@apple computer

20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010
TLX 171-576

030-0386-A

/.

7y 7™ 7%

[== Apple ll o)

_—
red S,
—

|- Apple SuperPILOT

ey

1k11

— .
Language Reference Manudal

7
=

o

| V4

< ~ls : :-\//‘\\\ _ —
—)1 Bw. 2.a —
N "/ “"0;0"'. —
! /6 —
" § - 3 [
N T
- |
_ . e
'\‘.] ‘nl s
'a i-'.“,;i
i
o/}

2

SN

b A

ZA QS

O o
A

Notice

Apple Computer, Inc. reserves the right to make improvements in the product
described in this manual at any time and without notice.

Disclaimer of All Warranties And Liabilities

Apple Computer, Inc. makes no warranties, either express or implied, with respect
to this manual or with respect to the software described in this manual, its quality,
performance, merchantability, or fitness for any particular purpose. Apple
Computer, Inc. software is sold or licensed “as is” The entire risk as to its quality
and performance is with the buyer. Should the programs prove defective following
their purchase, the buyer (and not Apple Computer, Inc., its distributor, or its
retailer) assumes the entire cost of all necessary servicing, repair, or correction
and any incidental or consequential damages. In no event will Apple Computer,
Inc. be liable for direct, indirect, incidental, or consequential damages resulting
from any defect in the software, even if Apple Computer, Inc. has been advised of
the possibility of such damages. Some states do not allow the exclusion or
limitation of implied warranties or liability for incidental or consequential
damages, so the above limitation or exclusion may not apply to you.

This manual is copyrighted. All rights are reserved. This document may not, in
whole or part, be copied, photocopied, reproduced, translated or reduced to any
electronic medium or machine readable form without prior consent, in writing,

from Apple Computer, Inc.

© 1980, 1982 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014
(408) 996-1010

The word Apple and the Apple logo are registered trademarks of
Apple Computer, Inc.

Simultaneously published in the U.S.A. and Canada

Reorder Apple Product Number A3D0051

V4

W

PN

N LN NANAN,
YL S S S G G L G O AT

M

7\

Vg

¥

&

R ARV S

P
4

_Applell

Apple SuperPILOT

Language Reference l\/lenuol

Jwv T O R S R S RS L S A C |
I J) v d@dulfw@du\ A\ YA RN L 2N I\ N IS VA

Table of Contents

Preface

Vii

vii Where Do I Start?
viii How This Manual is Organized

Chapter1
Overview of the Language

2 What is SuperPILOT?

2 Introduction

5 Correct Form for Instructions
8 The Parts of an Instruction
28 General Information
29 Running a Programmed Lesson

Chapter 2
Text Instructions

35

36 R: Remark
37 T: Type

Chapter 3
Response Instructions

47

48 PR: Problem
53 A: Accept
63 M: Match

Chapter4
Control Instructions

71

72 J: Jump
74 U: Use

Table of Contents

77
83
88
91

E: End

L: Link
XI1: Execute Indirect

W: Wait

Chapter 5
Computation Instructions

93

94
98

D: Dimension
C: Compute

Chapter 6

Special Effects Instructions

a |
| RE= = s

7 I
A‘U
| -

114
129
131
151
155
158
160
165

G: Graphics

GX: Execute Graphics File

TS: Type Specify

TX: Execute Character Set File
S: Sound

SX: Execute Sound File

AP: Accept Point

V: Audio/Visual Device Control

Chapter?7

File Handling Instructions

D

S ——y

112 \(!
\J
[

168
174
176
181
184
188

K: Keeping Student Records

General File Information: FOX: , FIX: ,
FOX: Create and Open New File

FIX: Open Existing File

FO: Output to Open File

FI: Input from Open File

Chapter 8

Execution-Time Commands

FO:

9

FI:

I

- [
('/e 1
S

167 ()! |
N

,i‘ |
‘;s. I

%]
A |

194
197
200
200
201

Goto Command

@ (Escape) Command
CTRL-C

CTRL-I

RESET

SuperPILOT Language Reference Manual

N}
[rm— =y —

4

'

/,/
\

g AT
y=
\ |
o | JH

20

Chapter 9
Hints for Beginners 203

204
206
207
209

Using the Student’s Name
Using Numbers

Counting Answers

An Example

Chapter10
Advanced Programming 213

214
215
229
242
246

Constants
Variables
Functions
Operators
Expressions

iV aYaY=YaTa IhY
m@@@*unuuum\

ASCII Character Codes 251

252
255
258

Screen Command Characters
Screen Modes
Printing Characters

Appendix
Using More Disk Drives 259

260
261
262
265

Diskette Names
Disk Drive Names
Lesson Mode
Author Mode

Appendix C
Error Messages 267

268
272
275

Language Error Messages
System Execution Errors
System Failure Errors

Table of Contents \Y}

Appendix D
SuperPILOT Language Summary

247

278 Expressions
282 The Parts of an Instruction
284 The SuperPILOT Instruction Set

Appendix E
Differences from Apple PILOT

N
o
O

290 Language Extensions
292 Operating System Extensions
293 Converting Apple Pilot Lessons

Appendix F
Apple Il Colors

N
0
(&)}

296 Natural Colors and Apple II Colors
297 Where Colors Are Displayed on the Screen
299 Where the Colors Come From

Index

Vi SuperPILOT Language Reference Manual

!

7

T ﬁ\

'

"

I

—

PR A R

H

Y)

Q,A |
 —
2 1
‘\ :bln’,
4 |
AN |
\ S—
1]
. J]]
Ny LER
;)i |
Nge L
~
“'1 l/.H
|l
pE—
17

!
i\
<R

o

SOOI~ VI \"\ I\~ VI v\

)

)

SEGIRN

\
i

‘ ,_.
~ Y 3
- “

N

Preface

This is one of two manuals that come with your SuperPILOT system. The
purpose of this Apple II SuperPILOT Language Reference Manual is to
describe the SuperPILOT language completely. The Apple II SuperPILOT
Editors Manual explains the use of the four editors, which are used for

creating SuperPILOT lessons. Both of these manuals provide information
that you will find important for successful and efficient lesson-writing.
You should therefore familiarize yourself with the contents of each
manual, regardless of the amount of previous programming experience or
PILOT knowledge you may have.

Where Do | Start?

The answer to this question depends a great deal on where you are, so
to speak. Here are some suggestions:

IF YOU ARE A COMPUTER NOVICE: Get to know your computer first.
Read the manuals that describe how to set up the Apple II, how
to use the keyboard, disk drives, and other parts of the system.
Both SuperPILOT manuals assume that you know your way around the
system.

IF YOU ARE UNFAMILIAR WITH PILOT: Start by running the Super-
CO-PILOT tutorial diskette. Chapter 1 of the Apple II Editors
Manual is a good place to go next. It gives an overview of the
lesson-writing process and refers you to demonstration lessons
that allow you to see SuperPILOT at work. Then read Chapter 1
of a this language reference manual, which gives you an overview

of the language itself. You can then proceed through either
manual, or jump back and forth, as you wish.

IF YOU KNOW PILOT ALREADY: This manual’s Appendices D and E

and Appendix D of the Apple II SuperPILOT Editors Manual are

for you. They summarize the syntax of the language and describe
the differences between SuperPILOT and Apple PILOT. They will
save you much time that you might otherwise spend reading the
manuals just to find out what’s new and/or different.

How This Manual is Organized

The Apple II SuperPILOT Language Reference Manual is designed to serve
two different kinds of readers. Some readers, especially those who are
new to PILOT or even new to computing, will want to read these chapters
in order, building up their knowledge and skill one step at a time. When
they become proficient SuperPILOT programmers they will join with a
second group of readers, who will use this manual in a '"random-access"
fashion, as a dictionary or encyclopedia, to look up something they have
forgotten or to check on a technical point.

If you are among the first, less experienced, group of readers, you
will find that the features of the language are generally presented

Preface vii

beginning with the simplest and progressing to the more difficult. >
Explanations in the earlier chapters tend to be slower paced, with more |
frequent reinforcement. Whenever possible, lesson examples avoid
using instructions that have not been introduced in that chapter or
previous chapters. On the other hand, each example tries to use as
much as possible of the language already described in earlier chapters,
so the effect is a cumulative one. Finally, each example contains
running annotations and many are followed by notes on how the lesson

operates. These may be helpful to you in following the logic of the
lesson.

If you just need this manual as a reference, however, you should find
the information you want easily accessible. Each chapter and ma jor
section follows a predictable pattern, beginning with the syntax of the
instruction and ending with an example. Programming Notes sections
point out special "tricks" or identify common problem areas. Lists and
tables have been included wherever they might help to get the answer to
you faster. Appendix D and the Quick Reference Card bring all the
language elements together in a compact easy-to-use form.

=
i

"

S

& W

One possible way of approaching the material in a given chapter is to
begin at the end. That is, study the example lesson program that is
given at the end of each main chapter. By seeing new instructions in
the context of those you have already learned, you may cut short the
time you need to understand the chapter explanations. But whatever
method of study you find best for your needs, you should find that the
information in this manual is easy to find and easy to put to use.

:

A
o

e b b e b

A

-
=
i

!

Note: Throughout this manual, an extra space has been used to set off
the beginning and end of certain words or phrases in a sentence: the
names of lessons and variables, actual SuperPILOT instructions, literal
text to be typed on the keyboard, etc. This method has been adopted in
place of the more conventional method of enclosing the word or phrase
in quotation marks, because quotation marks can often be part of the
text, thereby causing confusion. For example, in this sentence:

R
i

I

Now type "Hi there!" and press the RETURN key.
it might not be clear whether the quotation marks are part of the
sentence or part of the text to be typed. This same sentence would
appear in this manual as follows:

Now type Hi there! and press the RETURN key.

=

|

T &Y

‘X
\

s

N

3§

Vil SuperPILOT Language Reference Manudl

q
S - e

(

|

.. ¥

o

A\

~
et

{
{

\\

N\

~
B

W

e

< v

N N

|

ol Thé Language

—IL LN~ A L . .

- b g

2 What is SuperPILOT?
2 Introduction
5 Correct Form for Instructions

8 The Parts of an Instruction

8 Labels

9 Unlabeled Destinations

10 Instruction Names

12 Modifiers

13 Conditioners

14 Yes and No Conditioners

15 Answer—Count Conditioner
17 Error Conditioner

21 Expression Conditioners

24 Last-Expression Conditioner
25 The Colon

25 The Continuation Colon

26 The Object

27 Variables

28 General Information

28 Upper— and Lowercase Letters
29 Instruction Length

29 Blank Lines

29 Running a Programmed Lesson
29 Running in Author Mode
30 Running in Lesson Mode

31 Immediate Execution Mode
31 From a Running Lesson
32 From the Editor Menu
32 From Lesson Mode

32 Repeating Instructions
33 Execution—Time Commands
33 Goto

33 @ (Escape)

33 CTRL-C

33 CTRL-I

34 RESET

N S Ay~ & 4L 1
€W\ 705 SN A B 1 P)] P late Ta I
Ovenview of the Langua

What is SuperPILOT?

Every educator and training director has wished for the ability to
provide unlimited, personal attention to each student in a one-to-one
interaction tailored specifically to that student’s abilities and
needs. Computer-Assisted Instruction (sometimes called CAI) is one
attempt to help grant that wish. Using a program written by the
instructor, a student may receive individualized tutoring, practice,
and testing, with frequent interaction between the student and the
program.

Computer—assisted teaching lessons can be written using any programming
language, but instructors often know much more about their subject
matter than about computer programming. The original PILOT language
was developed in the early 197¢’s in an attempt to solve this problem.
The language had only about eight instructions and was designed to let
an instructor write teaching programs after just a short time learning
the language.

Since that time, PILOT has been revised and extended many times.

Today, it is both more complex and much more powerful than the original
language. The Apple SuperPILOT programming language is based on Apple
PILOT, which had its origin in Common PILOT. Common PILOT was
developed at Vestern Washington University. Any program written in
Common PILOT or Apple PILOT should run correctly on tk: Apple Super-
PILOT system. Apple SuperPILOT includes the features of bhoth these
ancestors, plus many more improvements that make use of the Apple’s
advanced graphics and sound capabilities and incorporate suggestions
and recommendations of Apple PILOT users.

Iinfroduction

The Apple SuperPILOT programming language consists of twenty-six
instructions, of which you will use only about nine for writing the
largest portions of a lesson. Fach instruction consists of two main
parts: the instruction itself and its object. Fach of the twenty-six
instructions themselves is simple, but many of them can operate on a
wide variety of objects. Furthermore, you can use modifying elements
with an instruction to change its operation, and conditioning elements
that determine whether or not the instruction will be executed under
various conditions. Finally, you can develop more complicated prograns
and instructional strategies by combining the instructions into complex
sequences.

Most instructions begin with a single-letter instruction name, followed
by a colon. For example, one of the most common instructions is the
Type instruction, which causes a question or any other text to be

2 SuperPILOT Language Reference Manudl

i

NN\ FR R SR - - -

\S——

displayed (or "Typed") on the student’s screen. The Type instruction
is written

T's
or
t:

It makes no difference to SuperPILOT if you capitalize the instruction
name or type it lowercase: both will be executed the same way. In
this manual we will use the lowercase consistently for instruction
names in lesson examples because you will most likely discover this to
be the simplest and fastest to type.

If the instruction has an object, it follows the instruction name and
colon. In our example, the Type instruction’s colon would be followed
by the text to be displayed:

t:Are you male or female?

Most of the remaining common instructions are designed to let the
student '"talk" with the program. The Accept instruction tells the
computer to "listen'" while the student tvpes something on the Apple’s
keyboard:

a:

The Match instruction then compares the student’s response to the word
following the Match instruction:

m:female

If the Apple finds the Match word in the student’s response, it stores
the answer '"VYes:'" otherwise it stores the answer '"No.'" This answer can
then be used as a condition for executing further instructions. For
example, if you want the program to skip over one or more instructions
and Jump to a program portion labelled women , dealing with health
questions for women, you could use the instruction:

j:women

If you want the Jump to occur only when the Apple stores a "Yes' answer
to the previous Match instruction, you can add the Yes conditioner to
the Jump instruction:

jy:women

This instruction will be skipped if the Apple stores a "No" answer to
the previous Match, and the program will go on to the next instruction.
This is only one example of the many ways a simple Apple SuperPILOT
instruction can be modified for more complex tasks.

An Apple SuperPILOT program is just a sequence of SuperPILOT

instructions. The execution of an Apple SuperPILOT program begins with
the first instruction and, unless otherwise directed, continues by

Overview of the Language 3

executing the remaining instructions in their order of appearance.
Several instructions cause execution to jump out of this normal
sequence. Also, you can cause individual instructions to be skipped
over if they contain conditions that are not met at the time they are
to be executed.

Here is a little program that uses the four most common instructions,
plus the End instruction, which ends a lesson. The comments to the
right of the program lines (in parentheses) do not appear in a real
lesson; we have added them to explain the action caused by each line.

t:Let’s talk about your health.
*gender

t:Are you male or female?
a:

(Display text on screen.)

(Label for this section,
identified by the *)

(Display this text.)

(Accept student’s response.)

m:female (Did student type female ?)
jy:women (If Yes, Jump ahead to the
section labelled women .)
m:male (Did student type male ?)
jy:men (If Yes, Jump ahead to the

section labelled men .)
(If the program gets to this

line, student typed neither

female nor male , so

display this text.)
(Display this text.)

t:You must be one or the other.

t:Let’s try again.

j:gender (Jump back to the section
labelled gender .)
*men (Label for men’s section.)

t:0K, you are a man.
t:Now, what is your weight?

(Display this text.)
(Display this text.)

e: (End of lesson.)

*women
t:0K, you are a woman.
t:Now, what is your weight?

(Label for women’s section.)
(Display this text.)
(Display this text.)

e: (End of lesson.)

The main activity in this program is the evaluation of the Match
instructions and the route program execution takes if the Match is
successful or unsuccessful. This simplified program contains only two
Match possibilities, which could result in an unsuccessful Match even
if the student gave an appropriate response, such as "I am a girl,"
This is because the Apple will store a "Yes" answer to a Match
instruction only if the Match word is absolutely identical to a word in
the student’s last typed response.

4 SuperPILOT Language Reference Manual

&

i

[

EE RN
T L G G

Y I

f

oS

‘;\g—:‘g‘%

A

q
Y

S

b(

\

V=V %=\

N oA

RSN

AN

For example, if the Match word is female , the Apple will say '"Yes" only
if it finds the word female in the student’s response; a response of
Female or FEMALE or FEmalE won’t do. For this reason, you can tell
the Apple II to convert all response letters to capital letters, or all
to small letters. See the discussion of the PRoblem instruction in the
Response Instructions chapter for details on how to make this happen.
Most of the examples in this manual include an instruction that tells the
Apple II to convert all student responses to capital letters.

On the Apple II keyboard, holding down the '"control" key (CTRL) while
typing the letter Z causes the next letter to be shifted to uppercase.
That is, after a CTRL-Z, the first letter typed will be a capital
letter, after which the letters will revert to lowercase. CTRL-A acts
like a typewriter’s locking shift key. After CTRL-A, all letters typed
will be capital letters, until the next CTRL-A shifts back to lowercase.
CTRL-Z and CTRL-A affect letters only; the Apple II’s SHIFT key works
normally for all other characters.

The issue of uppercase or lowercase letters is important for only

three commonly used instructions: the text to be displayed by the Type
instruction, the text to be compared by the Match instruction, and the
program data to be stored on a diskette by the Keep instruction. All
the rest of your lesson can be in uppercase, lowercase, or amy

mixture; SuperPILOT is indifferent. Since lowercase is often easier

to read, you may wish to type most of your lesson in lowercase, saving
true uppercase for specific capital letters in the text displayed by
Type instructions (proper nouns, etc.).

The remaining chapters of this manual explain the Apple SuperPILOT)
instructions in detail, with small examples showing their use. In this
manual, however, we can only hint at the power of the SuperPILOT
programming language. More complete examples are provided in the
demonstration programs that you received with your Apple SuperPILOT
system and on the CO-PILOT tutorial. We also urge you to seek out and
study examples of SuperPILOT programs from a variety of authors to
learn how the features of the language can be combined. From there,

your own imagination will be your guide.

Correct Form for Instructions

Like sentences in the English language, instructions i? thetApgle
SuperPILOT ogramming language must follow a certain form to e
understood ggr%ectly.g In %he%r simplest form, most Apple SuperPILOT
instructions have only three basic elements: the instfuction name, a
colon, and then the object of the instruction. The object may be
text, a calculation, the name of a place to store something, a more
detailed command to the Apple II, or it may be missing altogether,
depending on the instruction. Here is the general format for an Apple
SuperPILOT instruction in its simplest form (square brackets indicate

that the object is optional):

instruction name:[object]

Overnview of the Language 5

A common example is the simple form of the Type instruction, which

causes the entire object to be displayed literally on the student’s
screen:

t:Hello. What is your name?

The longest line you can see in the Lesson Text Editor is 39
characters, since the width of the screen is 4@ characters and one
space is needed to display the cursor when a line is full. To make
longer instructions, Apple SuperPILOT lets you 'continue" an

instruction on subsequent lines (up to 25@ characters in all), by
starting each continuation line with another colon:

t:Four score and seven years ago our
:fathers brought forth, upon this
tcontinent, a new nation, conceived in
:Liberty and dedicated to the
:proposition that all men are created
tequal.

Any SuperPILOT instruction can be extended this way. When the
instruction is executed, the Apple just ignores the breaks and extra
colons, treating the instruction as one long, unbroken line.

There are two ways to alter the execution of particular instructions.
Each requires the addition of another element between the instruction
name and the colon. These two elements are called modifiers and
conditioners.

A modifier changes some detail of how an instruction works. Most
modifiers work on only one or two instructions. For example, the Type
instruction normally puts its object text on the screen, and then jumps
to the beginning of the next line. If the student then types a
response, it appears on that next line. But a Type instruction with
the Hang modifier stops (''Hangs") at the end of the displayed text, so
the student’s response will appear right there, instead of on the next
line:

th: 7+ 6 =

A conditioner causes an instruction to be executed or skipped,
depending on a particular internal test. Conditioners can be used with
almost all instructions. An instruction used with the Yes conditiomer,
for example, will be executed only if the previous Match word was found
in thé student’s typed response:

ty:Good, that is the correct answer.

An expression conditioner is a conditioner that allows you to define
your own test. The expression performs a calculation or comparison
whose result causes the instruction to be executed or skipped. An
instruction used with the expression (nD>l3) , for example, will be

6 SuperPILOT Language Reference Manual

~—

¢]
3

~
N\

‘).

. [

-~
!

Skl S

T &S

s

R
L
P

et
%

\
=) —

4

l/,—\$
\

L

| —

i

-

¥(

\

i oad Al

PNY

NN

executed only if the number—-storage place named n contains a number
that is greater than thirteen at that moment:

t(n>13):No, your answer is too large.

In addition to these two kinds of instruction—-changers, an element
called a label, preceded by an asterisk, can appear alone or before
an instruction name. A label identifies the beginning of a program
section, and can be used as a destination by instructions that need to
Jump to that section:

*test
t:0K, let’s try some problems.
or
*test t:0K, let’s try some problems.

A little later in this chapter, you will find a detailed discussion of
each possible element in an instruction. When more than one of these
elements is used in an instruction, the elements must appear in a
certain order. Here is the general format showing the correct order
for all the possible elements of an Apple SuperPILOT instruction
(square brackets surround optional elements):

[*label] instruction name[modifiers&conditioners][(expression)]:[object]
An instruction need not contain all the possible elements, but any

elements included must be in the order specified. Here is another way
to see the order of possible elements in an instruction:

Order Element Comment

1. *label Optional; may be on a separate line.

2. instruction name Required; one, two, or three letters.

3. modifiers Optional; usually just one; one letter.
conditioners Optional; 4 allowed; one character each.

4. (expression Optional; one allowed; in parentheses.

conditioner)

5. : Required colon.

6. object Depends on the instruction.

7. RETURN Required at the end of every instruction.

Note: 1In Common PILOT, in Apple PILOT, and in Apple SuperPILOT, any

number of modifiers and conditioners may appear in any order (except the
expression conditioner, which must appear last), as long as they
immediately follow the instruction name. Instructions that do not
follow the correct form may be executed anyway, but with unpredictable
results.

In the following section, the elements of an Apple SuperPILOT
instruction are discussed in detail.

Overview of the Language 7

The Parts of an Instruction
Labels

A label is a word that identifies an instruction or program section so
that other instructions in the lesson can refer to that place. A label -
is an optional element that may precede any Apple SuperPILOT
instruction or stand alone on a line (although such a line is not
considered an instruction).

When the label is placed in a program, it usually stands alone on a
line. More than one label may appear on a line, separated by at least
one space, but no other instruction may precede a label on the same
line. An asterisk (*) as the first character of a line (or the first
character after an earlier label and a space) indicates to SuperPILOT
that the element that follows is a label. The label itself is a name
up to thirty-five characters in length, of which only the first six
characters are significant. This means that the words beginner and
beginning , both valid as labels, will be considered by SuperPILOT to
be the same label: beginn . Labels should be meaningful to you, the
programmer. Labels such as startofcarbohydratesprogram and
3rdwrongspellremedial impart useful information; incomprehensible
labels, such as 1label4 , q , or that most dreadful scourge, the
invisible label (no characters at all) are to be discouraged.

Any printing character may be used for any of the characters in a label
name, but a label must not contain spaces in the middle of the name.
Spaces between the asterisk and the label are allowed. It does not
matter whether you type capital letters or small letters (or any
mixture), nor do you have to be consistent in that regard from one use
of the label name to the next. If the label is on the same line as an
instruction, the label must be separated from the instruction name by
at least one space.

For example, you can add a label before the instruction name of a Type
instruction in either of these two equivalent ways:

*startofprogram t:Hello, what is your name?

or
*startofprogram
t:Hello, what is your name?

Other instructions can cause program execution to branch to (or "go
to") the labelled instruction. When a label name appears in the object
field of an instruction to specify the destination for a branching
operation, an asterisk does NOT precede the label name. For instance,
you might wish the program to Jump to the instruction labelled in the

example above:
j:startofprogram

The instruction j:STARTOFPROGRAM or even J:StaRto would also do.

8 SuperPILOT Language Reference Manual

AV VR =V = =\

S

A\

< Al
;a

Al

b
Lt

A}

-

.

"o,

N
™

A}

n

Loy
.
-

Label names can also be used by both author and student, when the
lesson is running, to choose certain sections for testing or review

and to skip other sections. One label name has a special meaning in
this context: 1if the Escape option has been enabled by the last
PRoblem instruction, any response beginning with the character @ will
cause an automatic branch to the label sysx . See the chapter
Execution—-Time Commands for details.

To avoid ambiguity, a particular label name should be placed at only
one location within a lesson (but see the Wipe—labels option of the
PRoblem instruction, in the Response Instructions chapter, for
exceptional cases). You will find it helpful to insert labels in your
program according to a coherent lesson plan, thought out in advance.
This will make the program more readable, helping you and others to
understand and modify your program in the future. The following is an
example of a possible labelling scheme:

*startofprogram

;i;troduction
;ééastsofburden
*steam
;;iectricity
;;éview

;;;st

*end

Apple SuperPILOT stores the lesson’s labels (up to 5¢) and their
locations in a reference table (called the label table), so program
execution can Jump to those places in the lesson quickly. Because 50
labels is quite a lot for even a large lesson, you will r?rely have

to think about how SuperPILOT keeps track of your lessons labels. An
explanation of the label table is included in the discussion of the
Wipe-labels command of the PRoblem instruction in the Response
Instructions chapter. Refer to this explanation in the unlikely event

that your lesson must include more than 5¢ labels.

Unlabeled Destinations
In addition to the instructions that you have labelled in your 1lessons,
certain instructions can be used as destinations for branching

Ovenview of the Language 9

operations, even though they are not explicitly labelled. To specify a
branch to one of these instructions, the following notation is used:

Notation Branch Destination Specified

@A or @a the last Accept instruction previously executed
@M or Gm the next Match instruction

@P or @p the next PRoblem instruction

These unlabelled relative branch destinations can be used with the
instructions Jump, Use, and End, as well as by the Goto execution~time
command (if enabled).

Using the unlabelled destinations helps to reduce the number of labels
your lesson needs. As up to 5@ labels can be used without slowing down
your lesson, this is rarely a limitation. However, these destinations
can be very useful for other purposes, too. For example, if each
independent section of a lesson begins with a PRoblem instruction,

you can branch from any section to the next section just by using the
instruction:

j:@p

With this system, you can rearrange the sections, remove sections, or
add new ones, and this branch will still work. If you were to remove a
section identified by a specific label, all instructions that branched
to that section by its label name would have to be changed.

Another common use of unlabelled destinations is to write a lesson
section that handles any error in a student”s typed response. After
handling the error, perhaps just by telling the student to "Try again"
or "Type a number"”, the program can jump back to the unlabelled
destination @a . This error-handling section can be used by every
Accept instruction in a lesson, and it will always return to the last
Accept instruction that accepted a response.

When you use this method, however, be aware that repeated failures by
the student could cause the original question to be scrolled off the
screen. This problem, along with a suggested solution, is discussed in
the section explaining the End instruction, in the Control Instructions
chapter.

Instruction Names

The instruction name is a required element; it specifies the particular
kind of action to take when the Apple executes that line in the program.

There are only two kinds of lines that do not include an instruction
name: a line that consists of a stand-alone label and a line that
starts with a colon. When an instruction (such as Type or Remark) is
continued beyond a single thirty-nine character line, the subsequent
lines of the same instruction begin with a colon. 1In this case, the
colon implies that the new line is really still part of the previous
instruction line. When SuperPILOT executes the instruction, it

10 SuperPILOT Language Reference Manudl

& m

~

/

a1

f

B

RN
N

PPN

|

/R/, / '® /
(i

&

@&
s

A

-

o

SN
1 .
o

v
=

™

\Y
S
=

%

SE

| S—

P(

\

(Y C I

o

b

ignores any such breaks and colons in the instruction line, treating
the whole instruction as one long line.

The instruction name is usually just one or two letters, which are
usually an abbreviation for the action specified. For example, the
instruction name for the Type instruction, which displays or "types"
information on the screen, is T .

The instruction name must be separated from any preceding label on the
same line by at least one space, so that SuperPILOT can tell where the
label ends and the instruction name begins. If there is no preceding

label, the instruction name begins the line. There may be any number

of spaces between the instruction name and the element that follows it
(which may be a modifier, conditioner, expression, or colon).

Here are the Apple SuperPILOT instruction names, presented in the
order in which they are discussed in the chapters following this one.
(Uppercase letters are used for the instruction names in the table,

but you may use-—and may prefer—-lowercase letters in your programs.)

Chapter Title Name Full Name Description
Text R Remark Remarks to the author;
Instructions not executed.
T Type Displays text on the
student’s screen.
Response PR PRoblem Controls the handling
Instructions of typed responses.
A Accept Accepts the student s
typed response.
M Match Determines 1if student
typed certain words.
Control J Jump Starts doing another
Instructions part of the lesson.
U Use Like Jump, except it
"remembers' to return
here when the other
part is done.
E End Ends a lesson or parte
L Link Starts a new lessomn.
X1 eXecute Executes stored words
Indirect as an instruction.
W Wait Waits for a set time.
Computation D Dimension Reserves spaces for
Instructions storing words or
groups of numbers.
(o Compute Does calculations and

stores the results.

Overview of the Language 11

i

fc

‘~

Special Effects G Graphics Draws lines and dots
Instructions on the screen,
GX eXecute Draws a diskette-stored
Graphics image on the screen.
TS Type Specify Allows you to determine
how text will appear.
X eXecute Changes the character set
Characters used for text displays.. ¢
S Sound Plays musical notes on
Apple’s speaker.
SX eXecute Plays a diskette-stored
Sound sound effect.
AP Accept Point Accepts the student’s
pointing response.
\' Video Communicates with video
control devices, like videotape
and videodisk, as well
as other devices, 1like
speech synthesizers and
modems.
File Handling K Keep Captures program data
Instructions and stores it in a
special file.
FOX Open New Creates and opens a
File new diskette file.
FIX Open 01d Opens an existing file
File on the diskette,
FO File Output Stores information in
the open file.
FI File Input Retrieves information

from the open file,

Modifiers

A modifier is a one-letter optional element that changes some detail of
the way an instruction works. Any number of modifiers, in any order,
may be used with any particular instruction, but it rarely makes sensge
to use more than one modifier. The preceding element may be the
instruction name, another modifier, or a conditioner. The element that
follows may be another modifier, a conditioner, an expression, or a
colon.

Each modifier acts successfully on only one kind of instruction name
and will be ignored if it is used with other instruction names. For
example, after a normal Type instruction displays its text, the cursor
automatically jumps to the beginning of the next line. To make the
cursor "hang" at the end of the displayed text (so the student’s
response will appear on the same line) you can add the H modifier to
the Type instruction name:

th: 5 + 13 =

12 SuperPILOT Language Reference Manudl

»(

ot

%

¢?V.
"l

//‘ﬁ
i/

VR T
AT

,gfﬁ/ﬂb
%

X

1N
_ .
[—

NA

Y

-

q

3

W R R =

\

hY

WS OW S

N
™,
“

The H modifier has no effect when used with any other kind of
instruction name.

SuperPILOT has eight special modifiers for use with its instructions,
each of which will work with only one type of instruction. Some of
them have the same first letter and therefore look the same when you
use them, but their meanings depend entirely upon the instruction names
they modify. The modifiers, appended to the names of the instructions
they affect, are:

th: (Hang modifies Type) Stops carriage return after a Type.

ax: (eXact modifies Accept) Accepts exact response, with no editing.

as: (Single modifies Accept) Accepts a single—character response.

ms: (Spell modifies Match) Allows one-letter misspelling on a Match.

mjs: (Jump modifies Match) Jumps to the next Match if this Match is
unsuccessful.

1x: (Erase modifies Link) Starts a new lesson without preserving
the old lesson’s variables.

lp: (Pascal modifies Link) Starts a new lesson, written in Pascal.)

ks: (Save modifies Keep) Causes an immediate updating of the

special recordkeeping file.

In a few cases, you can use more than one modifier sensibly. For
instance, the instruction:

ms j: APPLE

looks for the word APPLE in the student’s response, allowing certain
kinds of misspelling, and also jumps ahead to the next Match instruction
if the Match word is not found in the response. However, the nonsense
instruction

aspx:
functions just like an ap: 1instruction.

For examples and more details about the various modifiers, see the
discussions of Text, Accept, Match, Link, and Keep, in the chapters
following this one.

Conditioners

A conditioner is an optional element; it establishes a condition that.
must be true or the rest of the instruction will not be executed. This
is a very important point to consider when testing your lessons:

unless you evaluate how the lesson will operate under both true and
false conditions for each conditioner, you may not discover errors in
your instructions because those instructions were never executed during

testing.

An expression may be used as a conditioner; all other conditioners are
either a single letter or a one— or two-digit number. The instruction
name must immediately precede the list of modifiers and conditioners,
with no intervening spaces.

Overview of the Language 13

Any number of conditioners, in any combination and in any order, may be
used in an Apple SuperPILOT instruction, except that the expression
conditioner (if one is used) must be the last in the list. However, a
maximum of five conditioners (one each of the five different kinds) may
be usefully employed in one instruction. If more than one conditioner
is used in an instruction, the instruction will be executed only if all
of the specified conditions are met at execution time. Unlike
modifiers, which work only with certain instructions, any conditioner
can be used effectively with any Apple SuperPILOT instruction.

There are five different kinds of conditioners, each of which can
determine under what conditions an instruction will be executed. They
are the Yes-No conditioner, the Answer—-Count conditioner, the Error
conditioner, the Expression conditioner, and the Last—Expression

conditioner. The form of each is given in the table below:
As Typed Name Condition Established
Y (Yes conditioner) Execute if last Match was successful.
N (No conditioner) Execute if last Match was unsuccessful.
1 to 99 (Answer-Count Execute 1f the conditioner number equals
conditioner) the number in the Answer-Count, which
counts how many times the student has
tried to answer the same question.
E (Error conditioner) Execute if the Error Flag has been raiged
by trouble in executing any instruction.
(expr) (Expression Execute if the value of the expression is
conditioner) true (non-zero).
C (Last-Expression Execute if the last evaluated instruction-
conditioner) modifying expression was True (non-zero).

In the following sections, each of these conditioners is discussed in
more detail.

Yes and No Conditioners

The Yes conditioner is always Y , and the No conditioner is always
These conditioners test the success of the last Match instruction
executed. The Y conditioner allows an instruction to be executed only
if the previous Match was successful (a "Yes" result); that is, the
Match word was found somewhere in the student’s response. The N
conditioner allows an instruction to be executed only if the previous
Match was not successful (a "No" result).

N .

These conditioners are central to the basic interaction between an
Apple SuperPILOT lesson and the student. They let the program respond
differently, depending on the student’s responses.

14 SuperPILOT Language Reference Manual

7

s

wl

]

. Al
(N

”
.

/

/i

S
L

W

[

Lt

19

.5

Va
—~—a

—%

.

7%
A

.
N

L*
(

T I R R

Na e
AN
.

N

N
-

»,

IS

Example:
*test (Label for this section.)
t:What is the highest (Display this text,
: mountain in the world? and this text,)
a: (Accept student’s response.)
m:Everest!everest (Did student type Everest
or everest ?)
ty:That’s right. (1f Yes, display this text.)
tn:No, try again. (If No, display this text.)
jnstest (If No, Jump back to test .)
Example:
*day (Label for this section.)
t:Is today sunny or cloudy? (Display this text.)
a: (Accept student’s response.)
m:sunny (Did student type sunny ?)
ty:How nice! (If Yes, display this text.)
jy:next (If Yes, Jump to label next .)
m:cloudy (Did student type cloudy ?)
ty:Too bad. (If Yes, display this text.)
tn:I don’t understand. (1f No, display this text
: Please try again. and also this text.)
jn:day (If No, Jump back to day .)
*next (Label for next section.)

Answer-Count Conditioner

This conditioner is always a number from 1 through 99. It tests the
current value of the Answer—Count. The Answer—Count indicates how many
times in a row the most recent Accept instruction has been encountered,
with no other Accept instruction intervening. It allows an instruction
to be executed only if the conditioner number is the same as the
current value of the Answer—Count. (If more than two numeric digits
appear in the list of modifiers and conditioners for an instruction,
only the rightmost two digits are used.)

This conditioner lets the program respond differently, depending on how
many times the student has attempted to answer the same question. On
the third try, for instance, you might want to provide the answer to
the question, or you might branch to a review section. Without this
conditioner, as the examples in the previous section show, the student
could be stuck on one question indefinitely. For more information
about the Answer—Count, see the Accept instruction, in the Response
Instructions chapter, or the section on system variables in the
Advanced Programming chapter.

Overview of the Language 15

Example:

*test

t:What is the highest

: mountain in the world?
a:

m:Everest!everest

ty:That’s right.
tyl:You got it the first try!

tn4:No, Mount Everest is the
: world’s highest mountain.

jnb:next

tn:No, try again.
jn:test

*next

(Label for this section.)

(Display this text,
and this text.)

(Accept student’s response.)

(Did student type Everest
or everest ?)

(If Yes, display this text.)

(If Yes and first-answer,
display this text.)

(If No and fourth answer,
display this text.)

(If No and fourth answer,
Jump to label next .)

(If No, display this text.)

(If No, Jump back to test .)

(Label for next section.)

In the example above, the student will be told to "try again" after the
first three wrong answers. If the student’s fourth answer is still
wrong, the program shows the correct answer and goes on to the next
question (*next).

Example:

*dukbil

t:What mammal has a bill

: and lays eggs?

a:

m:platypus

tyl:Right, on the first try!

(Label for this section.)
(Display this text,

and this text.)
(Accept student’s response.)
(Did student type platypus ?)
(If Yes and answer #1,

display this text.)

(If Yes and answer #2,
display this text.)

(If Yes, Jump to koala ,)

(If wrong answer #1, display
this text.)

(If wrong answer #1, Jump
back to label test ,)

(Second wrong answer:
display this text, and
Jump to label review .)

ty2:Right, on the second try.

jy:koala
tl:No, try again. Hint:
: it lives in Australia.
jl:dukbil

t:I think you should
: review the following.
jireview

*koala (Label for next section.)
The Answer—Count is kept in the system variable (one of Apple Super-
PILOT’s number-storage places) named 7%a . For a different kind of
example, which tests the Z%a Answer—-Count in an expression, see the
Expression Conditioners section later in this chapter.

16 SuperPILOT Language Reference Manual

.

_L_Q

-

S) S

o
‘,’{

,4
S =

. .- 2
N A

-

y

(

AN R i

A\

SRR A e M e AN A A N -

AN -

NS\ N

-

= A

5\

\
L

N3

e N
L
<

Error Conditioner

This conditioner is always an E . It tests the current state of the
Error Flag. The Error Flag is an indicator in the Apple II that is
“raised" any time Apple SuperPILOT has trouble executing one of your
instructions. The error conditioner allows an instruction to be
executed only if the Error Flag is currently raised. This lets you
write instructions designed to handle certain predictable errors that
may arise when the lesson is running.

When you run a lesson from the Lesson Text Editor in Author Mode, most
problems with instructions cause error messages to be displayed on the
screen (the section Running a Programmed Lesson, later in this

chapter, discusses error messages). These probplems, which may be the
result of a mis-typed instruction, a division by zero in a calculation,
etc., also raise the Error Flag at the same time. When the student is
running a lesson in Lesson Mode, however, no error messages are
displayed: the Error Flag being raised is the only indication that an
instruction has run into difficulty.

In addition to the many kinds of problems that cause a message to

be displayed (in Author Mode) while raising the Error Flag (in either
mode), there are two situations that raise the Error Flag without
causing an error message in either Author Mode or Lesson Mode:

l. If an Accept instruction is supposed to store a student’s
typed number in a specified number-storage place, but no
number is found in the student’s response, no new number is
stored in the number—storage place, and the Error Flag is
raised. For example, this instruction:

a:itn (Accept the student’s response
and store the first typed
number in the number—-storage
place named n .)

will raise the Error Flag if the student types only letters,

or presses the RETURN key without typing anything. The value
of n will not be changed from what it was before the a:i#n
instruction was executed. To avoid this undesirable situation,
you should always test for the Error Flag immediately after any
Accept instruction that expects a numeric response.

2. 1If a FIX: (open an existing diskette file) instruction does
not find a file with the specified name already stored on the
diskette, no file is opened, and the Error Flag is raised.
For example, this instruction:

Overview of the Language 17

fix:10,s$ (Find an existing diskette file
whose name is the word stored
in the word-storage place
named s$, and open it for
storing and retrieving data
in records numbered @-10.)

will raise the Error Flag if it finds no file with the given
file name.

The Error Flag is always down when a lesson starts, and stays down

until something raises the flag.
it stays up until something lowers it.

There are many kinds of

problems that can cause the Error Flag to be raised, but only five
things can lower the Error Flag while a lesson is running:

1.

18

The Error Flag is lowered just before evaluating any
mathematical or string expression. Thus, successfully
evaluating any expression conditioner (discussed later in this
chapter) or any expression appearing in an instruction’s
object field lowers the Error Flag. For example, either of
these instructions will lower the Error Flag if it is up:
t(n=12):That’s right. (If the execution-modifying
expression (n=12) is true,
display this text.)
c:x=5+3 (Evaluate the expression 5+3
and store the result in the
number-storage place x .)

However, this instruction lowers and then re-raises the Error

Flag:
ci1x=5/0 (The illegal expression 5/¢
causes an error message in
Author Mode and raises the
Error Flag in Author Mode
and Lesson Mode.)

The Error Flag is lowered just before executing the contents of
the word-storage place whose name appears in the object field of
an XI: instruction. Thus, successfully executing an XI:
instruction lowers the Error Flag. For example, this
instruction will lower the Error Flag if the word-storage place
a$ contains a correct, executable SuperPILOT instruction:
xi:a$ (Execute the character string
stored in the word-storage
place a$ as a SuperPILOT
instruction.)

SuperPILOT Language Reference Manual

Once the Error Flag has been raised,

R

ﬁ
!

(e

!, f R \/ﬁ
PO

W

(=

/
/

ip

.
1 \

kﬁiy AN
if

Sy il
£

-

T

I

SO VU U\ VN - VR = Y = YR\~

S

p

N

N,
W

If an Accept instruction successfully stores a student’s
typed number in a specified number-storage place, the

Error Flag is lowered. For example, this instruction will

lower the Error Flag if the student’s typed response includes
a number:

a:in (Accept the student’s response,
and store the response’s
first number in the number—
storage place n .)

Successfully executing any PRoblem instruction lowers the
Error Flag. For example:

pr: (Mark a new section without
changing any options.)

Any 1X: instruction, which starts a new lesson running,

forgetting everything about the old lesson, lowers the Error
Flag. For example:

1x:lesson2 (Start running the lesson named

lesson2 , without keeping old
stored words and numbers.)

Flag-lowering item number 1 provides a way to lower the Error Flag

intentionally whenever you want to do so.

For example, consider the

following instructions:

t:What is your first name? (Display this text.)

a:n (Accept student’s response;
store it in string variable
n$. The first dollar sign
is required by SuperPILOT.)

fix:10,n$ (Try to open an existing disk

te:Please type your first name

.

exactly as it appears on the
class roster.

je(l):@a

The simple expression (1)

file whose name is the name
stored in n§ , for storing
and retrieving records @
through 1¢.)

(If the Error Flag is up, no
old file was found that had
the name typed by student,
so display this text.)

(If the Error Flag is up,
lower it by evaluating the
expression (1) , then Jump
back to the last Accept
instruction.)

in the last instruction lowers the Error
Flag before execution Jumps back to the Accept instruction.

If the

Error Flag were allowed to remain up, the last two instructions would

Overview of the Language 19

be repeated over and over, even if the student gave a valid name on a

subsequent try.

When you use the error conditioner to force a numeric response to an
a:#n instruction, you normally will not need to lower the Error Flag
if you Jump back to the same Accept instruction:

t:How old are you?
a:#n

te:Please type a number.

je:@a

When the student correctly types a numeric response, the Error Flag is

automatically lowered.

Most of the other problems that raise the Error Flag can be traced to
incorrectly typed instructions or other errors that you clear up in the
testing process, while running the lesson from Author Mode.

Example:

d:q$(10)

t:Please type your first name.

a:q

fix:9,q$

foxe(1):9,q$

*main

The example above attempts to open a previously-stored file named after
the student. If no previous file by that name is found, a new file by “Er
fﬁ—

that name is created.

20 SuperPILOT Language Reference Manual

(Display this text.)

(Accept student’s response;
store number in number-
storage place n .)

(If Error Flag is up, student
did not type any number, so
display this text.)

(If Error Flag is up, Jump
back to last Accept.)

(Create a word-storage place
named q$, for storing
words up to 1§ characters
long.)

(Display this text.)

(Accept student’s response and - " i
store it in the word-storage ,.g .
place named q$.) @

(Try to open an existing disk ke
file whose name 1is the name ®§§:«JJ4
stored in q$, for storing ?if f
and retrieving records ¢ 61‘
through 9.) ok

(If the Error Flag is up, no xsﬁigJ;
old file was found that had a! o
the same name as the student, <\
so create and open a new T
1-record disk file with the oo A=
name stored in q$, after ¢
lowering the Error Flag.)

N 7

(Label for main lesson.) ?’;,T{f

&
o
i)

W ok

FQW_;lé

78 "'

N -y

AW W

NN\

3

e

Expression Conditioners

The expression conditioner is an optional element that performs a
calculation or makes an assertion. It causes the instruction to be
executed or skipped, depending on the result of the calculation or the
truth of the assertion. 1If the expression, when evaluated, is true
(non-zero), the instruction can be executed. If the evaluated
expression is false (zero), the instruction is skipped.

The expression conditioner is a single mathematical calculation or a
single assertion, enclosed in parentheses. Only one expression may
modify an instruction, but that expression can contain any valid
combination of sub—expressions. You will have to read the Advanced
Programming chapter to discover all the rules and all the powers of
expressions. Any expression can be used with any Apple SuperPILOT
instruction.

The instruction name, its list of modifiers, and any other conditioners
must immediately precede the expression conditioner. The next non-—
space character after the expression must be the colon. Spaces are
permitted before, after, and within the expression’s parentheses.

Any other conditioners used must precede the expression conditioner and
are tested first. If any previous conditioner causes the instruction
to be skipped, the expression is NOT EVALUATED. In such a case, when a
subsequent instruction uses the C (last—expression) conditioner, it
will not refer to the expression, but to the most recent expression
conditioner that WAS evaluated.

The Error flag is automatically lowered at any time that SuperPILOT
encounters an expression. If, during the subsequent evaluation of that
expression, SuperPILOT encounters an error, the Error flag will be
raised again. The error must be mathematical or syntactical: while
the expression (3>135) may not be true, it is not a mathematical
error, whereas (3/¢) is.

Even a simple expression such as (1) or (#) can be used to lower the
Error Flag. The existence of the expression in the instruction lowers
the Error Flag, and since the expression contains no mathematical or
syntactical error, the Flag will remain down.

Another way to think of the expression conditioner is as an assertio?
that, if true, allows the instruction to be executed. If the assertion
is false, the instruction is skipped. Here are some sample assertion

expressions:

Overview of the Language 21

Expression
(5<2)

(n>4)

(x<>2)

(a&b)
(a and b)

(a!b)
(a or b)

("p)
(not p)

((Za<4)&(x=y))

Example:

t(x>14):That’s too large.

Assertion
"5 is less than 2."

"The number now stored in the number-storage
place named n is greater than 4.,"

"The number now stored in the number-storage
place named x 1is not equal to 2."

"The number stored in number—storage place a
is not zero and the number stored in b is
also not zero."

"The number stored in number—storage place a
is not zero, or the number stored in b is
not zero, or both are not zero."

"The number stored in number-storage place p
is not non-zero." (The expression is true if
P=¢0)

"The assertion ‘the number in %a 1is less than
4’ is true and the assertion ‘the number in x

’

equals the number in y ’ is also true."

(If the assertion "the number
stored in number-storage
place named x 1s greater
than 14" is true, display
this text.)

An expression conditioner is eventually reduced to a number. If that

number is not zero,

the instruction is executed. If the number is zero,

the instruction is skipped. Here are some sample calculation

expressions:
Expression
(7)
(12-(2%6))

(q-13)

((3*a)-(4/b))

Resulting Number

7

¢

13 subtracted from the number now stored in the
number-storage place named q .

4 divided by the number in b , subtracted from
3 times the number stored in a .

22 SuperPILOT Language Reference Manual

1

—
/ /
4

p \. (ﬁ /ﬁ\

\

R

(

f

P

a2

o~ (a

o

. v,
/ \1 :; i/
. !

o
&

/
I
.

/

A

WS
A

PRUNRY

PRY

&

BT 4
RN A\

-

(

,

i

IS

N

A\

\\
Y

A\
S

AN A\ W
=

=

>

N=1

Example:

t(g+5):No, the answer is =5 . (1f the result of adding 5 to
the number stored in number-
storage place named g 1is not
zero, display this text.)

The rules for writing expressions are discussed fully in the Advanced
Programming chapter,

Example:
Note: This example uses the C (last—-expression) conditioner, which
is discussed in the section following the example.

*additionexam (Label for this section.)
t:How much is 5 plus 7 ? (Display this text.)
a:itn (Accept student’s response;

store the response’s first
number in storage—place
n .)
te:Please type a number. (If the Error Flag 1is up, no
number was typed, so
display text.)
je:Ca (If Error Flag is up, Jump
back to the last Accept
instruction executed.)
t(n=12):Yes, 12 is correct. (If the assertion '"the number
in n equals 12" is true,
display this text.)
jcisubtractionexam (1f the assertion "the number
in n equals 12" is true,
Jump to subtractionexam.)
t(n>12):No, #n 1is too large. (If the assertion "the number
in n is greater than 12"
is true, display this text,
substituting the number in
n for #n and the space
that immediately follows.)
t(n<12):No, #n is too little. (If the assertion '"the number
in n 1is less than 12" is
true, display this text,
substituting the number in
n for #n and the space
that immediately follows.)
t(%a<3):Please, try again. (If the assertion "the Answer
Count in %a 1s less than
3" is true, display text.)
je:additionexam (If the assertion "the Answer
Count in Z%a 1is less than
3" is true, Jump back to
additionexam.)

Overview of the Language 23

t:You need some review. (Third wrong answer: display
j:review text and Jump to review .)
*subtractionexam (Label for next section.)

When the two middle Type instructions are executed, SuperPILOT replaces
the symbol #n , including the first space after, with the number
stored in the number—-storage place named n . See the discussion of
the Type instruction, in the Text Instructions chapter, for details.

Last-Expression Conditioner

This conditioner is always a C (do not confuse this with the name of
the Compute instruction, which is also C). It tests whether the last
evaluated instruction-modifying expression was True (non—zero) or False
(zero). It acts as an exact substitute for the expression, except that
it need not immediately precede the colon; instead, it may appear
before modifiers and other conditioners in the same instruction.

The use of the last—expression conditioner simplifies the use of
expressions as instruction conditioners. Where the same expression
conditioner applies to several instructions in a series, the C
conditioner can be substituted for the expression in all the
instructions after the first one. Only the original expression is
actually evaluated; the result of that evaluation is then applied
automatically to the subsequent C conditioned instructions. An
instruction using the C conditioner will be executed only if the most
recently evaluated instruction-modifying expression (in a previous
instruction) was True (non-zero). See the Expressions section next in
this chapter, and the Advanced Programming chapter for more examples of
expressions.

Note: The C conditioner refers to the last expression conditioner
that was actually evaluated. If an instruction is not executed
(because of a conditioner or a previous Jump instruction, for
instance), any expression conditioner in that instruction is NOT
EVALUATED. So a subsequent C conditioner will NOT refer to that
instruction’s expression.

Example:

*state (Label for this section.)

t:Which state has the longest days? (Display this text.)

a: (Accept student’s response.)

m:Alaskalalaska (Did student type Alaska or
alaska ?)

ty:Yes, that’s right. (If Yes, display this text.)

jy:next (If Yes, Jump to next .)

m(%a<3):Washington!Idaho!Montana (If the Answer Count stored

: !Dakota!Minnesota in the number—-storage place

named 7%a 1is less than 3,
did student type any of
these words?)

24 SuperPILOT Language Reference Manual

t

=

e

———

o~

N

-

|

1

¢

7% ;
R

P

{

(NONR
RN (N

N

_[;

-

(

b
)

Uy

U U U

tyc:Good guess, but it’s (If Yes and Answer Count is

: still farther north. less than 3, display text.)

tnc:No, it’s farther north. (If No and Answer Count is
less than 3, display text.)

tc:Try again. (If Answer Count %a 1is less
than 3, display this text.)

jc:state (If Answer Count is less than

3, Jump back to state .)
t:No, Alaska has the longest days. (Third bad answer: display

text and then go on.)

*next (Label for next section.)
t:Some days the sun does not set (Display this text.)
: at all in northern Alaska.

The example above tells the student to '"try again" after the first two
wrong answers, and provides the correct answer after the third wrong
answer. Remember that %a is the name of the number-storage place
where the Apple II stores the current Answer Count. In the Match

instructions, the or symbol (!) separates multiple Match words
(see the Match instruction for details).

The Colon

Every instruction line must contain a colon. It is usually preceded by
the instruction name, list of modifiers and conditioners (if any), and
expression conditioner (if any). Most instructions ignore spaces
between the colon and the object (if there is an object), but the Type
instruction will display those spaces.

The Continuation Colon

If the colon is the first non—-space character on a line, the line is a
continuation of the previous instruction, and also continues that
instruction’s modifiers, conditioners, and expression (if any).

Note: Do not allow a blank line (by pressing RETURN twice in a row) to

Separate a continuation of the instruction from the previous portion of
that instruction.

The Lesson Text Editor automatically breaks up any instruction that
exceeds 39 characters as you type it in, and continues it (beginning
with the continuation colon) on the next line. You can continue any
instruction, or add another piece in the middle, by adding lines that
begin with continuation colons. When the Apple executes an instruction
continued on extra lines beyond the line starting with the instruction
name, it ignores the breaks and the continuation colons, treating the
instruction as 1f it were written on a single long 1line.

Only the first 25@ characters of an instruction are used when that
instruction is executed. This is about six full lines of text. (The
continuation colons are not counted in the 25@-character limit, but all
other characters are counted.) If any portion of an instruction
extends beyond the 25@—character limit, that portion of the instruction

Overview of the Language 25

is ignored. You will likely want to display more than 25@ characters
of continuous text in some of your programs, however. This can be done '
by dividing the text into separate T: instructions of less than 259
characters each. See the Text Instructions chapter for further

%

explanation.

Remark instructions can be continued indefinitely, because they are not

executed.

Example:

SHOW SOME OF THE USES
AND EFFECTS OF THE

r:THE FOLLOWING EXAMPLES
: CONTINUATION COLON.

(Remark instruction is not
executed, so it can be
continued indefinitely.)

M M

(

2P

!
)

5

(If conditioners allow this
instruction to be executed,
the words in these lines

ty2:Now is the thyme for all
good beadles to come to
the aid of their crumhornm,
and lilacs to graze on the of text will be rearranged
summer’s daze, and bats to into a solid paragraph 40
their belfries fly, come morn. characters wide on the
student’s screen. Type
treats extended text as one

f

4

S

<

m:Mercury!Venus!Earth!Ma
:rs!Jupiter!Saturn!Uranu
:s!Neptune!Pluto

g:v@,39,10,10;es0;c6;p20,2
:¢;d54¢,2¢;d54¢,2¢¢;d2¢,2¢
:9;d2¢,20;m200,40;c9;4d200,
:21;p30,30;c5;p40,40

long line,

ignoring the

continuation colons;

25¢ characters maximum.)

(Match treats extended list
as one long line, ignoring
the continuation colons;
25@¢ characters maximum.)

(Graphics treats extended list
as one long line, ignoring
the continuation colons;
25@¢ characters maximum.)

s

/

-
X

Lo

MR
-t

ey
\

{
ERE

(Sound treats an extended list
:12;12,48;2,12;8,12;12,12 as one long line, ignoring
:32,12;8,12;12,12;2,12;8, the continuation colonsy
:12;12,48 25@ characters maximum.)

s:12,12;2,12;8,48;2,12;8,

The examples above have been formatted somewhat arbitrarily, to fit on
this page with our comments. The lesson Text Editor will automatically
break your instructions as you type them, to stay within 39 character

spaces.

Y 4N\

/

-\-\

S

The Object

Not every instruction has an object, and the object is often an

optional element.

will display all such spaces.

26

It must follow the instruction’s colon.
instructions ignore spaces between the colon and the object, but Type

SuperPILOT Language Reference Manual

Most

EREEY

w7 R

v

(,,
(AN

\

X
A
L\ -

_?
Ny

7
.\.\

\

)

=\=t=t=\e=

B

——

N\==\w=r:

\

UVt

i

NN
|

N
v

>

s

The object may be text, a number, the name of a word-storage place, the
name of a number-storage place, a diskette file name, the name of a
place in the lesson to jump to, a list of more detailed commands to
carry out, control-options that set how things work in SuperPILOT,
etc., depending on the instruction.

Variables

Variables will be an essential part of virtually every SuperPILOT
lesson you write. Without them, your lessons would have to rely on
fixed routines with little variety or student interaction. So
understanding how and where variables can be used will greatly increase
your lesson-writing power.

A variable represents a place in the Apple’s memory where a number or
string of characters is stored. It is called a variable because you
can vary, or change, the numbers or words in it whenever you wish.

Variables are very useful. You give one a name, store a number or word
in it, and from then on you can use the name of that variable in place
of the number or word stored there. If you store a different value in
that variable, the new value is used from then on, everywhere that
variable’s name appears.

The names you give to variables are always one letter or one letter
followed by an integer from @ through 9. Up to 5@ different variable
names may be used in a lesson.

Several different kinds of variables may be used. Each of the
different kinds can be classified as a numeric variable or a string
variable or a system variable.

The most commonly used numeric variable stores just one number and is
called a simple numeric variable. It has a name like n , or bl ,

or x , or t3 . You can create one by storing a number in it with a
Compute instruction such as c:t3=5 or by having the program store the
user’s response in it with an Accept instruction such as a:#t3 (the
equals sign in t3=5 mwmeans, "is assigned the value." So a statement
like t3=t3+27 means, "take the current value in t3 , add 27 to it,
then assign the new resultant value to the storage location t3 .")

For some purposes, it may be handy to have a single name refer to a
contiguous sequence of number-storage places. For example, in a course
about our solar system, you might create an array of nine number-—
Storage places, one per planet, and hold within each the gravity of its
planet, relative to the earth. This is called a numeric variable
array., It has a name like y , p7 , or w2 . A subscript number

(or pair of numbers) will be attached to the name of a numeric variable
array to indicate which of the number-storage places in that set you
need at the moment. These individual elements of the array have

names such as y(3) , p(4,5) , or w2(I3) . You use a Dimension
instruction such as d:y(l8) to create a numeric-variable array and
reserve enough space for all of its elements.

Overview of the Language 27

A variable that stores a word (or any collection or string of
characters) is called a string variable. A string-variable name
always ends with a dollar sign, such as g$§ or r5$. You use a
Dimension instruction such as d:s$(3@) to create a string variable
and reserve enough space for the string with the most number of
characters you expect to store there. (In the above example, 30
characters.) It is also possible to use parts of a string variable;
these parts are called substring variables (see the Advanced
Programming chapter).

Finally, there are number-storage and word-storage places created and
used by Apple SuperPILOT itself, but accessible to you, too. These
places are called system variables. There are ten of these: 7Za

(the Answer-Count), Z%b (stores the last response), Z%x and 7%y (the
graphics cursor coordinates, %c and %r (the text cursor
coordinates), %s (stores the current relative angle), %o , 7%v , and
%Zw , used in connection with external devices, such as touch screens,
video disk players, and video -cassette recorders. You don’t usually
store things in the system variables yourself, but you can use what
Apple SuperPILOT has stored there. A description of each of the system
variables may be found in the Advanced Programming chapter. Further
uses of 7Za and 7b are explained in the discussion of the Accept
instruction in the Response Instructions chapter.

General Information

Upper- and Lowercase Letiers
Apple SuperPILOT does not care whether the letters you type in a

lesson are uppercase (capitals), lowercase, or any mixture, with the
following exceptions:

The Type instruction’s object text must be typed exactly as you
want it to be displayed on the student’s screen.

The Keep instruction’s object text must be typed exactly as you
want it to be stored in the recordkeeping file.

The Match instruction’s object text must be typed exactly as you
want it to be compared to the student’s Accepted response. See
the PRoblem and Accept instructions for details about converting
all response letters to uppercase or all to lowercase, for easier
Matching.

Remember, CTRL-Z shifts only the next letter to uppercase (all future
letters will be lowercase); CTRL-A changes all subsequent letters from
uppercase to lowercase, or vice versa. Since the actual instructions
of the lesson are seen only in the Lesson Text Editor, you may wish to
type everything in lowercase except an occasional capital letter in a
Type, Keep, or Match instruction’s object text.

28 SuperPILOT Language Reference Manual

r,xsigf?éingV\
\

-
v, < —
§a

f/f/ i
\ -

9

N

NN e

=N

NS

SO OB W

A

v,
>

%)

-

Ll

Instruction Length

The Lesson Text Editor automatically breaks up any instruction that
exceeds 39 characters as you type it and then continues it (beginning
with the continuation colon) on the next line. These breaks and
continuation colons are ignored by SuperPILOT when executing the
instruction, and the instruction is treated as if it were written on
one long line.

In the Lesson Text Editor, nothing stops you from continuing an
instruction for dozens of lines. When an instruction is executed,
however, only the first 25¢ characters of an instruction are used. Any
part of an instruction beyond the 25¢th character is simply ignored.

To display continuous text of more than 25 characters, break it up
into consecutive T: instructions of less than 25¢ characters each.
See the Text Instructions chapter for further explanation.

The Remark instruction is an exception. You may safely continue Remark
instructions as long as you wish, because they are not executed. All
other instructions are limited to 25@ characters total (a little over
six lines), not counting the continuation colons themselves, which are
ignored during execution.

Blank Lines

Blank lines, containing no instruction or continuation colon, are
acceptable between different instructions. These can help make a
lesson more readable when you look at it in the Lesson Text Editor.
However, do not put blank lines between one portion of an instruction
and a continuation colon of the same instruction.

Running a Programmed Lesson

Once you have written an Apple SuperPILOT lesson, you will want to
test it and you will want your students to use it. There are two ways
to run a programmed lesson: from Author Mode and from Lesson Mode.

Running in Author Mode

When you are testing and working on a new lesson, you will want to run
the lesson from Author Mode. In this mode, error messages are
displayed on the screen along with the offending line from your lesson.
This helps you find problems such as mistyped instructions, or numbers
that are too small or too large. Later, when the student runs the
lesson in Lesson Mode, the messages are not put on the screen. (See
the Error Messages appendix for an explanation of the various error
messages.)

To run a lesson from Author Mode, you select the Run option from the
menu of the Lesson Text Editor, and then type the name of the lesson
you wish to run. This option runs the specified lesson on the Lesson
diskette in drive 2. When the lesson ends, the system restarts itself,
and returns you to the Main Menu of Author Mode.

Overview of the Language 29

For testing, you may wish to insert a few lines at the end of the lesson
that allow you to repeat the lesson over again. For example:

(Display this text.)

(Accept your response.)

(Did you type AGAIN or
again ?7)

t:Type "again" to repeat lesson.
a:
m:AGAIN!again

jy:start

e: (No, so end the lesson.)

You may also wish to use the PRoblem instruction to select one or both
of the execution—time command options, Goto and Escape.
let you jump to known portions of your program during execution.
the section Execution-Time Commands later in this chapter.

See

Running in Lesson Mode

When your student uses the lesson, the system is started up--or
booted, to use the computer term—-in Lesson Mode, with the Lesson
diskette in drive 1. If you have a lesson called hello on the
diskette, that lesson will be run immediately. If not, a menu of the
available lessons will be presented to the student on the diskette’s
title page, and the student will be allowed to select one of the
lessons.

If you do not want the student to choose from all of the lessons on the
diskette, you can name a lesson hello and structure that lesson in
several ways. First, you could make the hello lesson simply Link to
a different lesson on the diskette. For example, this one line
instruction in a hello 1lesson:

l:butterfly

would cause the lesson called butterfly to be the first lesson the
student sees when the system is booted in Lesson Mode. Of course, you
could accomplish the same thing by saving the butterfly lesson under
the name hello when you finish writing it.

Second, you could use the hello lesson to display a menu of lessons
for the student to select from. This option can be handy in making
certain lessons on the diskette unavailable to the student (because he
or she doesn’t know their names). It can also allow you to include the
names of lessons on another diskette, if you have a multiple-drive
student system, particularly if you are using a non-bootable Resource
diskette.

The hello 1lesson has the power to turn the Apple II into a turnkey
system. With the lesson diskette in the primary drive, the student has

to know only how to turn on the computer (like turning a key in a lock)
to make a program run. The student does not have to make any lesson
selections or interact with SuperPILOT in any way. Through the lesson
you have named hello , you have complete control over what the student
does.,

30 SuperPILOT Language Reference Manual

(If Yes, Jump back to the labe,i
start , near top of lesson.)

These commands &

/<§§;ﬁ;/ﬂﬁs;/%§%§;i 0%?
[

a

=

f

-

.5

2=

.%

<=

£V

T4

-4

4

\

)
A .
e

\

'\% ,

(-

&

|

O O O T

For further information on the hello lesson, see the discussion of
the Link instruction in the Control Instructions chapter. See the
appendix Using More Disk Drives for information on multiple-drive
systems and Resource diskettes.

Before giving the new lesson to your students, you may wish to remove
any special testing aids, such as the lines shown above, which let you
repeat the lesson. You may also wish to change any PRoblem instruction
that lets you use the execution—-time commands Goto and Escape during
testing.

The error messages displayed on the screen when running a lesson from
Author Mode are not displayed in Lesson Mode. Any problem that would
cause an error message and raise the Error Flag in Author Mode raises
the Error Flag without any message in Lesson Mode. Your instructions
can use the Error conditioner to test the state of the Error Flag at
any point. This lets your lesson’s error—handling instructions take
care of correcting problems that arise in the course of a normal
"conversation" with the lesson.

Immediate Execution Mode

SuperPILOT has an Immediate Execution Mode so that you may type in
instructions directly from the keyboard and have them carried out at
once. Immediate Mode is available to you in Author Mode when the
Lesson Text Editor Menu is on the screen and also when you are running
a lesson. It is also available in Lesson Mode, under certain
conditions.

From a Running Lesson

When test-running a lesson in Author Mode, you can enter Immediate
Execution Mode by typing a CTRL-I (type I while you are holding down
the CTRL key) in response to any request for input (any Accept
instruction, except an Accept Point instruction). The immediate
prompt, a "greater—than" sign (>), will appear (assuming you have
not changed the standard ASCII character set). You may then type in
any legal SuperPILOT instruction (except a label), up to 25@ characters
long, and it will be carried out at once.

While you have Immediate Execution Mode in effect, you may examine the
current contents of any variables or open and close any files. This
gives you the power to find out what is happening at any given point in
your program. You may Use any subroutine in the program, returning to
Immediate Execution Mode when the subroutine has been executed. As
your programming skills increase, this ability to find out exactly what
you told the computer to do——as opposed to what you thought you told
the computer to do—-becomes increasingly more valuable.

You may then leave Immediate Mode in either of two ways: First, press
CTRL-I again, which will put you back in the lesson at the instruction
immediately following the Accept instruction that you used to enter
Immediate Mode. Second, type a Jump, Use, End, or Link instruction.
Jump, Use, and Link will take you to the destination you specify in the

Overview of the Language 31

object of the instruction; End will terminate the lesson and return you

to the Editor Menu (unless a subroutine is active, in which case the
subroutine will be terminated without leaving Immediate Mode).

From the Editor Menu

Immediate Mode may be useful to you even when you are not running a
lesson. You can use it to experiment with various SuperPILOT commands
and instructions. Select the Run option from the Lesson Text Editor, ‘
then type CTRL-I instead of the name of a lesson. You will be placed

in Immediate Mode, where you may use any SuperPILOT instruction except

a label, Jump, or Use. To leave Immediate Mode after you have entered
from the Lesson Text Editor Menu, type CTRL-C or e: .

By using Immediate Mode for experimentation with the SuperPILOT system,
you save yourself the time of creating new lessons for the sole purpose
of trying out various operations. You are encouraged to keep your
Apple II in Immediate Mode while reading this manual, so that you can
enter example instructions yourself, to see how they work.

From Lesson Mode

Immediate Execution Mode is also available from Lesson Mode. It can be
entered only by pressing CTRL-I at the title page, which appears when 'QSIL_LJEW
the lesson diskette is first booted and there is no lesson called ’
hello on the diskette. CTRL-C or e: returns the student to the
title page again. Immediate Mode cannot be entered from Lesson Mode
while a lesson is running, as it can from Author Mode.

Repeating Instructions

Each time an instruction is terminated in Immediate Mode (by pressing
the RETURN key), the instruction is temporarily stored in the Apple II’s
memory. When the instruction is executed and SuperPILOT is ready for
your next instruction, you can use the right-arrow key to redisplay

that instruction, character by character. For example, suppose you
enter the following instruction in Immediate Mode:

1y

R

.

MR

t:I‘'m writing a sentence.

ey
e

)y
I/

{

When you press RETURN, the characters after the colon are printed on
the screen and the > prompt appears at the beginning of the next
line. If you then press the right-arrow key repeatedly (use the REPT
key, if you like), the complete instruction will reappear, ready to be
executed again when you press RETURN.

\

You do not have to re-display all the characters, of course, and you
can add new characters in-between the old ones. So, for example, you
could press the right—arrow key until the a appeared, then type the
new characters nother , then press the right-arrow key again to reveal
the remaining old characters. The new instruction

NN

| N
vk

t:I’m writing another sentence.

"

32 SuperPILOT Language Reference Manual

Ny’

f

r" oL LT
\ : |

\

RO SN RO U

| ————\T\Tr
\

Y, -

A Wik, i, Vi, WibieRahd, W,

N

BN —aa

AT A

is ready to be executed when you press the RETURN key, and it will be
stored in the Apple II1’s memory for you to redisplay the next time, if
you wish. You’ll find this technique to be very valuable when you are
experimenting with long, complex instructions and want to re—execute
them with only minor modificationmns.

Execution-Time Commands

In addition to the Apple SuperPILOT instructions that you- program into
a lesson when you are in the Lesson Text Editor, there are two special
commands that you or your student can use when the program is running:

Goto

The Goto command is enabled by the G control option in a PRoblem
instruction. After pr:g , any Accepted response that begins with the

letters goto causes a jump to the destination following the goto .
The destination may be a label, @m (next Match instruction), or @p

(next PRoblem instruction).

@ (Escape)

The Escape command is enabled by the E control option in a PRoblem
instruction. After pr:e , any Accepted response that begins with the
symbol @ causes a jump to the subroutine labelled sysx . This is
equivalent to the Use instruction wu:sysx . You must have written a
subroutine labelled sysx into your lesson.

For details about selecting these command options, see the description
of the PRoblem instruction in the Response Instructions chapter. For

information about using the commands, see the Execution—-Time Commands
chapter.

CTRL-C

When a CTRL-C is typed in response to any Accept instruction,

the lesson is terminated and the system restarts itself. (To type
CTRL-C, type C while holding down the CTRL key.) This is a handy way
to end any lesson in either Author Mode or Lesson Mode.

CTRL

CTRL-I is used to enter Immediate Execution Mode. At any Accept
instruction during the running of a program in Author Mode, you may
type CTRL~I to leave the program and enter Immediate Mode. This will
allow you to examine or even change the contents of your variables at
any point in the program, use a subroutine, or experiment with a new
approach. When you want to return to the program, simply type another
CTRL-I, which sends you back to the statement immediately following the
Accept command where you left. (If, instead, you want to re—execute
that last Accept instruction, you can type j:@a instead of CTRL-I.)

If you are doing extensive testing of a particular type, you may find
it cumbersome to list all the variables you want to examine each time

Overview of the Language 33

you reach an Accept instruction and enter Immediate Mode. In this
case, you should consider adding a sysx routine to your program,
which could, for example, automatically tell you the value of any
variables when you reach an Accept instruction and type @ and then
RETURN . See the Execution—-Time Commands chapter for a more detailed
explanation of this option. :

You may also provide a way for students to enter Immediate Execution
Mode. First, be sure that the lesson diskette does not contain a
hello 1lesson, so the diskette’s title page will appear when the
student boots the diskette. When such a diskette is booted, Super—
PILOT will display a catalog, ask "Run which lesson?" and wait for the

lesson name to be typed. If CTRL-I is pressed instead, the student
will enter Immediate Execution Mode.

RESET

Any time the RESET key on the Apple II is pressed, the system restarts
itself and any data in the Apple II1‘s memory will be lost. (On newer
Apple IIs, you must hold down the CTRL key while pressing RESET.) To
protect the programs and data on your SuperPILOT diskettes, you should
never press the RESET key when the disk drive’s "In Use" light is.on.

34 SuperPILOT Language Reference Manual

(

I

<

Il

[
]

5

{

M

R

@ \

f

f

<

[

(8

ﬁﬁ

/

\l

1y
o

-\

/

/

£l

‘/%V7<§;iAﬂ?7ﬁ;;

»

‘%(’
Y

('

.\

— -
v

s\

N

-
A Y

7

2
O
O
£
m

35

Text Instructions

R: Remark

r:any text

The Remark instruction allows you to place remarks or comments to
yourself, or to anyone who might read your lesson in the Lesson Text
Editor, into the program text of your SuperPILOT lessons. These

comments are not executed during the running of the lesson, and are . .'W;UMH
never seen by the student. For example, if you want to leave yourself “\~__ﬁ_.ﬁ
a note about when you did the last revision of a lesson, you could .
insert the instruction: (@ MU
r:THIS IS VERSION #3, FINISHED 3/12/82 (&;;;i?ﬂmm
When you are typing a Remark instruction in the Lesson Text Editor, the ({(
Editor automatically breaks your instruction each time the line exceeds (&,
39 characters, and continues it (beginning with a continuation colon) =
on the next line. Your remark is broken only at the spaces or hyphens »~ mm
between words, and may be continued indefinitely. You may also break (VQg

the Remark line at any point, yourself, by pressing the RETURN key. If GEi;;J:Jm“
you then wish to continue the Remark, you must begin the new line with S~
an r: or a continuation colon.

You can use remarks to remind yourself how a lesson section works, or
what labels and variables are used, or what day you wrote this version
of the lesson: anything you or another author might want to know later
on, when looking at your lesson in the Lesson Text Editor or on paper.
A well-Remarked lesson is much easier to understand. This is important
if you wish to share your lessons with other authors, but it is also nr
important for you, when you wish to reread or modify your own lessons,
perhaps months after writing them.

\\‘ N\
i

I-a

\]

/

(jr

Occasional use of blank Remark lines (lines with no text after the colon
or after the continuation colon) will help to increase readability of
your lessons by letting you indicate breaks in the material. To call
attention to new sections or important remarks, you might set them off
with Remark lines that are rows of asterisks.

e

Note: You may also use blank lines with no instruction or continuation
colon on them to make a visual break between instructions, but such
blank lines must not separate portions of a continued Remark
instruction.

1

(
{

1“‘ \ :l P

.

<
R

3

-
i

36 SuperPILOT Language Reference Manual

b

(

o

P

-

A\

\§
Nz
i

B>

"

R

..‘,
»

: % i
L Lt

o

e

Y

Example:

rrhkikhkhkkkhhhkhhhkhhhrhhrkhhkksk (The first 11 lines are just

r:* LESSON AUSTRALIA * comments to the author.

r:* VERSION 3 : 23 FEB 82 * They give information that

T IIII T T T T T T T LY might be useful to know,

: but might take a while to

r:TELLS ABOUT THE ABORIGINES find by reading the entire

: OF AUSTRALIA, AND NATIVE lesson program. These lines

: ANIMALS. REQUIRES GRAPHICS of text are never seen by

: FILES "KOALA" AND "DUCKBILL," the student when the lesson

:+ AND SOUND FILE ''BOOMERANG." is running.)

: LINKS TO LESSON '"AUST-TEST." (Blank line inserted for
easier reading in Editor.)

*intro (Label for this section.)

t:Halfway around the world ... (First text student sees.)

r:SECTION ON THE KOALA BEAR (Remark identifies section.)

*koala

r:compute test score, based (Remark tells method of

: on number of guesses (%a). scoring a question.)

c:s=11-7%a (Compute score s by sub-

tracting the Answer-Count
%a from 11.)

t:You get #s points. (Display text, substituting
the score s for s
and one space .)

T: Type

t:any text or spaces, including simple numeric- or string-variable
names

When the Type instruction is executed, the text following the
instruction’s colon is displayed on the student’s screen. Variable
names, when properly identified, are replaced by their values. A Type
instruction displays its object text just as it appears in the Lesson
Text Editor except that it is reformatted to fit the screen, breaking
the displayed text at the spaces between words. After the text has
been displayed, the cursor jumps to the beginning of the next line on
the screen, unless you use the H (Hang) modifier described later in
this chapter.

In the Lesson Text Editor

When you are typing a Type instruction in the Lesson Text Editor, the
Editor automatically breaks your instruction each time the line exceeds
39 characters, and continues it (beginning with a continuation colon)
on the next line. Your text is broken only at the spaces or hyphens

Text Instructions 37

between words and may be continued indefinitely. You may also break
the Type line at any point yourself, by pressing the RETURN key. If
you then wish to continue the same Type instruction, you must begin the
new line with a continuation colon. In the Lesson Text Editor, blank
lines (with no instruction or continuation colon) must not separate
continued lines of a Type instruction.

Note: The text that appears on the student’s screen may or may not be
formatted like the text that appears in the Lesson Text Editor. All
text displayed by the Type instruction is automatically reformatted
when it is displayed on the student’s screen, according to the rules of
display formatting discussed in the next section.

When Apple SuperPILOT executes a Type instruction that occupies more
than one line in the Lesson Text Editor, it ignores all breaks and
continuation colons in the instruction, treating the instruction as if
it had been typed on one long line. Only the first 25@ characters
(about six full lines in the Lesson Text Editor) of a Type instruction
are used, not counting the continuation colons. Any part of an
instruction beyond the 25@th character is simply ignored.

If you want more than 250 characters of text to be formatted into one

paragraph, break the text into a sequence of Type instructions and use
the Hang modifier on each Type instruction until the last one whose
text belongs in that paragraph. The Hang modifier is discussed later

in this chapter.

On the Student’s Screen

If the Type instruction occupies a single line in the Lesson Text
Editor, and the displayed text fits on one line of the student’s

screen, the text appears on the screen just as you typed it in the
Lesson Text Editor. For example, these instructions:

t Hi there!
t
t

How are you today?

would cause this display on the student’s screen, when the lesson
containing the instructions is run:

Hi there!
How are you today?

Note: You can display a blank line on the screen by using a
one~line T: instruction with no text after the colon.

If the Type instruction is colon-continued onto additional lines in the
Lesson Text Editor (or whenever the text displayed by a single Type
instruction exceeds the width of the student’s screen) the text is
automatically formatted and arranged into continuous lines to make

a "paragraph" as it is put on the student’s screen. The appearance of
the text as displayed on the student’s screen may be very different

38 SuperPILOT Language Reference Manudadl

(_ﬁ A

f

+|

b

{

& (R (TR

|
dbe

5

f

f

<

/

=

-

/

f

L]

\

QZ?
I

A

@ !

.|

\

<=

Va4
el sl

—_—
N

y 4
I

Y

s

from the appearance of the Type instruction in the Lesson Text Editor.
For example, consider the following two versions of the same ditty:

r:ditty 1

t:When I was but a little boy,

: My father said to me,

: "The letter that comes after A
Is, sure, the letter B."

-

r:ditty 2

t:When I was but a little boy, My
:father said to me, '"The letter that
tcomes after A Is, sure, the letter B."

Ditty 1 was typed with breaks in the poem’s lines: the author placed a
RETURN at the end of each line and began each following line with a
colon and a space. Ditty 2, however, was typed as one continuous line:
SuperPILOT automatically put a word on a new line if it would have
extended beyond the 39th character space, supplying a continuation
colon at the beginning of the new line, but not a space. Both
versions, when run as SuperPILOT lessons, produce the same result:

B OR W

When I was but a little boy, My father
said to me, "The letter that comes after
A Is, sure, the letter B."

What happens on the student’s screen is this: the Apple II displays each
word and space of the Type instructions’ text, ignoring the breaks and
continuation colons, until it comes to the first word that won’t fit on
the current line of the screen. Then it ends the current line at the

last space, and puts the next word at the beginning of the next line.
The author’s line breaks in ditty 1 are ignored; only a new T:
instruction will instruct SuperPILOT to begin a new line.

AN

=
=

==\'\
e

If a word is so long that there is no space in an entire line on the
screen, the Apple II simply breaks the word at the end of the line. If
you have typed multiple spaces in your Type instruction’s text, they
will be displayed faithfully unless they would have been displayed at
the beginning of a line on the student’s screen. When a single Type
instruction is displaying its text, every screen line after the first
one will start with a non-space text character. For example, this
instruction:

—
—_——

A\

Q -
o~
N,
P,

t: Oh the cows fly up,
: and the flies cow down
:upontheirtinykneesandshuffleofftoBuffa
:lo

3R
e 1y

will cause this display on the student’s screen:

===t

Oh the cows fly up,
: and the flies cow
/5 downupontheirtinykneesandshuffleofftoBuf
' falo
by :
' . Text Instructions 39

\\

In this example, you can see that the spaces before the text on the

first line of the instruction are displayed faithfully on the screen.
This lets you indent the first line of a paragraph, if you wish. It
also allows you to place any amount of text in the middle of the

screen, for instance, just by sticking to one-line Type instructions.

The spaces between the last two words in the first line were also

displayed just as typed, because they happened to fall in the middle of
a screen line. The next spaces, at the start of the second line in the

Lesson Text Editor, would have fallen at the start of a new line on
the screen, so those spaces were not retained in the display. 1In the
text displayed by a single Type instruction, every screen line after
the first must begin with a non-space character.

Finally, we forgot to type a space after the word "down'" or before
"upon" (either place would do, to separate the two words), so "down"
became part of the extremely long word that followed. That word was
too long to fit on the current (second) screen line, so it was
displayed starting on the next line. When it completely filled that

line, there were no spaces at which to break, so the word itself was
broken at the end of the screen line.

The Text Window

The Type instruction always formats its object text to appear on the
screen within the currently set text window. If a line of displayed
text exceeds the width of the text window, the text is automatically

broken just before the first word that won’t entirely fit and continued

at the beginning of the next line. If the next line would be beyond
the bottom line of the text window, the text in the window is
scrolled up to accomodate the new line at the bottom, while the old
top line disappears.

The default (the way it is set unless you change it) text window is the
full screen: 4@ characters wide by 24 lines high. See the discussion of
the TS: instruction’s Viewport command for details about changing the

text window. This command lets you do graphics on one part of the
screen, while restricting text to a window on another part of the
screen. Your Type instructions will automatically reformat the

displayed text to fit in the new text window, without any work on your

part. For example, if a single Type instruction displays its object
text like this in the normal, full-screen text window:

You were roaming in the gloaming, making
loans but never owning: who could guess

that you’d be moaning when the clone at
home stopped phoning?

the text will be reformatted for you to look like this, in a narrower

text window extending from character position 1f to character position

3¢ on the screen:

40 SuperPILOT Language Reference Manudl

. ;\~1-“'
. i

v

J

~~

/

=

3

/€§;;

“733{47‘ff§ij, G

)
iF

/

| E b

.

e
By R e

78
\

/""f
bt

Vel
(

s

BN S W

N

-~

.
i

=

I

You were roaming in

the gloaming, making
loans but never

owning: who could
guess that you’d be
moaning when the
clone at home stopped
phoning?

Note: This reformatting takes place automatically, without
changing anything in your Type instruction.

Variables

Any number of string-variable names and numeric-variable names may be
placed in the object text of a Type instruction. When the instruction
is executed, SuperPILOT does not display the variable’s name on the
screen, but displays the current value of that variable instead. You
can use this feature to personalize your lessons by incorporating the
student’s name, responses, scores, and other personal or changeable
data into the displayed messages. For example, the single instruction:

t:Well, n , you now have #r right.

could produce an infinite number of different messages on the screen,
including these:

Well, Sally, you now have 173 right.
Well, George, you now have @ right.
Well, genius, you now have -7.E19 right.

The message that appears depends entirely on what the values are for
n$ and r at the time the instruction is executed.

However, you will sometimes want the variable name to appear in a Type
instruction, rather than its value. To let the Type instruction
distinguish between these two cases, a variable’s name destined for
replacement by its value must be placed in the object text according to
certain strict rules:

1. Before it can be replaced by its stored value in a Type

instruction: .

a) A string variable must be created using a Dimension instruction,
and then a Compute, Accept, or File Input instruction must store
a name, word, or other string of characters in that variable. If
a string variable is not Dimensioned, its name will be displayed
literally by a Type instruction. If it is Dimensioned, but no
character is stored, the string variable in the instruction is
ignored.

b) A simple numeric variable must be created by storing a number
in it, using a Compute or Accept instruction. If no value has
been assigned to it, no replacement will take place and the name
of the variable will appear on the screen just as you typed it.

Text Instructions 4]

c) A numeric variable array must be created using a Dimension
instruction, and then a Compute or Accept instruction must store
a number in the element to be displayed. If no value has been
assigned to an element, no replacement will take place and the
name of the variable array will appear on the screen just as you
typed it.

For example, to make the string variable f$ and the simple

numeric variable k ready for use in a Type instruction, you —

could use these instructions: ﬁw'mu
Al

d:£$(30) (Create string variable f$

with enough reserved space to L;\hv’”ﬂm

store up to 3f characters.) o
c:f$="miles per hour" (Store string miles per hour ; J
in string variable f$.) e 2
c:k=55 (Create simple numeric variable'ggsij;ﬁmm
k and store the number 55 !
in it.) k'
2. When it appears for replacement by a value in a Type instruction: X iq X
a) a string-variable name must be immediately preceded by a dollar o .
sign (for example, the variable s$ would appear as s); Qg
b) a simple numeric-variable name must be immediately preceded by a -
pound sign (for example, the variable n would appear as #n); ~—
c) variables that have parentheses as part of their names (such as 7,

numeric variable array elements, string pseudo-variables, or
substring varibles) must be enclosed entirely in new parentheses,
with the appropriate pound sign or dollar sign immediately before
the left parenthesis (for example, the numeric variable array
element x(3,2) would appear as #(x(3,2)) and the substring
variable s$(5) would appear as $(s$(5)) in the object field.
d) each variable name must be immediately followed by a space unless
the last character of the variable name is the last character in
that Type instruction. The required space after the variable name V<
is NOT displayed on the screen. If you want a space to follow the b
substituted value on the screen, the variable name should have TWO . :
spaces after it.

/
!

/

/
]

R R

VL

/

For instance, if we continue the previous example:

1

NSRS

t:The speed limit is #k f§ . (Display this text, replacing
#k and first following space
with the number now stored
in simple numeric variable
k , and f plus the first
following space with string
now in string variable f$.)

7
3

AR

This instruction, when the complete example is run, will cause this

display on the student’s screen: .
%‘? 2
The speed limit is 55 miles per hour. {f7 v
\ \
\iﬁ - AR

%,:
N

42 SuperPILOT Language Reference Manual

=

o

\

[y

SN N

!
L.

RN
Ly

o -
!.m'

S

=

»
!

| : .4-;‘

"~

| .3

The following example uses a substring variable in the object field
of a Text instruction:

t:Well, n , the fourth letter (Display this text, substituting

: in your name is $(n$(4)) . the name stored in n$ for
n and the following space,
and the fourth letter in that
name for $(n$(4)) and the
following space.)

Any variable names that you place in the Type object text, but which do
not strictly follow the rules above, will be displayed literally,
without substituting their values. For example, the instructions that
follow will display their object text exactly as it appears, without
substitution:

t:Welcome, n$! (The string—-variable name n$
is not preceded by a § .)
t:What is x +y 7? (The numeric variables x and

y are not preceded by # .)

t:I1°11 add #s(3,2) to your score. (The numeric variable-array
name s(3,2) is not enclosed

in parentheses.)
t:Another question, n? (There is no space immediately
following the string-variable

name n$.)

Expressions

In addition to variable names, you may include expressions in your Type
instructions for replacement by their value. Any combination of
elements that SuperPILOT can evaluate as a single numeric value may be
used in this way. Simply enclose the elements in parentheses and be
sure a pound sign immediately precedes it and a space immediately
follows it. For example:

t:0nly #(2@¢-x) questions left! (Display text, substituting a
number equal to 2§ minus the
current value of x for the
#(20-x) and following space.)

Note: The example above contains two spaces between the expression and
the next word; one space is required by SuperPILOT when you include an
expression for replacement, and the other space is intended to be
displayed on the screen. If we were to use an expression in a Type
instruction such as

t:You got #(1PP*r/n)% right.

and the values for r and n were, say, 8 and 20, the following would
appear on the screen:

You got 4P right.

Text Instructions 43

The percent sign, which was intended to be part of the literally
displayed text, disappeared because it immediately followed the right
parenthesis of the expression, and SuperPILOT uses that character
position in its evaluation process. If we had included a space between
the right parenthesis and the percent sign, the screen would have
displayed the following:

You got 4@% right.

Note: There is an important difference between the way SuperPILOT
handles variable names and expressions in a Type instruction. When you
use a variable name in the object text, SuperPILOT requires that a
space follow the name; if any other character appears there, the
variable’s value will not be substituted and the variable’s name will
be displayed on the screen exactly as you typed it. However, when you
use a legal expression in the object text, the expression will be

evaluated and the result will be displayed, even if the character place
following the expression is not a space. Anything you type in that

place will not appear on the screen, but there will be no effect on how
the expression is handled.

Modifiers

TH: (Type Hang) The Type instruction normally displays its object
text, and then moves the cursor to the beginning of the next line on

the screen. The cursor determines where the next character will be put
on the screen, even though the cursor will only be visible when waiting
for a response to an Accept instruction.

t:What is your name? (Display this text.)
a: (Accept student’s response.)

will result in this display, after the student responds with his name,
Mac:

What is your name?
Mac

When the Type instruction is modified by the Hang modifier, however,
the cursor remains at the first character position following the
displayed text, rather than advancing to the next line. Thus, the next
text displayed by a Type instruction, or typed in a response by the
student, will appear immediately following the text displayed by the
Hang-modified Type instruction. Here is the previous example, this
time using the Hang modifier:
th:What is your name? (Display text, leaving cursor
at the end of the text.)
a: (Accept student’s response.)

And the result, when Mac types in his name, will be:

What is your name?Mac

44 SuperPILOT Language Reference Manudal

n N 7
Jgi;Qn'E

y

SN
/. MRy

g

R s

A

T

i\;

\

y

T

4
|

(

N

|
)

4

S G (O C QRSN

To separate the question from the answer, just type a space or two

after the question mark in the Type instruction. The space will be
correctly displayed, between the question mark and the student’s
response.

What is your name? Mac

The Hang modifier is useful any time you want the student’s reply to a
question to appear on the same line with the question. You can also use
this modifier to join several Typed portions of a sentence into one,
continuous sentence, with different portions used under different
conditions. See the example at the end of this section.

A sequence of unmodified T: instructions will display its text as a
sequence of short paragraphs, each paragraph limited to a maximum of

248 characters (25@¢, including the T: 1itself). If you want a sequence
of Type instructions to format its text into one long, continuous
paragraph, use the Hang modifier on all but the last Type instruction

in the sequence. Each TH: instruction is limited to 25@ characters,
of course, but the combined text displayed by the sequence of
instructions may be much longer.

TS: (Type Specify) Form and content are said to be twin daughters of
good expression: both are important considerations in making sure your
message is understood. SuperPILOT can’t help you much with the content
of your Type instructions, but there is a wide assortment of options at
your disposal for altering the form your message takes. There are 17
options in all, and each is called by TS: plus a single letter after
the colon, specifying the option desired. Unlike other Type
instructions, TS: does not display its object text on the student’s
screen. Instead, it determines how the object text of the following
Type instructions will appear. You can change the size of the
characters you display, specify multiple spacing between lines of text,
make characters appear in color, create animated effects, divert text
to a printer, and a great deal more.

The TS: commands are covered in depth in the chapter on Special
Effects Instructions.

TX: (Execute Character Set) When the Type instruction is modified by
the eXecute modifier, and a diskette file name appears in the object
field, the character set stored in that diskette file is read into the
Apple. From then on, Type instructions and student responses use this
new character set instead of the usual one. The normal character set
is resumed when another TX: instruction is issued, this time with no
file name in the object field. The eXecute Character Set instruction
is more fully discussed in the Special Effects Instructions chapter.

Example
r: ‘THREE DIGIT ADDITION’ LESSON (Remarks for author’s reference.
r: VERSION 3: SEPT 14, 1981 Will not print in Lesson Mode.)

Text Instructions 45

d:als(20)

c:al$="Marion"

t:Now, let’s test your
: ability to add

: two numbers together.
t:

t:Complete the following:

*probl
th: 237 + 49 =

a:#n
t(n<>286):No, al , try again.

je:probl

th:Yes, al , 286 is
ts:t2

t:right.

ts:tl

th:You needed
th(x=1): only one try,
th:(x>1): #x tries,
t: Sal$.

th:That’s

th(x>2): not
th(x<>2): very

t: good.

(Reserve space for storing up
to 20 characters in string
variable al$.)

(Store the string Marion
in string variable al$.)

(Display this text, formatted
to fill the screen lines.)

(Display blank line on screen.)
(Display this line of text.)

(Label for this section.)

(Display this text, leaving the
cursor after the equals sign.)

(Accept the student’s response,
displayed on the screen after
the = , and store the first
number of the response in
simple numeric variable n .)

(If response number stored in
n is not equal to 286,

display this text: "No,
Marion, try again.'" Note
required space after al .)
(If n 1is not equal to 286
(¢ 1is the last-expression
conditioner), go back to the
label probl and execute the
following instruction again.)
(Retrieve the number of guesses
from the Answer Count variable
%a , and store it in simple
numeric variable x .)

(Sets bold face type style.)
("Yes, Marion, 286 is right.")

(Sets normal type style.)

(These eight lines will print
one of several different lines,
depending on how many guesses
the student needed:

"You needed only one try, Marion.

That’s very good."
"You needed 3 tries, Marion.
That’s not very good.")

46 SuperPILOT Language Reference Manudl

‘;1,4@m
T

~
g 4
6 1

. J /s ™ N 7

e

l’ 1

3
1

T

R

v(;/’

RO OB O O N O W

Response Instructions

47

PR: PRoblem

pr:[list of all control options selected]

The PRoblem instruction may specify any of seven different control
options which change certain aspects of lesson execution starting at
that point. All but one of these options change how the Accept
instruction handles student responses.

The other main use for PRoblem instructions is to mark the beginning of
new sections of the lesson. Branching instructions may then use these
PRoblem instructions as unlabelled destinations, whenever you want
execution to jump to the beginning of the next section.

The instruction PR: , with no object field, marks the beginning of a
new lesson section without changing any control options selected by a
previous PRoblem instruction. Because a PRoblem instruction with no
object has no effect on the control options previously set, you can
easily use this instruction anywhere in a lesson as a section marker
and unlabelled destination for branching instructions.

If the PRoblem instruction includes an object field, it must list all
of the control options that will be active in the next portion of the
lesson. Any control options not respecified are disabled: a PRoblem
instruction that selects any new option must also reselect any old
options that are to remain in effect.

The Control Options
Each of the seven control options is specified by a single letter (for
the Time option, the letter is followed by an integer). Any number of

these option specifiers may appear in the PRoblem instruction’s object
field. They may be typed in any order, with or without spaces between

them.

Option Specifier Effect on the Lesson

Lowercase L Converts all response letters to lowercase,
Uppercase U Converts all response letters to uppercase.
Spaces S Removes all spaces from responses.

Time Tn Sets a maximum time of n seconds for responses,

where n 1is an integer from 1 through 32767

(tP = default: unlimited time). If the response
has not been completed after n seconds, the
portion typed so far (or the current position of the
target of the hand controllers) is accepted anyway.

48 SuperPILOT Language Reference Manudal

=

h

A TAN AR T——ATRA /A

AVAN

AT/ N\ =

j

= A
WA \
| \

\

o

A

\

EER

Y

B

R

"y,
-,

%

»

)

b
)

<

AL

ow
Ul

£1]

Goto G Any response of the form goto destination causes a
j:destination . Lets you or the student use the

Goto execution-time command to Jump to other parts
of the lesson.

Escape E Any response beginning with @ causes a u:sysx .
Lets you or the student use the Escape execution-
time command, which Uses your subroutine labelled
SYSX .

Wipe—-labels W "Forgets" all previously established labels, from
this point forward. This lets you use the same
label names in the next section as you used in
the last section, without confusion.

To select the Goto, Lowercase, Spaces, and Time options, you could use an
instruction such as

pr:glstl@
or
pr:ltlfgs

where the 10 following the ¢t represents a ten second response time.
The order in which the options are listed is unimportant; these are
just two examples of many possible equivalent instructions.

To change the response time subsequently to 2§ seconds, without
changing the other options, you might use an instruction such as

pr:slgt2f

Response-Editing Options

The Lowercase, Uppercase, and Spaces options can be used to remove
some of the the variability between different students’ responses, for
easier Matching. Using either the L option (converts all response
letters to lowercase) or the U option (converts all response letters
to capital letters) lets you successfully Match responses whether they
are typed in uppercase, lowercase, or any mixture. Lf both the L

and the U control options are specified in one PRoblem instruction,
response letters are converted to Uppercase. The S option lets you
Match a response whether the student types it as one word or as two
words separated by a space. See the discussions of Accept and Match,
in this chapter, for more information on using these options. Also, see
the string-editing option of the Compute instruction for more ways to
edit student responses.

Response-Timing Option

You can use the Time control option to encourage rapid answers or to
prevent a student from spending excessive time on one problem. This
option specifies a maximum number of seconds for completing any Accept
instruction. If the student has not completed the response within the
specified time, the response as it exists at that moment is Accepted.

Response Instructions 49

The Time option can be used with the TIM function (see the Advanced
Programming chapter) to evaluate the speed of student responses.

The T specifier should be followed by a number in the range @ through
32767, or by the name of a simple numeric variable that currently holds
a value in that range. Only the integer portion of this number is
used, discarding any portion to the right of the decimal point. If the
specified number is less than or equal to @, no time limit is imposed.
If more than one Time control option appears in a PRoblem instruction,
only the rightmost option is used. The time option is discussed more
fully with the Accept instruction.

Execution-Time Command Options

The Goto and Escape control options let you or the student issue certain
commands when the lesson is running, in place of the usual response to
any Accept instruction. If the Goto option has been selected, an
Accepted response of the form

goto destination
causes a Jump to the specified destination (usually a label).

If the Escape option has been selected, any Accepted response that
starts with the character @ causes a u:sysx , which Uses an
author-supplied lesson section or subroutine labelled sysx . The
Control Instructions chapter discusses the Jump instruction, and the
use of subroutines with instructions Use and End.

For details about the Goto and Escape options, with examples of their
use, see the Execution-Time Commands chapter.

Wipe-Labels Option

Since labels are so handy for marking program sections and branching
locations, and since labels don’t otherwise affect the execution of
your program, it might seem that there is never a reason to remove
them, even if they are no longer useful to the program. But there are
at least two occasions when you may want to clear your program’s labels
from the Apple II’s memory.

First, the Wipe-labels option, W , can be useful when you copy a
portion of an old lesson directly into your new lesson, using the
Lesson Text Editor’s Copy-from-File command. If the old lesson portion
uses some of the same label names as your new lesson, you can avoid
having to give the duplicate labels new names by starting the inserted
portion with a pr:w instruction.

Second, you can use the Wipe-labels option if you have close to fifty

labels in your lesson, to insure that SuperPILOT will be able to find a
label specified in a Jump or Use instruction. It is wise to limit the
number of labels in your lesson to 5§ or less, whenever possible. If
you do, you will never need to use the Wipe-labels option for this

50 SuperPILOT Language Reference Manual

~
X
' omh

Lol

!

S

)

194
by

i
-

S
S
-«

(

PN Y U Y

SCURIE ORI

~

b

\

second purpose, and you will have no need for the information in the
remainder of this section.

If you must use more than 5@ labels in a lesson, however, read on. The
following discussion describes how SuperPILOT keeps track of labels in

a lesson—-—-information you will need if you are to avoid problems with
lesson execution.

SuperPILOT maintains a label table: a list of the name and location
of each label it encounters during the running of a lesson, up to a
maximum of 5§ labels. As SuperPILOT moves through your lesson’s
instructions, it stores labels in the table whenever it reaches them,
even if the labels are in sections of the lesson that SuperPILOT is
Jumping over. If a lesson portion containing a label is re—executed,
however, the label is not entered in the table again. At any given
point in the running of the lesson, the contents of the label table
will be a sequential listing of all the labels in your lesson, from the
beginning of the lesson to the furthest point in the lesson that has
been reached.

SuperPILOT consults this table first whenever it encounters a Jump or
Use instruction. It looks through the table from the most recent entry
backward to the first entry until it finds the label destination
specified by the Jump or Use instruction. Then it reads the location
of the label and goes directly to that point in the lesson. If the
specified destination is not in the table, SuperPILOT moves to the

furthest point in the lesson it has been before and begins searching
forward for the label.

This procedure allows SuperPILOT to move quickly to destinations you
specify in Jump and Use instructions, because it does not have to read
instructions one by one each time it conducts a search. However, if a
new label is encountered when the label table is full, that label will
be invisible to SuperPILOT for the remainder of the lesson. If a later
Jump or Use instruction gives that label as the intended destination,
SuperPILOT will not find it in the table and will not find it in the-
remainder of the lesson either, because the search begins at some point
already past the label’s position.

To avoid this problem in lessons containing greater than 5§ labels, you
can use the Wipe-labels option of the PRoblem instruction to erase the
contents of the label table. Simply place the pr:w instruction at
any point where the preceding labels in the lesson will never need t?
be reached again. For example, if your lesson began with a diagnostic
test to determine what later part of the lesson should be studied, you
could place a pr:w at the end of that test. The label table would be
wiped clean at that point, so that SuperPILOT could store up to 50 new
labels from the later sections. (If other PRoblem instruction options
are active at the point where you place the pr:w instruction, be sure

to respecify these options as well, or they will be cancelled.)

Once a pr:w instruction is executed, later branching instructions
will not be able to reach the labels prior to the pr:w instruction.

Response Instructions 51

But you can jump to any label in the lesson, on either side of the

pr:w instruction, BEFORE the pr:w instruction is actually executed.
You might, for instance, put conditions on the pr:w instruction so
that it is not executed until, say, the third time through a certain
section of the lesson, making it impossible to return to that section a
fourth time.

Programming Notes

A PRoblem instruction may be used as an unlabelled branch destination
for Jump, Use, and End instructions, as well as for the Goto execution-
time command (if enabled). When one of those instructions contains the
destination @p , program execution jumps to the next PRoblem
instruction. If you start each major section with a PRoblem
instruction, the goto @p execution-time command will let you or the
student jump to the next section at any Accept instruction, even if you
don’t know any specific label names. Also, branching instructions in
the lesson can easily jump to the next section without referring to a
particular label name. This lets you rearrange lesson sections

freely, without altering any branching instructions. Note that when
the PRoblem instruction is used as an unlabelled destination, you type
@p , not @pr.

Example

By using the

pPr:u

t:What color is the sky?

a:

m:BLUE

ty:Yes, on a clear day it is blue.
jy:@p

tn:Well, on a clear day it is
¢ usually blue, isn’t it?

pr:u

(Convert response letters

to uppercase.)
(Display this text.)
(Accept student’s response.)
(Did student type BLUE ?)
(If Yes, display this text.)

(If Yes, Jump to the next
PRoblem instruction.)

(1f No, display this text,
and this text.)

(More of this section.)
(Mark new section, retaining

conversion of response
letters to capitals.)

instruction, you are able to match all the correct

Following the
BLUE .

student responses: BLUE, blue, Blue, bLue, etc.
pr:u instruction, all such responses would be converted to

Note: 1In order to use PRoblem instructions as unlabelled branch
destinations, you should be consistent in starting each section with a
PRoblem instruction. You must also avoid using a PRoblem instruction
within a section following a j:@p instruction. Otherwise, the j:@p
will fail to jump to the desired PRoblem instruction at the start of
the next section.

52 SuperPILOT Language Reference Manual

] {:— -

2N

WO

(7

v

Y

B> T > VI

N SN ™ I

o

A: Accept

a: [simple numeric- and/or string-variable names)

The Accept instruction displays a small white square called the text

cursor, then waits for the student's response, except when a pr:t

instruction is in effect. The student may type up to eighty
characters. Each character in the response is displayed on the screen
as typed by the student, beginning at the location of the text cursor.
The response is broken if it reaches the right edge of the screen and
continues on the next line. After eighty characters are typed, further
typing by the student is not Accepted, and the cursor remains to the
right of the eightieth character until the RETURN key is pressed.
SuperPILOT then edits the response according to certain rules and
stores the edited response in the system variable named %b , where the
response may be compared to possible answers written in subsequent
Match instructions, or used for other purposes.

If any typed response includes a CTRL-C (type C while holding down the
CTRL key), the lesson stops. If in Lesson Mode, the lesson is
terminated, and the system restarts itself, returning to the lesson
diskette's hello lesson or to the lesson diskette's title page. This
provides a handy way for a student to end a lesson at the response to
any Accept instruction. In Author Mode, a CTRL-I will put the system
into Immediate Execution Mode, at which point you may examine the
contents of variables, or carry out any other valid Apple Super PILOT
commands.

The usual sequence of instructions includes a Type instruction that
poses a question or problem, or otherwise elicits a response, followed
by an Accept instruction that receives the student's typed response,
followed by Match instructions that determine whether or not the
student's response contains certain predicted key words. For example:

t:How much is 2 + 272 (Display this text.)

a: (Accept the student's typed
response, and store it in
system variable %b)

m: 4! four | FOUR (Did student type 4 or four
or FOUR ?)

ty:Very good. (If Yes, display this text.)

tn:No, 2 + 2 = 4 . (If No, display this text.)

The response can also be stored at the same time in various simple
numeric variables and string variables designated by the author, for
later use in the lesson. For example:

t:Please type your age. (Display this text.)

a:#q (Accept student's response,
and store the response's
first number in simple
numeric variable g .)

Response Instructions 53

Using Accept to store responses in variables is discussed later in this
section.

Response Timing

Normally, the Accept instruction will wait indefinitely for the student
to type a response. Execution of the Accept instruction resumes only
when the RETURN key is pressed. However, if the response-timing option
has been selected by a PRoblem instruction, pr:tn , the Accept
instruction waits for a maximum of n seconds. The number of seconds
n should be in the range 1 through 32767. Decimal places are ignored:
only the integer portion will be evaluated. If you assign a @ or
negative quantity to n , the response time is unlimited. If the
student has not terminated the response (usually by pressing the RETURN
key) after n seconds, execution of the lesson continues, just as if
RETURN had been pressed. In this case, the Accepted response consists
of any characters the student had typed before the allotted time ran
out, even though the student did not press the RETURN key. For
example, if you want the student to respond within five seconds, you
could use these instructions:

(Set maximum time of five
seconds for Accepting
responses.)

(Display this text.)

pr:tS

t:You have five seconds to

: tell me the sum of 5 + 8 .
. (Accept student’s answer,
waiting a maximum of
five seconds.)

(Did the student type 13 ,
THIRTEEN , or thirteen ?

(If yes, display this text,
and Jump to label prob2 .)

(If the TIM function returns

a number equal to @, the
student failed to respond

in five seconds, so display
this text.)
(1f wrong answer or out of

time, display this text.)
(Label for next section.)

m:13!THIRTEEN! thirteen
ty:Right you are! Try this one.
jy:prob2

t(tim(1)=p):I'm sorry,

: your time is up.

tn:The correct answer is 13.
+ Let’s try another problem.
*prob2

Note: 1In this example, the match instruction is placed before the
response-timing instruction. With this arrangement, the student can
forget to press RETURN or not press it in time, and the match will
still be successful, because SuperPILOT will Accept whatever had been
typed by the student before time ran out.

You can use timed responses to encourage quick answers, or to make
progress through a lesson automatic, even if no interactive responses
are typed. Use the TIM function to test whether or not the student
responded to the last Accept instruction within the set response time.
If the last Accept instruction was terminated by exceeding the time set
by pr:t , and not by the student, the TIM function will return the

54 SuperPILOT Language Reference Manudl

Vo
! J/

TN
,ﬁzﬁ /

7
-+

S SOSSSL

=§?
N
,

:

A=
A

N

SO

e

> . . T

N

e

value @#. See the discussion of the PRoblem instruction, earlier in

this chapter, for details about setting the response—timing control
option.

If the student completed the last response within the set maximum time,
or if the pr:t timing option was not selected, the TIM function
returns the number of seconds the student required to complete the last
response. You can use this information in your lessons to score the
student on speed of response, to judge the difficulty of certain
questions, or to discover which questions might be worded more clearly.
The Advanced Programming chapter describes the TIM function in greater
detail.

Response Editing

The way a response is edited by the Accept instruction depends, in

part, on the control options you set up to handle student input. These
options are set by the most recently executed PRoblem instruction that
contains any control options in its object field. If no option is given,
the student’s response is edited according to the following rules:

1. All spaces before the first nonspace character are removed.

2. Any multiple spaces (between characters or after the last
character) are compressed into single spaces. If a pr:s
option was selected, all spaces are removed.

3. If a pr:l1 or pr:u option was selected, all letters are
converted to lowercase letters, or to uppercase letters,
respectively. These options do not affect nonalphabetic
characters.

In addition, you can specify no response editing at all, by using the
eXact modifier, discussed later on. See the section Using Compute for
String Editing, in the Computation Instructions chapter, for further
response editing possibilites, which can augment those discussed here.
The Compute instruction can capitalize the first letter of a stored
string, delete or replace all examples of a character, or convert all
letters to capitals (like pr:u).

When you try to Match words in a student’s response, it is important to
know as much as possible about the probable form of that response. ,
Response editing removes some of the random variation from one student’s
response to another’s. For example, converting letters to all capitals
or to all small letters (item 3) means you don’t have to worry about
which way a student will type them.

Response Instructions 85

Without any control options set by a PRoblem instruction, an unmodified
Accept instruction will store this response:

My name is MAGUILLI
CUDDLE, so there !

as
My name is MAGUILLICUDDLE, so there !

The spaces before '"My'" have been removed entirely, the multiple spaces
between words have been reduced to one space each, and all uppercase or
lowercase letters have been left as typed.

If you had set the S (Spaces) option in a pr:s instruction, the same
response would have been stored like this:

Myname i sMAGUILLICUDDLE,sothere!

And if you had set both the S option and the U (Uppercase) option
in a pr:su instruction, the same response would have been stored like

this:
MYNAMEISMAGUILLICUDDLE,SOTHERE!

Finally, if you had used the eXact modifier with the Accept instruction
in an ax: instruction, the same response would have been stored like
this, regardless of any control options set by a PRoblem instruction:

My name is MAGUILLICUDDLE, so there !

Answer Counting

An internal Answer—Counter records how many times in a row a student
has responded to the same question. This Answer—Count is stored in the
system variable named 7Za .

Before a lesson’s first Accept instruction is encountered, the Answer-
Count system variable is set at (. At the first Accept instruction,
the Answer—-Count is set to 1. Until a new Accept instruction is
encountered, the Answer—Count is increased by 1 each time the old
Accept instruction is executed again. The Answer—Count continues to
grow until a different Accept instruction is executed, setting the

Answer—-Count back to 1.

The Answer—-Count value stored in 7%a can be used in other instructions
for counting the number of times the student has attempted to answer
the same question. Counting attempted answers can be useful in scoring
the student’s effort and in evaluating the clarity of your lesson’s
questions.

A frequent use of the Answer-Count is to let the student go on to the
next question after a specified number of unsuccessful attempts at
answering the current question or problem. This is important, as

56 SuperPILOT Language Reference Manual

i

4

B

(

i

4

=

El

i
i

/- \
s/(i&

el al

/

P
/_//@ /

i

LODN
§
—_

i

TSN

4
]

1%

3

S
AR

G
N
.
a

v’(

\

4 b

L\l S —

\\\ \‘

B}

AT

\

o\

AN \ N N\ W N Y i) i
Y

AN

S!‘

3

‘.
LY
=

b=

otherwise the student could remain stuck indefinitely at one question,

perhaps one that is ambiguously worded. Instructions whose execution
is conditional on the Answer—Count value can let your lesson respond
differently to each attempted answer. For Answer—Counts of 1 through
99, your instructions can use the Answer—Count conditiomer to test the

value of 7%a automatically. For example:

(Convert all response letters

pr:u
to capitals.)

*start (Label for this section.)

t:What is the best feeling in (Display this text.)
the world?

a: (Accept student’s response.)

m:love (Did student type 1love ?)

ty:Yes, I think so too, even (If Yes, display this text.)
though I'm only a computer.

jy:inext (If Yes, Jump to label next .)

tl:Hint: it makes you warm and (1f wrong answer #l, display
cuddly. this text.)

t2:Hint: it makes you feel (If wrong answer #2, display
wanted and secure. this text.)

t3:Well, to me, the best feeling (If wrong answer #3, display
is to love and be loved. this text.)

j3:next (If wrong answer #3, Jump to

the section labelled next .)

t:Think about it, and then try (After wrong answer #1 and #2,
again to guess what I'm display this text.)

¢ thinking of.

jrstart (Jump back to label start .)

*next (Label for next section.)

See the Overview of the Language chapter for a discussion of the Answer-—
Count conditioner. See the discussion of System Variables, in the
Advanced Programming chapter, for information on using %a in other

instructions.

Variables

After a response has been edited according to the response-editing
options described in a previous section, it is automatically stored in
the system variable %b , also called the Answer Buffer. The same string
is then assigned to any string variables whose names appear correctly

in the object field of the Accept instruction. Finally, the first
identifiable number found in the response is assigned to any simple
numeric variables whose names appear correctly in the object field.

Any number and any combination of string variables and simple numeric
variables can be assigned values by an Accept instruction. The names of
these variables can appear in any order, but they must be placed in the
object field of the Accept instruction according to certain strict

rules:

Response Instructions 57

1. Before placing its name in the object field of an Accept instruction
a string variable must be created, with space for storing strings of
the expected size, by using it in a Dimension instruction. For
example, to create the string variable s$, you could use this

instruction:

d:s$(30) (Create string variable s$,
with enough reserved space to
store up to 3§ characters.)

2. When it appears in the object field of an Accept instruction:
a) a string-variable name must be immediately preceded by a dollar
sign (for example, the variable s$ would appear as s);
b) a simple numeric-variable name must be immediately preceded by a
pound sign (for example, the variable n would appear as i#n).
c) multiple variable names may appear in any order, and they must be !
separated by spaces.

For example, when an Accept instruction uses the two variables create&a
in the previous part, it might look like this: it

a:#n s #q2 (Accept the student’s response.
Store the entire accepted,
edited response in string
variable s$§ ; store the
response’s first number in

simple numeric variable n ; ;Q}
create simple numeric variabl \gl;:“L@ﬁ
q2 and store the response’s D —

first number in it, too.) a\

3. Substring variables, string pseudo-variables, and numeric variable 4N§;’

array elements (all variables written with subscripts) are not ~IT
allowed to appear in the object field of an Accept instruction.
The response should first be stored in a string variable or simple
numeric variable whose contents can then be stored in a subscripted
variable in a Compute instruction. For example, to store a numeric
response in element 13 of a previously dimensioned numeric variable
array j , you could use these instructions:

v(/
i

(4

3

SN

a:#n (Accept the student’s response,
and store its first number in:
simple numeric variable n .)'

c:j(13)=n (Make a copy of the number now
stored in n and store it in/#A" - =
element 13 of the numeric
array j .)

\ -
L

-

v
3

v

AR

Sy
)

'4

/
'

SNEN

If the object field of an Accept instruction contains any variable name
that does not conform to these rules, an error message is given (if you
are in Author Mode), the Error Flag is raised, and any remaining
variables are not given new values.

E
b

\

;

=V
—_

(-

58 SuperPILOT Language Reference Manual

=

Vi ; \ \
v \. 1
] A =

\

- N §

@

\

b =

b

~

AN
i

If there has been no response, or the student pressed only the RETURN
key, %b and any object string variables contain the null string (no
characters). If no identifiable number is found in the response, any
simple numeric variables named in the object retain the value they had
before the Accept instruction. If no number is found in the response
and there is a numeric variable in the object field, the internal Error
Flag is raised. Other instructions can test the state of the Error Flag
automatically, by using the Error conditioner (see the Overview of the
Language chapter).

To find a number in the Answer Buffer, the Apple II scans the characters
stored in 7b , starting with the first character and looking for a
numeric digit (@ through 9). If a numeric digit is found, the

preceding character is checked to see if it is a decimal point or a
minus sign. If it is a decimal point, the character before that is
checked to see if it is a minus sign. Finally, sixteen characters
beginning with the first numeric character (minus sign, decimal point,
or digit) are scanned until the first one is found that could not be
part of this number. The numeric characters collected to that point

are then converted to a number, and that number is stored in all simple

numeric variables whose names appear in the Accept instruction’s object
field.

If more than sixteen numeric characters occur in a row, any characters
beyond the sixteenth numeric character are simply ignored. A capital or
lowercase E is included only if the next character is a numeric

digit or a + or - followed by a numeric digit. Only the first two
digits after an E are used: any further digits are ignored. A
number with many digits is rounded to six digits, and may be expressed
in scientific, E-type notation.

Here are some sample Accepted responses, and the number that would be
stored in a simple numeric variable appearing in the object field of
the Accept instruction:

Response Accepted Number Stored in Simple
by a:#n Numeric Variable n
4 score and 7 years ago, 4
Apple is No.l , 4 me. .1
I have 5,864,327 dollars 5
Retread number 13 13
Mr. Jones is 44 44
five point seven Unchanged (No number.)
123456 123456

Response Instructions 59

1234567 1.23457E06 (All characters are
evaluated; rounding
to six places.)

-1234567899123456789¢123E-23 -.123457 (All characters are
evaluated; only six
digits printed.)

12e-1234567 1.2E-11 (First two digits
after E are used.)

4e37 4,E37

4e38 Unchanged (Number too large.)

If the number exceeds the limits for real numbers, an error message is
given (in Author Mode) and the Error Flag is raised (in either mode),
and all object numeric.variables keep the same number that was stored
in them before the Accept instruction. The complete response is stored
in any string variables that appear before the first numeric variable
in the object. Any string or numeric variables that appear after the
first unaccepted numeric variable remain unchanged. Numbers must be in
the approximate ranges -3.4E38 to -1.2E-38, #, and 1.2E-38 to 3.4E38.

Modifiers

AX: (Accept Exact)
modifier to accept the student’s response exactly as it was typed, with
no editing. AX: suppresses the normal removal of leading spaces, the
compression of multiple spaces, and temporarily overrides the effect of
any S, L, or U option set by a PRoblem instruction. The unedited
response is assigned to system variable 7%b and to any object string
variables (see the previous section). All other control options, such
as the Time option and the execution-time command options, remain in
effect.

AS: (Accept Single) The Accept instruction can be modified by the
Single modifier to accept a single keystroke as a suitable response.
AS: immediately accepts the student’s first keystroke and places the
exact character typed in the Answer Buffer 7%b and in any object
variables.

The student does not press the RETURN key after typing the single
character response: it is accepted as soon as it is typed, and lesson
execution resumes. If the RETURN key is pressed as the only response,
a space character is accepted. The Escape execution-time command, if
enabled, can be used with the AS: instruction.

The AS: instruction does not generate a new line; the cursor remains
where the single keystroke left it. The next Type instruction’s text,
for instance, will begin right after the Accepted character on the
screen.

60 SuperPILOT Language Reference Manudl

f‘;‘

s

The Accept instruction can be modified by the eXact

Ty

— =T

|

!

!
<

=

[

S

/

B

/
1
4
4

/

-

/

i

g;‘ “‘

i
1

g

i
B

i

=

74 a/ Sl L
=

-~

o

-~

s

(":
[

l.

)
>

o

BSOS S M M M

5
P

o\

\.?‘
At

TN
a

ES

AP: (Accept Point) The Accept instruction can be modified by the Point
modifier to accept the x and y coordinates of a graphics screen point
selected by the hand-controller knobs, at the moment when either of the
hand-controller buttons is pushed. (AP: may also be used with other input
devices, such as touch screens.) AP: stores the coordinates in system
variables ¥%x and %y for use by other instructions. This modification

of the Accept instruction is discussed more fully in the Special Effects
Instructions chapter.

Programming Notes

l. An Accept instruction may be used as an unlabelled, relative
branch destination for Jump, Use, and End instructions. When
one of those instructions contains the destination @a ,
program execution branches back to the last Accept instruction
previously executed.

2. Any Accept instruction (but not an Accept Point instruction)
may be used as an entry into Immediate Execution Mode when the
lesson is run from Author Mode. If you type CTRL-I (type I
while holding down the CTRL key), lesson execution waits while
you use Immediate Mode to change lesson variables, try out
different approaches, etc. The following CTRL-I takes you out
of Immediate Mode and resumes execution of the lesson that was
interrupted, beginning with the instruction after the Accept
instruction you used to enter Immediate Mode.

3. You should make a practice of testing for the Error Flag after
each Accept instruction that stores the student’s answer in a
numeric variable. This is the best way, if not the only way,
to confirm that the student did type a number. If no number is
typed in response to an instruction of the form a:#n , the
value of n will remain unchanged (or remain @ if this is the
first time n has been used in the lesson), and the Error Flag
will be raised. If you use an error-handling routine at this
point, you can force the student to enter a number (like 14
instead of fourteen), so that the value of the variable
changes as intended by the student.

Example

d:n$(50);q9$(50) (Reserve space in memory for
up to fifty characters each
in string variables n$
and q$.)

t:Please type your name, and (Display this text.)

then press the RETURN key.

a:n (Accept response and store
it in string variable n$.)

c:q$=""Now please type your age." (Store this string in string

variable q$)

Response Instructions 61

t:Hi, n . q (Display text, substituting
the current values of n$
and q$ for n and q
and the following spaces.)
a:ia (Accept response; create simple
numeric variable a and
store the response’s first
number in it.)
je:error (If the Error Flag is up, no
number was typed, so Jump
to section labelled error .)
c:r=3*%a (Multiply age stored in a
by 3, and store result in
simple numeric variable r .
This is the right answer.)

*prob (Label for this section.)

c:q$="What is three times your age?" (Store this string in string
variable q$.)

t:8q$ (Display text, substituting the
value of q$ for q and
the following space.)

a:#b (Accept response; create simple
numeric variable b if this
is its first use; store the
response number in b .)

je:error (If the Error Flag is up, no
number was typed, so Jump
to section labelled error .)

t1(b=r):Right the first try! (If Answer-Count is 1 and if
b=r , display this text.)
tc(%a>l):Yes, that’s right. (If b=r (c is last-expression

conditioner) and Answer-
Count 7%a 1is greater than
1, display this text.)

7=

j(b=r) : next (1If b=r , Jump to section
] labelled next .) _Aqmn
t(%a<5) :Nope, try again. (Wrong answer: if Answer-Count "

—-——

is still less than 5, display
this text.)

je:prob (If Answer-Count %a 1is less
than 5 (¢ is last-expression
conditioner), Jump back to
label prob for another ~ gH
try.) e

t:No, 3 times #a is #r . (5th bad answer: display text, s ﬂJbHW
substituting age a for f#a N |
and first following space,) '
and right answer r for f#r

and first following space.)

¥,
-u

1

3

_——-\“

jinext (Student has had 5 wrong '
answers so Jump ahead to next Tﬁ;jm
problem.) o

rant4
o

62 SuperPILOT Language Reference Manual

=

RN T

N

\

B

- ————rery Y ="

R T—————

oy

b

ﬁgﬁ

~

.“
S
poLL

\

~

Mg
Y.

)

~ -

*error (Label for error section.)

tl:Please type a number. (If Answer-Count is 1, display
this text.)

t2:I mean a number like 7 or 23. (If Answer—-Count is 2, display
this text.)

t(%a>2):You must type a number. (If Answer-Count Za is
greater than 2, display this
text.)

t:q (Display the last prompt again,

so student will always see it
on the screen, no matter how
often an error is made.)

j:Q@a (Jump back to last Accept
instruction executed.)

*next (Label for next section.)

In the Accept instruction a:#a , where the student is typing an age,
if the student were to respond

MY AGE IS 34 YEARS AND 7 MONTHS.

the Accept instruction would store the number 34 in numeric variable a .
However, if the student responds

IN 2 DAYS I WILL BE 34 YEARS OLD

the number 2 will be stored in a .

M: Match

m:any text or controller characters

The Match instruction looks for any copy of its object text in the most
recently Accepted student response. Subsequent instructions can then
use the success of this search, or its lack of success, as a condition
for their execution, by means of the Yes and No conditioners. For
example:

pPr:iu (Convert all response letters
to capitals.)

t:What color is an orange? (Display this text.)

a: (Accept student’s response.)

m:ORANGE (Did student type ORANGE ?)

ty:That’s right, a ripe orange (If Yes, display this text.)

¢ is usually orange-colored.
tn:Well, I mean a nice, ripe orange. (If No, display this text.)

You will generally use the Match instruction to compare a student’s
response with a response or set of responses that you have supplied.
This requires you to predict fairly accurately your students’ probable
responses, both the correct ones and (often more important) the

Response Instructions 63

incorrect ones. Much of your skill and ingenuity as a programmer and
teacher will go into this work.

The Match instruction may be used with two modifiers and four special
controller characters to produce almost unlimited sets of Match
conditions. Simple match conditions are easier to write than complex
ones; but simple conditions can allow misinterpretation of responses
and thereby lead to confusion.

When you are typing a Match instruction in the Lesson Text Editor, the
Editor automatically breaks your instruction each time the line exceeds
39 characters, and continues it (beginning with a continuation colon) on
the next line. You may also break the instruction wherever you wish,

by pressing the RETURN key. If you then wish to continue the Match
instruction, you must begin the new line with a continuation colon. Be
sure you do not introduce any unwanted spaces when continuing a Match
instruction.

Even though the Editor may break your instruction in the middle of a
word, the instruction will be executed correctly. When the instruction
is executed, any breaks and continuation colons are ignored. The object
text is treated as if it were one long unbroken string.

Regardless of the number of lines the instruction occupies, only the
first 250 characters of the instruction are actually used at execution
time. The continuation colons are not counted in this total. Any
portion of the instruction beyond the 25@th character is simply
ignored.

The Match instruction scans the most recently Accepted student
response, looking for any sequence of characters that matches the text
in the Match instruction’s object field. In the simplest case, the
Match object text is a single word or number that the instruction
tries to match, character for character, with a word or number in the
last Accepted response.

/%Z?
/Q;

/i@

|
B

/

Controller Characters

To allow more complex Match conditions, any of four special controller
characters may be included in the object text. Any number and
combination of these special characters may be used, and in conjunction
with any of the modifiers. Each affects the Match in a different way:

~ S)
- ARN, A
P Y A] s A

% A percent sign is the symbol for a required beginning or end of
Match text item. For a successful Match, the student’s response
must not have a visible character in the position corresponding
to the 7% sign in the Match text item. Without the 7% sign, the
Match text NO will successfully match the responses I DON’T
KNOW , NOW? , I WILL NOT! , SNOW JOB , and NONSENSE . The
Match text 7Z%NO will still successfully match three of those
responses (NOW? , I WILL NOT! , and NONSENSE). But the Match
text 7ZNO%Z will successfully match only a response in which NO
has either a space or the beginning of the response before it,
and a space or the end of the response after it.

/

A
A

eehe—

3

7 7

g\

64 SuperPILOT Language Reference Manudl

S

P

— R

N
e 2%,

~
<1

Ve,
p

>

f
(.
A
f

e
f

fﬂ

i
¢

An asterisk is the wildcard symbol: it will successfully Match
any character the student types, and is therefore useful for
Matching response words that have small predictable spelling
errors. For example, the Match text B*C*CLE will successfully
Match these responses: BYCICLE , BICYCLE , and CRAB COCLETTE .
For a successful Match, the student’s response must contain a
character corresponding to each asterisk in the Match text item,
but any character at all will Match. Any number of * symbols at
the end of a Match text item are ignored.

! An exclamation point is the or symbol. If an ! appears
between two Match text items, a successful Match will occur if
either item appears anywhere in the student’s response. The Match
instruction m:APPLE!PEAR!PLUM!ORANGE will successfully match
the responses CRABAPPLE , SPEARMINT , PLUM CRAZY , ORANGES ARE
TERRIBLE , and MY FAVORITE FRUITS ARE APPLES AND BANANAS .

& An ampersand is the and symbol. If an & appears between two
Match text items, a successful Match will occur only if both
items appear in the response, and IN THE SAME ORDER as they
appeared in the Match instruction. The Match instruction
M:WAY&DOWN&RIVER will match the responses WAY DOWN UPON THE
SWANEE RIVER , and SWAYING THE LANDOWNER’S DRIVER , but not I
WENT DOWN THE RIVER A WAYS .

To search for more than one Match item in a response, when you don’t
know the order in which the student will type those items, you must use
a series of Match instructions. You can easily make the execution of
each Match in the series conditional upon the success of the previous
Match instructions by using the Y or N conditioners. Match
instructions can also use the Jump modifier, discussed later in this
section, to jump quickly through a set of Match instructions looking for
the one that applies to the response.

Editing of Match Text and Responses

Before the Match instruction’s object text is actually compared to the
student’s response, all leading spaces are removed from each Match text
item. All the remaining Match text, including any spaces between words,
is used exactly as you typed it.

Remember that the Accepted response has also been edited (unless the
eXact modifier was used with Accept to suppress all input editing). In

general, the Accept instruction removes all leading spaces from the
response, and compresses all multiple spaces into single spaces. Any
input control options selected by a PRoblem instruction may cause
further response editing. In particular, be aware of the U option
(converts all letters in the response to capitals), the L option
(converts all letters to lowercase), and the S option (removes all

spaces from the response).

The way you type your Match instruction object text must correspond to
the way responses are edited, according to the various defaults and
PRoblem instruction options. See the discussions of the Accept

Response Instructions 65

instruction and the PRoblem instruction in this chapter. The effect of
these options on your Match instructions is discussed further in the
Programming Notes section below.

Modifiers

Any of the special controller characters
any of these modifiers in the same Match
sensible combination of modifiers may be

may be used in conjunction with
instruction. Also, any
used on any instruction.

MS: (Match Spell) You can use Spell to modify the Match instruction
to allow a successful Match when up to one character of the student’s
response differs from the corresponding character in the Match item.
multiple Match items are specified, each corresponding response is
allowed one wrong character. This modification lets you successfully
Match the student’s response, even though the response contains a minor
misspelling. For example, the instruction ms:FIBBER will successfully
match the responses THREE FIBBERS , I LIKE FILBERTS , A GIBBERING
IDIOT , K9FIB4ER12 , and HIFI BERRIES . You can augment the action of
this modifier, which also allows one character to be wrong anywhere in
the response word, by using the * controller character, which allows
another wrong character at a specific place in the response word.

If

MJ: (Match Jump) The Match instruction can be modified by Jump, so that
if the Match fails, the program will branch automatically to the next
Match instruction. The instruction mj: is the same as the instruction
m: followed by the instruction jn:@m . Using the mj: instruction can
simplify a series of consecutive Match instructions dealing with a single
response; execution will simply "drop through" the unsuccessful Match
instructions until it stops at the one that succeeds in Matching the
response., For example:

(Convert all response letters
to capitals.)
(Display this text.)

pr:u

t:Tell me your favorite color, and
: I’11 tell you what I think of.
a: (Accept student’s response.)
mj:RED (Did student type RED ? TIf
No, Jump to next Match.)
(Yes, so display this text.)
(Jump to section part2 ,)
(Did student type BLUE ?
No, Jump to next Match.)
(Yes, so display this text.)
(Jump to section part2 .)
(Did student type GREEN ?
No, Jump to next Match.)
(Yes, so display this text.)

t:Roses, cherry pies, sunburn.
jipart2

mj:BLUE If
t:Blueberry pie, distant mountains.
j:part2

mj:GREEN If

t:Green fields, spinach, waves.

j:part2 (Jump to section part2 .)
cese and so on, through the colors
m:VIOLET (Did student type VIOLET ?)

ty:Twilight, deep water, bruises. (If Yes, display this text.)

66 SuperPILOT Language Reference Manual

\

b

o

o
i
5.

R OHh TR D

tn:Sorry, I don’t know that color. (If No, none of the Matches

was successful, so display
this text.)

*part2 (Label for section part2 .)

The example at the end of this section demonstrates the use of the MJ:
instruction in more detail.

Programming Notes

A Match instruction may be used as an unlabelled relative branch
destination for Jump, Use, and End instructions, as well as by the Goto
execution-time command (if enabled). When one of those instructions
contains the destination @m , program execution jumps to the next
Match instruction.

PR: A letter in the Match instruction’s object text will not
successfully Match a corresponding letter in the student’s Accepted
response unless both letters are uppercase (capitals) or both are
lowercase. Unless you know that all student responses will be typed
entirely in uppercase letters or entirely in lowercase letters, you
will often wish to convert all response letters to one case or the
other. To do this, use the PRoblem instruction with the U control
option (which converts all response letters to uppercase) or with the
L option (which converts all response letters to lowercase).

Example

Cohhkkkhkkhkhrhthhrhthrrits (Comments to author.)

* SOLAR SYSTEM LESSON: *
* VISITING THE PLANETS *

* REVISION 4: 5/29/82 *
R S S L LSS T LT

e ss o0 oo

Pr:u (Convert all response letters
to capitals.)

t:How many known planets are there (Display this text.)

! in our solar system?

a: (Accept student’s response.)

m:7%97%! ZNINEZ (Did student type 9 or
NINE ?)

tn:No, try again. (If No, display this text.)

jn:@a (If No, go back to last Accept.)

t:Good. Now, try to name the (Right answer: display these

¢ nine planets in order, starting three lines of text.)

: with the one closest to the sun.

a: (Accept student’s response.)

ms :MERCURY&VENUS& EARTH&MARS&JUPI (Did student type all nine

: TER& SATURN& URANUS&NEPTUNE&PLUTO words in this order, allowing
for a wrong letter in each
word?)

ty:Very good! (If Yes, display this text.)

jy:visit (If Yes, Jump to label wvisit

Response Instructions 67

t(%a<3):No, try it again. (Wrong answer: if Answer—Count
is less than 3, display text

jc:@a and Jump back to last Accept.)

t:No, the planets are Mercury, (Third wrong answer: display

: Venus, Earth, Mars, Jupiter this text, and go on.)

¢ Saturn, Uranus, Neptune, and Pluto.

*vyisit (Label for this section.)

t:Which one of the planets (Display this text.,)

: would you like to visit?

a: (Accept student’s response.)

mj:NO (Did student type NO ? If
not, Jump to next Match.)

t:Come on, it’s vacation time. (Yes, so display this text,

jevisit and Jump back to visit .)

mj:M*¥RC*RY (Did student type MERCURY ,

allowing misspelling of
letters 2 and 5? If not,
Jump to the next Match.)

t:Well, Mercury is a warm place (Yes, so display these lines

: to visit, if you are on the of text...

: side facing the sun. You see...

jinext ...and Jump to label next .)

mj:V*N*S (Did student type VENUS
allowing misspelling of
letters 2 and 4? If not,
Jump to next Match.)

t:If you like sunny days, Venus (Yes, so display

will be a disappointment. It is this text...

always cloudy on Venus, although...

b

jinext +«.and Jump to label next .)

e (And so on, trying to Match

EARTH, MARS, JUPITER, SATURN,

cee URANUS, and NEPTUNE.)

m:PLAXT* (Did student type PLUTO ,
allowing misspelling of
letters 3 and 5?)

tn:That’s not one of the planets. (If No, none of the Matches

: Try again. was successful, so display
this text.)

jn:visit (If No, Jump back to visit .)

t:Pluto is a very cold place (Yes, so display

to visit, probably the coldest this text...

you could go in our solar system.
Here’s why....

eee ...and go on to next .)

*next (Label for next section.)

68 SuperPILOT Language Reference Manual

==

A \ﬂ\\ \\ A~

o

1=\j

A=Y

A\

-1 - =R
(RN .
h ¥
5 K
i

A
\
Spota N
1 .

—

~

.
',
T
1esi

\
e

~

Iz

~

17

‘..L_l

Note that the instruction mj:NO will match any of the following
responses successfully: NO PLANET , NONE OF THEM , NOT MERCURY , I
DON‘T KNOW , and TO JUPITER, RIGHT NOW! . You could make this Match

more selective by using the beginning-or-end-of-word controller
character 7% in the instruction mj:%NO . The instruction mj:M*RC*RY

will match any of these responses successfully: THE PLANET MERCURY ,
FIRST PLANET:MARCERY , and 1I’LL HAVE RUM,RC&RYE .

Response Instructions 69

70

SuperPILOT Language Reference Manual

~\ -\
TNy N
Y 2

Vv ‘}{ =g
k

7
(

I
B
1

_Jf

e

By
T

71

Control Instructions

Control Instructions

BEDCV V/M/WM/WW/W@V%

J: Jump

j:label or unlabelled destination

The Jump instruction changes the sequence of execution in a lesson by
branching to the label or to the unlabelled instruction specified in

the object field. A label used as a destination is typed without any
preceding asterisk. For example, to Jump to the label review , this
instruction could be used:

jireview (Jumps to label review .)

If the specified label is not found in your lesson, an error message is
given (in Author Mode) and the Error Flag is raised (in both Author
Mode and Lesson Mode). Execution then continues at the next
instruction.

You should be careful not to use the same label more than once in your
lesson (remember, if the first six characters of two labels are the
same, SuperPILOT will consider them to be identical). If SuperPILOT
encounters a label that is identical to an earlier one, the earlier one
will become invisible to SuperPILOT: all future Jumps that specify
that label name will proceed to the most recent occurence of the label
that SuperPILOT has encountered. For further insights on how Super-
PILOT keeps track of label destinations, see the discussion of the
Wipe-labels option of the PRoblem instruction in the previous chapter.

Unlabelled Destinations

The Jump instruction can use the Accept, Match, and PRoblem instructions
as destinations for a Jump, even though these destinations are not
preceded by any explicit label:

j:@a (Jumps back to the last Accept
instruction executed.)

j:Cm (Jumps ahead to the next Match
instruction.)

j:@p (Jumps ahead to the next PRoblem

instruction.)

These Jump instructions could use explicit labels as destinations,

instead of @a , @m , and @p . However, there is a tradeoff to
consider. For greater lesson speed, more efficient use of labels, and
increased modularity of your programs, use the unlabelled destinations.
For greater clarity and readability, however, use explicit labels.

Programming Notes

Like all Apple SuperPILOT instructions, the Jump instruction can be
combined with conditioners and expressions in many ways, giving you a
large degree of control over the lesson. For example:

72 SuperPILOT Language Reference Manudl

/ﬂ jy:@p (Jumps to next PRoblem if the
last Match was successful.)

. jn:start (Jumps to label start if the
last Match was not successful.)
— j3:review (Jumps to label review if the
Answer Count is 3.)
i/jﬁm je:errorhandler (Jumps to label errorhandler if
[- the Error Flag is raised.)
— j(n>13):Cm (Jumps to the next Match if the
assertion that "the number now
| /,ﬁg stored in n 1is greater than
[:;,»v 13" is a True assertion.)
- je:Ca (Jumps to the last Accept if the
last execution-modifying
»@ expression (in this case, the
: G expression n>13) was True.)
3 See the Overview of the Language chapter for more details about using
! ﬂ@ conditioners, combinations of conditioners, and expressions. See the
| Execution-Time Commands chapter for information about the Goto command,
which a student can use to cause a Jump while a lesson is running.
1 A Example
1 @ pr:u (Mark new section; convert all
i/ (e response letters to capitals.)
|
] , *start (Label for this section.)
: ‘é@ t:Guess my number, 1 to 99. (Display this text.)
A 4 a:in (Accept response; store number
in numeric variable n .)
‘ ' je:errorh (If Error Flag is up, no number
| LA was typed, so Jump to the
@ section labelled errorhandler .
Writing only six characters of
1 %% a twelve-character label is
A £ not very clear, but legal: only
ﬂ’ the first six characters are
significant.)
ﬂ/ %ﬁ j(n<1!'n>99):errorhandler (1f number typed is less than
a 1 or greater than 99, Jump
ﬂ’ to the label errorhandler o)
, m:57 (Did student type 57 ?)
i ty:You got it! (If Yes, display this text.)
ﬂ a jy:@p (If Yes, Jump ahead to the
ﬁ next PRoblem instruction.)
, t(n>57):No, that”s too large. (If n 1s greater than 57,
=3 display this text.)
o t(n<57):No, that”s too small. (If n 1is less than 57,
display this text.)
' t(%a<2@):Try again. (If Answer Count %a 1is less

than 2@, display this text.)

13

= Control Instructions 73

je:start

t:Too bad.
j:@p

My number was 57.

*errorhandler

t:Please type a number,
: from 1 through 99.
j:@a

pr:

(If Answer Count Za 1is less

than 20, Jump back to
(2f0th guess, so display text,
and Jump to next PRoblem.)

(Label for error routine.)
(Display this text.)

(Jump back to last Accept.)

(Mark next section; continue

start .)\‘*~“’

to convert response letters
to capitals.)

Note: The Match instruction m:57 was included to illustrate use of
the Jump instruction with the Yes conditioner. You would not normally
test a student”s numeric response with a Match instruction. M:57 will
successfully Match responses such as 57 , 2.3571 , or 57.98 . A
better way to test this response would be to use these lines:

t(n=57):You got it! (1f response stored in n is
57, display this text.)
(If response stored in n 1is

57, Jump ahead to next pr:

je:@p

U: Use

u:label or unlabelled destination

The Use instruction, like Jump, changes the sequence of execution in
a lesson by branching to the label or to the unlabelled instruction
specified in the object field. Unlike Jump, however, the Use
instruction "remembers” where the branching operation originated, and
can return to that spot later, when an End instruction is encountered.

Ordinarily, your lessons employ the Use instruction to execute a program
subsection or subroutine. A subroutine is any program section that is
executed after a Use instruction, up to the corresponding End
instruction that terminates that section. Understanding the use of
subroutines requires knowledge of two instructions: the Use instruction
being discussed here, and the End instruction discussed in the next
section of this chapter.

Usually, a subroutine starts with an identifying label and terminates

with an End instruction. For example, a subroutine to calculate scores
might look like this:

74 SuperPILOT Language Reference Manual

~=
/\m

/4
£\ -%

/

)
ER
‘E

Y
BN

74

vl ey
1 .'l .

N

™
i

‘|

il

:

e T

DE

*score (Label for subroutine score .)

c:p=5-%a (Compute number of points p by
subtracting Answer Count Za
from 5.)

t:You received #p points on (Display this text, substituting

: this problem. value of variable p for ip
and one space.)

e: (End this subroutine.)

Each time you want to call this subroutine in your lesson, just insert

the Use instruction with your subroutine”s label in the object field.
Your lesson would execute the subroutine labelled score , in the
example above, each time it encountered this instruction:

u:score (Jump to subroutine score
and return after next e: .)

Note: A label used as a destination is typed without any preceding
asterisk.

When the wu: instruction is executed, program execution branches to the
subroutine with the specified label. At the subroutine”s End, program
execution returns to the instruction following the wu: that called the
subroutine.

If the same labelled program section is encountered without being
called by a Use instruction, it is not considered a subroutine, and
its End instruction will have a very different effect (see the
discussion of the End instruction).

If the specified label is not found in your lesson, an error message is
given (in Author Mode) and the Error Flag is raised (in both Author Mode
and Lesson Mode); then lesson execution continues at the instruction
following the Use instruction. However, SuperPILOT still “remembers”
where the bad u: instruction is, and the next End instruction may
cause lesson execution to return to the instruction following the bad

u: instruction.

You should be careful not to use the same label more than once in your
lesson (remember, if the first six characters of two labels are the
same, SuperPILOT will consider them to be identical). If SuperPILOT

encounters a label that is identical to an earlier one, the earlier one
will become invisible to SuperPILOT: all future Use instructioms that
specify that label name will proceed to the most recent occurence of
the label that SuperPILOT has encountered. For further insights on how
SuperPILOT keeps track of label destinations, see the discussion of the
Wipe-labels option of the PRoblem instruction in the previous chapter.

Unlabelled Destinations

While the Use instruction normally branches to a labelled subroutine,
it can also use the Accept, Match, and PRoblem instructions as
destinations, even though these destinations are not preceded by any

Control Instructions 75

explicit label. The form of such an instruction is the same as for the

Jump instruction, discussed in the previous section: u:@ , u:Cm ,
u:@p .

In general, however, explicitly labelled subroutines are more
appropriate, as they can then be freely Used from any part of the
lesson. Using an unlabelled destination in the object of a Use
instruction can cause you to lose control over the sequence of
instruction execution. Use is effective for calling specific
subroutines that begin with a label and end with an End instruction;
for other program branching, such as to unlabelled destinations, Jump
is generally a much.safer choice.

Programming Notes

Using subroutines makes your programs simpler, more efficient, and
easier to understand, correct, or modify. Once you have written a
useful feature as a subroutine, that feature can be used throughout
your lesson and is easily transferred to other lessons, saving you
much valuable programming time.

The two instructions Use and End together define a subroutine. Read
the next section in this chapter for more details about subroutines and
the End instruction. See the Execution-Time Commands chapter for
information about the Escape command, which you can use to cause a

u:sysx while a lesson is running.

Note: You can Use a subroutine from Immediate Mode. If you enter
Immediate Mode from an Accept instruction in a running lesson, you
can type u:destination , substituting the name of a subroutine in
the lesson for the word destination . The subroutine will then be
executed, and you will be returned to Immediate Mode when the last e:
instruction is executed.

For example, suppose you have written a lesson to evaluate student
career interests. It begins with a number of questions for the student
to answer, then a subroutine called evaluate uses the collected data
to display a career profile to the student. To test this subroutine,
you would normally have to run the program many times from start to
finish, each time giving slightly different answers to the questions.
But a faster method of testing different outcomes would be to enter
Immediate Mode at an Accept instruction point, use Compute instructions
to enter sample data, and then type

utevaluate

The subroutine will be run in its entirety without taking you out of
Immediate Mode. When it ends, you can use another Compute instruction
to change the sample data a little (or a lot), then call the subroutine
again.

A comprehensive example, making use of both the Use instruction and the
End instruction, follows the section on the End instruction.

76 SuperPILOT Language Reference Manudl

DO

i —

\

W

Y

N
%

E: End

e:[label or unlabelled destination]

The End instruction terminates the most recently called active
subroutine if any subroutine is being executed. If no subroutine
(reached by the Use instruction) is currently being executed, an End
instruction ALWAYS terminates the lesson (or Immediate Execution Mode),
no matter what appears in the End instruction”s object field.

(Terminate the lesson-—or
Immediate Execution Mode-—-
if there is no currently
active subroutine.)

e:

If any subroutine (reached by the Use instruction) is active, an e:

instruction terminates the active subroutine that was most recently
called. Usually, a subroutine starts with an identifying label, and
terminates with an End instruction. For example, a subroutine to

handle an error caused by the student typing a non—-number response might

look 1like this:

(Label for subroutine error .)
(Lower Error Flag by evaluating
the expression (1) , then

display this text.)

(End subroutine by branching to
instruction after wu:error
that called this subroutine.)

*error
t(l):You must type a number.

lesson execution branches to the instruction

If the e: has no object,
In the same circumstance, an é&:

following the last wu: 1instruction.
with an object also terminates the subroutine, but branches instead to

the specified label or unlabelled destination.

(End subroutine and branch to

e:prob3
the label prob3 .)
below, for a way of

(See the discussion of unlabelled destinations,
above example.)

handling error subroutines that improves on the
Once a Use instruction calls a subroutine, that subroutine is
considered to be active until a corresponding End instruction is
encountered. If subroutines are nested (one subroutine calls
another subroutine, etc.), any End instruction terminates the
recently called subroutine. The earlier subroutine remains active
until there has been exactly one End for each Use instruction.

most

You can nest subroutines up to ten levels deep. If, at any time during

execution, the program has encountered eleven Use instructions
unmatched by End instructions, it prints an error message (in Author

Control Instructions 77

Mode) and raises the Error Flag (in both Author Mode and Lesson Mode).

Lesson execution then resumes at the instruction following the illegal
Use instruction.

If the label specified by an End instruction is not found, the End
instruction is treated as an e: instruction with no object field.
An error message is given (in Author Mode), the Error Flag is raised

(in Author Mode and Lesson Mode), and lesson execution continues at
the instruction following the last Use instruction.

Unlabelled Destinations

The End instruction is usually used with no object, or with a specific
label as the object destination. However, it can also use the Accept,
Match, and PRoblem instructions as destinations, even though these
destinations are not preceded by any explicit label:

e:@a (Terminate the lesson, or terminate the
most recently called subroutine by
branching back to the last a:
instruction.)

e:Cm (Terminate the lesson, or terminate the
most recently called subroutine by
branching to first m: instruction
after the u: that called that
subroutine.)

e:@p (Terminate the lesson, or terminate the
most recently called subroutine by
branching to first pr: instruction

after the u: that called that
subroutine.)

Using the last Accept instruction as an unlabelled destination is a
common practice, especially with error subroutines. The advantage of
this format is that the student is allowed to respond to the same
Accept instruction again. For example, consider the following
subroutine:

*error

t:You must use the number keys to
: type a number, like 12 or 173.
t: (Display a blank line.)

(Label for this subroutine.)
(Display this text.)

t:q (Display the contents of
string variable q$.)
e:@a (Terminate this subroutine

and branch back to the last
a: instruction executed.)

This format allows the student to make a mistake, get a helpful comment
from the error subroutine, and then answer the same question again, at
the same Accept point in the lesson. Notice that the contents of a

string variable, q$, are displayed by a Type instruction just before

78 SuperPILOT Language Reference Manudl

VV'
Y ‘
. |

e

3

3

J

/

&

£

;;‘ _

/(-
/ w
/

NG

—
- N

~
3
=

' 4

1

o

N7
=
L

é ‘

)
(-

\
\

O O I R Y

S

Al

.,
d

SO S

~

e

A

N\
-

the subroutine is terminated. This variable could be used to store the

question being asked at each point in the lesson where this subroutine
might be called. This technique avoids the situation where repeated
failures by the student could cause the original question to be
gradually scrolled off the screen.

The above End instructions could use explicit labels as destinations,
instead of @a , @m , and @p . Both methods have their advantages.
For greater program modularity and more efficient use of labels, use
these unlabelled destinations. For greater clarity and program
readability, however, use explicit labels.

Programming Notes
When an End instruction is encountered at any point in your program,
one of two things may occur:

1. If the number of End”s executed (including this one) exceeds
the number of Use”s executed, the lesson is terminated.

2. If the number of Use”s executed equals or exceeds the number of
End”s executed (including this one), the most recently called
active subroutine is terminated, and lesson execution continues.

A subroutine is any program section that is executed after a Use
instruction, up to the corresponding End instruction that returns
execution of the lesson back to the point of the Use instruction. If
this same program section is encountered without being called by a Use
instruction, it is not considered a subroutine, and its End instruction
may terminate some other active subroutine or end the entire lesson.

It is therefore wise to place your subroutines at the end of the

lesson and to have a definite end point before your lesson gets to the"
subroutines. Otherwise, program execution may accidentally "fall into
the subroutines, with unexpected results.

If you want to end your lesson at a certain point where a subroutine
may not have been Ended, you might wish to use this ending:

*end (Label for end section.)

erend (Ends all active
subroutines by branching

to label end again
and again until no active

subroutines are left, at
which point the lesson

terminates.)

Control Instructions 79

Example

This example is for both Use and End Instructions

riRkEkdhkkkkhhhkhhkkkkhhkkkkhkihkk
: * ADDITION LESSON--LEVEL III *

: % LAST REVISION--4/8/82 *
: * *
: * F(IND "REMARK" TO ADD *
s * NEW PROBLEM SECTIONS. :
+ %

: % THE SUBROUTINES IN THIS *#*
: * LESSON ARE: ANSWER, TEST, *
. % *

SCORE, AND ERROR.
s kkkkkAkAkhkhkhkkhkhkkhkkrkkhkrhrhhk

pr:u

d:a$(50)

t:To end this lesson, type "STOP"
t:in place of any response.

t:

t:What is your name?

a:a

pr:

c:x=23.5
c:y=57.8
u:test

pr:

u:score

c:x=12.97
c:y=3.1415
u:test

pr:
u:score
c:x=327.9

c:y=48.88
u:itest

(Remarks to author.)

(Convert all response letters
to capitals.)

(Reserve space in memory for
up to 5@ characters in
string variable a$.)

(Display this text,

(Display this text,

(Display this blank line,

(Display this text.)

(Accept student”s response;
store it in string variable

as .)

(Mark start of this section,
without changing options.)
(Store value in variable x .)
(Store value in variable vy .)
(Branch to subroutine test ,

and return after next e: .)

(Mark start of this section,
without changing options.)
(Branch to subroutine score ,

and return after next e: .)

(Store value in variable x .)
(Store value in variable y .)
(Branch to subroutine test ,

and return after next e: .)

(Mark start of this section,
without changing options.)
(Branch to subroutine score ,

and return after next e: .)
(Store value in variable x .)
(Store value in variable vy .)
(Branch to subroutine test ,
and return after next e: .)

SuperPILOT Language Reference Manual

//4@ //

/s

=
7 Laead

/
=
‘.., -

3

..‘
’rﬁf?\
/ radad

_—
3
i

- |

-

6\

|

==

IR RN

pr:

u:

r:

score

dhkhkkhkhkdhkhkhkkhhhhhkhkhkkhhkhkhkhhhhkhkk

* PLACE NEW PROBLEM SECTIONS *

* JUST BEFORE THIS REMARK. *
hhkkkkhkkkhkhkhhkhhhkhhhhhkhkhkhkhkk

*end

e:

end

*test

c:

t:

u:

z=x+y

OK, a , what is #x + #y ?

answer

ueierror

t(n=z):That”s right.

ec:@p

t4:No, the answer is #z .

e4:@p

t:
je

No, try again.
test

*answer

(Mark start of this section,
without changing options.)

(Branch to subroutine score ,
and return after next e: .)

(Remarks to author.)

(Label for final section.)
(Since program did not branch
here from a u: , this e:
ends the lesson. The label
just gives extra insurance

that the program will end
even if some subroutine is
still active.)

(Label for subroutine test .)
(Compute sum of x and y ,
and store result in z .)

(Display text, substituting
student”s name for a
and one space, and x and
y values for f#x and #y
and following spaces.)

(Branch to subroutine answer
and return after next e: .)

(If the Error Flag is raised,
branch to subroutine error
and return after next e: .)

(If student”s answer n
equals correct sum 2z ,
display text.)

(If same condition n=z is
true, end subroutine by
branching to first pr:
after u:test that called
this subroutine.)

(Wrong answer: if the Answer
Count is 4, display this
text, substituting value of
z for #z and one space.)

(If Answer Count is 4, end
subroutine by branching to
first pr: instruction
after u:test that called
this subroutine.)

(Display this text.)

(Jump back to label test .)

(Label for subroutine.)

Control Instructions

81

a:#n

m:STOP !HALT !QUIT!END

ey:end

jeterror

*error
t:You must type a number.
u:answer

je:error

e:

*score
c:p=5-Z%a

:s3=s3+p
:You received #p points on

this problem. Your total
score so far is #s3 .

Note:
main portion of the program and the Accep

(Accept student response;
store in simple numeric

variable n .)
(Did student type STOP or
HALT or QUIT or END ?)

(If last Match was successful,
end this subroutine by
branching to label end .)

(If Error Flag is up, no
number was typed, so branch
to subroutine error .)

(End subroutine by branching
to the instruction after
utanswer that called this
subroutine.)

(Label for subroutine.)

(Display this text.)

(Branch to subroutine answer
and return after next e .)

(If Error Flag raised again,
Jump back to label error

(End subroutine by branching
to the instruction after
u:error that called this
subroutine.)

)

(Label for subroutine.)
(Compute number of points p
by subtracting Answer Count

%a from 5.)
(Add p points to total
score s3 .)

(Display text, substituting
value of variable p for
#p and one space and value
of variable s3 for #s3
and one space.)

(End subroutine by branching
to the instruction after
u:score that called this
subroutine.)

When the Type instruction asking for a response occurs in the

t instruction occurs in a

subroutine, there may be a slight delay before the Apple II is ready to

start receiving the student”s response.
cause a problem, but if it does, you can
instruction, so the student will still be
is finding the subroutine:

t:0K, a , here”s another problem:
: Please type the answer to #x + #y

82

Normally, this delay will not
increase the length of the t:
reading it while the Apple II

SuperPILOT Language Reference Manual

bl

/*
/

/

(i s

By

Ve

._\

y&s

q (2

/

L

N
S

ENEY
|

Y

* |

\%

Vo

v

\

\

\y

OO !

B NN 3N AN A A A

S

=S

B

Y

-

~

b
]

~-
I
—e.]

Or you can reduce the impact of this delay by placing the contents of

that Type instruction in a variable before calling the subroutine and
then including the Type statement itself within the subroutine:

d:t$(59) (Reserve memory space for up
to 5@ characters in string
variable t$.)

c:t$="How much is #x + #y 2" (Store this text in t$.)

u:answer (Branch to subroutine answer
and return after next e: .)

*answer (Label for subroutine.)
t:5¢t$ (Disply contents of t$.)
a:ifn (Accept student response;

store response in numeric
variable n .)

L: Link

l:lesson name[label]

The Link instruction terminates the current lesson and starts running
the lesson specified in the object field. All variables created and
used in the lesson containing the Link instruction are maintained and
are still available in the new lesson, unless the Erase (x) modifier
is used with the Link instruction. Program execution starts at the
beginning of the new lesson if no label follows the lesson name. For
example,

l:part-two

would end the current lesson and start executing the lesson named
part-two from the beginning of that lesson. If you wanted the new
lesson to start running from the point labelled test , the first
lesson would use this instruction:

l:part-two,test

The lesson containing the Link instruction and the lesson specified in
the object field of that Link instruction must be stored on the same
Lesson diskette in the normal one-disk-drive Lesson Mode system. For
use in systems having more than one disk drive, see the appendix Using
More Disk Drives.

If the specified lesson file is not found on the lesson diskette, an
error message is given (in Author Mode), the Error Flag is raised (in
both Author Mode and Lesson Mode), and lesson execution continues with
the next instruction.

Control Instructions 83

Modifiers

LX: The Erase (x) modifier can be used with the Link instruction to
erase the current lesson”s variables and release all storage space
reserved for those variables before starting the new lesson. If you
just break an existing too-large lesson into two parts, you will
probably want to use the 1l: instruction without the x modifier, so
that the numbers and strings stored in the first portion”s variables
will still be available to the instructions in the second portion.

But if you want to develop and then Link together truly independent
lessons, each Dimensioning its own variables and not using information
stored by any other lesson, you should use the 1x: instruction. If
you try to Link independent lessons using the unmodified 1:
instruction, so much of the available variable space may be reserved
by the first lesson that the second lesson may not be allowed to
Dimension or create all its variables.

After an 1x: 1instruction, all variables used by the previous lesson
are "forgotten”, and space reserved for those variables is released for
use by the new lesson. If the old lesson was using a special
text-character set (see the tx: instruction), the standard ASCII
character set is reloaded for use by the new lesson.

LP: You can Link your SuperPILOT lesson to a Pascal program by using
the Pascal modifier (P). The LP: 1instruction can be a very
powerful tool, allowing you to make use of new or previously written
Pascal programs. Because the LP: instruction is bidirectional, you
can also return to the SuperPILOT system when the Pascal program ends,
if you wish. There are actually three branching options available to
you, as follows:

1. Link to a Pascal program; do not return to SuperPILOT when the
Pascal program ends. To exercise this option, you need only
include an instruction of the following form in your lesson:

lp:demo

where demo represents the Pascal program named demo.code .
If this program is on a diskette in the system at the time the

lp:demo 1instruction is encountered, SuperPILOT will run it.
No modifications to the demo.code program are necessary.

2. Link to a Pascal program; restart SuperPILOT when the Pascal
program ends. You can exercise this option by typing your
instruction in the same form as above. You must also make two
additions to your Pascal program, however, to enable it to
return to SuperPILOT. First, you must specify uses chainstuff
at the beginning of the Pascal program. Second, you must
include the following command right after the Begin statement
of the outer block of the program:

setchain(“system.startup.”)

At the conclusion of the Pascal demo.code

restarts itself.

program, SuperPILOT

84 SuperPILOT Language Reference Manudl

e
;m'

/

(0

-

iy

H
A% N
=

-

T
_-. !
E
—

i
G

4
k)

~
EANY:

3

4

N7
sl
g

Ty
Ty
404

g

s

R R

X

~
a2

~

e
L

-

~

i

Link to a Pascal program; return to a specified SuperPILOT
lesson when the Pascal program ends. Within this option, you
have two further options: you can specify the return lesson in
advance, or you can allow the student to select the return
lesson. In either case, the Pascal program must include the
same two modifications described above: wuses chainstuff and
setchain(“system.startup.”) .

To choose the return lesson yourself, the LP: instruction in
the original lesson should take the following form:

lp:demo;stars

where demo represents the Pascal program named demo.code ,
and stars is the name of the SuperPILOT lesson you want to
return to when demo.code has ended. This arrangement will put
the student into the stars lesson as soon as the demo.code
program ends.

If you want tc allow the student the option of selecting the
return lesson, the LP: instruction does not need to name a
return lesson. Instead, insert the following additional
command anywhere in your Pascal program:

setcval(choice)

where choice is the Pascal string-variable name where the
student”s selection will be stored. Your Pascal program could
contain a menu of SuperPILOT lessons, for example, and the
student”s selection could be stored in choice (or any other
string-variable name you specify). Then, when the setcval
command is encountered, your Pascal program will know to
return to the chosen SuperPILOT lesson at the program’s
termination. The contents of the parentheses after setcval
need not be a string-variable name, but may be a string
literal instead, giving the exact name of the return Super-—
PILOT lesson, enclosed in single quotes:

setcval(“stars”)

Any return lesson named in the original LP: instruction will
be overriden by a return lesson named in a setcval command .

Finally, if you specify only an asterisk as the string literal,
as in

setcval(”*7)

you will be returned to Immediate Mode at the end of the Pascal
program.

Note: You must not type the .code suffix when specifying a Pascal
program in an LP: instruction. The .code is supplied automatically
by SuperPILOT.

Control Instructions 85

Programming Notes

You can use the Link instruction to join various program portions into
a smoothly-running continuous lesson. It is necessary to break a
lesson into separate lesson sections whenever the lesson becomes too
large to be handled in the Lesson Text Editor. The break can come at
any point in the original lesson——just end the first section with a
Link instruction that starts the next section. Since the variables
from the first section are still available in the Linked section, you
should not re-Dimension any string variables or numeric variable
arrays.

When you break a lesson in this manner, you must remember that Jump and
Use instructions in one portion cannot transfer program execution to a
label in another section as they did before. You can use the Link
instructions in place of the Jump instructions, however, specifying the
name of the destination lesson as well as the destination label:

l:lesson,label

An instruction with this form will cause a successful Link from one
lesson to a specific label in a second lesson, as long as the second
lesson is on a diskette in the system at the time of execution. So
this method is comparable to using a Jump instruction within a single
lesson.

Note: The Use instruction cannot specify a lesson name. When you
break a lesson into smaller lessons that call the same subroutine,
you must be sure a copy of that subroutine is placed in each lesson.

If you create logically distinct lesson sections, these sections can be
combined in different ways and joined to other lessons by using the

Link instruction. By building up a library of useful lesson sections,
you can eventually save yourself much programming time. Independent

lesson sections, each having its own variables, can be Linked using
the 1lx: instruction.

One use for the 1x: instruction is in a hello 1lesson. Each time a
Lesson diskette is booted in the primary drive (i.e., in Lesson Mode),
SuperPILOT looks first for a lesson named hello . If a lesson is
found with that name, it is run immediately-—-the student does not see
the diskette”s menu and is not permitted to select a lesson. A hello
lesson that consists of this one line:

(Start running the lesson
named drumhanger ,
forgetting any variables
now in use.)

1x:drumhanger

will automatically run the lesson drumhanger .

86 SuperPILOT Language Reference Manudl

a——
RN
PP

. /:’.»‘
a4

ClkL ot

15

Ja)
3

'ale

!a‘r

TRy
s
v’(.

5

="

!

1
\

BOW OB DB D D N OB N

<

Iz

Example
pPr:u

t:This lesson is all about United

: States Presidents. We“ve had 40

: of them so far; some of them good,
: some of them not so good.

t:You may select any one you want

: to learn more about. Just press

: the RETURN key, and 1711 show

: you a list of our Presidents.

a:

*choice
t :GEORGE WASHINGTON JOHN ADAMS
t : THOMAS JEFFERSON JAMES MADISON

t:RICHARD NIXON GERALD FORD
t:JIMMY CARTER RONALD REAGAN
t:

th:Which one would you like?

a:

ms j:WASHINGTON

t:I cannot tell a lie: George

¢ Washington is one of my favorites.
t:Let”s see how much you already

¢ know about him.

l:washington

ms : REAGAN

ty:All right, pardner, we”1ll take a
: gander at Ronald Reagan.
ty:Pass the jelly beans, please.

ly:reagan

(Convert all response letters
to capitals.)
(Display this text.)

(Display this text.)

(Accept student”s response.)

(Label for this section.)
(Display this list.)

(Display this blank line.)
(Display this text, leaving
text cursor on same line.)

(Accept student”s response.)

(If student typed WASHINGTON
correctly or with only one
spelling error, continue to
next instruction. If not,
Jump to next Match.)

(Display this text.)

(Display this text.)

(Terminate this lesson, and
start running lesson named
washington from its start.)

(More Presidents.)

(Did student type REAGAN
correctly or with only one
spelling error?)

(If last Match was successful,
display this text.)

(If last Match was successful,
display this text.)

(If last Match was successful,
terminate this lesson, and
start running lesson named
reagan from its start.)

Control Instructions 87

*error (Label for this section.)

t:Sorry, you must type one of the (Since no previous Match was

: Presidents” names, EXACTLY as it successful, display this

¢ appears on the list. text.)

t:Press RETURN, and we”ll try again. (Display this text.)

a: (Accept student”s response.)
j:choice (Jump back to label choice .)

The lessons named washington , reagan , etc., could each end with a
similar section for choosing the next President to be studied, or they
could Link back to this main lesson to handle the new selection. (Note:
if there were a lesson for each of the Presidents, you would need more
than 40 lessons on the Lesson diskette, while only 24 can be listed on
the menu of the Lesson Text Editor. If your student system has more than
one disk drive, you could store half the President lessons on a different
Lesson diskette, and as long as both diskettes are in drives during the
running of the main lesson, the Links will be successful. If there is
only one drive in the student system, you would want to create two main
lessons--Early Presidents and Recent Presidents, for example-—and then
keep all the lessons that can be Linked on the same diskette.)

Xl: eXecute Indirect

xi:string-variable name

The eXecute Indirect instruction executes the contents of the string
variable whose name appears in the object as if those contents were a r
SuperPILOT instruction. An instruction such as a lengthy Graphics or

Sound instruction, once you have stored it in a string variable, can be

executed easily, anywhere in your lesson, by using an instruction of
the form xi:a$, where a$ 1is the name of the string variable where

the instruction is stored. You can also use this instruction, in
combination with Accept, Compute, or File Input to create and execute
new instructions during the course of a lesson. For example, to
execute the contents of string variable a$ as a SuperPILOT
instruction, you could use this eXecute Indirect instruction:

=\=

1'/ /' 1z
b

0

xﬂ’ﬁgﬁs mf(ﬁgﬁ

xi:a$ (Execute the contents of
string variable a$ as a
SuperPILOT instruction.)

Ve

Before being used in an xi: instruction, the string variable must
appear in a Dimension instruction, and then be assigned a string that
is a single legal SuperPILOT instruction. The instruction stored in
the string variable cannot begin with a label. The stored instruction
may have all the usual modifiers, conditioners, and expressions, in
addition to any conditioners and/or expressions that determine the
execution of the xi: instruction. You can use either the Compute
instruction or the Accept instruction to assign new contents to a
string variable. o

4
s

3

.k¥/

7

e

)

88 SuperPILOT Language Reference Manual

EOE

S

~

T(wl

~

e

~-

R

' '/"“

For example, this program segment:

d:as$(42)

c:a$="t:What 1is your name?"”

xi:a$

(Reserve space to store up to
42 characters in string
variable a$.)

(Store the string

t:What is your name?
in string variable a$.)

(Execute contents of variable

a$ as an instruction.)

would cause the following to be printed on the screen:

What is your name?

Note: The xi: instruction is one of the few instructions that
lowers the Error Flag. This occurs just before executing the contents

of the string variable.

Example

t:While this little program is

¢ running, you can type any four-
¢ line SuperPILOT program and

: execute it as many times

¢t as you wish.

t:
d:

a$(42);b$(42);c$(42);d$(42);x8(1)

*start

t:Type up to four instructions,
¢ or CTRL-C.

t:

t:Press just the RETURN key when
: you're done.

ax:a

j(len(as$)=0):exec-3

ax:b
j(len(b$)=P) :exec-2
ax:c
j(len(c$)=0P):exec-1
ax:d
jrexec

(Display this text.)

(Display this blank line.)

(Reserve space in memory for
up to 42 characters in each
of these string variables:
a$, b$, c$, and d$;
and one character in x$.)

(Label for this section.)
(Display this text.)

(Display this blank line.)
(Display this text.)

(Accept exact response;
store in variable a$.)
(If only RETURN pressed, the

LENgth of the string in a$

equals ¢, making this the

last instruction, so Jump

to the label exec-3 .)
(Accept second instruction.)
(1f last, Jump to exec—2 .)
(Accept third instruction.)
(If last, Jump to exec-l .)
(Accept fourth instruction.)
(Jump to label exec .)

Control Instructions 89

*exec=3 c:bs=""
*exec-2 c:c$=""
*exec-1l c:d$=""

*exec
xi:a$

xi:b$
xi:c$
xi:d$
pr:t2

t:Press the X key within two
: seconds to stop the program
: from repeating.

as:x

pr:td
J(x$="x"1x$="X"):end

j:exec

*end

t:Do you want to enter a new
: four line program? (Y or N)
as:x

j(x$="y"I1x$="Y"):start

e(x$="n"1x$="N"):

t:Please type either Y or N.
je:end

The four instructions are stored in the string variables a$, b$

(Set b$ to no instruction.)

(Set c¢$ to no instruction.)

(Set d$ to no instruction.)

(Label for execution section.)

(Execute contents of variable
a$ as an instruction.)

(Execute contents of variable
b$ as an instruction.)

(Execute contents of variable
¢c$ as an instruction.)

(Execute contents of variable
d$ as an instruction.)

(Set response time to two
seconds.)

(Display this text.)

(Accept single response; store
in string variable x$.)
(Set unlimited response time.)
(If student typed lowercase or

capital x , Jump to end .)
(If x was not pressed, Jump
to label exec .)

(Label for this section.)
(Display this text.)

I
)
(Accept single response; store ST
it in string variable, x$.) \J“”‘mm

(1If student typed lowercase or
capital y , Jump to start .

(1If student typed lowercase or
capital n , end lesson.)

(Display this text.)

(Jump to label end .)

’

/'/;/'J@ ‘/“

I

/

c$, and d$. If only the RETURN key is pressed, the remaining
instructions are skipped. String variables that correspond to no
instruction are set to the null string, "" Then the four stored
instructions are executed by four xi: instructions. It would be
easy to extend this program to accomodate several more instructions.

S
4 s,

EEE

~

ale
1

RO
AR

g

90 SuperPILOT Language Reference Manudl

v:(o

=

W

B

r*(

~

r

IS

W: Wait

w:number of seconds or simple numeric-variable name

The Wait instruction temporarily stops the lesson for the specified
number of seconds, or until a key on the keyboard is pressed, whichever
comes first. The length of this wait can be from ¢ seconds through
32767 seconds.

You can use the w: instruction to introduce a pause with a set
maximum time, during which the student can read some text on the

screen, or examine a graphic display, or solve a problem, or think
about a new idea. When the specified time is up, the lesson
automatically goes on to the next instruction. Or, if the student
wants to proceed before the allotted time has passed, pressing any key
causes the lesson to continue immediately. For example, if you wanted
the student to look at a picture on the screen for up to thirty seconds,
you could use either of these equivalent sets of instructions:

t:When you are ready to go (Display this text.)

: on, press the spacebar.

w:30 (Wait up to thirty seconds,
and then go on.)

or

t:Press the spacebar to continue. (Display this text.)

c:s7=3¢ (Assign value 30 to simple
numeric variable s7 .)

wis7 (Wait up to the number of

seconds specified by the
contents of variable s7 ,
and then go on.)

If you type an actual number in the object field of a Wait instruction,
that number should be an integer from @ through 32767. If you type a
number containing a decimal point or an E, only the part of the number
before the decimal or E is used. A number beginning with a decimal
point, E, or + sign causes an error. A number less than @ or greater
than 32767 causes no wait.

If a simple numeric-variable name appears in the Wait instruction”s
object field, the number stored in that variable can be any real number
from ¢ through 32767. Only the integer portion of the stored number
(discarding any portion to the right of the decimal point) is actually
used.

The Wait interval can be ended by a key-press that occurs BEFORE the
Wait interval is completed. Moreover, if a key is pressed before the
Wait interval is started, that "unused” key-press will end the Wait as
soon as it begins. 1If more than one key is pressed before a Wait
instruction, however, the Apple II "forgets” those extra key—-presses
at the end of the Wait interval. This prevents pretyped keys from

Control Instructions Q1

causing a whole series of Wait intervals to be skipped; only the first
Wait interval would be ended by keys typed in advance.

Programming Notes

Do not confuse the Wait instruction with the Time option in the PRoblem
instruction. A w:3@ instruction introduces a pause of up to thirty
seconds anywhere in the lesson. A pr:t3¢ instruction sets a maximum
time of thirty seconds for the student to respond to all future Accept
instructions. However, the Wait instruction takes fewer instructions
and does not leave the cursor on the screen.

Example

t:Picture yourself on a (Display this text.)
: tropical island, surrounded

by bananas and papayas,

cute little monkeys, and

beautifully colored parrots.

sx:bubble (Play tropical sounds stored
in file named bubble .)

t:Just close your eyes and (Display this text.)

: imagine you are there...

w:l5 (Wait up to fifteen seconds.)

t:Peering down into the calm (Display this text.)

: lagoon at your feet, you see
: something that looks like this:

gx:lagoon (Show graphics picture stored
in file named lagoon .)

t:Count the number of eyes and (Display this text.)

: tentacles on this animal.

w:l@ (Wait up to ten seconds.)

cee (and so on...)

92 SuperPILOT Language Reference Manual

il .

J

5

ia

/
1

—a
w
wr

93

Computation Instructions

COmputcliion Instructions

0
()]
o)
(@)
/Y

O R Qé

= | 2
B s

D: Dimension

d:string-variable name(maximum number of characters to be stored)[;...]
or

d:numeric-variable array name(largest subscript to be used)[;...]

or

d:numeric array name(largest subscriptl,largest subscript2)[;...]

The Dimension instruction reserves space in Apple”s memory for the
specified string variable or numeric-variable array. String variables
and numeric-variable arrays must first be Dimensioned before they can
be used anywhere else in an Apple SuperPILOT lesson. It is not
necessary to Dimension simple (non-array) numeric variables.

The Dimension instruction tells the Apple how much space to save

for the variable and stores an initial value in the variable.
Immediately after Dimensioning, string variables contain no characters
at all (the null string), and elements of a numeric-variable array
contain values of @. You then change these values by using Compute,
Accept, or File Input instructions.

String Variables

For a string variable, designated by a $ following the variable name,
the specified size gives the maximum number of characters that can be
stored in that variable. The size limit for a single string is 255
characters. For example, if you want your lesson to store up to fifty
characters in a string variable named s$, you could use this line at
the beginning of the lesson:

d:s$(59) (Reserves space in Apple”s
memory for storing a string

up to fifty characters long e]
in string variable s$.) @

SuperPILOT reserves a total of 1608 character locations for the sole
purpose of Dimensioning your string variables. You can use these
locations to Dimension all of your string variables in a program.

If you attempt to Dimension more than 16f#@ character spaces in a
lesson, an error message is displayed in Author Mode, and the Error
Flag is raised in both Author Mode and Lesson Mode. Any string
variables that you attempt to Dimension in excess of the 1600
character limit will be unavailable for storing strings in your lesson.

Note: There are two important cautions about string-variable Dimensions: |

1. Do not Dimension strings bigger than necessary. A string
variable always reserves the full number of character locations

given in the Dimension instruction for that variable. If you
store a string of less than the maximum Dimensioned size in the ’\Qk\:‘ijmy
variable, not all of the reserved locations are used, but vfﬁ»:fp. :
- LMK
i
94 SuperPILOT Language Reference Manudl

\
Z

oy i\
pedss .

[

EO

-

W,
|

~

o
|

~

>
P

the unused locations are still reserved and unavailable for
storing characters of any other string variable.

2. Do not Dimension the same string more than once. Once a set of
character-storing locations is reserved for a specified string
variable by a Dimension instruction, these locations remain
permanently reserved for the rest of the lesson. If another
Dimension instruction re-Dimensions the same string variable,
the first set of locations reserved for that variable remain
reserved, but are made completely unavailable, and a new
additional set of locations is reserved.

Numeric Variable Arrays

Numeric variable arrays are like simple numeric variables, except that a
“family" of variables is created, using the same name but followed by a

distinguishing number in parentheses. The number that identifies each
of the variables, or elements, in a numeric array is called the

subscript of that element. For example, the first element of numeric-—
variable array p would be specified as p(@#) , the second element would

be p(l) , the third would be p(2) , and so on. This numeric variable
array might be pictured like this:

p L@ @Il @1 3@l 6)|

Numeric arrays may be one-dimensional (requiring one subscript to
specify each element) or two-dimensional (requiring two subscripts to
specify each element). If q 1is a two-dimensional numeric variable
array, its first element would be q(@#,8) ; following elements could
be q(@#,1) , q(@#,2) , and so on. There could also be more elements,
such as q(1,¢) , q(1,1) , q(1,2) , etc., and q(2,8) , q(2,1) ,
q(2,2) , etc. This two-dimensional numeric variable array might be
Plctured 1like this:

a | (@,0 | @,1) | @,2) | (9,3) |
@, |, | 1,2) | (1,3) |
I 2,8) | (2,1) | (2,2) | (2,3) |

When you Dimension a numeric variable array, the specified size gives
the largest array-element subscript allowed for each dimension of the

array. The subscript of the first element in a numeric array is always

(®) or (@¢,8) . For example:

d:n(30) (Reserves space in Apple”s memory
for storing up to 31 real numbers

in numeric variable array elements

n(@) through n(3@) . This is a

one-dimensional array, so only one
subscript is needed to specify any

of its elements.)

Computation Instructions 95

d:v(12,4) (Reserves space in Apple”s memory

for storing up to 13*5=65 real
numbers in numeric variable array
elements v(9,8) through v(12,4) .‘#Ei__“_
This is a two—-dimensional array, so
two subscripts are needed to specify
any of its elements.)

SuperPILOT reserves a total of 2@ locations in memory for the sole
purpose of Dimensioning your numeric variable arrays. Either dimension
of a two-dimensional array can be given a largest subscript value as Ve
high as 198, so long as the other dimension does not cause the array to !
exceed 20§ elements. For example, a two-dimensional array whose first
dimension has a largest subscript value of 19 cannot be given a largest
subscript value greater than 9 for the second dimension. Remember that
the first subscript number in either dimension is @, not 1. If you
were to dimension such an array, SuperPILOT will reserve 20@ locations
for it: (19+1)*(9+1)=209 .

Note: There are two important cautions about numeric variable array
Dimensions:

1. Do not Dimension arrays bigger than necessary. A numeric
variable array always occupies the full amount of locations
given in the Dimension instruction for that array. If you
store fewer array elements than the maximum Dimensioned size of
the array, not all of the reserved locations are used, but
the unused locations are still reserved and unavailable for
storing anything else.

ér

2. Do not Dimension the same array more than once. Once a set of
locations has been reserved for a specified numeric variable
array by a Dimension instruction, those locations remain
permanently reserved for the rest of the lesson. If another
Dimension instruction re-Dimensions the same array, the first
set of locations reserved for that array remain reserved, but
are made completely unavailable, and a new additional set of
locations is reserved.

-

O
/i
,"E

é%-

Programming Notes

It is a good practice to place all D: instructions together at the
beginning of each lesson so that they are executed one time only. If a
Dimension instruction occurs in a program portion that is looped

through several times, additional number-storage locations are used up
each time the variable is re-Dimensioned, just as if you were
Dimensioning new variables. Since there are only 2@@ locations
available for Dimensioning numbers and 16@@ locations for Dimensioning
strings, the repeated Dimension instruction might soon cause the
message

e

e lclE

~——

T AV

77|

R-error (Too many arrays or strings)

1

96 SuperPILOT Language Reference Manual

14

i\

ot
\\

I S

D S A

N

N < . v e B S St S S

ORI ORI R

- T T
=
A

B o= B

~
¥
s

‘
|

-

=

e
Lok

e

Iy

You can Dimension more than one variable in the same instruction, by

separating the variable names by semicolons. For example, the
instruction

d:x$(40);y(9);2$(20)

will Dimension three variables: string variables x$ and z$, and

numeric variable array y . Note: No spaces are allowed in the
instruction between the semicolon and the following variable name.

Example

d:a$(20);b(28)

t:What is your name?
a:a

c:m=1

t:0kay, a , this will give you
: some practice adding numbers.

*test
t:What is #fm + #m ?

a:ffn

c(n=mtm) :b(m)=1

c(n<>mtm) : b(m) =0

c:m=m+1
j(m<21) :test

*score

(Reserve space in memory for
storing up to 2@ characters
in string variable a$, and
21 real numbers in numeric
variable array elements b(®)
through b(20) .)
(Display this text.)
(Accept student”s response, and
store in string variable a$.)
(Store the value 1 in simple
numeric variable m . This
sets the initial value of m .)
(Display text, substituting
student”s name for a
and one space following.)

(Label for this section.)

(Display text, substituting the
number currently stored in
variable m for each #m and
one space following.)

(Accept student”s response, and
store the first number in it
in simple numeric variable
n .)

(If n=mtm , the student”s answer
was right, so store value 1
in numeric array element
b(m) .)

(If n 1is not equal to mm ,
the answer was wrong, So store
the value ¢ in element b(m) .)

(Increment value of m by 1.)

(If m is less than 21, Jump
back to the label test .)

(Label for section of lesson
that uses the scores stored
in the elements of numeric-
variable array b .)

Computation Instructions 97

Note: More advanced programmers would probably replace the two lines

c(n=mtm) :b(m)=1
c(n<d mtm) : b(m) =0

with the single equivalent instruction

c¢:b(m)=(n=m+m) (Evalute the assertion n=mm .‘ﬁ?Lf%w_
If it is true, store the ‘ ~;@M
result 1 in numeric variable
array element b(m) . If
false, store the result ¢ in
element b(m) .)

C: Compute AR
c:name of variable=expression{;...] g\“

or
c:/name of string variable editing option [editing option]

The Compute instruction can be used for three purposes:

Ol
E)

4
9

1. to store a fixed or computed number in a simple numeric
variable or in an element of a numeric-variable array, &gi

- a
1

2. to store a fixed or computed string of characters in a

string variable or substring variable, v
|
3. to edit the contents of a string variable. &g;
Examples: j;gjﬂm
[2
c:n=2+(3/x%) (Calculate the current value stj
of 2+(3/x) , and store it in o il
simple numeric variable n .) reg "
c:s$="Apple" (Store the characters Apple \§§ :
in string variable s$.) R
e o
c:/s$ /px (Edit the contents of string "ﬁ

variable s$, replacing each \Ev
character "p"” with an "x"
then store the new string

back in string variable s$

’

~———

«.g’,v/zs gf';:s/%f’iiﬁgf”
)

g
. A e
V/ :

.
A

The most common use of the Compute instruction is to do calculations
and to store numbers and strings in their appropriate variables (as
shown in the first two examples above). Most of this chapter discusses
that kind of use. The final topic in this chapter is the use of the
Compute instruction for editing a string (third example, above).

Ll

N

(
i

:

98 SuperPILOT Language Reference Manual

B

=

~

T

3

"B

s

~~

1=

This chapter does not discuss constants, variables, functionms,
operators, and expressions in great depth. The discussion that follows
lets you use some of Compute”’s features without a detailed
understanding of these items. Later, when you are more familiar with
Apple SuperPILOT, you may wish to read the Advanced Programming
chapter to learn more about the calculating powers available in the
Compute instruction and in conditioning expressions.

Using Compute for Assignment

Only three instructions can store a number or a string in a variable:
the Accept instruction, the Compute instruction, and the File Input
instruction. Storing a number or a string in a variable is also called

assigning the number or string to the variable. When Compute is used

to store a number or a string in a variable, the instruction has four
parts:

1. The C instruction name, together with any conditioners and
instruction-modifying expression, always comes first, followed
by the colon. Spaces following the colon are permitted.

2. The next item is the name of the variable where you wish to
store a number or a string.

3. Next comes the assignment or "store—this-value"” indicator,

which 1s an equals sign (=). Spaces are permitted on either
side of the equals sign. Note: only the first equals sign
in a Compute instruction is interpreted as an assignment
indicator, all subsequent equals signs are treated as
relational operators in an expression. See the Advanced
Programming chapter for a discussion of this distinction.

4. The last part is the value (number, string, variable name, or
complete expression) to be stored in the variable whose name
appears on the left of the assignment indicator. Spaces are

permitted within the expression.

The last three parts of the instruction (everything after the colon)
may be repeated with different variable names and values, as long as

you separate each assignment from the next one with a semicolon. For
example,
c:r$="Right";w$="Wrong";x=17 (Store the string Right 1in

string variable r$, store
the string Wrong in string
variable w$, and store the
number 17 in simple numeric

variable x .)
The expression portion of a Compute instruction, to the right of the

assignment indicator (=), may include constants, variables, and
expressions. Each 1is discussed below.

Computation Instructions 99

Constants

These are just numbers and strings.

Item Name Item
Numeric constant Number
String constant String

Examples in Compute instructions:
c:n=512.37
c:s$="APPLE SEEDS"

c:hl=6Q;wl=30¢

Variables

Examples
512.37 , 7.1238E+12
"APPLE"” , "All 4 1"

(Store the number 512.37 in
simple numeric variable
(Store the string APPLE SEEDS

in string variable s$.)
(Store the number 6@ in simple
numeric variable hl , and
store the number 3@ in simple
numeric variable wl .)

A variable is a location in the Apple II”s memory where you can store a

number or a string of characters.

You don“t have to know where each

item has been stored: you just refer to it by the name of that variable.
Once a number or a string is stored in a named variable, you can use
the variable”s name in place of the stored number or string.

Item Name Stored Item
Simple Numeric Variable Number
Element of Numeric
Variable Array
One-dimensional Number
Two-dimensional Number
String Variable String
Substring Variable
Single-character Character
Multi-character Characters
System Variable
Answer Count Number
Answer Buffer String
X-Coordinate Number
Y-Coordinate Number
C-Coordinate Number
R-Coordinate Number
Spin Angle Number
I/0 Annunciator Number
External Control Number

100

Example Variable Names

x, pb, 13, gq

e(®) , 19(2) , w(23)
n(@,4) , gl(13,2)

s§ , a5, t$

s$(1) , a5$(23) , t$(5)
s$(1,7) , a5$(7,12)

%a (SuperPILOT stores
%b numbers or strings
%X in each of these

%y system variables

%c without being told
%r to do so by an

%s instruction.)

%0 (You store numbers
VA to control external
%w devices.)

SuperPILOT Language Reference Manual

n .) o

/
|
"

—
]

/?}3 /
i

I
1
4

/7=

- -

7 ,// / /‘ﬁ

7= s

—~——

S

1
1

e wes

L

i
)

gf"’lﬁ g{’jfﬁ

=4
P
/,
; 113

]

4
\

Lt

l}

i

>SRN

e N
oo

2

v

o

-
lug

lan

ey

e

Examples in Compute Instructions:

c:p5=n (Make a copy of the number now
stored in simple numeric
variable n , and store it in
simple numeric variable p5 .)

c:t$=s$ (Make a copy of the string now
stored in string variable s$,
and store the copy in string
variable t$.)

c:x=aja=b;b=x (Make a copy of the number in a
and store it in x ; make a
copy of the number in b and
store it in a ; make a copy of
the number in x (which was
originally in a) and store it
in b . Note: This procedure
can be used to "switch” the
values of two variables, in

this case a and b .)

A string variable is created and given its maximum size by using it in a
Dimension instruction. Only then can Compute or Accept instructions
store strings in the variable. 1If you refer to a string variable before
you store any string in it, it contains no characters at all.

A numeric-variable array is created and given its maximum subscripts by
a Dimension instruction. Only then can Compute or Accept instructions

store numbers in the elements of that array. If you refer to an
element of a numeric array before you store any number in it,
that element is given a value of @.

Simple numeric variables are created simply by using them in Compute

or Accept instructions. It is not necessary to Dimension a simple
numeric variable; just start using it by placing it in one of these two
%nstructions, or in an expression (as a conditioner for any other
instruction, or within the object text of a Type instruction). It will

be given a value of @ at the place of its first occurrence (unless, of
course, you assign it a different value).

For more information about the different kinds of variables, see the
Advanced Programming chapter.

Expressions

An expression may be a constant, a variable, or a combination of
constants and variables with items that indicate some calculation or
other operation to be done on the constants and variables. If the
expression includes one or more operations, they will be either
functions or operators.

Computation Instructions 101

Functions

A function normally takes the form of a three-letter abbreviation for
the name of the function, followed by a parenthetical expression. The
name of the function determines the kind of calculation or other
operation to be performed on the contents of the parentheses, which
can be a constant, a variable, or another expression. A complete
discussion of functions can be found in the Advanced Programming
chapter.

Item Name Item Examples
Function Calculated Number pdl(x) , ins(x,t$,p$),
or String flo(x)

Examples in Compute instructions:

c:x=pd1(®) (Store a number from ¢ through
255, indicating the position ;
of game control #@, in simple g
numeric variable x .)

c:a=flo(a$) (Find the first number in
string variable a$, and

store it in simple numeric
variable a .)

|

c:x=ins(l,b$, "thousand") (Beginning at first character gégi ‘
position, search through b$ Q:ww .

for the string thousand H r

of its first character

if found, store the number lé? [Hil
position in x .) AN

.
Operators ‘@i e

Operators are used with constants, variables, and functions to indicate lam
all the usual calculator operations. 6? r'i'
‘ "
Operator Symbol Operation Example Expressions £\§
+ Addition 99+12.45 , 3.4+4pdl(t) , e+l {/--: o
- Subtraction 16-43.2 , 5-sin(x) , g-h7 O
* Multiplication 983%12 , y*3.14 , b*p \Qg‘w
/ Division 2.3/o¢56 N W6/u R p/sin(13) é(ﬂ\\;w
N I
Example in a Compute instruction: L;;
\\{qm . i
civ=d/t (Divide the number stored in d Ifi ;T%%m?
by the number stored in t .(“
and store the result in v .) \
There are also quite a few operators not offered on many calculators. b

These operators let you do exponentiation (multiplying a number by (7 !
itself a specified number of times), comparisons between two numbers or \\s

102 SuperPILOT Language Reference Manual

=S

n,
{

i
*®
'

~
v
o

-

e

,A
L

)
T~y

strings, concatenation (joining together) of two strings, and the
logic operations And, Or, and Not. These operators are all discussed in
the Advanced Programming chapter.

Precedence

In expressions with several operators, it may not be clear which
operation will take place first. For example, the expression 12+4/2
might be evaluated as 12+4 divided by 2 = 16/2 = 8 ; but the
correct evaluation is 12 plus 4/2 = 1242 = 14 . The Advanced
Programming chapter discusses the special rules for precedence among
operators, but there is a way to avoid any possible confusion: you can
use parentheses to indicate how you want such an expression to be
evaluated. The rule is simple: the sub—expressions in the innermost
set of parentheses are evaluated first, then those results are used in
evaluating the surrounding expressions.

Example in a Compute instruction:

c:d=(17-13)*(5/(2+.5))

In this expression, the innermost set of parentheses surrounds the sub-
expression 2+.5 , so the first operation is to add .5 to the number
2 . That leaves the expression as (17-13)*(5/2.5) . Next, the sub-
expressions 17-13 and 5/2.5 must be evaluated (the order does not
make any difference), leaving the expression 4*2 . Finally, the
result, 8 , is stored in simple numeric variable d . Of course, any
of the numbers in such an expression could be replaced by a variable
name, by a function, or by yet another sub—expression in parentheses.

Using Compute for String Editing

In addition to its normal task of evaluating an expression and assigning
the result to a variable, the Compute instruction also has a slightly
different use: it can do certain quick easy editing changes to the
contents of a specified string variable. The normal Compute instruction

follows this form:
c:name of variable=expression[;...]

To do string editing, you must use a somewhat different form in typing
the Compute instruction”s object field:

c:/string-variable name {editing option}

Note: The string variable”s name is preceded by a slash (/), and

that there is no assignment indicator (=) following the name. Any
number of editing options may follow the variable name, and the list of
options may be colon-continued onto subsequent instruction lines. For
the sake of clarity, you may find it helpful to separate the options

with spaces.

The string editing form of the Compute instruction differs from the
assignment form in one other important way. When using Compute for

Computation Instructions 103

assignment, you can assign values to as many variables as you like,
separating the assignments with semicolons.

string editing, however, you may edit only one string per instruction.
You may specify several edit options to be performed on that string,

but you must begin a new Compute instruction to edit a different string.
Also, if you include a string edit in the same Compute instruction with
one or more assignments, the string edit must be the last command in the
Be careful to adhere to these rules, because failure
to do so may give strange and undesired values to your strings, and you
will probably not be warned of the problem with error messages.

instruction.

These are the editing options you can use:

Note:

When using Compute for

Form of Name of
Option Option Effect on String
U Uppercase Converts all letters in the string to capital
(uppercase) letters.
L Lowercase Converts all letters in the string to small
(lowercase) letters.
o] Capitalize If the first character in the string is a letter
this option converts it to a capital letter.
/Xy Replace Replaces every character x with character y
(x and y are any single characters).
/x/ Delete Removes every character x from the string

(x 1is any single character).

For example, to delete every "R" from the string "RAPPLER" stored in
string variable w$, you could use this instruction:

c:/w$ /R/

After this instruction, string variable w$
"APPLE".

would contain the string

The Replace and Delete options operate on only a single character in
the string. The string character (and the replacement character, if
any) may be any printing character. You cannot Replace or Delete
non—-printing characters. You must type the character itself: a
variable name cannot be used instead of a Replace or Delete character.

Note: You can delete or replace the character "/" in the existing
string, but you cannot use "/" as a new, replacement character.

When you use more than one editing option in a single Compute
instruction, the options are executed one at a time, starting with the
leftmost option. For example, in these lines

104 SuperPILOT Language Reference Manual

—~— -
7S
W L0 .
VA K. 7 = o4 ',,"
‘g 4
—
-

D S
/‘1 ?

Wb

©

| e,
pEe=y. |
——

/

4

d:bs(30) (Reserve space in memory to
store up to 3@ characters

in string variable b$.)

c:b$="omallallampopa” (Assign string "omallallampopa”
to string variable b$.)
c:/bs /o/ ¢ /ai /1s /m/ (Get the string in b$, remove

every "o", then capitalize
the resulting string”s first
character, then replace each
"a" with "i", then replace
each "1" with ”"s", and last
remove each "m"” and store
edited string back in b$.)
t:b is an old, old man. (Display text, substituting
the edited string for b .)

the string-editing Compute instruction first removes all "o"”s from the
string in string variable b$, making the new string "mallallamppa”.
Then it capitalizes the first character in the string, which 1s now an
"m”, making "Mallallamppa”. Next it replaces every "a” with "i", and
every "1" with “s", resulting in "Mississimppi”. Last, it deletes
every "m" from the string, and stores "Mississippi” back into string
variable b$. Note that /m/ did not remove "M", which is considered

a different character.

Example

(Convert all response letters
to small letters.)

d:n$(20);bs$(49) (Reserve space in memory to
store up to 2@ characters
in string variable n$
and up to 4@ characters in

string variable b$.)

pr:1l

th:Please type your first name: (Display this text, leaving
the cursor waiting at end.)

a:sng (Accept student”s response;
store in string variable
n$.)

c:/n$ e (Capitalize the first letter
of the name stored in n$.)

t:Well, n , type the number of (Display text, substituting

: dollars you would like to have. student”s name for n
and following space.)

a:$bs (Accept student”s response;
store in string variable
b$.)

*number (Label for section that

deciphers numbers.)
c:/b$ /,/ (Remove all commas from the
string in b$.)

Computation Instructions 105

the student types a name, the
sure it is converted to all small letters.

c:/n$ ¢ capitalizes the first letter of the name.

c:r=flo(bs)

c(ins(1l,b$, "thousand ")):r=r*100¢
c(ins(1l,b$, " million ")) :r=r*leb

t:You would like #r dollars?

a:$bs #p

je:match

j:number

*match
m:no!not!more!less!stupid
jn:nextsection

t:Sorry. Try typing the number

: of dollars you would like,
: again, using numbers only.

a:b

j:number

*nextsection

(Find the first number in b$
and store it in simple numeric

variable r .)
(If the word thousand 1is in

b$, multiply r by 10¢¢.)

(If word million is in b$,
multiply r by 1,000,000.)

(Display text, substituting
student”s number for #r
and following space.)

(Accept student”s response;
store in string variable
b$ and in simple numeric
variable p .)

(If Error Flag is up, response
contained no number, so Jump
to section labelled match .)

(Response contained a number,
so Jump back to number .)

(Label for this section.)

(Did student type one of
these words?)

(If No, Jump to label
nextsection .)

(Yes, so display these lines
of text.)

(Accept student”s response;
store in string variable
bs$.)

(Jump back to label number .)

(Label for next section.)

In this example, we used Compute”s string-editing feature twice. When
pr:1l instruction at the beginning makes

Then the Compute instruction
Thus, every name

comes out with the first letter a capital and the rest small letters, no
matter how the name was typed originally.

In processing the student”s typed number, we used another Compute
instruction to remove all commas. Removing the commas is necessary if
you want the FLO function to convert a string such as $3,000,000 to the
correct number. With those commas in the string, FLO would return the
number 3, not 3E6. Of course, you will still have to explain to the
student how to read a response that has been converted to scientific
E-type notation. -

106 SuperPILOT Language Reference Manual

SN
—_—

A

s \p \peees

S N\ e N\ e \ O\ -\ S\

OB
Lol

S CREE R CR e

-

X

~

s

e

Example

rehhkkhkihhkhhhkhkhhhhkhkkhkhhkhhrhhhkk

* VANISHING VOWELS GUESSING *
* GAME: LAST REVISED 3/6/82 *
HE *
: * OBJECTIVE: SPELLING AND *
*

* VOCABULARY IMPROVEMENT
kkkhkkkhkkhkhkkhkhkhkhkkkhkhkhkhkk

pr:l

d:w$(15);8$(15);x$(15);5s(1,2);5c8(4)

c:s(9,0)=0;s(1,0)=0

c:s(@,1)=1;s(1,1)=1

c:s(9,2)=30¢;s(1,2)=3¢

t:This is the game of

t:

t: VANISHING VOWELS

t:

th:I will think of a word and make

¢ all its vowels vanish. Then I

will show it to you. You will

see the carat mark (=) where

each vowel used to be.

t: You will then have to guess

¢ what the word is, type it on the
keyboard, and then press the
RETURN key. But there is a 30

¢ second time limit, so hurry!

t:

t:If you are ready to begin,

t:type @ to get a hard word;

titype 1 to get an easy word.
as:itd

je:error

j(d>11d<@) :error

*start
c(d=@):c$="hard"
c(d=1):c$="easy"”

(Remarks to author.)

(Convert all response letters
to lowercase.)

(Reserve space in memory for
up to 15 characters each in

string variables w$, g$,
and x$; up to 4 characters
in string variable c¢$, and
six elements of numeric array
s , from (9,8) to (1,2) .

(Set initial values for the
elements of s .)

(Display these lines of text
and blank lines.)

(Display these lines of text,
leaving the cursor at the end
so that the next instruction
begins on the same line.)

(Display these lines of text
and blank lines.)

(Accept the student”s single
keystroke response; store it
in numeric variable d .)

(I1f the Error Flag is raised,
jump to error section.)

(If student did not type @
or 1 , Jump to error

section.)

(Label for this section.)
(Depending on current value of
d , assign either the string
hard or the string easy
to string variable c$.)

Computation Instructions 107

108

u:word

pr:1t3¢

t:

t:

t:Here”s c word number #(s(d,1))
t:

t: x

t:

t:What do you think it is?

t:

a:g

t:

t(g$=w$):That”s right!
tc:You guessed it in

: #(tim(1)) seconds.

ce:s(d,P)=s(d,@)+1

(Branch to subroutine word ,
returning here when next
e: instruction is executed.)

(Convert all response letters
to lowercase; set a response
time limit of 3@ seconds.)

(Display these blank lines and
line of text, substituting
current values for c¢$, d ,
s(d,1) , and x$, including
leading dollar and pound
signs and following spaces.)

(Accept student”s response;
store it in string variable
g$.)

(Display this blank line.)

(If student typed correct word,
display text, substituting
elapsed answer time for
#(tim(1)) and next space.)

(If student typed correct word
add 1 to value of s(d,@) .)

c(gé=ws&tim(1)<s(d,2)):s(d,2)=tim(l) (If student typed correct word

j(g$=w$):score

th:Sorry,
th(tim(1)=@): your time is up and
th: you did not guess the word

t: $ws .

w:b

*score

t:

t:Your score on c words is
: #(s(d,¥)) right and

: #(s(d,1)-s(d,®)) wrong.

t:

t(s(d,@)>@):Your fastest
: correct answer for the c
words is #(s(d,2)) seconds.

and elapsed response time is
less than previous best time,
store new time in s(d,2) .)
(If student typed correct word,
Jump to score .)
(Display these lines of text as
one paragraph, including the

second line only if time had
run out; substitute current

value of w$ for w and
following space.)
(Pause four seconds.)

(Label for this section.)
(Display these blank lines and
lines of text, substituting

current values for c¢$, 4 ,
and s elements, including
leading dollar and pound
signs and following spaces.)
(If at least one correct answer
has been given for this group
of words, display this text,
substituting current values
for ¢$, d, and s(d,2) ,
including leading dollar and
pound signs and next spaces.)
(Display this blank line.)

SuperPILOT Language Reference Manudl

—-q
E

/’ﬁ //.’

e

é;,

'

i

,#,

= /B 7

£

[
L

- -

el
g%.

B

£ R 7

S

e

(v

c:s(d,l)=s(d,l)+1 (Add 1 to the current value of

s(d,l) .
pr:td (Set unlimited response time.)
t:Press @ for a hard word. (Display these lines of text.)
t:Press 1 for an easy word.
as:itd (Accept single student response
and store it in d .)
je:error (If the Error Flag is raised,
jump to error section.)
j(d>11d<@):error (If student did not type @
or 1 , Jump to error
section.)
j:start (Jump to label start .)
*word (Label for this section.)
c:n=s(d,1) (Assign value of s(d,l) to
simple numeric variable n .)
@Q j(d=1):easy (If d=1 , Jump to easy .)

. A *hard (Label for this section.)
c(n=1):w$="artichoke” (Assign one of these strings to
c(n=2):w$="nervous” w$, depending on the current

ﬂ;égg c(n=3):w$="pedigree" value of n .)

c(n=4):w$="rambunctious”
(Additional words added here.)

1 V @ jredit (Jump to edit section.)
*easy (Label for easy subroutine.)
. %@ c¢(n=1):w$="grease” (Assign one of these strings to
g - c(n=2):w$="baseball" w$, depending on the current
c(n=3):w$="towel" value of n .)

c(n=4):w$="heart"”

(Additional words added here.)

§§§

-

*edit (Label for edit section.)
Ul c:x$=w3 (Assign the contents of string
L variable w$ to string
! variable x$.)
| c:/x$ /a™ /e /1" [o” [u” (Edit x$, replacing each of
%ﬂ its vowels with a carat.)
‘ e: (Terminate this subroutine and

: return to the instruction
after one that called it.)

~-

*error (Label for this subroutine.)
- tl:Please type either ¢ or 1. (If answer count is 1, display
’ this text.)
/gl t(%a>l):You must type ¢ or 1. (If answer count is greater
[- than 1, display this text.)
j:@a (Jump back to last Accept.)

LR

This example uses a numeric array to keep track of the score. There are
| three values to record for responses to the hard words and the same three

LB

Computation Instructions 109

N

values to record for responses to the easy words. So the first subscript
in numeric array s 1is either ¢ or 1, depending on whether the student
has requested a hard or an easy word. And the second subscript is either
#, 1, or 2, depending on whether the element stores the number of right
answers, the number of trials, or the lowest elapsed answer time. For
example, the number of correct guesses of easy words the student has made
is recorded in element s(l1,8) , and the fastest answer time the student
has achieved on a hard word is recorded in element s($,2) . The simple
numeric variable d 1is used frequently in place of the first subscript.
This allows an instruction to work equally well regardless of the level

of difficulty chosen by the student.

11O SuperPILOT Language Reference Manual

m

Computation Instructions

c
e
(%)
=
—
&
=
)
8
&=
L
=
4
o

112 SuperPILOT Language Reference Manual

113

Special Effects Instructions

¥

AN RN D N DN NN RA

G: Graphics

g:command[;...]

The Graphics instruction, with its associated commands, produces
graphic images on the screen. For example, you could Erase the Screen
in blue (color 6) using this instruction:

g:esb

You could then set the drawing Color to orange (color 5); Move to the
position x=23,y=100 ; and Draw a line from there to the position x=20@,

y=12 :
g:c5;m23,100;d200,12

In the summary of the graphics commands below you will find frequent
reference to the text and graphics cursors. It is important to note
that these are not the same thing. Their positions and movements are
determined by different sets of rules and their uses are likewise very
different. You will find a complete description of these cursors and
their behavior later in this chapter in the section Text and Graphics
Cursors.

Graphics Commands

This section summarizes all the commands that can be used with the
Graphics instruction. Two of these commands (the first two listed
below) duplicate commands available with the TS: instruction. This
overlap is needed to maintain compatibility with both Common PILOT and
Apple PILOT. Details about the text and graphics screens, coordinates,
and color are discussed in the following sections.

The commands that affect the text mode are listed below.

Command Form Description
Text g:vl,r,t,b Sets left, right, top, and bottom character
Viewport positions for the text viewport. Affects text

displayed by T: instructions only, not text displayed by
g:tabc instructions. The default viewport is the full screen.
After you set a smaller viewport, the text cursor and the
graphics cursor are maintained independently.

The instruction g:v is equivalent to g:v$,39,0,23 : it
resets the text viewport to occupy the full screen. The
text cursor again follows the graphics cursor after this
command.

If you set a viewport in a lesson where scrolling may occur,
be careful when setting the top and bottom boundaries of the
viewport. Depending on the set line spacing (ts:l) and
the set text size (ts:s), the number of lines in the

114 SuperPILOT Language Reference Manudl

Erase

Text
Screen

Type

On the
Graphics
Screen

Xmit

viewport could cause text to be only partially scrolled off
the top of the screen.

g:es Erases the text viewport in the text background
color (black, unless it has been changed by

ts:b). Moves the text cursor to the top left cornmer of the

text viewport, but does not move the graphics cursor. Note

the differences between this instruction and g:esn (number

specified), discussed below.

g:tabc Displays text characters abc starting at the

current graphics cursor position (not necessarily
at the text cursor, and not restricted to the normal text
character positions). Each character with its background
occupies a rectangular area seven Apple II Hi-Res screen-dots
wide by 8 screen-dots high, starting with the graphics cursor
position at its lower left cormer. After each character is
displayed, the graphics cursor moves seven screen-dots to the
right.

Use this command to place labels and other text in your
graphics pictures, especially when T: text is restricted to
a Viewport. The g:t command lets you type anywhere on the
graphics screen, starting from the point of the graphics
cursor. When you design a graphic requiring text, that text
invariably fails to fall neatly on normal text boundaries.
Without this "magic" command, you would have to redesign the
drawing to fit the text.

Do not confuse this command with the normal T: instrucion.
The sole power of g:t 1is its ability to show up starting

at any dot on the screen. It is single-size white-on-black
only and is unaffected by both G: commands and TS: commands.

The graphics T command and the normal T: instruction use
the same character set. Only the 25f-character instruction
length limits the amount of text following the graphics T
command. However, lines of this text are not broken to fit on
the screen: characters placed beyond the margins of the
screen just disappear. (To send non-printing characters, use
the g:x or ts:x commands.)

g:xi,j,k Sends characters whose decimal ASCII code numbers
are i, j, and k to the screen. The decimal
ASCII codes are integers from @ through 127. For a number
greater than 128, g:x just repeats the same 128 character
sequence. (For example, g:x136 is the same as g:x8 .)

This command is usually used to send non-printing control
characters to the screen. Most of these charact<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>