYTES
CMP #$A0 ; SPACE KEY?
BNE IGNORE+3 ;NO,DON'T CLEAR STROBE
IGNORE BIT $CO10 ;CLEAR STROBE
NOP

You could expand the code to do other functions if the code is placed at the
block labeled “‘other tests’’. Examples of this would be pressing the K key to
kill an alien, or the A key to advance to a higher level. This would allow you to
reach modules in your code that might take considerable playing time to
achieve without your debug module.

Another use for this type of code is to insert a user-controlled pause control
into a game. Pause control has just recently been incorporated into arcade
games. It is too bad that most programmers hadn’t thought of leaving part of
the debug module in the game before to offer a pause option.

LASER FIRE & PADDLE BUTTON TRIGGERS

Paddle button switches are used in many games as triggers to fire rockets,
bullets and lasers, or to drop bombs. The Apple computer has three; they are
numbered 0-2. They are accessed through the addresses $C061 to $C063.

To test if a paddle button is pressed, you load the address for that switch into
the Accumulator, then test if the value is negative.

LDA $CO061 ;TEST PADDLE #0

BMI FIRE s NEGATIVE, THEN BUTTON PRESSED
NOFIRE JMP CONTINUE
FIRE JSR LASER ;FIRE LASER

Game designers often want to limit the amount of ammunition that can be
fired at one time. A flag can be set to on when a bullet is fired, and to off when
the bullet either reaches the opposite end of the screen or if it hits something.
The player can’t fire again until the flag is in the off position.

Laser fire presents another problem. The beam travels from the gun or

205

206

spaceship to the opposite end of the screen in one frame. If the player held the
button, the laser would fire for each frame. Essentially; it would always be on.

The test for a pressed button must include code that would inhibit the button
being held down continuously. You can accomplish this by setting a flag to 1
when the laser is fired. If the button is pressed and the laser was Just fired
without the player releasing it first, the test for the flag prevents it from firing
again. The flag is reset to 0 only if the button isn’t pressed.

We set another flag called SHOT to one if the laser is fired. This is because
we want to XDRAW the laser much later in the animation cycle. If we
XDRAW it immediately, it would be barely seen. Yet, if it were automatically
XDRAWnN later without some sort of test, it would always appear, regardless
of whether it was previously fired or not. The XDRAW laser subroutine tests
to determine if the SHOT is set before it XDR AWs the laser shot; it will conse-
quently skip this routine if the laser hasn’t been fired.

Red lasers look more impressive than white lasers. They also require more
work to plot properly. As usual, our nemesis, the even/ odd color offset pro-
blem , comes into play. The first position that our laser can be plotted is at
horizontal offset $0C or 12 decimal. This is on an even offset.

OFFSET

l LASER

$AA $D5

A value of $AA will produce a red line in even offsets, and a $D5 will do so in
odd offsets. If you plot these two bytes in pairs for $0E (14 decimal) number of
times, you will produce a red laser beam that extends from the plane to the
right screen boundary. :

A flow chart of our algorithm and its accompaning code follows:

no

PRESS BUTTON?
yes

A

DID PRESS BUTTON BEFORE?
IS LFLAG =1

es

¥

SET LFLAG=0

no

FIRE LASER
XOR ALTERNATATE
BYTES AA & D5
STARTING AT $C OVER
DO $E TIMES

SET SHOT = 1
SET LFLAG =1

noshot

XOR LASER (XLASER)

no

| IS sHOT = 17—

Yy yes
XDRAW LASER

XOR ALTERNATE
BYTES AA & D5
STARTING AT $C OVER
$E TIMES

|

r\
SET SHOT = O

NOTE: Button has to
be released to reset
LFLAG = O

207

208

/

63D3:
63D6:
63D8:
63DA:
63DD:
63E0:
63E3:
63E5:
63E7:
63E9:
63EC:
63EF:
63F0:
63F3:
63F5:
63F6:
63F8:
63FB:
63FE:
6400:
6402:
£404;
64063
6408:
640A:
640C:
640K:
6410:
6411:
6413:

6414:
64172
6419:
641B:
641C:
641F:
6421
6422:
6424
6427
6424
642C:
642E:
6430:
6432:
6434
6436
6438:
643A:
643C:
643D:
643F:
6441
6444

13
24

ocC
07

oC
OE
iCc
OE
AA
26
26
26
D5
26
26
26

ED

13

CO

64
60

60
60

60

60
63

60

60

60
63

60

516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572

*LASER SUBROUTINE

3

LASER LDA
BMI

LDA

STA

JMP

FIRE1 LDA
- CMP

BGE

LDA

STA

STA

CLC

LbA

ADC

TAY

LDA

STA

JSR

LDX

LASER1 LDA
EOR

STA

INC

LDA

EOR

STA

INC

DEX

BNE

NOSHOT RTS
*XDRAW LASER
XLASER LDA
CMP

BNE

CLC

LDA

ADC

TAY

LDA

STA

JSR

LDX

LASER2 LDA
EOR

STA

INC

LDA

EOR

STA

INC

DEX

BNE

NXSHOT LDA
STA

RTS

$C062
FIRE1
#3$00
LFLAG
NOSHOT
LFLAG
#3501
NOSHOT
#3501
SHOT
LFLAG

VERT
#$07

#30C
HORIZ
GETADR
#$0E

#$AA
(HIRESL),Y
(HIRESL),Y
HIRESL
#$D5
(HIRESL),Y
(HIRESL),Y
HIRESL

LASER1

SUBROUTINE
SHOT
#$01
NXSHOT

VERT
#$07

#$0C -
HORIZ
GETADR
#$0E

#$AA
(HIRESL),Y
(HIRESL),Y
HIRESL
#$D5
(HIRESL),Y
(HIRESL),Y
HIRESL

LASER2
#300
SHOT

;NEG IF BUTTON PRESSED

;BUTTON NOT PRESSED,SET FLAG TO 0

;IS BUTTON BEING HELD DOWN?

;SET LASER FIRED FLAG
sSET BUTTON PRESSED FLAG

;TOP OF SHIP

;Y REG CONTAINS VERT. LSER POS.
s START AT HORIZ=$0C

;FIND ADDRESS OF LASER BEAM LINE
;SET UP LOOP FOR E TIMES
;DRAW PAIRS OF AA & DS BYTES(RED)
sBY ORING AGAINST SCREEN

sNEXT SCREEN POSITION

sNEXT SCREEN POSITION
;DECREMENT INDEX TO LOOP
; DONE?

sYES! EXIT

sHAS LASER BEEN SHOT?
;NO! SKIP XDRAWING LASER

sRESET LASER FIRED FLAG TO OFF

COLLISIONS

One of the most important aspects in any arcade game, especially shoot-’em-
up type games, is whether an object collides with another object or the
background. As a particular object is drawn to the screen, (one byte at a time,
or even by single pixels, as some programmers prefer), you can simultaneously
test to determine if any other pixels are within that byte’s (or pixel’s) screen
location. The test is performed using the AND instruction.

The truth table for the AND instruction is as follows:

ACC. MEMORY RESULT

0 0 0
0 1 0
1 0 0
1 1 1

Both Accumulator and memory must be on (set) for the result to be on (set).

If we take a Hi-Res screen memory location that has an object in it and AND
it with a byte from our shape table, any duplication in any bit location because
something is already on the screen, will give a non-zero result.

XX XX BACKGROUND
XIXIX|X SHAPE
XX AND BACKGROUND WITH SHAPE

RESULT $18 > ZERO

The hi bit, (the color control bit), which isn’t used to activate any of the
seven pixel positions within the byte, could cause a problem. It is possible that
if the hi bit were set in an empty or black background ($80), and a blue or
orange shape were ANDed against the screen, the result would be non-zero.
Obviously, this is an invalid result, because you can’t collide with a black
background. The problem can be avoided if the background is first ANDed
with #$7F to mask the hi bit.

B OBOBO B HI

0 00000 0 1t BACKGROUND

1 11 1 1 1 1 0 AND #$7F

0 0000 0O 0 0 RESULTZERO

0 01 01 0 1 1 ANDBLUESHAPE

0 000 OO 0 0 RESULT ZERO

209

210

Usually, in any game, if a collision is detected, the object is to be removed.
The first instinct is to stop drawing the object since it is to be removed,
anyway. But if you are Exclusive-ORing (EORing) the screen and you stop in
the middle of your shape, you are going to leave a mess. It is much better to set
a collision flag, finish drawing the shape, then remove the object later by com-
pletely EORing the shape off the screen.

Any two objects of byte size or larger will usually have no problem with colli-
sion detection, especially if the graphics are in B & W. But I can think of a very
specific case involving color in which a collision would not be detected in a
game. Take our space ship or plane from Chapter Five. Let us assume it is
violet. Let’s assume a green alien collides with it. The question is: Will it be
detected, and if not, how can we detect a collision?

Let’s map the pixel positions of the bottom row of bytes for both the violet
ship and green alien.

VGVGVGV!GVGVGVGVGVGVGV

XX X X X XXX SHIP

X| X X X ALIEN

It is quite obvious that if you logical AND the two together, you are going to
obtain zero in all three bytes; in fact, zero over the entire shape. While it is
quite easy to tell you not to use complementary colors in a game, a red alien,
which involves turning on the hi byte in its shape table, would also achieve an
identical result of no collision. Besides, limiting colors hampers your artistic ex-
pression.

The solution is to test the ship against screen memory with what is called a
““mask’’ of the ship’s shape, as if the ship were a solid white. We take this mask
of the ship, which has both violet and green pixels lit, and AND it against the
alien occupying the same screen locations. A collision will be detected in this
case. We set a flag and then take the appropriate byte from the violet ship’s
shape table and XOR it against the screen.

There is always some order with which objects must be drawn to the screen
to allow our program to detect collisions properly. In a game with a laser-
armed ship pitted against several unarmed aliens (our example), something
must be drawn last. It is that final test that can sometimes get tricky. In many
games, the user’s ship is often the last to be placed on the screen. If a collision is
detected, you end up wondering which alien hit it. Very often the screen coor-
dinates of each alien must be compared to that of the ship to determine which
object was killed. This is sometimes harder to do than it looks. That is why,
when you collide with an enemy in many games, the enemy is not wiped out
when the screen refreshes and you receive your next ship. What obviously hap-
pened is: they skipped the test.

The order that each object is drawn is shown in the flow chart below.

DRAW LASER

DRAW EACH ALIEN
AND TEST FOR COLLISION
AGAINST LASER

|

DRAW SHIP AND
TEST FOR COLLISION
AGAINST ALIENS

There isn’t any satisfactory way to avoid the problem of the last test without
elaborate testing. Even if we drew the ship first and the aliens last, we wouldn’t
know if an alien collided with a laser or a ship. It is important that these colli-
sion tests be performed before any background, like stars, are drawn to the
screen. Also, any permanent background such as ground terrain will always
cause a collision.

Single pixel background stars, in some games, are often set in motion to
achieve an illusion of speed where stationary ships are involved. Of course,
they are drawn and Xdrawn before being moved. Programmers usually keep
the star field from intersecting with the ship’s range of operation, which usually
takes place at the bottom of the screen. However, sometimes it is desirable not
to worry about background stars in a program and only draw them at the start
of a game. You could adjust the collision counter to ignore single collisions
while drawing a complex shape. It is likely that a ship’s 24 byte shape would
collide with a 16 byte alien shape in more than one place. Small one byte
bullets, however, might pose a problem if the collision detector’s value were
upped to two instead of the usual one.

211

SET ERROR FLAG = 0

> GET BYTE OF MASK
OF SHIP SHAPE

(AND) WITH BYTE ON SCREEN]

yes

LIS RESULT 07 ——>JSET COLLISION

no FLAG = 1

|

.

GET BYTE OF SHIP'S
SHAPE TABLE

EOR WITH BYTE ON SCREEN |

INC. TO NEXT BYTE
OF MASK & SHIP

INC NEXT SCREEN LOCATION

no
- DONE? |
yes

no

[IS COLLISION FLAG = 17

|_xDraw surp |

212

*DRAW SHIP SUBROUTINE

*
SDRAW

SDRAW1

SDRAW2

F*o

SDRAW3

SDRAW4

LDA
STA
LDY
JSR
LDX
LDA
AND
AND
CMP
BEQ
LDA
STA

LDA
EOR
STA
INC
INC
INY
DEC
BNE
INC
DEC
BNE
LDA
CMP
BEQ
JMP
RTS

#3$00

ESET
TVERT
GETADR
#300
(STESTL, X)
#$7F
(HIRESL),Y
#3$00
SDRAW3
#$01

ESET

(SSHPL,X)
(HIRESL),Y
(HIRESL),Y
STESTL
SSHPL

SLNGH
SDRAW2
TVERT
DEPTH
SDRAW1
ESET
#$00
SDRAW4
EXPLODE

*DRAW SHAPE ONE LINE AT A TIME-LNGH BYTES ACROSS

; VERTICAL POSITION

sGET BYTE OF SHIP MASK SHAPE
3sMASK OUT HI BIT

; (AND) IT AGAINST SCREEN

; IF ANYTHING IN WAY GET>0

sSET BECAUSE IF DON'T FINISH DRAW-
; ING SHIP,PIECE LEFT WHEN XDRAW

;s DURING EXPLOSION

;GET BYTE OF SHIP'S SHAPE

; PLOT

sNEXT BYTE OF MASK

; NEXT BYTE OF TABLE
sNEXT SCREEN POSITION

;IF LINE NOT FINISHED BRANCH
;OTHERWISE NEXT LINE DOWN

:DONE DRAWING?
;IS EXPLOSION FLAG SET?

;sNO!, EXIT
;YES!, EXPLODE SHIP

213

214

EXPLOSIONS

A game wouldn’t be complete without the enemy blowing apart when killed.
The more dramatic the explosion, the better the effect. Although every pro-
grammer has tried it, most have done it the easy way.

Explosions are divided into two types: shape explosions and particle explo-
sions. Shape explosions are simple, because once an object is targeted for
removal, it is replaced first by a garbage-looking shape and then by a white
blob, which is larger and resembles a debris-filled fireball.

&
<~ &5
SHAPE GARBAGE - WHITE FIREBALL

The animation is done in successive frames with delays between them. A
nice sound routine, which can also act as a delay between plots, is often incor-
porated. These explosion shapes are stored in a table and are drawn to the
screen with drawing subroutines.

Particle explosions are much more complex. They either involve
mathematical and random number routines to keep particles streaming out-
wards from the exploded shape, or they resort to a series of tables to position
the particles on the screen. I’ve chosen the latter case for the following exam-
ple.

I envisioned a particle fireball that sometimes appears in arcade games like
Defender. When the object begins to blow apart, there is a bright flash, then
the white hot debris begins expanding in a roughly circular fireball. These
fireballs in the arcade grow to be nearly a third the area of the screen and then
fade to dull red before blanking out. While fading the particles to red can be
included, coding it would be rather difficult. Actually, anything can be done on
the Apple if you put your mind to it, but one should weigh the benefits against

the time involved. I achieved the basic effect of the explosion in the following
manner:

a 80D

(w] o Q
= o B a n
h) Q 5 a
a o
g n 0
(o B | Q
FLASH FRAME 2 FRAME3
5 ® 0
o ? o 0
a a
o
o o
a a
O B O a EXPLOSION SEQUENCE
8 o
FRAME 4

The explosion fills almost 1/9th of the screen. The ship is XDRAWn off the
screen and replaced by a bright white block at the ship’s center. Then, white
particles, each three pixels by four pixels, are drawn in successive expanding
but randomized rings. Each frame has a ring of particles, two layers deep.
Each successively larger ring requires more particles. The closest ring has only
8 particles, whose positions are stored in two tables, EOFFX and EOFFY. The
largest rings have 18 particles.

The two position tables contain the locations of each particle. EOFFX con-
tains the true horizontal offset. EOFFY contains the relative position in rela-
tion to the ship’s vertical position. For example, the center of the fireball is at
VERT +12. If EOFFY =8, then the particle is plotted at VERT +12. And if
EOFFY is negative or above the center at -4 ,it is stored as $FC (the two’s
complement), so that it can be added to VERT + 4 directly without testing to
see if it is negative, and then subtracting. The number of particles to be plotted
in any ring is controlled by SBLOCK and EBLOCK. They determine the start
and end points of the data table that is used to draw a ring.

The sequence for drawing the expanding fireball is shown below. It was my
choice that only two layers be shown at any one time while the fireball expands.
Readers might like to experiment by leaving all of the layers on the screen until
the fireball reaches its limit, then XDRAWing them off from the inside out.
The time delay in my game may seem fast for most readers. The explosion
occurs much too rapidly, but longer delays looked strange using only two layers
of debris. Experiment!

215

216

| XDRAW

SHIP

PLOT WHITE FIREBALL

XDRAW

Ist SEQ.

8 BLOCKS

XDRAW

FLASH

XDRAW

2nd SEQ.

11 BLOCKS

XDRAW

1st SEQ.

OFF

XDRAW

3rd SEQ.

15 BLOCKS

XDRAW

2nd SEQ.

OFF

XDRAW

4th SEQ.

16 BLOCKS

| XDRAW

3rd SEQ.

OFF |

| xpRAW

Sth SEQ.

18 BLOCKS

| xDRAW

4th SEQ.

OFF

| XDRAW

6th SEQ.

18 BLOCKS

XDRAW

5th SEQ.

OFF

XDRAW

6th SEQ.

OFF

| X register = SBLOCK

DEPTH = 3

no

IS (VERT+4)+EOFFY(X) < 0?

yes

4

no

IS (VERT+4)+EOFFY(X) >1917] o

yes
4

TEMP1 = (VERT+4)+EOFFY(X)

| HORIZ

= EOFFX(X)

JSR

s> FIND SCREEN ADDRESS

GETADR

| EOR $FO WITH HIRES SCREEN

STORE ON SCREENAJ
TEMP1 = TEMP1 - 1
DEPTH = DEPTH - 1
no
< IS DEPTH = O |
yes
noplot e

DO NEXT PARTICLE |

no

ue_______4 IS X

EBLOCK

yES
/

DONE

217

218

6513: 20 1E 65

6516:
6518:
651B:
651E:
6521
6524
6527:
652A:
652C:
652F:
6531:
6534:
6537:
6538:
653A:
653D:
65401
6543:
6545:
6547
6549:
654C:
654F
6551:
6553

6556:
6558
655B:
655D
6560:

6563:
6565:
65681
656A:
656D
656E:
6571
6573:
6576
6579:
657C:
657E:
6580:
6582:
6585:
6588:

658A:
658C:
658F:
6591:
6594

6597:

A9
20
4C
AD
8D
20
20
A9
8D
A9
8D
AD
18
69
8D
AC
20
A9
51
91
EE
CE
DO
A9
20

A9
8D
A9
8D
20

A9
8D
A9
8D
18
AD
69
8D

20

FC
61
60
60
63
62
60
60
60

60
60
63

60
60

FC

60
60
66
60
60
60
60

60
63

60
60

60

60
66

667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725

*EXPLOSION SUBROUTINE
*

EXPLODE JSR

EXPSUB

EDRAW

EDRAW1

*XDRAW

LDA
JSR
JMP
LDA
STA

JSR

EXPSUB

#$FE

$FCA8

FIN

VERT

TVERT

SSETUP ; XDRAW SHIP

SXDRAW

#3504 ;PLOT WHITE FIREBALL 4 LINES
DEPTH

#30A ;HORIZ POS SHIP'S CENTER
HORIZ

VERT sVERT POS TOP OF SHIP

#$04 ;TO REACH CENTER
TVERT

TVERT ;SHIP'S CENTER
GETADR

#$FF sWHITE LINE
(HIRESL),Y

(HIRESL),Y

TVERT sNEXT LINE
DEPTH

EDRAW1 ; DONE?

#$80

$FCAS8 ;DELAY

SEQl -8 BLOCKS

LDA
STA
LDA
STA
JSR

#3$00
SBLOCK
#$08
EBLOCK
EPLOT

*XDRAW BEGINING FLASH

EDRAW2

EDRAW3

*XDRAW

*XDRAW

LDA
STA
LDA
STA
CLC
LDA
ADC
STA
LDY
JSR
LDA
EOR
STA
INC
DEC
BNE

#3$04
DEPTH
#30A
HORIZ

VERT

#304
TVERT
TVERT
GETADR
(HIRESL),Y
(HIRESL),Y
(HIRESL),Y
TVERT
DEPTH
EDRAW3

SEQ2-11BLOCKS

LDA
STA
LDA
STA
JSR
SEQ1-
LDA

#3$08
SBLOCK
#3$13
EBLOCK
EPLOT
8 OFF
#3$00

6599:
659C:
659E;
65A1:

65A4:
65A6¢
65A9:
65AB:
65AE:

65B1 3
65B3:
65B6:
65B8:
65BB:

65BE:
65C0:
65C3;
65C5:
65C8:

65CB:
65CD:
65D0:
65D2:
65D5:

65D8:
65DA:
65DD:
65DF:
65E2:

65E5:
65E7:
65EA:
65EC:
65EF:

65F2:
65F4:
65F7:
65F9:
65FC:

65FF:
6601 :
66043
6606
6609

660C:
660E:
6611:
6613:
66163
6619:

60

60
66

60
60

66

60

66

60

66

60

60
66

60
66

60
66

726
727
728
729
730
731
732
733
734
735

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784

STA SBLOCK
LDA #$08
STA EBLOCK
JSR EPLOT
*XDRAW SEQ3-15
LDA #$13
STA SBLOCK
LDA #$22
STA EBLOCK
JSR EPLOT
*XDRAW SEQ2-11 OFF
LDA #$08
STA SBLOCK
LDA #$13
STA EBLOCK
JSR EPLOT
#XDRAW SEQ4-16
LDA #$22
STA SBLOCK
LDA #$32
STA EBLOCK
JSR EPLOT
*XDRAW SEQ3-15 OFF
LDA #$13
STA SBLOCK
LDA #$22
STA EBLOCK
JSR EPLOT
*XDRAW SEQ5- 18
LDA #$32
STA SBLOCK
LDA #$44
STA EBLOCK
JSR EPLOT
*XDRAW SEQ4-16 OFF
LDA #$22
STA SBLOCK
LDA #$32
STA EBLOCK
JSR EPLOT
#XDRAW SEQ6-18
LDA #$44
STA SBLOCK
LDA #$56
STA EBLOCK
JSR EPLOT
*YDRAW SEQ5-18 OFF
LDA #$32
STA SBLOCK
LDA #$44
STA EBLOCK
JSR EPLOT
#*XDRAW SEQ6-18 OFF
LDA #$44
STA SBLOCK
LDA #$56
STA EBLOCK
JSR EPLOT
RTS

219

220

786 *EXPLOSION PLOTTING SUBROUTINE

787
661A: AE OA 60 788 EPLOT LDX SBLOCK ;LOCATION IN PARTICLE POSITION
789 *- ;TO START DRAWING
661D: A9 03 790 EPLOT1 LDA #$03 ;EACH BLOCK 3 LINES DEEP
661F: 8D 11 60 791 STA DEPTH
6622: 18 792 ELOOP1 CLC
6623: AD 0C 60 793 LDA VERT ;TOP OF SHIP
6626: 69 04 794 ADC #$04 ;NOW CENTER OF SHIP
6628: 18 795 CLC
6629: 7D 9A 69 796 ADC EOFFY,X ;ADD RELATIVE Y POS OF PARTICLE.
662C: C9 00 797 CMP #$00 ;TEST NOT OFF TOP SCREEN
662E: 90 21 798 BLT NOPLOT sIF OFF, DON'T LOT
6630: C9 CO 799 CMP #$CO - ;TEST NOT OFF BOTTOM SCREEN
6632: BO 1D 800 BGE NOPLOT sIF OFF, DON'T PLOT
6634: 8D 09 60 801 STA TEMP1 ;STORE VALUE IN TEMP1
6637: BD 44 69 802 LDA EOFFX,X s LOCATE X POSITION
663A: 8D OE 60 803 STA HORIZ
663D: AC 09 60 804 ELOOP3 LDY TEMP1 ;FIND LINE ADRESS TO PLOT ON SCREEN
6640: 20 1C 63 805 JSR GETADR
6643: A9 FO 806 LDA #$FO ;VALUE OF ALL SHAPE BYTES
6645: 51 26 807 EOR (HIRESL),Y ;XOR WITH SCREEN
6647: 91 26 808 STA (HIRESL),Y ;PLOT ON SCREEN
6649: CE 09 60 809 DEC TEMP1 sNEXT LINE, IN THIS CASE DRAWING —-
664C: CE 11 60 810 DEC DEPTH ;FROM BOTTOM TO TOP
664F: DO EC 811 BNE ELOOP3 sDONE?
6651: E8 812 NOPLOT INX ;DO NEXT PARTICLE
6652: EC OB 60 813 CPX EBLOCK ;DONE WITH ALL PARTICLES IN GROUP?
6655: DO C6 814 BNE EPLOT1 ;NO, CONTINUE
6657: A9 30 815 LDA #$30
6659: 20 A8 FC 816 JSR $FCA8 s DELAY
665C: 60 817 RTS

SCOREKEEPING

It is a rare exception for machine language games to include a Hi-Res
character generator with a complete character set. It is basically a waste of
space, because only one or two words are written to the Hi-Res screen along
with the numbers 0 through 9 for the numerical score.

For example, in our game, only the word SCORE is written at the top of the
screen. This is done once at the start of the game. The numbers, however,
change with each alien killed. It would appear that the scoring subroutine
would need to convert hexadecimal numbers to decimal numbers, since the
computer stores the numerical score as hexadecimal numbers in memory.
There is a simple method to avoid this messy approach.

The scoring registers can be broken down into three separate digits, one each
for the hundred’s digit, ten’s digit and one’s digit. This is just like the decimal
system. Each time an enemy is killed, the one’s digit storage location is
incremented. This value is tested to see if it becomes greater than 9. If so, the
one’s digit memory location is reset to zero, and the ten’s digit memory loca-
tion is incremented by one.

If some objects were worth two points instead of one point, we could JSR to
SCORE twice. If a target was worth ten points, one could JSR to the middle of
the longer SCORE subroutine at a point called SCOREI10. This is the place in
the subroutine where the ten’s digit is incremented. Returning to the main pro-
gram would be through the usual RTS.

In the following routine, SCOREA represents the one’s digit, SCOREB the
ten’s digit, and SCOREC the hundred’s digit. The three variables are drawn
on the screen just after the words SCORE, which is on the very first line at the
top of the Hi-Res screen.

VERTICAL
OFFSET
$2000+ $1D $1E $I1F $20 $21 $22 $23 $24 ¢25

SIC|OIR|E| |®|41]5
]

SCORE SCORE SCORE
A B C

Since our three digit score doesn’t move, the numbers don’t change position
during the game. Therefore, they don’t need to be XDRAWn before being up-
dated. New values can be drawn over the old numbers. This necessitated
adding another drawing subroutine that is virtually identical to our standard
eight-line deep XDRAW subroutine, but lacks the EOR code. An alternative
would be to use your XDRAW drawing subroutine after first blacking out the
previous number.

The scoring setup routine is divided into three sections for each of the three
digits. SCOREC is to be drawn to the screen at location $2023, so HIRESL
and HIRESH are set appropriately. The ten number shapes which are stored
at SCORESH are individually referenced by indexing into a table of lo byte
addresses stored at SCOREP.

6A00 SCORESH HEX 1C 22
6A08 HEX 08 OC
6A10 HEX

SCOREP 00 08 10 18 ..

222

For example, if SCOREC = 2 (hundred’s digit), then the Y register con-
tains a 2. LDA SCOREP,Y loads $10 in the Accumulator and stores the value
as SHPL. The hi byte of SCORESH is stored as SHPH. Our drawing routine,
using zero page indirect addressing LDA (SHPL),X with X = 0, will
reference the correct shape at $6A10, which in this case are the bytes that form
the number 2 on the screen.

The word SCORE stored as a five byte wide, eight-line deep shape, is drawn
only once on the screen. This is done at the beginning before the program’s
main loop.

843 *SCORE SETUP ROUTINE FOR DRAW

844
6693: A9 20 845 SCRSET LDA #$20
6695: 85 27 846 STA HIRESH
6697: A9 23 847 LDA #$23 ;SETUP SCREEN LOCATION TO PLOT —-
6699: 85 26 848 STA HIRESL ;SCOREC ,100'S DIGIT
669B: A9 01 849 LDA #$01 ;DIGIT 1 BYTE WIDE
669D: 8D 10 60 850 STA LNGH
66A0: A9 6A 851 LDA #>SCORESH
66A2: 85 51 852 STA SHPH
66A4: AC 20 60 853 LDY SCOREC
66A7: B9 30 6A 854 LDA SCOREP,Y ;INDEX TO CORRECT SHAPE FOR DIGIT--
66AA: 85 50 855 STA SHPL ; DRAWN
66AC: 20 E8 66 856 JSR SCOREDR ;DRAW 100'S DIGIT
66AF: A9 20 857 LDA #$20 3 SETUP SCREEN LOCATION TO
66Bl: 85 27 858 STA HIRESH
66B3: A9 24 859 LDA #$24 ;PLOT SCOREB ,10'S DIGIT
66B5: 85 26 860 STA HIRESL
66B7: A9 01 861 LDA #$01
66B9: 8D 10 60 862 STA LNGH
66BC: A9 6A 863 LDA #>SCORESH
66BE: 85 51 864 STA SHPH
66C0: AC 1F 60 865 LDY SCOREB
66C3: B9 30 6A 866 LDA SCOREP,Y
66C6: 85 50 867 STA SHPL
66C8: 20 E8 66 868 JSR SCOREDR ;DRAW 10'S DIGIT
66CB: A9 20 869 LDA #$20
66CD: 85 27 870 STA HIRESH
66CF: A9 25 871 LDA #$25 ;SETUP SCREEN LOCATION TO
66D1: 85 26 872 STA HIRESL sPLOT SCOREA, 1'S DIGIT
66D3: A9 01 873 LDA #$01
66D5: 8D 10 60 874 STA LNGH
66D8: A9 6A 875 LDA #>SCORSH
66DA: 85 51 876 STA SHPH
66DC: AC 1E 60 877 LDY SCOREA
66DF: B9 30 6A 878 LDA SCOREP,Y
66E2: 85 50 879 STA SHPL
66E4: 20 E8 66 880 JSR SCOREDR ;DRAW 1'S DIGIT
66E7: 60 881 RTS

'SCORE A, B, C = 0

SCORE A = SCORE A + 1

{ IS SCOREA > 9 7]
yes

A

SCOREB = SCOREB + 1

| SCOREA = 0]

no

IS SCOREB > 9 ?
Ves

y

SCOREC = SCOREC + 1

| SCOREB = 0 |
no
IS SCOREC > 9 7 |—»
VESs
SCOREA = 0
SCOREB = 0
SCOREC = 0

o~

SETUP SCOREA
PLOT SCOREA

SETUP SCOREB
PLOT SCOREB

SETUP SCOREC
PLOT SCOREC

[RTS

223

224

665D:
66602
6663:
6666:
6668
666A:
666C:
666F:
6672
6675:
6677:
6679:
667B:
667E:
6681:
6684 :
6686:
6688:
668A:
668D:
6690:

66E8:
66EA:
66EC:
66EE:
66F0:
66F2:
66F3:
66F5;
66F7:
66F9:
66FB:
66FD:
66FF:
6701:
6704
67063
6707:
6709:

60

819

820
1D 60 821
1E 60 822
1E 60 823
0A 824
29 825
00 826
1E 60 827
IF 60 828
1IF 60 829
0A 830
1A 831
00 832
1F 60 833
20 60 834
20 60 835
0A 836
0B 837
00 838
1E 60 839
1F 60 840
20 60 841

842

883

884
00 885
00 886
50 887
26 888
27 889

890
04 891
27 892
50 893
40 894
EF 895
20 896
27 897
10 60 898
03 899

900
E3 901

902

*SCORE SUBROUTINE
*

SCORE INC
INC
LDA
CMP
BLT
LDA
STA

SCORE10 INC
LDA
CMP
BLT
LDA
STA
INC
LDA
CMP
BLT
LDA
STA
STA
STA

KILLNUM
SCOREA
SCOREA
#$0A
SCRSET
#$00
SCOREA
SCOREB
SCOREB
#$0A
SCRSET
#$00
SCOREB
SCORC
SCOREC
#$0A
SCRSET
#3$00
SCOREA
SCOREB
SCOREC

*SCORE DRAWING ROUTINE
#

SCOREDR LDX
LDY
SCORED2 LDA
STA
LDA
CLC
ADC
STA
INC
CMP
BCC
SBC
STA
DEC
BEQ
INY
BNE
SCORED3 RTS

#$00

#300
(SHPL,X)
(HIRESL),Y
HIRESH

#3$04
HIRESH
SHPL
#%$40
SCORED2
#$20
HIRESH
LNGH
SCORED3

SCORED2

;ANOTHER ALIEN KILLED
s INCREMENT COUNTER

;IF <10 DON'T CARRY TENS DIGIT
sZERO OUT 1'S DIGIT

;ADD CARRY IN TENS

;IF <10 DON'T CARRY TO 100'S DIGIT
3ZERO OUT 10'S DIGIT & 1'S DIGIT
;ADD CARRY IN 100'S

;SKIP IF LESS 999
sRESET TO O IF 1000

;OFFSET INTO LINE ALREADY SET —-
;IN SCRSET

PAGE FLIPPING

One of the most successful methods for eliminating screen flicker while
simultaneously smoothing animation is screen or page flipping. The principle
involves drawing on one graphics screen while viewing the other. However, it
uses an additional 8K of memory for screen display, and involves elaborate
logic to keep track of what and when to draw or erase on a particular screen.

The logic loop for moving an object across the screen is as follows:

PLOT INITTAL POSITIONS
BOTH SCREENS

LOOK AT SCREEN #2 |

XDRAW OBJECT SCREEN #1

MOVE & DRAW OBJECT SCREEN #1

LOOK AT SCREEN #1

XDRAW OBJECT SCREEN #2

MOVE & DRAW OBJECT SCREEN #2

This appears to be rather simple and straight-forward, but it can be tricky.
Let’s take an object on screen #1, located at X,Y coordinates 3,3. We move it
to the right one position to coordinates 4,3 and display it on screen #2. Now,
we move it right once more to 5,3 and plot it on screen #1. Before we plot it, we
must XDRAW it at its previous position 3,3 , because that was its last location
on screen #1. This is different from the last location plotted, which is on screen
#2. The last time we plotted on screen #1, we plotted our object at 3,3. If you
make this mistake and just erase the last object’s position, which was actually
on the opposite screen, you will XDRAW an object at 3,4 and get an object at
that location. Recall that XDRAWing is EORing, and it will plot if nothing is
there and erase if something is there.

225

226

SCREEN #1 PG 1 : SCREEN #2 PG 2

(3,3) (4,3)
7 /
> >
XS1 XS2
YS1 YS2
CYCLE #1
(5,3)

>

CYCLE #3 CORRECT

DDD Result if XDRAW position
of ship Cycle #2 instead
of XDRAWing last position
on same screen.

CYCLE #3 INCORRECT

The solution to keeping track of the objects is to store the previous location of
all objects for both screens. In the above case, XS1,YS1 is always the previous
location for the object on screen #1, while XS82,YS2 is the previous screen posi-
tion for the object on screen #2. While this isn’t awkward for one or two
objects, a multitude of objects may prove difficult for most programmers. If
you are determined to pursue this, I would suggest storing the previous object
locations for each screen in tables, which can then be indexed by object
number.

To demonstrate a working example of page flipping, the free-floating rocket
ship program has been converted to dual screen. Actually, you won’t see any

. difference in flicker, because only one small object is being drawn. It would
require at least a dozen or more objects before you might begin to see the effects
of flicker. A small minus sign was added to the bottom left corner of screen #1
as a page reference to determine which screen was being viewed. A single step
debug package was also incorporated to allow you to step from screen to
screen.

Screen #1 is considered the odd screen and screen #2 the even screen. A
counter is incremented for each screen cycle. It is tested for its odd/even
character by dividing by two (LSR)and testing the carry bit. Depending on
whether COUNTER is odd or even, you might store coordinate values and
draw on one screen while displaying the other; then, when COUNTER
changes, switch to the opposite screen. For example, if you look at the flow

page flipping DSETUP

odd- pgl
| ODD/EVEN ? |-
even pg2
4
LOOKUP HI BYTE OF LINE [HIRESL = YBLOCK (YS1)
TO PLOT ON
HIRESH = YBLOCK (YS2)
HIRESH = YBLOCK (YS1)
HIRESH = HIRESH + #$20
LOOKUP LO BYTE OF LINE LOOKUP LO BYTE OF SHAPE
TO PLOT ON SHPL = SHPLO (TROT1)
HIRESL = YBLOCK (YS2)
I.Y register = XS2 Y register = XS1
BOTTOM = #3$60 BOTTOM = #$40

1)
LOOKUP HI BYTE OF SHAPE TABLE]

SHPH = HI BYTE OF SHAPES

227

chart below - when COUNTER is even, you store screen #2’s values, XS2,
Y82, and TROT? after calculating the ship’s new position, and draw the ship
on screen #2 while displaying screen #1. When you are finished, you shift the
view to screen #2.

Likewise, the drawing setup subroutine must set the pointers to the proper
line on the proper screen. An even-valued COUNTER needs to locate the
screen line for YS2 and the offset for XS2. In addition, #$20 must be added to
the hi byte line pointer HIRESH for screen #2. Also, the test to determine if all
eight lines have been plotted - a comparison with BOTTOM - becomes > =
#$60, which is the end of the second Hi-Res screen.

The flow chart and code is shown below.

INITILIZE POSITION
BOTH SCREENS

| COUNTER = 0 |

DRAW SHIP PAGE2 | 0DD (1,3,5...) PGl
EVEN(0,2,4...) PG2

| COUNTER =1 |

DRAW SHIP PAGEL |

VIEW PAGE2

DRAW SETUP j

odd even
XDRAW SHIP XDRAW SHIP
PAGE 1 PAGE 2
A

READ PADDLE
]

228

1

CALCULATE TROTATE

(o)

BUTTON ON?

yES

\

CALCULATE NEW XS,YS CALCULATE NEW XS,YS
FROM THRUST NO THRUST

]n

ODD/EVEN?
oddlj even

STORE PGl VALUES
XS1, YS1, TROT1

STORE PG2 VALUES
XS2, YS2, TROT2

[

|

| DRaW SETUP |

(SUMMARY)

odd
Y

DRAW SHIP NEW
POSITION PGl

even

A

DRAW SHIP NEW
POSITION PG2

LOOK AT PAGE2 |

— | [XDRAW SHIP PGl
ODD/EVEN?
odd “even | MOVE sHrp |
DISPLAY PG1 | DISPLAY PG2
l] J DRAW SHIP PGl

LgINGLE STEP

| LOOK AT PAGE1 |

COUNTER

COUNTER+1

XDRAW SHIP PG2 |

MOVE SHIP

DRAW SHIP PG2

229

230

6000: 4C 14 60

6014:
6017:
601A:
601D:
6020

6023:
6025:
6028:
602B:
602E:
6030:
6033:
6036:
6039:
603B:
603E:
6041:
6044 :
6047
604A:
604C:
604F 2
6052:
6055
6057:
605A:
605D:
6060

6063:
6065:

NN RN RN DN DN = b bt o et et e = = O 00~ N UT & W
NP WUNHFOOVOIIOUVPWN-HO

26

*FREE FLOATING ROCKET (PAGE FLIPPING)

XS

Ys

XS1
Xs2
¥S1
YS2

VX

VY
PDL
LNGH
COUNTER
BOTTOM
ROTATE
TROTATE
TROT1
TROT2
HIRESL
HIRESH
SHPL
SHPH
PREAD

;JUMP TO START OF PROGRAM

*ENTER HERE FIRST TIME ACCESS

PROG

ORG $6000
JMP PROG
DS 1

DS 1

DS 1

DS 1

DS 1

DS 1

DS 1

DS 1

DS 1

DS 1

DS 1

DS 1

DS 1

DS 1

DS 1

DS 2

EQU $FB
EQU HIRESL+$1
EQU $FD
EQU SHPL+$1
EQU $FBIE
LDA $C050
LDA $C052
LDA $CO57
JSR CLRSCR

JSR CLRSCR2

*INITILIZE ROCKET'S STARTING POSITION

LDA #$14
STA XS

STA XS1
STA XS2
LDA #$0A
STA YS

STA YS1
STA YS2
LDA #3$00
STA VX

STA VY

STA ROTATE
STA TROT1
STA TROT2
LDA #$00
STA COUNTER
JSR DSETUP
JSR DRAW
LDA #$01
STA COUNTER
JSR DSETUP
JSR DRAW
LDA $CO55

;DRAW EVEN OR PAGE 2 START POS

;DRAW ODD OR PAGE 1 START POS

sDISPLAY PG 2 WHILE DRAWING ON PG 1

*PUT MINUS SIGN AT BOTTOM LEFT PAGE 2 FOR REFERENCE

LDA #$FF
STA $5FDO

6068:

606B:
606E:
6070:
6073:
6075:
6077:
6079:
607C:
607D:
6080:
6082:
6085:
6086:
6088:
608A:
608C:
608F:
6092:
6094
6097:
609A:
609D:
60A0:
60A2:
60A5:
60A6:
60A8:
60AB:
60AD:
60BO:
60B3:
60B4:
60BS:
60B6:
60B7:

60BA:
60BD:
60BF:
60C2:

60C5:
60C6:
60C9:
60CC:
60CE:
60D0:
60D2:
60D5:
60D7:
60D9:
60DB:
60DE:
60DF :

61
61
FB

60
60
60

60
60

60
60

60
60

60

Co

62

107
108
109
110
111
112
113
114
115
116
117

¥ MAIN
*

* PADDLE READ

START

JSR

DSETUP

*FOR SHIP XDRAW

SKIPP

PADDLE1

PADDLE2

PADDLE3

PADDLE4
PADDLES

THRUST

JSR
LDX
JSR
CPY
BLT
LDY
STY
TYA
CMP
BGE
LDA
SEC
SBC
BGE
LDA
STA
CMP
BGE
LDA
STA
JMP
CMP
BEQ
LDA
CLC
ADC
CMP
BLT
LDA
STA
LSR
LSR
LSR
LSR
STA

LDA
BMI
JMP
LDX

DRAW
#3$01
PREAD
#$F9
SKIPP
#$F8
PDL

ROTATE
PADDLE3
ROTATE

#3$05
PADDLE1
#$00
ROTATE
PDL
PADDLE2
PDL
ROTATE
PADDLES
ROTATE
PADDLE4
ROTATE

#305
PDL
PADDLES
PDL
ROTATE

TROTATE

$C062
THRUST
NOTHRUST
TROTATE

PROGRAM LOOP #*

;WILL SETUP NON DISPLAYED SCREEN

s XDRAW SHIP ON NON DISPLAY SCREEN

;CLIP VALUE (0-250)

s PADDLECROTATE POS THEN SUBTRACT 5

sMAKE SURE =>0

;DON'T WANT TO GO PAST PADDLE POS

; PADDLE>ROTATE POS THEN ADD 5

;DON'T WANT TO GO PAST PADDLE POS

;DIVIDE BY 16 TO GET ROTATION(O-15)

;sOR WO ROTATIONS

sNEG BUTTON PRESSED

*UPDATE VELOCITY VX AND VY

NOCLIP

NOCLIP1

CLC
LDA
ADC
CMP
BNE
LDA
JMP
CMP
BNE
LDA
STA
CLC
LDA

XT,X
VX
#$FD
NOCLIP
#$FE
NOCLIP1
#3$03
NOCLIP1
#$02
VX

YT, X

;GET X THRUST VECTOR

sCLIP MAX VELOCITY AT 2

sSTORE X VELOCITY

231

232

60E2:
60ES5:
60E7:
60E9:
60EB:
60EE:
60F0:
60F2:
60F4:

60F7:
60F8:
60FB:
60FE:
6100:
6102:
6103:
6105:
6108:
610A:
610C:
610D:
610F:

6112:
6113:
6116:
6119:
611B:
611D:
611E:
6120:
6123:
6125:
6127:
6128:
612A:
612D:
612E:
6131:
6132:
6134:
6137:
613A:
613D:
6140:
6143:
6146:
6149:
614C:
614F
6152:
6155:
6158:
615B:

615C:

615F:
6162:

20
18

BF

97

61

61

60
60

60
60
61
60
60
60

60

61

61

118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

ADC VY
CMP #$FD
BNE NOCLIP2
LDA #$FE
JMP NOCLIP3
NOCLIP2 CMP #$03
BNE NOCLIP3
LDA #8$02
NOCLIP3 STA VY ;STORE Y VELOCITY
*UPDATE SHIP'S X POSITION XS
NOTHRUST CLC
LbA VX
ADC XS
CMP #$EO ;CHECK FOR WRAPAROUND LEFT
BLT NWRAP1
CLC
ADC #$28 ;FIX BY ADDING 40
JMP NWRAP2
NWRAP1 CMP #$28
BLT NWRAP2
SEC
SBC #$28 sFIX BY SUBTRACTNG 40
NWRAP2 STA XS ;STORE SHIP'S NEW X POS
*UPDATE SHIP'S Y POSITION YS
CLC
LDA VY
ADC YS
CMP #$EO ;CHECK FOR WRAPAROUND TOP
BLT NWRAP3
CLC
ADC #$18 ;FIX BY ADDING 24
JMP NWRAP4
NWRAP3 CMP #$18
BLT NWRAP4
SEC
SBC #$18 3 FIX BY SUBTRACTING 24
NWRAP4 STA YS ; STORE NEW Y POSITION
CLC
LDA COUNTER
LSR
BCS ODD
EVEN LDA XS
STA XS2 ;STORE SHIP'S CURRENT VARIABLES-PG 2
LDA YS
STA YS2
LDA TROTATE
STA TROT2
JMP DONE
OoDD LDA XS
STA XS1 ;STORE SHIP'S CURRENT VARIABLES -PG 1
LDA YS
STA YS1
LDA TROTATE
STA TROT1
DONE NOP
*

;CLIP MAX VELOCITY AT 2

;CHECK FOR WRAPAROUND RIGHT

CHECK FOR WRAPAROUND BOTTOM

JSR DSETUP ;SETUP SHIP'S NEW DRAWING POS

*FOR NON DISPLAY SCREEN
JSR DRAW ;DRAW SHIP ON NON DISPLAYED SCREEN
CLC

6163:

6166:
6167:
6169:
616C:
616F:
6172

6173:
6176:
6178:
617A:
617C:
617F:
6182
6184:
6186:
6188:
618B:
618C:
618F:
6191:
6194

6197:
6199:
619B:
619E:
61A0:
61A2:
61A4:
61A6:
61A7:
61A9:
61AB:
61AD:
61BO:
61B2:
61B4:
61B6:
61B9:
61BB:
61BC:
61BE:

61BF:
61C2:
61C3:

61C4:
61C6:
61C9:
61CC:
61CD:
61CF;
61D1:

AD

4A
BO
AD
4C
AD
EA

AD
10
Cc9
DO
2C
AD
10
c9
DO
2C
EA
EE
A9
20
4C

A2
A9
8D
Al
51
91
AS
18
69
85
E6
Ch
90
E9
85
CE
FO
c8
DO
60

AD
18
4A

BO
AC
B9
18
69
85
B9

0oD

23
08
3F

20
FC
57

60

Co

co

Co

Cco
co

co
60

FC
60

60
62

62

178
179
180
181
182
183
184
185
186

237

LDA COUNTER sTEST COUNTER TO DETERMINE
*NEW PAGE DISPLAYE

LSR sDISPLAY PAGE JUST DRAWN TO
BCS 0DD1 ;ODD SHIFT TO PAGE 1
EVEN1 LDA $CO55 ;EVEN SHIFT TO PAGE 2
JMP SKIPO
0DD1 LDA $C054
SKIPO NOP
*DEBUG PACKAGE TO SINGLE STEP
LDA $C000 ;KEY PRESSED?
BPL IGNORE ;EXIT IF NO KEY PRESSED
CMP #$9B ;ESC KEY?
BNE IGNORE
CAUGHT BIT $CO10 ;CLEAR STROBE
LDA $C000 ;KEY PRESSED?
BPL #*-3 ;LOOP BY BRANCHING BACK 3 BYTES
CMP #$A0 s SPACE KEY?

BNE IGNORE+3 ;NO,DON'T CLEAR STROBE
IGNORE BIT $CO10 ;CLEAR STROBE

NOP

INC COUNTER ; INCREMENT COUNTER FOR NEXT FRAME
LDA #$CO

JSR $FCA8 3 SHORT DELAY

JMP START

*

*SUBROUTINES *
3#
*SUBROUTINE TO DRAW ROCKET 1 BYTEBY 8 ROWS
DRAW LDX #$00
LDA #$01
STA LNGH
DRAW2 LDA (SHPL,X) ;GET BYTE FROM SHAPE TABLE
EOR (HIRESL),Y
STA (HIRESL),Y ;PUT ON HIRES SCREEN

LDA HIRESH
CLC
ADC #$04 ;THIS GETS TO NEXT ROW IN BLOCK
STA HIRESH
INC SHPL ;NEXT BYTE OF SHAPE TABLE
CMP BOTTOM ;ARE WE FINISHED WITH 8 ROWS
BCC DRAW2 ;NO DO NEXT BYTE
SBC #$20 sRETURN TO TOP ROW
STA HIRESH
DEC LNGH
BEQ DRAW3 ; FINISHED?
INY ;NEXT COLUMN OF 8 ROWS
BNE DRAW2
DRAW3 RTS

*DRAWING SETUP SUBROUTINE
DSETUP LDA COUNTER ;ODD PAGE 1 :EVEN PAGE 2

CLC

LSR ;TEST ODD OR EVEN BY SHIFTING -
*_ ; INTO CARRY BIT

BCS PAGEl

PAGE2 LDY YS2
LDA YBLOCKH,Y
CLC
ADC #$20 ;ADD TO REFRENCE SCREEN 2 MEMORY
STA HIRESH
LDA YBLOCKL,Y

233

61D4: 85 FB 238 STA HIRESL

61D6: AC 12 60 239 LDY TROT2 ;SETUP POINTER TO CORRECT SHAPE -
240 *- ;TABLE

61D9: B9 8F 62 241 LDA SHPLO,Y

61DC: 85 FD 242 STA SHPL

61DE: A9 60 243 LDA #$60 ;THIS WILL CORRECT DRAWING TEST
244 *FOR END OF 8 LINES - PG 2

61E0: 8D OE 60 245 STA BOTTOM

61E3: AC 06 60 246 LDY XS2

61F6: 4C 06 62 247 JMP SKIPPY

61E9: AC 07 60 248 PAGEl LDY YS1

61EC: B9 3F 62 249 LDA YBLOCKH,Y ;LOOK UP HI BYTE OF LINE

61EF: 85 FC 250 STA HIRESH

61F1: B9 57 62 251 LDA YBLOCKL,Y

61F4: 85 FB 252 STA HIRESL

61F6: AC 11 60 253 LDY TROTI

61F9: B9 8F 62 254 LDA SHPLO,Y

61FC: 85 FD 255 STA SHPL

61FE: A9 40 256 LDA #$40

6200: 8D OE 60 257 STA BOTTOM

6203: AC 05 60 258 LDY XS1 ; DISPLACEMENT INTO LINE

6206: A9 63 259 SKIPPY LDA #>SHAPES

6208: 85 FE 260 STA SHH

6204A: 60 261 RTS

262 *CLEAR SCREEN SUBROUTINE
620B: A9 00 263 CLRSCR LDA #$00

620D: 85 FB 264 STA HIRESL
620F: A9 20 265 LDA #$20
6211: 85 FC 266 STA HIRESH
6213: A0 00 267 CLR1 LDY #$00
6215: A9 00 268 LDA #$00
6217: 91 FB 269 CLR2 STA (HIRESL),Y
6219: C8 270 INY

621A: DO FB 271 BNE CLR2
621C: E6 FC 272 INC HIRESH
621E: A5 FC 273 LDA HIRESH
6220: C9 40 274 CMP #340
6222: 90 EF 275 BCC CLR1
6224: 60 276 RTS

277 *CLEAR SCREEN 2 SUBROUTINE
6225: A9 00 278 CLRSCR2 LDA #$00

6227: 85 FB 279 STA HIRESL
6229: A9 40 280 LDA #$40
622B: 85 FC 281 STA HIRESH
622D: A0 00 282 CLR3 LDY #$00
622F: A9 00 283 LDA #$00
6231: 91 FB 284 CLR4 STA (HIRESL),Y
6233: C8 285 INY

6234: DO FB 286 BNE CLR4
6236: E6 FC 287 INC HIRESH
6238: A5 FC 288 LDA HIRESH
623A: C9 60 289 CMP #$60
623C: 90 EF 290 BCC CLR3
623E: 60 291 RTS

292 *TABLES OF STARTING VALUE OF EACH OF 20 BLOCKS
623F: 20 20 21
6242: 21 22 22

234

6245;
6248
6249:
624C:
624F:
6252:
6253:
6256
6257:
625A:
625D:
6260:
6261:
62642
6267:
626A:
626B:
626E:

626F:
6272:
6275:
6277:
627A:
627D:

2T -
Li) .

6282:
6285:
6287:
628A:
628D:

628F:
6290:
6291:
6292:
6293:
6294
6295:
6296:

6297:
6298:
6299:
629A:
629B:
629C:
629D:
629E:

6303:
6306:
6309:

23 23

21 21
22 23
20 20

22 22
00 80
00 80

28 A8
A8 28

50 DO

00 01

FF FF
00 01

FF F¥
s Iy
01 01
00 FF
FF FF
01 01
00 FF

00 08
08 1C
36 00

20
22
21
23
00
28
28
50
50
01
FF

01
FF

G0
01

00
01

08
1C

293

294

295

296

297

298
299

300

301

302

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

325

326
327

YBLOCKH HEX

HEX

HEX

YBLOCKL HEX

HEX

HEX

XT HEX

HEX

YT HEX

HEX

SHPLO DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

*NEXT GROUP BECAUSE PADDLE (0-15) INDEXES INTO

20202121222223232020

21212222232320202121

22222323

008000800080008028A8

28A828A828A850D050D0

50D050D0

0001010100FFFFFF

0001010100FFFFFF

FFFFO001010100FF

FFFFOOO1010100FF

SHAPES

SHAPES+$08
SHAPES+$10
SHAPES+$18
SHAPES+$20
SHAPES+$28
SHAPES+$30
SHAPES+$38

*SHAPE TABLE TWICE

DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

*

SPACE DS

*ROCKET SHAPES

SHAPES

SHAPES+$08
SHAPES+$10
SHAPES+$18
SHAPES+$20
SHAPES+$28
SHAPES+$30
SHAPES+$38

100

SHAPES HEX 000808081C1C3600

*2ND

235

236

630B: 00
630E: 14
6311: 08

6313: 00
6316: OE
6319: 02

631B: 00
631E: 1C
6321: 20

6323: 00
6326: 1C
6329: 08

632B: 00
632E: 1C
6331: 02

6333: 00
6336: 38
6339: 20

633B: 00
633E: 14
6341: 08

20
1C

02
OE

08
14

36
08

08
14

20
38

02

328
329

330
331

332
333

334
335

336
337

338
339

340

--END ASSEMBLY--

ERRORS: 0

835 BYTES

*3RD

*4TH

*5TH

*6TH

*7TH

*8TH

HEX

HEX

HEX

HEX

HEX

HEX

HEX

000020140F1C0808

0000020E7COE0200

0008081COF142000

0000361C1C080808

0008081C78140200

000020381F382000

00000214781C0808

CHAPTER 7

GAMES THAT SCROLL

Scrolling games are dynamic in nature, in that the entire background moves
as the player traverses the game’s terrain. True scrolling arcade games, such as
Pegasus II on the Apple, or Scramble and Rally X in the arcades, have multi-
screen worlds which scroll on or off the screen as the player’s plane or car
moves. These games show only a window or part of the entire background
world at one time. They differ from games that have background stars and
aliens that appear to be traveling towards you from top to bottom. Scrolling
games have objects or terrain in relatively stable positions within the game’s
world. They can be reached by traveling to that particular section of the world.
And this technique isn’t just limited to arcade games. Ultima, an adventure
game, uses a large map that scrolls as the player moves around. Your screen
view is only a small window on the game’s world.

XS,YS BLOCK OR UNIT

e— 20 —>
o | T i

UNITS} . 12 TV 16 LINES

| | SCREEN . N
» 14 PIXELShe

bee———— 64 UNITS —]
ULTIMA MAP

The data that generates these maps is stored in large arrays. A game like
Ultima has a map 64 units square, with each block 14 pixels wide by 16 lines
deep. If one byte is used to store which shape is used for each block, 4K of
memory is needed. There is a reason why 64 units was chosen for a side. When
referencing the location of your viewing window, which is located at position
XS, YS on the large map, you retrieve data from a table or array, in which
each row of blocks is stored $40 below the previous row. Sixty-four units per
side is not etched in concrete, but some multiple of 16 is convenient. A map 128
units by 32 units would also work well.

237

238

Games like Pegasus II on the Apple allow as many as ten screen lengths to
scroll past the viewer before repeating. The horizontal scrolling is done a byte
at a time, and the data is stored in tables. Pegasus II, which uses page flipping
to smooth the animation, gains added speed by scrolling only sections of the
screen.

In this section, we are going to develop a scrolling game much like Pegasus
I1. It will be defined in much more detail than my previous examples, yet it
won’t be complete. Aliens will appear, but they won’t shoot back. You’ll be
able to kill the aliens with your lasers and accumulate points as you do so, but
you’ll find that there is no finish, nor even a goal. Consider the unfinished
game a test bench to develop your graphics skills.

The first step is to define and develop a fast scrolling subroutine. Since it is
easier to move objects horizontally one byte per animation frame, our scrolling
should be linked with that speed if objects are to remain synchronzied with the
terrain. A counter can be used to determine the screen’s location within our
much larger world. With the counter limited to 256 and screen scrolling set at 7
pixels per frame, the most logical length for a world would be 1792 pixels or
seven screen lengths.

=TT
D o a ' |
nd }
i] 1]
0] 279 1791
0 39 79 119 159 199 239 255 279
COUNTER

When the counter reaches 256, it wraps back to zero for a repeat of screen
#1. You have to be careful when approaching the upper end of the database.
Once the counter indexes beyond 215, it begins accessing data beyond the
1791st position. This can be remedied by enlarging the table to 2048 data
points, with the last 279 points a duplicate of the first 279 points. The terrain
level at the end of the seventh screen should match the terrain level at the
beginning of the first frame, as shown above.

The data points are Y axis screen coordinates (0-191) for each of the 1792
positions along the X axis. The data was placed into the table by an Applesoft
program called Mountain Maker. It takes a series of X, Y points corresponding
to each change in direction of our terrain and, by simple slope equations,
generates the data points in between. The program is listed below.

Y= YI + Y2—Y1)(X—X1
X2-X1
5 DIM NAME$(20)

10 TEXT : HOME : PRINT : PRINT " MOUNTAIN BACKGROUND GENE
RATOR"

20 PRINT : HTAB 15: PRINT "WORKING"

25 SH = 4000

30 START = 16384

35 J = START

40 READ A,B

50 X2 = A:Y2 = B

60 READ C,D

/0 IF C = - 1 THEN 1000

80 X1 = X2:Y1 = Y2:X2 = C:Y2 =D

90 SLOPE = (Y2 - Y1) / (X2 - X1)

100 FOR I = X1 TO X2 - 1

105 Y = INT (Y1 + (SLOPE * (I - X1)))

110 POKE J,Y

1200 =J + 1

130 NEXT I: GOTO 60

150 END

1000 POKE J,Y2

1010 PRINT : INPUT "DATABASE NAME 7" ;NAME$

1020 PRINT "BSAVE";NAME$;",A$";SH;",L$2000"

2000 DATA 0,10,80,40,175,25,250,65,335,20,375,32
2010 DATA 625,32,700,15,750,70,900,45,1070,90
2020 DATA 1190,12,1220,20,1320,10,1350,17,1440,5
2030 DATA 1500,40,1540,100,1610,50,1640,40,1710,5
2040 DATA 1730,5,1810,15,1840,15,1870,35,1900,25,1920,55,19
50,30,1980,55

2050 DATA 2047,10,-1,-1

239

240

The scrolling subroutine works as follows. Each time the position counter,
INDEX, is incremented, it adds seven to the lo byte of a pair of zero page
pointers, GROUNDL and GROUNDH, through a multi-byte addition.
These pointers index into a table called NEW MOUNTAINS, stored at
$4000. Starting with the first data point located at GROUNDH, GROUNDL,
the routine plots that point at X = 0. It increments the lo byte of the data
point, then plots the second point at X = 1. It does that until all 280 points are
plotted. Plotting is accomplished by EORing the proper pixel to the screen.
When it is finished plotting, it reloads GROUNDH and GROUNDL, then
EORs all the points off the screen. Note that GROUNDH and GROUNDL
are not changed during the plotting phase because zero page locations $4 and
$5 were used to store the pointers. When these are incremented, it doesn’t
affect our original pointers, which are stored elsewhere.

P

{ BE) BD { BB| BO| BA| BB| BC NEW MTS TABLE
GROTJNDL , GROUNDH

B8

B9 ®

BA (] Position on screen

BB o o

BC ®

BD ®

BE | @

BF

01 2 3 4 5 6 7
SCREEN X

The terrain does flicker excessively because it is off the screen as much as on
the screen. I’m sure ambitious readers will want to rewrite the subroutine, or
convert the entire program to page flipping.

The second step in developing the game is to devise a method for determin-
ing whether an object is on or off the screen. This depends on the location of the
object in our multi-screen long world in relation to that of the screen’s moving
window. Obviously, the two must coincide for the object to appear.

Our viewing window is controlled by the counter, INDEX (0-255). We see
the terrain in that window from INDEX % 7 to (INDEX +39) sk 7. While our
terrain is stored as individual data points for each pixel, our shapes are stored
and plotted as data bytes at a particular horizontal position (0-39).

Fortunately, the choice of moving the terrain seven pixels (or one screen byte
to the left with each frame) synchronizes with the easiest method of moving a
raster shape in the same direction. Single byte moves require no offset shape
tables.

Objects can be assigned reference positions corresponding to their horizontal
byte location (0-255) in our seven screen long world. A table of these values is
stored in ONPOS. Each object’s vertical position is correspondingly stored in a
table TABLEY. TABLEX contains the object’s current screen position (0-39).
This value changes during each frame, regardless of whether the object
remains stationary with respect to the terrain.

An object first appears on the scrolling screen at the far right when INDEX

= > ONPOS(OB]J #). The ONPOS value for an object is not actually its true
horizontal position, but one that is offset by 39 bytes.

I~ | .

o fa
i
| i
Oth Byte 38th Byte
INDEX ONPOS(OBJ#)

The object moves left one byte exactly in step with the ground movement
with each successive animation frame. The value of TABLEX (OBJ #) is set
originally to X =38 or $26. X is set to 38 rather than 39 because our alien
shape is two bytes wide, and we would like to plot its full shape on the screen’s
right side rather than half of its shape. During each successive cycle, we decre-
ment the X position in TABLEX table and test each time for a value less than
zero. If so, we are now off the screen, and we set the ONFLAG (OBJ #) = 0

241

242

< TEST IF

> TAKE OBJECT |

no=0

OBJECT ACTIVE |

yes

N =4
| oN FLAG ON?]
no

no 4

yes=1 update
N
| xpRaw oBJUECT |

y

yes=]

'F-—LIS INDEX => ON POSITION |
yes

| MOVE oBJECT |

4

r<—{ USED ALREADY FLAG ON?]
no

| DECREMENT X POSITION]

SET ONFLAG ON

SET USED ALREADY FLAG ON

4

IS X POS. >07 1o,
(AT FAR LEFT?)

yes

DRAW INITIAL POSITION
OF OBJECT AT FAR RIGHT

no

DRAW OBJECT AT

X=38 ($26) NEW POSITION
yes 4
XDRAW COLLISION ?l
OBJECT no
y
ALIVE FLAG=0 ONFLAG=0
ON FLAG = 0 * (OFF)

| NExT oBUECT]

no

|

— DONE ALL OBJECTS ?I

yes

| INCREMENT INDEX |

| INDEX = 07 >

no

RESET ALL ALREADY
USED FLAGS TO 0O

i
[REST OF PROGRAMT(——-I

There are several flags that are required to keep track of certain aspects of
the game. The ONFLAG (OB]J #) is used to determine if the object is to be
actively plotted on the screen. Assuming our object is actually alive, ALIVE (
OBJ #) =1 and not dead (value =0), then the ONFLAG (OB]J #) is tested.
If this flag was turned on because the object meets the INDEX = > ONPOS (
OB]J #) test, it will appear for the next 38 cycles unless it is destroyed by your
ship’s laser. In either case, when the object reaches the end of its time on the
screen, the ONFLAG (OBJ #) flag is set to off, or zero.

There is one additional flag. That is the USFLAG, or used-already flag. It is
necessary because if, for example, an object were to appear on the screen when
INDEX = 50 and vanish at INDEX = 88, without this flag being set equal to
one (off), the object would again meet the requirements of INDEX =>
ONPOS (OBJ #) as soon as the ONFLAG (OBJ #) was zero. The object
would appear every 38 screen cycles after it first appeared until INDEX wrap-
ped around to become zero again. The object should appear only once over the
(0-255) INDEX cycle. Incidentally, once all objects have been tested and plot-
ted and INDEX = 0 again, the program resets all USFLAG (OB]J #) =0 so
that they will reappear over the same terrain if they are still alive.

Collisions are tested during the draw routine. The collision flag, KILL, is set
if any lit pixel occupies the screen positions, where an alien or saucer shape is
drawn. The test is made by logically ANDing the shape with the screen. A non-
zero value will set the flag. If a collision is detected, the alien is immediately
XDRAWDn off the screen, and both the ALIVE flag and the ONFLAG are set
to zero (off) for that object. Of course, in a real game, you wouldn’t have an
alien simply disappear, but would either plot the shape of an explosion or blow
it up dramatically; a fitting end that any alien who travels so far and fights so
valiantly deserves.

I’ll admit that the routine is quite complex and did require considerable
planning and thought, but I hope that the accompanying flow chart will make
it clear. Remember that this code is looped for each objegt successively until all
objects are tested. Only then does it increment INDEX before proceeding on
with the rest of the program.

Flexibility for displaying a variety and a large number of shapes, plus the
ability to change the placement of these shapes, was designed into the program.
This becomes extremely helpful during the play test when the quantity of
targets and types are liable to change frequently. Ground based laser, radar
and rocket bases, plus a dozen city buildings were envisioned as targets spread
out over seven screens. While only eight different shapes were contemplated,
ten of one type might be needed, while only three of another type might be
used.

Because of this special need, a table called SHPADR was conceived. It
would hold the shape type for each, and as many as 256 targets. The shapes
would be stored in a shape table called SHAPES. Since each shape was two
bytes wide by eight lines deep, and we need both even and odd offset shape
tables for color, thirty two bytes would be required for each shape. To keep the

243

244

table within one page boundary (256 bytes), the scheme was limited to eight
shapes.

SHAPES SHAPE #0 EVEN THE 8 ODD OFFSET SHAPES
SHAPE #1 EVEN FOLLOW THE 8 EVEN OFFSET

. . SHAPES IN THE TABLE
CALLED SHAPES.,

SHAPE #7 EVEN
SHAPE #0 ODD

Another table, called SHPLO, is used to reference the lo byte of each shape.
The values in this table are permanently set, starting at $00 and increasing by
$10 with each shape. However, because we are using only two shapes in this
example, and loading the shape table after assembling is an extra step, it is
easier during program development to have the assembler construct the table
for us by using the DFB pseudo-op code to define the lo order byte.

Thus, the SHPLO table is constructed as follows for the two shapes:

SHPLO DFB SHAPES ;LO BYTE ALIEN EVEN OFFSET
DFB SHAPES+$10 ;LO BYTE SAUCER EVEN OFFSET
DFB SHAPES+$20 ;LO BYTE ALIEN ODD OFFSET
DFB SHAPES+$30 ;LO BYTE SAUCER ODD OFFSET

The table SHPADR for seven objects either points to shape #0 (alien) or
shape #1 (saucer). It actually indexes into SHPLO to set the proper pointers.

EVEN LDY SHPADR,Y ;WHERE X IS THE OBJECT #

LDA SHPLO,Y ;PROPER LO BYTE OF EVEN OFFSET SHAPE
STA SHPL

The code for the odd offset is similar, except you have to index into the odd
half of SHPLO which, in this case, begins with the third byte.

ODD LDY SHPADR,X

LDA SHPLO+2,Y ;PROPER LO BYTE OF ODD OFFSET SHAPE
STA SHPL

#0 #1 #2 #3 #4 #5 #6 #7

supaDR [00]00]o1 Joo]oo]oo]oo] 01

#0 #1 #2 #3

SiPLO | 08 | 10 | 18] 20]
EVEN(/EVEN ODD ODD
S

ALTEN{SAUCER ALIEN SAUCER

SHAPES $6908) SHAPE #0 EVEN
$6910 SHAPE #1 EVEN
$6918 SHAPE #0 ODD
$6920 SHAPE #1 ODD

For example, if you were to look for object #2 (X reg = 2), which is an even
number, the even code would reference $01 for the SHPADR table. This in
turn would point to the #1 element in SHPLO. Thus, the code would be stored
$10 in SHPL. The high byte $69 would be stored in SHPH.

In the event that you chose to place these tables into a permanent location,
skip the construction of the SHPLO table. Instead, the SHPADR table con-
tains the lo byte for each shape. The SHPADR table’s length is doubled, for it
now contains the locations of both the even and odd shapes.

SHAPES $7000 SHAPE #0 EVEN
$7008 SHAPE #1 EVEN
$7010 SHAPE #0 ODD
$7018 SHAPE #1 ODD

#0 #1 #2 #3 #4 #5 #6 #7

SHPADR [00|00{08|00[00{00|00}08

10110}18}10]|10|10]/10}18

The corresponding code is as follows:

EVEN LDY SHADR,X
STA SHPL

ODD LDY SHPADR+8,X
STA SHPL

245

246

You can see that this is actually simpler code. If you wish to keep separate
shape tables independent of the main program’s code, then this is the preferred
method. However, it does involve loading your shape table into memory when
testing a program.

ORDER OF EVENTS IN GAME

The sequence of events in any game is important. Sometimes the order is
dictated by tests performed by various routines. It becomes obvious that you
can’t test for a collision of an alien with a laser beam unless the laser is drawn
on the screen first. You can’t determine if your ship collides with an alien
unless the ship is drawn last. Unfortunately, something is always last. A colli-
sion of the ship with an alien at this point in the sequence requires testing each
alien’s screen coordinates to determine which one hit the ship.

The mountains were drawn afterwards to minimize the objects’ screen
flicker. Since the mountain routine takes considerably longer to draw than the
rest of the objects combined, it acts as a time delay, allowing the objects to re-
main on the screen longer than they are off. Because the mountains are drawn
after the ship’s collision test, a separate test was devised for mountain colli-
sions. The code compares the ship’s vertical position with the vertical value of
the mountain data drawn directly beneath it. The ship’s vertical position must
be less than the value referenced in the mountain data table (i.e, ship is above
mountains). Remember that MTOFFL and MTOFFH points to the begin-
ning position in the table from which the scroll subroutine draws the next 280
points of the mountain background. The tip of the ship is located at X =84 or
$55. The collision test is at the nose, so $55 is added to MTOFFL. Since the
carry is not cleared when $55 is added to the offset location of the mountain
table, an overflow in the lo byte, which is a carry set, automatically increments
the hi byte value. Both the lo and hi byte values are stored at $09 and $0A,
respectively, in the zero page. These were chosen as scratch memory locations
in zero page to do an indirect indexed load, (LDA ($09),Y) ,where the Y
register is zero. This obtains the value of the mountain pixel directly below the
ship’s nose, and with only one instruction! This is compared with the vertical

position of the ship’s bottom. If the value in the mountain table is greater, there
is no collision.

—>{ READ PADDLE #1 |
no

i IS BUTTON #1 PRESSED? I-—h

Yes

[FIRE & DRAW LASER |

—>] DRAW ALIEN & TEST FOR COLLISION |

yes

| 1S KILL DETECTED? l——31 XDRAW ALIEN
o SET KILLED FLAG

-

[NEXT ALTEN |

no,
Le—{ DONE WITH ALL ALIENS? |
yes

l INCREMENT SCROLLING COUNTER J

[DRAW SHIP & TEST FOR COLLSION |

yes
[COLLISION DETECTED? —>- EXPLODE SHIP |

no

no

[IS BUTTON #0 PRESSED? |—3

yes
| DRAW BOMB I

[DRAW MOUNTAINS |

[DETECT MT. COLLISION WITH PLANE |

[xDRAW LASER |

[xDraw BOMB |

[xDrAW suIP |

247

211 *DETECT FOR MT COLLISION

212 LDA PADDLEL

213 CLC

214 ADC #$55 ;TIP OF SHIP @84

215 STA $09

216 LDA PADDLEH

217 ADC #$40 ; LOCATION OF MOUNTAIN TABLE
218 STA $0A

219 LDY #8300

220 CLC

221 LDA VERT

222 ADC #$08 ; BECAUSE PDL IS AT TOP OF PLANE-—-
223 STA TEMP ; AND MOUNTAINS HIT BOTTOM
224 LDA ($09),Y

225 CMP TEMP

226 BGE NOHIT

227 JMP EXPLODE

228 NOHIT LDA VERT

M.,

248

6000: 4C 21 60

6021:
60243
6027:
602A:

602D:
602F:
6032:
6035:
6038:

603B:
603D:
603F:

AD
AD
AD
20

A9
8D
8D

8D
A9

85
A9

50
52
57
A4

co
co
co

60
60
60
60

Neolie R NN RV NS NV SH S

*COMPLETE SCROLLING GAME CODE

COUNT
INDEX
PADDLEL
PADDLEH
PDL
TEMP
TEMP1
SBLOCK
EBLOCK
VERT
TVERT
HORIZ
0BJ
LNGH
DEPTH
SLNGH
SHOT
LFLAG
ESET
BVERT
TBVERT
BVELY
BHORIZ
BMLOCK
TBMLOCK
KILL
KILLNUM
SCOREA
SCOREB
SCOREC
HIRESL
HIRESH
SHPL
SHPH
SSHPL
SSHPH
STESTL
STESTH
BOMBL
BOMBH
PREAD
PROG

*
*INIT
*

ORG
JMP
DS
DS
DS
DS
DS
DS
DS
DS

EQU
EQU
EQU
EQU
LDA
LDA
LDA
JSR

$6000
PROG

S e e e e e et et el i e N]

$26
HIRESL+$1
$50
SHPL+$1
$52

$53

$54
STESTL+$1
$56
BOMBL+$1
$FB1E
$CO50
$C052
$C057
CLRSCR

3JUMP TO START OF CODE

ILIZATION

LDA
STA
STA
STA
STA

#3$00
LFLAG
BMLOCK
KILL
SHOT

*INITILIZE SCORE & PUT ON SCREEN

SCOREI

LDA
STA
LDA

#$20
HIRESH
#$1D

; LOCATION OF SCORE WORDS

249

6041: 85 26 61 STA HIRESL
6043: A9 05 62 LDA #$05
6045: 8D 10 60 63 STA LNGH
6048: A9 6A 64 LDA #>SCOREWD
604A: 85 51 65 STA SHPH
604C: A9 08 66 LDA #<SCOREWD
604E: 85 50 67 STA SHPL
6050: 20 E8 66 68 JSR SCOREDR ; PUT WORDS ON SCREEN
6053: A9 00 69 LDA #$00
6055: 8D 1F 60 70 STA SCOREB
6058: 8D 20 60 71 STA SCOREC
605B: A9 FF 72 LDA #$FF
605D: 8D 1E 60 73 STA SCOREA ;FIRST TIME SCORE USED WILL~-
6060: 8D 1D 60 74 STA KILLNUM ; INCREMENT TO O
6063: 20 5D 66 75 JSR SCORE
76 *INITIALIZE SHIP POSITION
6066: A9 03 77 LDA #$03
6068: 8D 12 60 78 STA SLNGH
606B: A9 D7 79 LDA #<SHIP
606D: 85 52 80 STA SSHPL
606F: A9 68 81 LDA #>SHIP
6071: 85 53 82 STA SSHPH
6073: A9 BF 83 LDA #<MSHIP
6075: 85 54 84 STA STESTL
6077: A9 68 85 LDA #>MSHIP
6079: 85 55 86 STA STESTH
607B: A9 50 87 LDA #$50
607D: 8D OC 60 88 STA VERT
89 *INITIALIZE START OF SCROLL
6080: A9 00 90 LDA #$00
6082: 8D 04 60 91 STA INDEX
6085: 8D 05 60 92 STA PADDLEL
6088: 8D 06 60 93 STA PADDLEH
94 *
95 *MAIN PROGRAM LOOP
9% *
97 *READ PADDLE #1
608B: A2 01 98 START LDX #$01
608D: 20 1E FB 99 JSR PREAD
6090: CO B8 100 CPY #$B8 sCLIP VALUE (0-183)
6092: 90 02 101 BLT SKIPP :
6094: A0 B7 102 LDY #$B7
6096: 8C 07 60 103 SKIPP STY PDL
6099: 98 104 TYA
609A: CD OC 60 105 CMP VERT s PADDLECVERT POS THEN SUBTRACT 5
609D: BO 1E 106 BGE PADDLE3
609F: AD OC 60 107 LDA VERT
60A2: 38 108 SEC
60A3: E9 05 109 SBC #$05
60A5: BO 08 110 BGE PADDLEl ;MAKE SURE =>0
60A7: A9 00 111 LDA #$00
60A9: 8D OC 60 112 STA VERT
60AC: 8D OD 60 113 STA TVERT
60AF: CD 07 60 114 PADDLE1 CMP PDL ;DON'T WANT TO GO PAST PADDLE POS
60B2: BO 03 115 BGE PADDLE2
60B4: AD 07 60 116 LDA PDL
60B7: 8D OC 60 117 PADDLE2 STA VERT
60BA: 4C D3 60 118 JMP PADDLE6
60BD: CD OC 60 119 PADDLE3 CMP VERT s PADDLE>VERT POS THEN ADD 5
60C0: FO 0B 120 BEQ PADDLE4

250

60C2:
60C5:
60C6:
60C8:
60CB:
60CD:
60D0:
60D3:
60D6:

60D9:
60DB:
60DE:
60E0:
60E2:
60E4 ;
60E7:
60FA:
60ED:
60EF:
60F2:
60F5:
60F7:
60FA:
60FD:
60FF:
6102:
6104
6107:
6109:
610C:
610F;
6111:
6114;
6117:
611A:
611C:
611F:
6122:
6124:
6127:
6129:
612B:
612C:
612F:
6132:
6135:
6138:
613B:
613E:
6141:
6144
6147:
6149:
614B:
614D:
6150:
6153:
6156:
6159

AD OC
18

60

60

60
60
60
63

60

60
60
68

61
68

68

68
61

68
68

68
68
68

68
67

67

68

61
60
63
63
60

68

68
61
60
63

63

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

PADDLE4
PADDLE5
PADDLE6

LDA
CLC
ADC
CMP
BLT
LDA
STA
STA
JSR

VERT

#$05
PDL
PADDLE5
PDL
VERT
TVERT
LASER

;DON'T WANT TO GO PAST PADDLE POS

sFIRE LASER

*PUT ALIEN OBJECTS ON SCREEN AT PROPER TIMES

NXT

TEST

TEST1

UPDATE

PASS

LDX
STX
LDA
STA
LDA
STA
LDX
LDA
BNE
JMP
LDA
BNE
LDA
CMP
BGE
LDA
BEQ
JMP
LDA
STA
STA
LDA
STA
LDY
LDA
STA
LDY
LDA
STA
LDA
STA
LDY
TYA
STA
JSR
JMP
LDX
JSR
JSR
LDX
DEC
LDA
CMP
BPL
LDA
STA
JMP
LDX
JSR
JSR

#00

OBJ
#>SHAPES
SHPH
#302
LNGH
OBJ
ALIVE,X
TEST
NOBJ
ONFLAG, X
UPDATE
ONPOS, X
INDEX
NOBJ
USFLAG, X
TEST1
NOBJ
#3501
ONFLAG, X
USFLAG,X
#$26
TABLEX,X
SHPADR, X
SHPLO, Y
SHPL
TABLEY, X
YVERTL, Y
HIRESL
YVERTH, Y
HIRESH
#$26

TABLEX, X
DRAW
NOBJ
OBJ
DSETUP
XDRAW
OBJ
TABLEX, X
TABLEX, X
#3$00
PASS
#$00
ONFLAG, X
NOBJ

OBJ
DSETUP
DRAW

;GET HI BYTE OF SHAPES

;EACH SHAPE 2 BYTES WIDE

;ALIVE?

;IS ONFLAG ALREADY ON?

;IS USED ALREADY FLAG ON?

;SET ONFLAG ON

sUPDATE TABLE
sWHICH TYPE SHAPE
sWHERE LO SHAPE IS

sGET Y POSITION

;THIS IS X=38 FAR RIGHT

;UPDATE TABLE

;MOVE OBJECT LEFT ONE

3>=0 THEN STILL ON SCREEN

251

252

615C:
615F:
6161:
6163:
6166
6169:
616C:
616F:
6171:
6174:
6177:
617A:
617D:
6180:
6183:
6185:
6187:
618A:
618D:
6190:
6192:
6194
6196:
6199:
619A:
619C:
619E:
61A1:
61A4:
61A7:

61AA:
61AD:
61AE:
61B0:
61B2:
61B5:
61B7:
61B9:
61BB:
61BC:
61BF:
61C1:
61C4:
61C6:
61C9:
61CB:
61CE:
61D1:
61D4:
61D7:
61DA:
61DD:

61EO:
61E3:
61E5:
61E7:
61FA:
61EC:

60

60
63
63

68
68
60
66
60
60

60
60
60

68

63
62
64
62

60

60

60
60
60

65
60
60
63
62
64
64

60

60

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

LDA
CMP
BEQ
LDX
JSR
JSR
LDX
LDA
STA
STA
STA
JSR
NOBJ INC
LDA
CMP
BEQ
JMP
TEST2 INC
LDA
BNE
LDY
AGAIN LDA
STA
INY
CpY
BNE
PASS1 JSR
JSR
JSR
JSR

KILL

#$00

NOBJ

OBJ

DSETUP

XDRAW sREMOVE ALIEN

OBJ

#$00

ALIVE,X ;SET OBJECT TO DEAD
ONFLAG,X ;TURN OFF ON FLAG
KILL sRESET KILL DETECTOR
SCORE

OBJ ;NEXT OJECT

OBJ

#$07

TEST2 ;DONE WITH ALL?

NXT

INDEX s UPDATE SCROLL COUNTER
INDEX

PASS1

#00 ;RESET ALL ALREADY USED FLAGS TO O
#3$00

USFLAG,Y

#3$08
AGAIN
SSETUP
SDRAW
BOMB
SCROLL

*DETECT FOR MT COLLISION

LDA
CLC
ADC
STA
- LDA
ADC
STA
LDY
CLC
LDA
ADC
STA
LDA
cMP
BGE
JMP
NOHIT LDA
STA
JSR
JSR
FIN JSR
JSR
*TEST IF ALL
RSETAL LDA
CMP

BNE,

LDA
BNE
LDA

PADDLEL

#$55 ;TIP OF SHIP @84

$09

PADDLEH

#$40 ; LOCATION OF MOUNTAIN TABLE
$0A

#$00

VERT

#3$08 ;BECAUSE PDL IS AT TOP OF PLANE--
TEMP ;AND MOUNTAINS HIT BOTTOM
(309),Y

TEMP

NOHIT

EXPLODE

VERT

TVERT

SSETUP

SXDRAW

XLASER

BOMBX

ALTENS KILLED AND RESET WHEN INDEX=0
KILLNUM

#$07

RSETAL2

INDEX ;CHECK IF START OF TERRAIN
RSETAL2

#3$00 ;RESET

61EE:
61F1:
61F3:
61F5:
61F8:
61F9:
61FB:
61FD:
61FE:

6201:

6204
6206:
6208:
6209:
620C:
620E:
6211:
6213:
6216:
6219:
621B:
621E:

6221+
6223:
62263
6228:
622A:
622C:
622E:
6230:
6232:
6235:
6237:
623A:
623C:
623E:
6240:
6241:
6243:
6245:
6247
6249;
624B:

624D:
624F:
6251:
6252:
6255:
6257:
625A:

8D
A2
A9
9D
E8
EO

EA
4C

1D

01
98

07
F8

8B

0A

CA
03

60

68

60

60

60
60

60
62

60

60

60
60

67

67

241
242
243
244
245
246
247
248
249
250
251

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

STA
LDX
LDA
RSETAL1 STA
INX
CPX
BNE
RSETAL2 NOP

JMP
*

KILLNUM
#$00
#$01
ALIVE,X

#$07
RSETAL1

START

¥S UBROUTTINE S #ststinss
*

*SCROLLING ROUTINE SETUP
* .

SCROLL LDA

#*o

CMP

RSET LDA

*

INDEX ;COUNTER FOR WHERE YOU ARE INTO
;s TERRAIN
#$00 ;IF ZERO RESET GROUND TABLE POINTER
RSET
PADDLEL ;EACH CYCLE ADVANCE 7 MORE INTO —-
#307 ;GROUND ARRAY
PADDLEL
C
PADDLEH
SCONT
#$00 sRESET GROUND POSITION BACK TO O-
PADDLEL
PADDLEH

*SCROLLING ROUTINE
#*

SCONT LDA
STA
ERASE LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
AND
STA
LDX
LOOP CLC
LDA
ADC
STA
LDA
ADC
STA

LDY
LDA
TAY
LDA
STA
LDA
STA

#$02

COUNT ;COUNTER SO DRAWS 1ST TIME
#3501 ’

$08 ;BIT COUNTER

#300 ; START OF ARRAY LO BYTE
$06

#$40 ; START OF ARRAY HI BYTE
$07

PADDLEL ;OFFSET INTO ARRAY LO BYT
$04
PADDLEH ;OFFSET HI BYTE

#$07 3SO NOT BEYOND TABLE

$05

#300

$04 ;OFFSET INTO TABLE (LO)

$06 ;ADD BASE ADDRESS (LO)

$02

$05 3 (HI)

$07

$03 ;REG 2&3 ACTUAL ADDRESS OF SPECI-
sFIC BYTE IN TABLE

#3$00

($02),Y ;ACTUAL VALUE AT THAT BYTE

YVERTL,Y ;ADDRESS OF LINE ON SCREEN (LO)
$02

YVERTH,Y ; (HI)

$03

253

625C: 84 301 TXA ;X IS OFFSET INTO HI-RES LINE

625D: A8 302 TAY

625E: Bl 02 303 LDA ($02),Y ;CONTAINS ADDRESS OF BEGINNING LINE
304 - ;NOW OFFSET INTO LINE

6260: 45 08 305 EOR $08 ;NOW LEFT HAND DOT ON

6262: 91 02 306 STA ($02),Y

6264: E6 04 307 INC $04 ; INCREMENT OFFSET FOR NEXT DOT (LO)

6266: DO 09 308 BNE SKIP ; IF HAVEN'T CROSSED 256 THEN SKIP

6268: 18 309 CLC

6269: A5 05 310 LDA $05 ;INC. HI ORDER OFFSET FOR NEXT DOT

626B: 69 01 311 ADC #$01

626D: 29 07 312 AND #$C7 ;MAKES WRAP AROUND INTO TABLE--

626F: 85 05 313 STA $05 ; (IF HIT END OF TABLE)

6271: 06 08 314 SKIP ASL $08 ;SHIFT LEFT INTO BYTE FOR NEXT
315 *- ;DOT TO PLOT

6273: 10 CB 316 BPL LOOP ;IF INTO BIT 7 THEN TOO FAR SO
317 *- sRESTORE TO 1

6275: A9 01 318 LDA #3$01 ;RESTORE BIT COUNTER TO 1

6277: 85 08 319 STA $08

6279: E8 320 INX ;NEXT BYTE BECAUSE HAVE ALREADY
321 *- ;DONE 7 DOTS

627A: EO 28 322 CPX #%$28 ;SEE IF COMPLETELY ACROSS 40 BYTES

627C: DO C2 323 BNE LOOP

627E: CE 03 60 324 DEC COUNT

6281: AD 03 60 325 LDA COUNT

6284: C9 01 326 CMP #$01 ;IF=1 ONLY HAVE DRAWN TERRAIN

6286: 90 1B 327 BLT SKIP1 ;TERRAIN ALREADY DRAWN&XDRAWN,DONE
328 *
329 *SINGLE STEP DEBUG PACKAGE
330 *

6288: AD 00 CO 331 LDA $C000 sKEY PRESSED?

628B: 10 10 332 BPL IGNORE ;EXIT IF NO XEY PRESSED

628D: C9 9B 333 . CMP #$9B ;ESC KEY?

628F: DO OC 334 BNE IGNORE

6291: 2C 10 CO 335 CAUGHT BIT $C010 ;CLEAR STROBE

6294: AD 00 CO 336 LDA $C000 sKEY PRESSED

6297: 10 FB 337 BPL *-3 ;LOOP BY BRANCHING BACK 3 BYTES

6299: C9 A0 338 CMP #$A0 sSPACE KEY?

629B: DO 03 339 BNE IGNORE+3 ;NO DON'T CLEAR STROBE

629D: 2C 10 CO 340 IGNORE BIT $C010 ;CLEAR STROBE
341 *

62A0: 4C 26 62 342 JMP ERASE ;ONLY DRAWN SO FAR; NOW GO TO ERAS
343 - sTO DRAW AGAIN

62A3: 60 344 SKIP1 RTS
345 ®
346 *CLEAR SCREEN SUBROUTINE
347 *

62A4: A9 00 348 CLRSCR LDA #$00

62A6: 85 26 349 STA HIRESL

62A8: A9 20 350 LDA #$20

62AA: 85 27 351 STA HIRESH

62AC: A0 00 352 CLR1 LDY #$00

62AE: A9 00 353 LDA #$00

62B0: 91 26 354 CLR2 STA (HIRESL),Y

62B2: C8 355 INY

62B3: DO FB 356 BNE CLR2

62B5: E6 27 357 INC HIRESH

62B7: AS 27 358 LDA HIRESH

62B9: C9 40 359 CMP #$40

62BB: 90 EF 360 BCC CLR1

254

62BD:

62BE:
62C0:
62C3:
62C6:
62C9:
62CB:
62CD:
62CF:
62D1:
62D3:
62D5:
62D7:

62DA:
62DC:
62DE:
62EQ:
62E2:
62E4:
62E5:
62E8;
62EA:
62ED:
62F0;
62F2:
62F5:
62F7:
62F9:
62FC:

62FD:
6300:
6303:
6305:
6307:
6309:
630B:
630D:
630E:
6311
6313:
6316:
6319:;
631B:

631C:
631F:
6320:
6323:
6325;
6328:

60

A9
8D
AC

AC
20
A2
Al
51
91
E6
Cc8
CE

EE
CE

60

B9
18
6D
85
B9
85

0D

52
26
26
52

12
F2
0D
11
E2

60
63

60

60

65

60
63

60
60

67
60
67

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420

RTS
*

*DRAW SHIP SUBROUTINE
*DRAW SHAPE ONE LINE AT A TIME-LNGH BYTES ACROSS
*

SDRAW LDA
STA

SDRAW1 LDY
JSR
LDX

SDRAW2 LDA
AND
AND
CMP
BEQ
LDA
STA

*

SDRAW3 LDA
EOR
STA
INC
INC
INY
DEC
BNE
INC
DEC
BNE
LDA
CMP

BEQ

JMP
SDRAW4 RTS
3*

#$00

ESET

TVERT s VERTICAL POSITION

GETADR

#$00

(STESTL,X) ;GET BYTE OF SHIP MASK SHAPE
#$7F ;MASK OUT HI BIT

(HIRESL),Y ;(AND) IT AGAINST SCREEN

#$00 ; IF ANYTHING IN WAY GET>0
SDRAW3

#3501 ;SET BECAUSE IF DON'T FINISH DRAW-
ESET ; ING SHIP,PIECE LEFT WHEN XDRAW

;DURING EXPLOSION
(SSHPL,X) ;GET BYTE OF SHIP'S SHAPE
(HIRESL),Y
(HIRESL),Y ;PLOT
STESTL sNEXT BYTE OF MASK
SSHPL ; NEXT BYTE OF TABLE
sNEXT SCREEN POSITION

SLNGH

SDRAW2 ;IF LINE NOT FINISHED BRANCH
TVERT ;OTHERWISE NEXT LINE DOWN
DEPTH

SDRAW1 sDONE DRAWING?

ESET ;IS EXPLOSION FLAG SET?

#3$00

SDRAW4 sNO!, EXIT

EXLODE ;YES!, EXPLODE SHIP

*XDRAW SHIP SUBROUTINE
#*

SXDRAW LDY
JSR
LDX
SXDRAW2 LDA
EOR
STA
INC
INY
DEC
BNE
INC
DEC
BNE
RTS

3

TVERT s PADDLE VALUE
GETADR

#$00

(SSHPL, X)

(HIRESL),Y

(HIRESL),Y

SSHPL

SLNGH
SXDRAW2
TVERT
DEPTH
SXDRAW

*GETADR SUBROUTINE
#*

GETADR LDA
CLC
ADC
STA
LDA
STA

YVERTL,Y ;LOOK UP LO BYTE OF LINE

HORIZ ;ADD DISPLACEMENT INTO LINE
HIRESL

YVERTH,Y ;LOOK UP HI BYTE OF LINE
HIRESH

255

256

632A: AD
632D: 8D
6330: AO
6332: 60

6333: A9
6335: 85
6337: A9
6339: 85
633B: A9
633D: 8D
6340: A9
6342: 8D
6345: A9
6347: 8D
634A: 8D
634D: 60

634E: A2
6350: Al
6352: 29
6354: 31
6356: C9
6358: FO
635A: EE
635D: Al
635F: 51
6361: 91
6363: A5
6365: 18
6366: 69
6368: 85
636A: E6
636C: C9
636E: 90
6370: E9
6372: 85
6374: CE
6377: FO
6379: C8
637A: DO
637C: 60

637D: A2
637F: Al
6381: 51
6383: 91
6385: A5
6387: 18
6388: 69
638A: 85
638C: E6
638E: C9

08 60 421
12 60 422
00 423

424

425

426

427
D7 428
52 429
68 430
53 431
08 432
11 60 433
09 434
OE 60 435
03 436
12 60 437
08 60 438

439

440

441

442

443
00 444
50 445
7F 446
26 447
00 448
03 449
1C 60 450
50 451
26 452
26 453
27 454

455
04 456
27 457
50 458
40 459
EO 460
20 461
27 462
10 60 463
03 464

465
D4, 466

467

468

469

470
00 471
50 472
26 473
26 474
27 475

476
04 477
27 478
50 479
40 480

LDA
STA
LDY
RTS

#®
*SHIP SET UP
#*

SSETUP LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDA
STA
STA
RTS

*

TEMP
SLNGH sRESTORE VARIABLE
#$00

SUBROUTINE

#<SHIP sSHAPE TABLE LOCATION
SSHPL
#>SHIP
SSHPH
#$08
DEPTH
#%$09
HORIZ
#3$03
SLNGH
TEMP

*DRAW ALIEN SHIPS & TARGETS SUBROUTINE
*DRAW SHAPE ONE COLUMN AT A TIME
#*

DRAW LDX
DRAW2 LDA
AND
AND
CMP
BEQ
INC
DRAW3 LDA
EOR
STA
LDA
CLC
ADC
STA
INC
CMP
BCC
SBC
STA
DEC
BEQ
INY
BNE
DRAW4 RTS
#

*XDRAW ALIEN
®

XDRAW LDX
XDRAW2 LDA
EOR
STA
L.DA
CLC
ADC
STA
INC
CMP

#3500

(SHPL,X)

#$7F ;MASK OUT HI BIT

(HIRESL),Y ;(AND) IT AGAINST SCREEN

#300 ; IF ANYTHING IN WAY GET>0
DRAW3 ;NO COLLISION, BRANCH TO DRAW3
KILL ;COLLISTON! INCREMENT KILL
(SHPL,X) ;LOAD SHAPE BYTE

(HIRESL),Y ;(EOR) WITH SCREEN
(HIRESL),Y ;PLOT
HIRESH

#$04
HIRESH
SHPL
#$40
DRAW2
#$20
HIRESH
LNGH
DRAWS

DRAW2

SHIPS & TARGETS SUBROUTINE

#3$00
(SHPL,X)
(HIRESL),Y
(HIRESL),Y
HIRESH

#3$04
HIRESH
SHPL
#340

6390: 90
6392: E9
6394: 85
6396: CE
6399: FO
639B: C8
DRAW2

639E: 60

639F: BC
63A2: B9
63A5: 85
63A7: B9
63AA: 85
63AC: A9
63AE: 8D
63B1: 18
63B2: BD
63B5: 4A
63B6: BO

63B8: BC
63BB: B9
63BE: 85
63C0: 4C
63C3: BC
63C6: B9
63C9: 85
63CB: BC
63CE: A9
63D0: 85
63D2: 60

63D3: AD
63D6: 30
63D8: A9
63DA: 8D
63DD: 4C
63E0: AD
63E3: C9
63E5: BO
63E7: A9
63E9: 8D
63EC: 8D
63EF: 18
63F0: AD
63F3: 69
63F5: A8
63F6: A9
63F8: 8D
63FB: 20
63FE: A2
6400: A9
6402: 51
6404: 91
6406: E6

60

68
67

67

60

68

68
68

63
68
68

68

co

64
60

60
60

60

60
63

481
482
483
484
485
486

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

BCC
SBC
STA
DEC
BEQ
INY

XDRAW3 RTS
#*

XDRAW2
#$20
HIRESH
LNGH
XDRAW3

*DRAWING ROUTINES SETUP
#

DSETUP LDY
LDA
STA
LDA
STA
LDA
STA
CLC
LDA
LSR
BCS

L

EVEN LDY
LDA
STA
JMP

ODD LDY
LDA
STA

GOON LDY
LDA
STA
RTS

¥*

TABLEY, X
YVERTL, Y
HIRESL
YVERTH, Y
HIRESH
#$02
LNGH

TABLEX, X

ODD sTEST FOR EVEN OR ODD OFFSET FROM
3+X VALUE IN TABLEX

SHPADR, X

SHPLO, Y

SHPL

GOON

SHPADR, X

SHPLO+2,Y

SHPL

TABLEX, X

#>SHAPES

SHPH

*LASER SUBROUTINE

3
LASER LDA
BMI
LDA
STA
JMP
FIRE1 LDA
CMP
BGE
LDA
STA
STA
CLC
LDA
ADC
TAY
LDA
STA
JSR
LDX
LASER1 LDA
EOR
STA
INC

$C062 ;NEG IF BUTTON PRESSED
FIREl
#3$00 ;BUTTON NOT PRESSED,SET FLAG TO O
LFLAG
NOSHOT
LFLAG ; IS BUTTON BEING HELD DOWN?
#$01
NOSHOT
#3501
SHOT sSET LASER FIRED FLAG
LFLAG sSET BUTTON PRESSED FLAG
VERT ;TOP OF SHIP
#$07
;Y REG CONTAINS VERT. LSER POS,
#3$0C ;START AT HORIZ=$0C
HORIZ
GETADR ;FIND ADDRESS OF LASER BEAM LINE
#$OE sSET UP LOOP FOR E TIMES
#$AA sDRAW PAIRS OF AA & D5 BYTES(RED)
(HIRESL),Y ;BY ORING AGAINST SCREEN
(HIRESL),Y
HIRESL s NEXT SCREEN POSITION

257

258

6408: A9
640A: 51
640C: 91
640E: E6
6410: CA
6411: DO
6413: 60

6414: AD
6417: C9
6419: DO
641B: 18
641C: AD
641F: 69
6421: A8
6422: A9
6424 8D
6427: 20
642A: A2
642C: A9
642E: 51
6430: 91
6432: E6
6434: A9
6436: 51
6438: 91
643A: E6
643C: CA
643D: DO
643F: A9
6441: 8D
6444 60

6445: A9
6447: 85
6449: A9
644B: 85
644D: AD
6450: 8D
6453: A9
6455: 8D
6458: 60
6459: AC
645C: 20
645F: A2
6461: Al
6463: 91
6465: EE
6468: E6
646A: CE
646D: DO
646F: 60
6470: AC
6473: 20
6476: A2
6478: Al
647A: 51
647C: 91

D5
26
26
26

ED

60

60

60
63

60

60

60
63

60
60

541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600

NOSHOT

LDA
EOR
STA
INC
DEX
BNE
RTS

*XDRAW LASER

XLASER

LASER2

NXSHOT

*

*DRAWING
*

BSET

BDRAW

BXDRAW

LDA
CMP
BNE
CLC
LDA
ADC
TAY
LDA
STA
JSR
LDX
LDA
EOR
STA
INC
LDA
EOR
STA
INC
DEX
BNE
LDA
STA
RTS

#$D5
(HIRESL),Y
(HIRESL),Y
HIRESL

LASER1

SUBROUTINE
SHOT
#$01
NXSHOT

VERT
#$07

#$0C
HORIZ
GETADR
#$0E

#$AA
(HIRESL),Y
(HIRESL),Y
HIRESL
#$D5
(HIRESL),Y
(HIRESL),Y
HIRESL

LASER2
#300
SHOT

sNEXT SCREEN POSITION
sDECREMENT INDEX TO LOOP
;s DONE?

;YES! EXIT

sHAS LASER BEEN SHOT?
;NO! SKIP XDRAWING LASER

;RESET LASER FIRED FLAG TO OFF

ROUTINES FOR BOMB

LDA
STA
LDA
STA
LDA
STA
LDA
STA
RTS
LDY
JSR
LDX
LDA
STA
INC
INC
DEC
BNE
RTS
LDY
JSR
LDX
LDA
EOR
STA

#<SHBOMB
BOMBL
#>SHBOMB
BOMBH
BHORIZ
HORIZ
#$03
DEPTH

TBVERT
GETADR
#$00
(BOMBL, X)
(HIRESL),Y
TBVERT
BOMBL
DEPTH
BDRAW

TBVERT
GETADR
#$00
(BOMBL, X)
(HIRESL),Y
(HIRESL),Y

;ADDRESS BOMB SHAPE

;BOMB'S HORIZ. POSITION

:BOMB VERT POS

;GET ADDRESS OF BOMB SHAPE
; PLOT

647E:
6481:
6483:
6486:
6488:

6489
648C:
648E:
6491
6494 :
6496
6498:
649B:
649C:
649E:
64A1:
64A4:
64A6:
64A9:
64AB:
64AE:
64B0:
64B3:
64B6:
64B9:
64BC:
64BD:
64C0:
64C2:
64C53
64C6:
64C8:
64CB:
64CE:
64D1:
64D4 ;
64D7:
64D9;

64DC:
64DF:
64E1:
64E3:
64E5:
64E8:
64EB:
64ED:
64F0:
64F3:
64F6:

64F7:
64FA:
64FC:
64FF;
6502:
6505;

EE
E6
CE
DO
60

17

11
E8

60
60

Cco
64
60

60

60
60
60
60
64

60

60
60
60
60

60

60
60

60
64
64
60
64

60
64

601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

INC
INC
DEC
BNE
RTS

3*

TBVERT
BOMBL
DEPTH
BXDRAW

*BOMB SUBROUTINE
#*

BOMB LDA
BMI
JMP
BOMB1 LDA
CMP
BGE
DROP LDA
CLC
ADC
STA
STA
LDA
STA
LDA
STA
LDA
STA
STA
JSR
JSR

NODROP LDA

FALLIN LDA

STA

$CO61 ;sNEG IF BUTTON PRESSED
BOMB1

NODROP

BMLOCK

#3501 3IS BOMB STILL FALLING?
FALLIN ;YES, GOTO FALLIN

VERT

#3$09

BVERT ; INITIAL POSITION OF BOMB
TBVERT

#$0A s STARTING HORIZ POSITION
BHORIZ

#3$00 s INITIAL VERTICAL VELOCITY
BVELY

#3501

BMLOCK ;RESET TO ON

TBMLOCK sRESET END OF FALL TO OFF
BSET

BDRAW ;DRAW BOMB

BMLOCK
BOMB3 ;IS BOMB STILL FALLING
BVELY

#$05 ;ADD ACCELERATION CONSTANT

BVELY sNEW VERTICAL VELOCITY

BVERT

TBVERT

BVERT ;BOMB'S NEW VERTICAL POSITION
BHORIZ

#3501 ;BOMB'S HORIZ. VELOCITY(CONSTANT)
BHORIZ ;BOMB'S NEW HOKRIZ, POSITION

*TEMP DETECT FOR BOMB LANDING

LDA
CMP
BLT
LDA
STA
STA
LDA
STA
BOMB2 JSR
JSR
BOMB3 RTS
*BOMB XDRAW
BOMBX LDA
BEQ
JSR
LDA
STA
JSR

BVERT

#$BO ;BOTTOM SCREEN?

BOMB2 ;NO! THEN BOMB2

#$BO

BVERT

TBVERT

#$00

TBMLOCK ;SET END OF BOMB FALL FLAG
BSET

BDRAW

BMLOCK ;IS BOMB STILL FALLING?(1=YES)
BOMBX1 sSKIP IF O

BSET

BVERT

TBVERT

BXDRAW ; XDRAW BOMB

259

260

6508:
650B:
650D:
650F:
6512:

6513
6516:
6518:
651B:
651E:
6521
6524
6527:
652A:
652C:
652F:
6531:
6534:
6537:
6538:
653A:
653D:
6540:
6543:
6545:
65472
6549
654C:
654F
6551:
6553:

6556
6558:
655B:
655D:
6560:

6563
6565:
6568
656A:
656D:
656E:
6571:
6573:
65762
6579:
657C:
657E:
6580:
6582
6585
6588:

658A:
658C:

AD

A9
8D
60

20
A9
20
4C
AD
8D
20
20
A9
8D
A9
8D
AD
18
69
8D
AC
20
AQ
51
91
EE
CE
DO
A9
20

A9
8D
A9
8D
20

A9
8D
A9
8D
18
AD
69
8D
AC
20
Bl
51
91
EE
CE
DO

A9
8D

1B
05
00
1A

60

60

FC

60

60

60
60
60
60

60
63

60
60

60

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699

701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720

LDA
BNE
LDA
STA
BOMBX1 RTS

3*

TBMLOCK

BOMBX1

#3$00

BMLOCK sRESET BOMB FALLING TO OFF

*EXPLOSION SUBROUTINE
3

EXPLODE JSR
LDA
JSR
JMP
EXPSUB LDA
STA
JSR
JSR
EDRAW LDA
STA
LDA
STA
LDA
CLC
ADC
STA
EDRAW1 LDY
JSR
LDA
EOR
STA
INC
DEC
BNE
LDA
JSR

EXPSUB

#$FE

$FCA8

FIN

VERT

TVERT

SSETUP ; XDRAW SHIP

SXDRAW

#3$04 ;PLOT WHITE FIREBALL 4 LINES DEEP
DEPTH

#$0A sHORIZ POS SHIP'S CENTER
HORIZ

VERT ;VERT POS TOP OF SHIP

#3$04 ;TO REACH CENTER
TVERT

TVERT sSHIP'S CENTER
GETADR

#$FF sWHITE LINE
(HIRESL),Y

(HIRESL),Y

TVERT sNEXT LINE
DEPTH

EDRAW1 ;sDONE?

#$80

$FCA8 sDELAY

*XDRAW SEQ1 -8 BLOCKS
LDA #$00
STA SBLOCK
LDA #$08
STA EBLOCK
JSR EPLOT

*XDRAW BEGINING FLASH

EDRAW2 LDA
STA
LDA
STA
CLC
LDA
ADC
STA
EDRAW3 LDY
JSR
LDA
EOR
STA
INC
DEC
BNE

#3$04
DEPTH
#30A
HORIZ

VERT

#304
TVERT
TVERT
GETADR
(HIRESL),Y
(HIRESL),Y
(HIRESL),Y
TVERT
DEPTH
EDRAW3

*XDRAW SEQ2-11BLOCKS
LDA #$08
STA SBLOCK

658F:
6591:
6594

6597:
6599:
659C:
659E:
65A1:

65A4:
65A6:
65A9:
65AB:
65AE:

65B1:
65B3:
65B6:
65B8:
65BB:

65BE:
65C0:
65C3:
65C5:
65C8:

65CB:
65CD:
65D0:
65D2:
65D5:

65D8:
65DA:
65DD:
65DF;
65E2:

65E5:
65E7:
65EA:
65EC:
65EF:

65F2:
65F4
65F7:
65F9:
65FC:

65FF:
6601
6604 ;
6606:
6609:

660C:
660E:

13
0B
1A

60
66
60

60
66

60
66

60

66

60

60
66

60
60
66
60
60
66
60
60
66
60
60
66
60

66

60

721
722
723
724
725
726
727
728
729
730
731
732
733
734
735

737
738

740
741
742
743
744
745
746
747
748
749
750
751

753
754
755
756
757

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

LDA #$13
STA EBLOCK
JSR EPLOT
*XDRAW SEQl- 8 OFF
LDA #$00
STA SBLOCK
LDA #$08
STA EBLOCK
JSR EPLOT
#*XDRAW SEQ3-15
LDA #$13
STA SBLOCK
LDA #$22
STA EBLOCK
JSR EPLOT
#*XDRAW SEQ2-11 OFF
LDA #$08
STA SBLOCK
LDA #$13
STA EBLOCK
JSR EPLOT
*XDRAW SEQ4-16
LDA #$22
STA SBLOCK
LDA #$32
STA EBLOCK
JSR EPLOT
*XDRAW SEQ3-15 OFF
LDA #$13
STA SBLOCK
LDA #$22
STA EBLOCK
JSR EPLOT
*XDRAW SEQS- 18
LDA #$32
STA SBLOCK
LDA #$44
STA EBLOCK
JSR EPLOT
*XDRAW SEQ4-16 OFF
LDA #$22
STA SBLOCK
LDA #$32
STA EBLOCK
JSR EPLOT
*XDRAW SEQ6-18
LDA #$44
STA SBLOCK
LDA #$56
STA EBLOCK
JSR EPLOT

- *XDRAW SEQ5-18 OFF

LDA #$32
STA SBLOCK
LDA #$44
STA EBLOCK
JSR EPLOT
*XDRAW SEQ6-18 OFF
LDA #$44
STA SBLOCK

261

262

6611:
6613:
6616:
6619:

661A:

661D:
661F:
6622:
6623:
6626
6628:
6629
662C:
662E:
6630:
6632:
6634
6637
663A:
663D:
6640:
66432
6645:
6647
6649:
664C:
664F:
6651
66523
6655:
6657
6659:
665C:

665D:
6660:
6663:
6666
6668:
6664«
666C:
666F
6672:
6675:
6677
6679:
667B:
667E;
6681
6684 ;
6686:
6688:
668A:
668D:

A9
8D
20
60

EE
EE
AD
Cco
90
A9
8D
EE
AD
C9
90
A9
8b
EE
AD
9
90
A9
8D
8D

56

1A

60

60

69

69

60
63

FC

60

60

60
60
60

60
60

781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840

LDA
STA
JSR

RTS
*

#$56
EBLOCK
EPLOT

#*EXPLOSION PLOTTING SUBROUTINE
#*

EPLOT LDX

*_

EPLOT1 LDA

ELOOP1 CLC

ELOOP3 LDY

NOPLOT INX

RTS
*

SBLOCK

#$03
DEPTH

VERT
#$04

EOFFY, X
#300
NOPLOT
#$CO
NOPLOT
TEMP1
EOFFX,X
HORIZ
TEMP1
GETADR
#$F0
(HIRESL),Y
(HIRESL),Y
TEMP1
DEPTH
ELOOP3

EBLOCK
EPLOT1
#$30
$FCA8

*SCORE SUBROUTINE
*

SCORE INC
INC
LDA
CMP
BLT
LDA
STA
SCORE10 INC
LDA
CMP
BLT
LDA
STA
INC
LDA
CMP
BLT
LDA
STA
STA

KILLNUM
SCOREA
SCOREA
#$0A
SCRSET
#$00
SCOREA
SCOREB
SCOREB
#$0A
SCRSET
#$00
SCOREB
SCORC
SCOREC
#$0A
SCRSET
#3$00
SCOREA
SCOREB

s LOCATION IN PARTICLE POSITION
;TO START DRAWING
;EACH BLOCK 3 LINES DEEP

;TOP OF SHIP
;NOW CENTER OF SHIP

;ADD RELATIVE Y POS OF PARTICLE.
;TEST NOT OFF TOP SCREEN
sIF OFF, DON'T LOT
;TEST NOT OFF BOTTOM SCREEN
sIF OFF, DON'T PLOT
;STORE VALUE IN TEMP1
;LOCATE X POSITION

;FIND LINE ADRESS TO PLOT ON SCREEN

;VALUE OF ALL SHAPE BYTES

;XOR WITH SCREEN

;PLOT ON SCREEN

sNEXT LINE, IN THIS CASE DRAWING ——
;FROM BOTTOM TO TOP

s DONE?

;DO NEXT PARTICLE

;DONE WITH ALL PARTICLES IN GROUP?
;NO,CONTINUE

;DELAY

;ANOTHER ALIEN KILLED
s INCREMENT COUNTER

;IF <10 DON'T CARRY TENS DIGIT
;ZERO OUT 1'S DIGIT

;ADD CARRY IN TENS

;IF <10 DON'T CARRY TO 100'S DIGIT
$ZERO OUT 10'S DIGIT & 1'S DIGIT
;ADD CARRY IN 100'S

;SKIP IF LESS 999
;RESET TO O IF 1000

6690:

6693:
6695:
6697
6699:
669B:
669D:
66A0:
66A2:
66A4
66A7:
66AA:
66AC:
66AF:
66B1:
66B3:
66B5:
66B7:
66B9:
66BC:
66BE:
66C0:
66C3:
66C6:
66C8:
66CB:
66CD:
66CF:
66D1:
66D3:
66D5:
66D8:
66DA:
66DC:
66DF:
66E2:
66E4:
66E7:

66E8:
66EA:
66EC:
66EE:
66F0:
66F2:
66F3:
66F5:
66F7:
66F9:
66FB:
66FD:
66FF;
6701:
6704
6706:

8D

A9
85
A9
85

60

60
60
6A
66

60

60
6A

66

60

6A
66

60

841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900

STA

*

SCOREC

*SCORE SETUP ROUTINE FOR DRAW
*

SCRSET LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDY
LDA
STA
JSR
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDY
LDA
STA
JSR
LDA
STA
LDA
STA
LDA
STA
LDA
STA
LDY
LDA
STA
JSR

RTS
*

#$20

HIRESH

#$23 ; SETUP SCREEN LOCATION TO PLOT --
HIRESL ;SCOREC ,100'S DIGIT

#$01 sDIGIT 1 BYTE WIDE

LNGH

#>SCORESH

SHPH

SCOREC

SCOREP,Y ;INDEX TO CORRECT SHAPE FOR DIGIT--
SHPL s DRAWN

SCOREDR ;DRAW 100'S DIGIT

#$20 ;SETUP SCREEN LOCATION TO
HIRESH

#$24 ;PLOT SCOREB ,10'S DIGIT
HIRESL

#3501

LNGH

#>SCORESH

SHPH

SCOREB

SCOREP, Y

SHPL

SCOREDR sDRAW 10'S DIGIT

#$20

HIRESH

#$25 s SETUP SCREEN LOCATION TO
HIRESL sPLOT SCOREA, 1'S DIGIT
#$01

LNGH

#>SCORSH

SHPH

SCOREA

SCOREP, Y

SHPL

SCOREDR ;DRAW 1'S DIGIT

*SCORE DRAWING ROUTINE
*

SCOREDR LDX
LDY
SCORED2 LDA
STA
LDA
CLC
ADC
STA
INC
CMP
BCC
SBC
STA
DEC
BEQ
INY

#300

#$00 ;OFFSET INTO LINE ALREADY SET --
(SHPL,X) ;IN SCRSET

(HIRESL),Y

HIRESH

#304
HIRESH
SHPL
#3$40
SCORED2
#$20
HIRESH
LNGH
SCORED3

263

264

6707:
6709:

670A:
670D:
6710:
6712:
6715:
6718:
671A:
671D:
67203
6722
6725:
6728:
672A:
672D:
6730:
6732:
6735:
6738:
673A:
673D:
6740:
6742:
6745:
6748:
674A:
674D:
6750:
6752:
67553
6758:
675A:
675D:
6760:
6762
6765:
6768:
676A:
676D:
6770:
6772:
6775:
6778:
677A:
677D:
6780:
6782:
6785:
6788:
678A:
678D:
6790:
6792:
6795:
6798:

E3

00
00

80
80

00
00

80
00
00
80
80
00

80
80

28
28

A8
28
28

A8
A8

28
28

A8
A8

28
28

A8
A8

50
50

DO

901
902
903
904
905
906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

BNE

SCORED3 RTS
*

SCORED2

¥T A B L E S Heststns

*

*VERTICAL TABLES

YVERTL

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

0000000000000000

8080808080808080

0000000000000000

8080808080808080

0000000000000000

8080808080808080

0000000000000000

8080808080808080

2828282828282828

ABABSABABABABA8BAS

2828282828282828

ABABABABABAB8ABAS

2828282828282828

ABABABABABABABAS

2828282828282828

ABABABABABABABAS

5050505050505050

DODODODODODODODO

679A:
679D:
67A0:
67A2:
67A5:
67A8:
67AA:
67AD:
67B0:
67B2:
67B5:
67B8:
67BA:
67BD:
67C0:
67C2:
67C5:
67C8:

67CA:
67CD:
67D0:
67D2:
67D5:
67D8:
67DA:
67DD:
67E0:
67E2:
67ES:
67E8:
67EA:
67ED:
67F0:
67F2:
67F5:
67F8:
67FA:
67FD:
6800:
6802:
6805:
6808:
680A:
680D:
6810:
6812:
6815:
6818:
681A:
681D:
6820:
6822:
6825:
6828:
682A:
682D;
6830:
6832:
6835:

50
50
DO

50
50

50
50

DO

28

34

28
34

29
35

29
35

2A
36

2A
2B
37

2B
37

28
34

28
34

29
29
35

2A
36

2A
36

925

926

927

928

929

930
931

932

933

934

935

936

937

938

939

940

941

942

943

944

YVERTH

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

5050505050505050

DODODODODODODODO

5050505050505050

DODODODODODODODO

5050505050505050

DODODODCDODODODO

2024282C3034383C

2024282C3034383C

2125292D3135393D

2125292D3135393D

22262A2E32363A3E

22262A2E32363A3E

23272B2F33373B3F

23272B2F33373B3F

2024282C3034383C

2024282C3034383C

2125292D3135393D

2125292D3135393D

22262A2E32363A3E

265

6838: LA 3E 945 HEX 22262A2E32363A3E
683A: 23 27 2B
683D: 2F 33 37
6840: 3B 3F 946 HEX 23272B2F33373B3F
6842: 23 27 2B
6845: 2F 33 37

6848: 3B 3F 947 HEX 23272B2F33373B3F
684A: 20 24 28 .

684D: 2C 30 34

6850: 38 3C 948 HEX 2024282C3034383C

6852: 20 24 28
6855: 2C 30 34
6858: 38 3C 949 HEX 2024282C3034383C
685A: 21 25 29
685D: 2D 31 35
6860: 39 3D 950 HEX 2125292D3135393D
6862: 21 25 29
6865: 2D 31 35
6868: 39 3D 951 HEX 2125292D3135393D
686A: 22 26 2A
686D: 2E 32 36
6870: 3A 3E 952 HEX 22262A2E32363A3E
6872: 22 26 2A
6875: 2E 32 36
6878: 3A 3E 953 HEX 22262A2E32363A3E
687A: 23 27 2B
687D: 2F 33 37
6880: 3B 3F 954 HEX 23272B2F33373B3F
6882: 23 27 2B
6885: 2F 33 37

6888: 3B 3F 955 HEX 23272B2F33373B3F
956 %
957 #TABLES TO KEEP TRACK OF OBJECTS

958 *
688A: 00 00 00

688D: 00 00 00

6890: 00 959 TABLEX HEX 00000000000000
6891: 28 38 48

6894: 58 68 28

6897: 38 960 TABLEY HEX 28384858682838
6898: 01 01 01

689B: 01 01 01

689E: 01 961 ALIVE HEX 01010101010101
689F: 00 00 00

68A2: 00 00 00

68A5: 00 962 USFLAG HEX 00000000000000
68A6: 00 00 00

68A9: 00 00 00

68AC: 00 963 ONFLAG HEX 00000000000000
68AD: 2D 40 70

68B0O: 90 CO DO

68B3: FO 964 ONPOS HEX 2D407090CODOFO
68B4: 00 00 01

68B7: 00 00 00

68BA: 01 965 SHPADR HEX 00000100000001
966 *

68BB: 04 967 SHPLO DFB SHAPES

68BC: 14 968 DFB SHAPES+$10

68BD: 24 969 DFB SHAPES+$20

68BE: 34 970 DFB SHAPES+$30

266

68BF:
68C2:
68C5:
68C7:
68CA:
68CD:
68CF:
68D2:
68D5:

68D7:
68DA:
68DD:
68DF:
68E2:
68E5:
68E7:
68EA:
68ED:

68EF:

6904
6907:
690A:
690C:
690F:
6912:

6914:
6917:
691A:
691C:
691F:
6922:

6924
6927:
692A:
692C:
692F:
6932:

6934
6937:
693A:
693C:
693F:
6942:

6944
6947
6944A:
694C:

08
0B
09
07

00
00
7F
7F
78
00
00

00
D5

AA
A8

07

OA
22

01
04
30
70
06
07
04
11
02
02
30
70

06
07

OA

09

971
972

973

974

975
976

977

978

979
980
981
982
983
984
985

986

987
988

989

990
991

992

993
994

995

996
997
998

999

*
*MASK SHIP TABLE

MSHIP HEX 0100000300000700

HEX OOOFO0007F7F007F

HEX 1FO77F7F1F787F7F
*SHAPE TABLE SHIP

SHIP HEX 8000008200008200

HEX OO08AOO00AADS80AA

HEX 9582AAD58AA8DSAA
*

*SHAPE BOMB
SHBOMB HEX 077E07
DS 18

#*
*SHAPE ALIEN EVEN

SHAPES HEX 28280A2A2A222222

HEX 0001010105040404
*SHAPE SAUCER EVEN

HEX 407030AAAA700000

HEX 010706D5D5070000
*0DD ALIEN SHAPE

HEX 5054045455111111

HEX 0000020202020202
*0DD SAUCER SHAPE

HEX 407030D5D5700000

HEX 010706AAAA070000
#*

*EXPLOSION TABLES

EOFFX HEX 08090A0BOBOA0908

267

268

694F
6952
6954 ¢
6957:
6954
695C:
695F
6962:
6964
6967:
696A:
696C:
696F :
6972:
6974
6977:
697A:
697C:
697F:
6982:
0984
6287:
698A:
698C:
698F:
6992:
6994
6997:
699A:
699D:
69A0:
69A2:
69A5:
69A8:
69AA:
69AD:
69B0:
69B2:
69B5:
69B8:
69BA:
69BD:
69CO:
69C2:
69C5:
69C8:
69CA
69CD:
69D0:
69D2:
69D5:
69D8:
69DA:
69DD:
69E0:
69E2:
69E5:
69E8:
69EA:
69ED:

0B OC

OF OF
0D OB

04 02
05 08

10 11
OF 0D

04 03
00 01

OE 11
13 12

07 04
01 00
F8 F8
04 08

FO EC
FO F8

0C 04
EC F4
oC 14

08 FO
DC D4

FO 00
20 24
00 EC
D4 CC

E8 FC
24 2C

20 10
E4 DO

C4 D4
FC 18

40 38
10 00

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

EOFFY

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

0708090A0BOCOCOB

0A0807050608090A

OCODOEOEODOCOBO09

0706040506080A0C

OEOFOFOEODOB0907

0504020305080B0D

OF1011100FODOBOS

0604030200010407

OAOE11121312110F
0B0704020100

FCF8F8FC04080804

F8FOECECFOF8040C

100CO4F8ECE4EQE4

E4ECF4000C14181C

1408FOE4DCD4D4DC

E4F0001420242820

1400ECEOD4CCC8DO

DBE8FC14242C3434

2C201000E4DOC8CO

BBC4DAE4FC182C38

484038281000

6A08:
6A0B:
6A0E:
6A10:
6A13:
6A16:
6A18:
6A1B:
6A1E:
6A20:
6A23:
6A26:
6A28:
6A2B:
6A2E:

6A30:
6A31:
6A32:
6A33:
6A34:
6A35:
6A36:
6A37:
6A38:
6A39:

6A3A:
6A3D:
6A40:
6A42:
6A45:
6A48:
6ALA:
6A4D:
6A50:
6A52:
6A55:
6A58:
6A5A:
6A5D:
6A60:
6A62:
6A65:
6A68:
6AGA:
6A6D:
6A70:
6A72:
6A75:
6A78:
6A7A:
6A7D:
6A80:
6A82:
6A85:

22

08

08

20
02

1021
1022
1023

1024

1025

1026

1027

1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

DS
*

SCOREWD HEX

HEX

HEX

HEX

HEX
*INDEX TO LO
SCOREP DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB
DFB

DFB
*

24

#*SHAPES FOR SCOREKEEPING

3F01013F20203F00

3C02010101023C00

1E21212121211E00

3F21213F09112100

3F01011F01013F00
BYTE SCORE NUMBER
SCORESH
SCORESH+$08
SCORESH+$10
SCORESH+$18
SCORESH+$20
SCORESH+$28
SCORESH+$30
SCORESH+$38
SCORESH+$40
SCORESH+$48

*NUMBER SHAPES

SCORESH HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

1C22222222221C00
080C080808081C00
1C22201804023E00
3E20100810221C00
181412113F101000
3E02023E20221C00
3804021E22221C00
3E20100804040400

1C22221€22221C00

SHAPES

269

270

6A88: OE 00 1051 HEX 1C22221E20100E00
6A8A: 1C 22 22
6A8D: 22 22 22
6A90: 1C 00 1052 HEX 1C22222222221C00

—--END ASSEMBLY-- 2706 BYTES

40

70

30

AA

AA

70

00

00

B RBZRIBIRDBIRUBUZ RIBTIRB R
EVEN OFFSET SHAPE

HI-RES SCREEN SCROLLING

WHITE

RED

WHITE

EVEN

01
07
06
D5
D5
07
00
00

ODD
40
70
30
D5
D5
70
00
00

07
06
AA
AA
07
00
00

There are an increasing number of games that require fast scrolling. Racing

car games, where the screen (or at least sections of the screen scr

oll) rapidly

vertically, are good examples. It is certainly much easier to scroll the screen in

that direction, because only two adjacent lines are involved, and the screen
addresses for those two lines are easily referenced from lookup tables.

The algorithm for scrolling down the screen involves taking the bytes from
one line and storing them in the line directly below. This is done across a row
for each column. The most important thing is that you start from the bottom of
the screen or you will overwrite lines. Also, the bottom line must be transferred
to the top of the screen if a wrap-a-round effect is desired. A cute trick which
minimizes the code considerably is to extend the YVERT table one extra byte.
That byte is the address of the Oth line. Therefore, line #191 can be moved to
line #192, which is actually line #0.

Moving an entire screen upwards a single line by this method is not that fast,
but usually, as in racing games, only narrow background strips need to be
scrolled. This produces more reasonable scrolling rates. Other techniques
involve using a background that occupies every other screen line, then scrolling
it two lines at a time. The Phantom’s Five game appears to use this method.
Another approach is to utilize straight in-line code, where scrolling for all the
lines is done a column at a time. Bytes are moved upwards with the following
code

LDA $3CDO,Y
STA $3FDO,Y

LDA $2800,Y
STA $2C00,Y
LDA $2400,Y
STA $2800,Y
LDA $2000,Y
STA $2400,Y

where Y is looped from $0 to $27 across the screen. This code is at least three
times faster than the first method.

Scrolling the screen upwards is quite similar to scrolling the screen
downwards. It requires moving the screen memory from the lower line to the
upper line, across all 40 columns. The bytes in the Oth line must be moved to
the 191st line if a wrap-a-round effect is desired. This requires extra code, since
we can’t do any fancy tricks as we did before.

The two scrolling routines, one up and one down, have been put together in
the following program. The scrolling windows have been set so that part of the
screen scrolls up and part of the screen scrolls down, while the remainder
remains stationary. The variables that control the windows are LEFT and
RIGHT for scrolling down, and LEFTU and RIGHTU for scrolling up.
These values can be modified in lines 16, 18, 20 and 22.

The flow charts and code are presented below:

271

272

l Y register = $BF|
LEIND LINE ADDRESS TOP LINE #191] NOTE: MOVE LINE #0
TO BOTTOM LINE #191

Y register = Q
line = Y register

LFIND LINE ADDRESS BOTTOM LINE #0
J

START AT TOP
Y register = 0

FIND LINE ADDRESS TOP LINE

l

INCREMENT Y register

l

[FIND LINE ADDRESS BOTTOM LINE |

l¥LINE =Y register41

J_f“___————e>1_zrregister = LEFTU |
l

Fii;POAD BYTE FROM BOTTOM LINE, Yth POSITIONI

l

| STORE BYTE TOP LINE, Yih POSITION |

[INY FOR NEXT BYTE |

no

DONE WITH LINE? |

yes
no
JQ_____—_{éT BOTTOM YET? LINE @ $BF?|
yes

IDONE!I

[X register = Oth ROW]

FIND POINTERS TO ROW

HIRESL, HIRESH

Y reg. = 1 (column of Ist byte to access) I
drawl
| LNGH = #s28 |
draw?2

LOAD BYTE TO MOVE LEFT
LDA (HIRESL),Y

I

lDECREMENT HIRESL POINTER

|

STORE BYTE ONE COLUMN LEFT
STA (HIRESL),Y

INC Y register
RESTORE POINTER TO PREVIOUS VALUE

[NEXT ROW
no
l«———————J DONE 8 ROWS? |

yes
4

| BACK UP 8 RoWs |

[LNGH = LNGH - 1 |

INCREMENT| no

Y reg. G{DONE WITH ALL COLUMNS OF 8 ROWS?I
TO NEXT yes

COLUMN [

| NEXT ROW OF 8 LINE BLOCKS |

naQ

—| BOTTOM SCREEN? |
yes

r:f_l
DONE!

273

1 *SCROLL UP & DOWN SUBROUTINE
2 ORG $6000
6000: 4C 08 60 3 JMP PROG
4 LEFT DS 1
5 RIGHT DS 1
6 LINE DS 1
7 LEFTU DS 1
8 RIGHTU DS 1
9 TOPL EQU $6
10 TOPH EQU TOPL+$1
11 BOTTOML EQU $8
12 BOTTOMH EQU BOTTOML+$1
6008: AD 50 CO 13 PROG LDA $CO50

600B: AD 52 CO 14 LDA $CO052
600E: AD 57 CO 15 LDA $C057
6011: A9 06 16 LDA #$06
6013: 8D 03 60 17 STA LEFT ;LEFT WINDOW SCROLL DOWN
6016: A9 0A 18 LDA #$0A
6018: 8D 04 60 19 STA RIGHT ;RIGHT WINDOW SCROLL DOWN
601B: A9 20 20 LDA #3$20
601D: 8D 06 60 21 STA LEFTU ;LEFT WINDOW SCROLL UP
6020: A9 25 22 LDA #$25 .
6022: 8D 07 60 23 STA RIGHTU ;RIGHT WINDOW SCROLL UP
6025: 20 2E 60 24 CONT JSR SCROLL
6028: 20 5D 60 25 JSR SCROLLU
602B: 4C 25 60 26 JMP CONT
27 *SCROLL DOWN SUBROUTINE
602E: A0 CO 28 SCROLL LDY #$CO ;START WITH BOTTOM LINE ——
29 = ;AND WORK TO TOP
6030: B9 AA 60 30 START LDA YVERTL,Y ;FIND SCREEN ADDRESS --
6033: 85 08 31 STA BOTTOML ;OF BOTTOM LINE
6035: B9 6B 61 32 LDA YVERTH,Y
6038: 85 09 33 STA BOTTOMH
603A: 88 34 DEY ;DECREMENT LINE NUMBER
603B: B9 AA 60 35 LDA YVERTL,Y ;FIND SCREEN ADDRESS TOP LINE
603E: 85 06 36 STA TOPL
6040: B9 6B 61 37 LDA YVERTH,Y
6043: 85 07 38 STA TOPH
6045: 8C 05 60 39 STY LINE ;TEMP STORE Y REGISTER
6048: AC 03 60 40 LDY LEFT 3 START SHIFTING LINE
604B: Bl 06 41 LOOP LDA (TOPL),Y ;LOAD BYTE ON SCREEN
604D: 91 08 42 STA (BOTTOML),Y;STORE BYTE ON LINE BELOW
604F: C8 43 INY sNEXT BYTE
6050: CC 04 60 44 CPY RIGHT ;DONE WITH LINE?
6053: DO F6 45 BNE LOO ;NO,DO NEXT BYTE ON LINE
6055: AC 05 60 46 LDY LINE sRESET Y REGISTER WITH LINE
6058: CO 00 47 CPY #300 ;AT TOP YET? .
605A: DO D4 48 BNE START
605C: 60 49 RTS

50 *SCROLL UP SUBROUTINE
51 *FIRST TAKE TOP LINE AND PUT ON BOTTOM
52 *IN THIS SPECIAL CASE THINK OF IT AS LINE #0 BELOW LINE #191

605D: A0 BF 53 SCROLLU LDY #$BF sLINE #191

605F: B9 AA 60 54 LDA YVERTL,Y ;sFIND SCREEN ADDRESS --
6062: 85 06 55 STA TOPL ;OF TOP LINE

6064: B9 6B 61 56 LDA YVERTH,Y

6067: 85 07 57 STA TOPH

6069: A0 00 58 LDY #3%00

606B: 8C 05 60 59 STY LINE

606E: B9 AA 60 60 LDA YVERTL,Y ;FIND SCREEN ADDRESS --

274

6071:
6073:
6076:
6078:
607B:
607D:
6080:
6082:
6085:
6087:
6088:
608B:
608D:
6090:
6092:
6095:
6098:
609A:
609C:
609D:
60A0:
60A2:
60A5:
60A7:
60A9:
60AA:
60AD:
60BO:
60B2:
60B5:
60B8:
60BA:
60BD:
60CO:
60C2:
60C5:

60C8: ¢

60CA:
60CD:
60D0:
60D2:
60D5:
60D8:
60DA:
60DD:
60EQ:
60E2:
60E5:
60E8:
60EA:
60ED:
60F0:
60F2:
60F5:
60F8:
60FA:
60FD:
6100:
6102:
6105:

85
B9
85
4C
AO
B9
85
B9
85

B9
85
B9
85

6B

EEREREEERRRE88383883833888888883888

61

61

60
61
60

00

80
80

80
00
00

80

80
80

28

A8

A8

28

A8
A8

87

88

89

90

91

92

93

9%

95

96

STARTU

LOOP2

YVERTL

STA
LDA
STA

LDY
LDA
STA
LDA
STA

LDA
STA
LDA
STA
STY
LDY
LDA
STA
INY
CPY
LDY
CPY

BNE
RTS

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

sNEXT ROW
;sFIND SCREEN ADDRESS --
;OF BOTTOM LINE

LINE ;TEMP STORE Y REGISTER
START SHIFTING LINE
(BOTTOML),Y;LOAD BYTE ON SCREEN
;STORE BYTE ON LINE ABOVE
:NEXT BYTE

;DONE WITH LINE?

:NO,DO NEXT BYTE ON LINE
LINE ;RESET Y REG. WITH LINE

BOTTOML
YVERTH, Y
BOTTOMH
LOOP2-3
#$00 ;START AT TOP
YVERTL, Y
TOPL ;OF TOP LINE
YVERTH, Y
TOPH
YVERTL, Y
BOTTOML
YVERTH, Y
BOTTOMH
LEFTU
(TOPL), Y
RIGHTU

LOOP2
#$BF ;AT BOTTOM YET?
STARTU
0000000000000000
8080808080808080
0000000000000000
8080808080808080
0000000000000000
8080808080808080
0000000000000000
8080808080808080
2828282828282828
ABASABABABABABAS
2828282828282828

;OF BOTTOM LINE

;GOTO INSTRUCTION BEFORE LOOP2

;FIND SCREEN ADDRESS --

275

6108: A8 A8 97 HEX ABABABASASABASAS

610A: 28 28 28

610D: 28 28 28

6110: 28 28 98 HEX 2828282828282828

6112: A8 A8 A8

6115: A8 A8 A8

6118: A8 A8 99 HEX ABABA8ASABABASAS

611A: 28 28 28

611D: 28 28 28

6120: 28 28 100 HEX 2828282828282828

6122: A8 A8 A8

6125: A8 A8 A8

6128: A8 A8 101 HEX ABA8ABASASABASAS

612A: 50 50 50

612D: 50 50 50 .

6130: 50 50 102 HEX 5050505050505050

6132: DO DO DO

6135: DO DO DO

6138: DO DO 103 HEX DODODODODODODODO

613A: 50 50 50

613D: 50 50 50

6140: 50 50 104 HEX 5050505050505050

6142: DO DO DO

6145: DO DO DO

6148: DO DO 105 HEX DODODODODODODODO

614A: 50 50 50

614D: 50 50 50

6150: 50 50 106 HEX 5050505050505050

6152: DO DO DO

6155: DO DO DO

6158: DO DO 107 HEX DODODODODODODODO

615A: 50 50 50

615D: 50 50 50

6160: 50 S0 108 HEX 5050505050505050

6162: DO DO DO

6165: DO DO DO

6168: DO DO 00 109 HEX DODODODODODODODO0O
110 *

616B: 20 24 28

616E: 2C 30 34

6171: 38 3C 111 YVERTH HEX 2024282C3034383C

6173: 20 24 28

6176: 2C 30 34

6179: 38 3C 112 HEX 2024282C3034383C

617B: 21 25 29

617E: 2D 31 35

6181: 39 3D 113 HEX 2125292D3135393D

6183: 21 25 29

6186: 2D 31 35

6189: 39 3D 114 HEX 2125292D3135393D

618B: 22 26 2A

618E: 2E 32 36

6191: 3A 3E 115 HEX 22262A2E32363A3E

6193: 22 26 2A

6196: 2E 32 36

6199: 3A 3E 116 HEX 22262A2E32363A3E

619B: 23 27 2B

619E: 2F 33 37

61A1: 3B 3F 117 HEX 23272B2F33373B3F

61A3: 23 27 2B

276

61A6:
61A9:
61AB:
61AE:
61B1:
61B3:
61B6:
61B9:
61BB:
61BE:
61C1:
61C3:
61C6:
61C9:
61CB:
61CE:
61D1:
61D3:
61D6:
61D9:
61DB:
61DE:
61E1:
61E3:
61E6:
61E9:
61EB:
61EE:
61F1:
61F3:
61F6:
61F9:
61FB:
61FE:
6201:
6203:
6206:
6209:
620B:
620E:
6211:
6213:
6216:
6219:
621B:
621E:
6221:
6223:
6226:
6229:

--END

21 25
2D 31
39 3D
21 25
2D 31
39 3D
22 26
2E 32
3A 3E
22 26
2E 32
3A 3E
23 27
2F 33
3B 3F
23 27
2F 33
3B 3F

37

118
28
34

119
28
34

120
29
35

121
29
35

122
2A
36

123
2A
36

124
2B
37

125
2B
37

126
28
34

127
28
34

128
29
35

129
29
35

130
2A
36

131
2A
36

132
2B
37

133
2B
37
20 134

ASSEMBLY-~

ERRORS: 0O

556 BYTES

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

HEX

23272B2F33373B3F

2024282C3034383C

2024282C3034383C

2125292D3135393D

2125292D3135393D

22262A2E32363A3E

22262A2E32363A3E

23272B2F33373B3F

23272B2F33373B3F

2024282C3034383C

2024282C3034383C

2125292D3135393D

2125292D3135393D

22262A2E32363A3E

22262A2E32363A3E

23272B2F33373B3F

23272B2F33373B3F20

277

278

Scrolling the screen left or right in the horizontal direction is slightly more
difficult. The normal scrolling direction for games is left, because objects in
most games travel from left to right, and the background terrain scrolls left.
This method moves each byte in one of the 8 line subgroups leftwards, a byte at
a time. Byte-shifting starts at the 1st column, moving that byte to the Oth
column, then drops down to the next row, moves a byte again, until all eight
rows have been moved. Then the routine increments the column number and
repeats the operation until all 40 columns of eight rows have been moved. It
does this for all 24 subgroups.

Normally, during scrolling, a new column of data is plotted at the 39th
column. Wrap-a-round is tricky, because when a byte is moved off the screen’s
left side it will reappear on a line % higher on the screen. If you would like to
see this strange scrolling effect, change the value in line #25 to #8$28.

Both the code and flow chart are shown below.

1 *SCROLL LEFT SUBROUTINE
2 ORG $6000
6000: 4C 05 60 3 JMP PROG
4 BLOCK DS 1
5 LNGH DS 1
6 HIRESL EQU $FB
7 HIRESH EQU HIRESL+$1
8 *ENTER HERE FIRST TIME ACCESS
6005: AD 50 CO 9 PROG LDA $C050
6008: AD 52 CO 10 LDA $CO052
600B: AD 57 CO 11 LDA $CO57
600E: A2 00 12 START LDX #$00 ;OTH ROW OF 8 LINE BLOCKS
6010: BD 4A 60 13 NXBLOCK LDA YBLOCKH,X ;GET SCREEN POINTERS FOR 1ST ROW —
6013: 85 FC 14 STA HIRESH ;OF BLOCK
6015: BD 62 60 15 LDA YBLOCKL,X
6018: 85 FB 16 STA HIRESL
601A: A0 01 17 LDY #$01 ;NEED TO MOVE COLUMN #1 BYTE FIRST
601C: 20 27 60 18 JSR DRAW1
601F: E8 19 INX sNEXT ROW
6020: EO 18 20 CPX #$18 ;BOTTOM YET?
6022: 90 EC 21 BLT NXBLOCK ;NO, CONTINUE
6024: 4C OE 60 22 JMP START ; SCROLL ENTIRE SCREEN AGAIN

23 *SUBROUTINE TO DRAW EACH SHAPE
24 *EACH SHAPE 1 BYTE BY 8 ROWS
6027: A9 27 25 DRAW1 LDA #$27

6029: 8D 04 60 26 STA LNGH

602C: Bl FB 27 DRAW2 LDA (HIRESL),Y ;LOAD BYTE WANT TO MOVE LEFT
602E: 88 28 DEY ;LO BYTE POINTER TO ONE BYTE LEFT
602F: 91 FB 29 STA (HIRESL),Y ; STORE BYTE

6031: C8 30 INY ;RETURN POINTER TO RIGHT

6032: A5 FC 31 LDA HIRESH

6034: 18 32 CLC

6035: 69 04 33 ADC #$04 ;THIS GETS TO NEXT ROW IN BLOCK
6037: 85 FC 34 STA HIRESH

6039: C9 40 35 CMP #$40 ;ARE WE FINISHED WITH 8 ROWS
603B: 90 EF 36 BCC DRAW2 ;NO DO NEXT BYTE

603D: E9 20 37 SBC #$20 ;RETURN TO TOP ROW

603F: 85 FC 38 STA HIRESH

6041: CE 04 60 39 DEC LNGH

Y reg. = $CO BOTTOM LINE

s| FIND ADDRESS BOTTOM LINE

BOTTOML, BOTTOMH

DECREMENT Y register

FIND ADDRESS TOP LINE
TOPL, TOPH

LINE = Y register]

Y register = LEFT

> LOAD BYTE FROM TOP LINE, Yth POSITION

STORE BYTE BOTTOM LINE, Yth POSITION

INC Y register FOR NEXT BYTE

no

{ DONE LINE? |

yes
y

Y register = LINE

no

— AT TOP ? LINE = 17 |
yes

279

280

6044: FO 03
6046: C8
6047: DO E3
6049: 60

604A: 20 20
604D: 21 22
6050: 23 23
6053: 20

6054: 21 21
6057: 22 23
605A: 20 20
605D: 21

605E: 22 22
6061: 23

6062: 00 80
6065: 80 00
6068: 00 80
606B: A8

606C: 28 A8
606F: A8 28
6072: 50 DO
6075: DO

6076: 50 DO
6079: DO

28
A8
50

50

40
41
42
43
44

45

46
47

48

49
50

—END ASSEMBLY--

ERRORS: O

122 BYTES

BEQ DRAW3 s FINISHED?
INY ;NEXT COLUMN OF 8 ROWS
BNE DRAW2

DRAW3 RTS

*TABLES OF STARTING VALUE OF EACH OF 20 BLOCKS

YBLOCKH HEX 20202121222223232020

HEX 21212222232320202121

HEX 22222323

YBLOCKL HEX 008000800080008028A8

HEX 28A828A828A850D050D0

HEX 50D050DO

CHAPTER 8

WHAT MAKES A GOOD GAME

There is no sure-fire way to predict whether a game will be successful, but
there are certain attributes that may ensure success. Certainly, a game should
have a goal, for, without one, what is the point in playing? The game should
also be challenging, since, without requiring some skill, you would tire of it
quickly. A game should evoke either a fantasy situation or your innate curiosi-
ty, for, without being novel or puzzling, it becomes boring. And lastly
(especially in arcade games), a game should be easily controllable in regards to
the interaction of the player with the computer game.

Game objectives take two different forms. There are games where the goal is
approached, like destroying the fleet of invaders in Galaxian or Space In-
vaders, or landing on the moon in Lunar lander. There are also games where
the goal is to avoid catastrophe. Examples of this range from preventing a
nuclear power plant meltdown in Three Mile Island to saving your cities dur-
ing a nuclear missile attack in Missile Command.

Goals must suit a player’s expectations or fantasies. This is why certain peo-
ple like certain certain types of games more than others. The battle-lines of
good against evil lurk in the background of many space games, wherein evil,
menacing invaders are bent on destruction of the Earth. It becomes the
player’s goal to protect the Earth as long as possible while scoring the most
points for killing aliens. The fantasy of destroying objects during a game ap-
peals to others. It can take the form of popping balloons by bouncing a clown.
off a teeter-totter, such as in Clowns and Balloons, or breaking out bricks in a
wall, as in Breakout. In each case, the partially-destroyed wall or rows of
balloons presents a visually compelling goal and a graphic scorekeeping device
as well. Other goals that appeal to many range from accumulating the most
treasure while exploring an underground cavern to escaping from a crumbling
building before it collapses or before your food runs out.

Goals in most games imply that there is some end point, either when the goal
is reached or when you fail. It is often important to make sure the game doesn’t
Just go on and on forever. Limits should be set. Sometimes these take the form
of time limits or the amount of ammunition, balls or ships left.

For a game to be considered challenging, it should have a goal where the out-
come is uncertain. If the player is certain to reach the goal or certain not to
reach it, the game is unlikely to be a challenge and the player will lose interest.
It is very easy to introduce randomness into a game by either hiding important
information or introducing random variables that draw the player towards
disaster. But you must be careful not to overdo this, since a totally random

282

game lacks a skill factor. Players quickly discover that they have no control
over the outcome.

A variable difficulty level is often used to alter the game’s level of play.
These levels, often with ego satisfying names like Star Commander or Pilot,
can be set by the player. Many games are designed to become harder the fur-
ther you get into them. This increasing skill level requirement presents an add-
ed challenge, while preventing the player from growing complacent. Often, the
technique is to speed up the game or place additional enemy craft into the bat-
tle. The player is required to play faster and better, honing his reflexes during
the process. .

Any good game should offer a reward for reaching increasingly difficult
levels of play. Often, bonus points, extra balls, ships, or more ammunition are
rewarded for exceeding score thresholds. It is important that there be greater
rewards for winning than losing. A person’s ego is involved. A player wants to
beat a challenging game, not to be humiliated each time he loses.

Games either need to fulfill a player’s fantasy or stimulate their curiousity.
Computer game fantasies derive some of their appeal from the emotional needs
that they satisfy. Different fantasies appeal to different people.

Appealing to a player’s curiosity is often effective in keeping a game in-
teresting. While novelty is sometimes a crucial factor in the original purchase,
if the game has little depth, it becomes repetitious and boring. One method
that appeals to many game designers is to have the game progress to slightly
different scenarios. Some games change the opposition, while others vary the
scenery; some do both. The player has to excel if he is to satisfy his curiosity.
Games like Threshold, which progresses through 24 sets of alien spacecraft, or
Pegasus II, in which the scenery changes and the attacking aliens vary, offer
strong curiosity incentives.

A game’s controllability is one of the more important considerations in a
game’s design. It is sometimes referred to as human engineering. Designer’s
usually choose between keyboard and paddle/joystick control. While eye/hand
coordination is more effective using paddles or joysticks, programmers attemp-
ting to create games with too many control functions will opt for a keyboard
control system. At times, they produce a game that requires nine or ten
keyboard controls which, unfortunately, only a pianist can operate. Some
prefer keyboard controls because they offer a faster response time than paddle
inputs, or they are easier to program, or this approach doesn’t limit the market
to an audience with expensive joysticks. I don’t think the latter should in-
fluence your choice, but thought should be given to which method would make
the game more enjoyable. Games that require considerable time to master the
controls, often prove too frustrating to play.

Apparently, Apple owners like games which pit them against a competitive
computer opponent. There are several multi-player games in which groups of
two or more will simultaneously compete against each other. Most of these
contests are sports or card games involving two or more players. The
cooperative game is rarely seen, except in games where the computer com-

petitor is much too skillful. The arcade game ‘‘Ripoff’’ involves a computer
opponent that is more than a match for two players playing simultaneously. It
is the lone exception to the one-player-against-the-machine game.

So far, we have discussed theory and generalizations that should increase a
game’s playability and appeal to the public. Concrete examples of the more
popular games should give you a much more solid foundation for your own
designs.

EXAMPLE ARCADE GAMES

Space Invaders was the first really popular arcade game. It is a game
wherein the object is to defend your turf against an alien horde of ferocious in-
vaders that attack your castles and gun bases with a barrage of undulating
bullets. It is actually a timed game, since you only have a limited amount of
time to destroy the entire attacking wave before they descend to the ground in
marching formation and overrun your lone gun base.

The elimination of each alien acts as a visual scorekeeping device. Although
you can never win, only survive as long as possible (thus getting the maximum
play time for your quarter), elimination of each attacking wave is an in-
termediate goal and a staving off of your inevitable doom. Each successive level
becomes more difficult since the aliens, which begin their attack closer to
Earth, limit the amount of time you have to destroy them. Their approaching
proximity to your mobile gun base decreases your reaction time needed to
avoid enemy fire.

Shoot-’em-up games like Sneakers, Galaxian, Threshold and Gamma
Goblins are actually spin-offs of the Space Invaders theme. Whether they are
set in space or on the ground, each has varieties of targets that are bent on your
destruction. The targets or attackers are no longer static. Either they appear to
dodge your fire, or they resort to kamikaze-type attacks.

The strong appeal of these types of games is based on curiousity and game
depth. You are inspired to do better with each game just to see what the at-
tackers are going to look like in the next level and what their tactics will consist
of. The concept is variety, with each successive level slightly harder than the
last. Although most offer an unlimited number of bullets, Threshold controls
rapid, random, and wasteful firing by overheating your lasers. Thus, your fir-
ing must be more accurate and paced during the game.

The popularity of Pacman can be attributed to the game’s design. First, it
satisfies the fantasy concept of a person’s childhood dreams. As children, they
dreamt that they were being chased by evil monsters or ghosts, and felt
powerless to stop them. They wished that there was some way to turn the
tables, if only for a few moments. Pacman’s four energy dots fulfill that fan-
tasy. The game also offers the visual feedback of the number of remaining dots
to be eaten at each level. And since clearing each individual level is an im-
mediate goal, even beginners believe a level can be cleared. Because Pacman is

283

284

a game of consumption rather than one of destruction, it appeals to players of
both sexes.

The game becomes a learning experience to the more advanced player, since
the ghosts follow a discernible pattern rather than move randomly. A player is
able to eventually predict their movements and consequently develop a tech-
nique to clear all the dots on a particular level. The long term goal is survival
and the highest score. The game is designed so that you gain more pleasure as

you get better. Thus, players are willing to devote the time and money to
master the game.

Scrolling games, such as Scramble and Vanguard as played in the arcades,
and Pegasus II on the Apple, wherein your ship travels over a multi-screen
world, benefit strongly from player curiousity and visual variety. Vanguard, a
shoot-’em-up game in which your ship is attacked by a variety of enemy vessels
and creatures, has an extremely long sinuous tunnel with various types of
chambers. The game has so many sections, combined with scrolling directions
which change from horizontal to diagonal to vertical, that it is like playing
many different arcade games at once. The player is given the option several
times during the game to enter battle with a time-limited energized spacecraft
which is equipped for ramming the enemy, or merely four plain old directional
lasers. A map displayed at the lower corner informs the player of his progress.
The curiousity factor is so enticing in this game, thirty seconds are provided to
lure you into inserting another quarter in order to allow you to continue from
where you left off with this unique form of arcade addiction.

The popularity of Pacman can be attributed to the game’s design. First, it
satisfies the fantasy concept of a person’s childhood dreams. As children, they
dreamt that they were being chased by evil monsters or ghosts, and felt
powerless to stop them. They wished that there was some way to turn the
tables, if only for a few moments. Pacman’s four energy dots fulfill that fan-
tasy. The game also offers the visual feedback of the number of remaining dots
to be eaten at each level. And since clearing each individual level is an im-
mediate goal, even beginners believe a level can be cleared.

The game becomes a learning experience to the more advanced player, since
the ghosts follow a discernible pattern rather than move randomly. A player is
able to eventually predict their movements and consequently develop a tech-
nique to clear all the dots on a particular level. The long term goal is survival
and the highest score. The game is designed so that you gain more pleasure as
you get better. Thus, players are willing to devote the time and money to
master the game.

Scrolling games, such as Scramble and Vanguard as played in the arcades,
and Pegasus II on the Apple, wherein your ship travels over a multi-screen
world, benefit strongly from player curiousity and visual variety. Vanguard, a
shoot-’em-up game in which your ship is attacked by a variety of enemy vessels
and creatures, has an extremely long sinuous tunnel with various types of
chambers. The game has so many sections, combined with scrolling directions
which change from horizontal to diagonal to vertical, that it is like playing

L BN R IR IR S S
L T i ey
LA A R VY

I

many different arcade games at once. The player is given the option several
times during the game to enter battle with a time-limited energized spacecraft
which is equipped for ramming the enemy, or merely four plain old directional
lasers. A map displayed at the lower corner informs the player of his progress.
The curiousity factor is so enticing in this game, thirty seconds are provided to
lure you into inserting another quarter in order to allow you to continue from
where you left off with this unique form of arcade addiction.

Pegasus II, as implemented on the Apple, offers variety in terrain, targets
and types of enemy. Besides trying to survive ground-launched rockets, a
meteor field, attacking birds, and flying saucers, you must defeat a horde of
laser-armed dragons that separate you from your refueling base. Your im-
mediate goal is to reach the base before running out of fuel. This means ac-
curate shooting, for enemies like dragons can delay your rendezvous with the
base. Long term goals consist of reaching the tunnel and scoring the highest
number of points.

In closing, I hope I have provided you with some acquired skills for creating
your own visual masterpieces. The arcade versions described above are, as of
this writing, being surpassed in quality by the dazzling array of games current-
ly arriving on the personal computer market from talented graphics program-
mers.

My hope is that this book has provided some techniques and insights into

graphics game design and programming; possibly even enough to allow you to
Join the ranks of successful Apple game designers.

285

INDEX

Addition & Subtraction, 45-46
Addressing modes, 42, 74, 112-114
AND instruction, 131-132, 209-210
Animation Apple Shapes, 26-29
Animation HPLOT Shapes, 78-81
Apple Shape Tables, 16-25, 81-85
Applesoft Hi-Res, 9, 29

Applesoft ROM, 69-71

ASL & LSR instructions, 53
Assemblers, 25

Assembly language, 36-46
Background fill, 14

Background preservation while drawing, 140-146
Bit-mapped Shape Tables, 100-109
Bomb drop, 154-157, 161-164
Branch instructions, 44-45
Breakout game, 51-68

Bullet motion, 157-160

Character generators, 30-33
Collisions, 209-212

Color problems, 123-127

Compare instructions, 43

Debug package, 204-205

Drawing bit-mapped shapes, 111-118
EOR instruction, 119-120
Explosions, 214-220

Game design & theory, 281-285
Graphic screen layouts, 9, 87
Graphic screen switches, 10
Hexadecimal numbers, 36-37
HI-RES color, 14, 89-92

HI-RES screen layout, 87-99
HPLOT shapes, 73-77

286

Increment & decrement instructions, 43
Interfacing bit-mapping to Applesoft, 135-139
Invaders game, 164-181

Joystick control, 152-153

Laser fire, 205, 208

Line memory address, 93-97

Load instructions, 42

Lookup tables, 111-112

LO-RES graphics, 47-50

Memory constraints,11

Memory map, 38-39

Mountain background generator, 239
Mountain collision test, 246-248
Movement constraints & advantages, 132-133
Odd / even test, 54

OR instruction, 120

Order of game events, 246

Pac-Man, 283-284

Paddle button trigger, 205

Paddle crosstalk, 152-153

Paddle routine, 147-151

Page flipping, 15-16, 225-236

Pegasus II, 285

Print routine, 56-57

Program Status Word, 39

Raster shape tables, 100-109
Scorekeeping, 55-56, 220-224

Screen erase, 128-131

Scrolling — vertical, 271-277

Scrolling — horizontal, 278-280
Scrolling games, 237-270

Scrolling subroutine, 240-241

Selective drawing control, 131-134

Space Invaders, 283

Space ship — steerable, 183-194

Space ship — steerable & floating, 195-203
Store instructions, 42-43

XDRAWing bit-mapped shapes, 119-123

287

288

Jeffrey Stanton received a BME (1967) and a MSME (1969) from
Rensselaer Polytechnic Institute. He worked as a control systems engineer and
mechanical engineer for the aerospace industry in the early 1970’s. His strong
interest in computer game design sidetracked his career as a photographer and
book illustrator in the late 1970’s. Although he occasionally does a commercial
assignment and owns a postcard company, much of his time is devoted to keep-
ing abreast of the latest arcade game programming techniques on both the
Apple and the Atari computers. He has several Apple games on the market and

is writing a complex arcade game on the Atari 800. Jeffrey currently resides in
Venice, California.

® Learn Apple Hi-Res Graphics from BASIC and machi“ne
language. '

® Learn how to speed up your graphics.
® Learn raster graphics and bit mapping techniques.

® The only book to explain how to design arcade games from
start to finish through the use of text, flow charts and work-
ing examples.

® Learn the theory of how to design a playable game.

® Requires a solid foundation in BASIC programming on the
Apple II.

$19.95

