Aztec CG65

Cross Development Software
for 65xx-based Systems

version 3.2
July 1987

Copyright (c) 1986 by Manx Software Systems, Inc.
All Rights Reserved
Worldwide

Distributed by:

Manx Software Systems, Inc.
P.O. Box 55
Shrewsbury, N.J. 07701
201-542-2121

o
o

USE RESTRICTIONS

The components of the Aztec CG65 software development system are
licensed software products. Manx Software Systems reserves all
distribution rights to these products. Use of these products is
prohibited without a valid license agreement. The license agreement is
provided with each package. Before using any of these products the
license agreement must be signed and mailed to:

Manx Software Systems
P. O. Box 55
Shrewsbury, N. J 07701

The license agreement limits use of these products to one machine.
Any uses of these products that might lead to the creation of or
distribution of unauthorized copies of these products will be a breach
of the licensing agreement and Manx Software Systems will excercise
its right to reclaim the original and any and all copies derived in whole
or in part from first or later generations and to pursue any appropriate
legal actions.

Software that is developed with Aztec CG65 software development
system can be run on machines that are not licensed for these
products as long as no part of the Aztec C software, libraries,
supporting files, or documentation is distributed with or required by
the software. In the latter case a licensed copy of the appropriate Aztec
C software is required for each machine utilizing the software. There
is no licensing required for executable modules that include runtime
library routines.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subdivision (b)(3)(ii) of the Rights in
Technical Data and Computer Software clause at 52.227-7013. DAC
#84-1, 1 March 1984. DOD Far Supplement.

COPYRIGHT

Copyright (C) 1981, 1982, 1984, 1986 by Manx Software Systems. All
rights reserved. No part of this publication may be reproduced,
transmitted, transcribed, stored in a retrieval system, or translated into
any language or computer language, in any form or by any means,
electronic, mechanical, magnetic, optical, chemical, manual or
otherwise, without prior written permission of Manx Software
Systems, Box 55, Shrewsbury, N. J. 07701.

- iii -

DISCLAIMER

Manx Software Systems makes no representations or warranties with
respect to the contents hereof and specifically disclaims any implied
warranties of merchantability or fitness for any particular purpose.
Manx Software Systems reserves the right to revise this publication
and to make changes from time to time in the content hereof without
obligation of Manx Software Systems to notify any person of such
revision or changes.

TRADEMARKS

Aztec CG635, Manx AS65, and Manx LN6S, are trademarks of Manx
Software Systems. CP/M-86 is a tradmark of Digital Research. MSDOS
is a trademark of Microsoft. PCDOS is a trademark of IBM. UNIX is a
trademark of Bell Laboratories. Macintosh is a trademark of Apple
Computer.

-fy -

Manual Revision History

AUG 1984 ...ttt ees s e e First Edition
JAN 1986 ..o Second Edition
AUG 1986 ..ottt Third Edition
JULY 1987 e e eee e et Fourth Edition

Summary of Contents

65xx-specific Chapters

title code
OVETVIEW .curteretectcnrsesssessstssseeseesessseeseseesesssssssssssnsesssssssssesssssesssses s ssons ov
Tutorial INtrOQUCHIONvuvieeeiceee oot ereeeseeseseeeesseeson s sssss s tut
THE COMPILETS ..oovcierieteiecciis e eecstete e et stsesessessssssemessesessssessesesssetemn s cc
TRE ASSEIMDBIETS ...uvvvreeecircnes et eseeeeeresessess s seessesorsssess s se st s oo e e as
TRE LINKET ...etieeeteiiieier ettt eeeeeeseeeeessssesassesssessosssssesmssesssesssss e In
Utility PrOSIBIMS ...oucviveeeircenitiinis eeieseeeeseeeeeeseeeessesessesseressesssessssesesesesessaeas util
Library GENerationo.c.eu. vevvecueueusesseeceeeneeseeseeseesessssessessesssssssssessens libgen
Technical INfOrMAtIONvveivieeeeeeeeeins et eeesessensesesseseesse o senses tech
System Independent Chapters
Overview Of Library FUNCHONS ..oo.eoceeeeeveereeen ceeeeeeceseresoseesesses s libov
System-Independent FUNCLIONSo.cueeeverreeeee ceeereesseseseesosesesersmssessssssseoeses lib
SEYLE et ettt st s s s aen et et erssen s aesese et ee ot seeeas style
Compiler Error MESSABESc.uuivimveiin meveereesereeeeeeneeeeseneeessmesessssessseesens err
Index
TOAEX ettt st e esassebes e sss e msecranssnsstasen e setsasas sevanres index

- vii -

Contents

Overviewueeenevnn, ov
Tutorial Introduction tutor
1. Installing Aztec CG65 3

2. Creating Object Module Libraries 5

3. Translating a program into Intel hex cOde wnnnnnnvnnoooooo 7

4. Special Features 11
4.1 Native code vs. pseudo code eeentssentnsennesaeresrenveses 11

4.2 Zero-page usage ceetssintenesenreenesaesrensenes 12

5. Where to 80 from Here ..., 13
TRE COMPALETS oottt eessesnssss e s s s cC
1. Operating Instructions thretsbssesaserestenssaaranssrsenasetenennearnas 3
L1 The C SoUICe Fileuueevereeceeeemereeeneneseesese oo 3

1.2 The OUtput FAlesu.couveeeeeeeeeeeeeeeeee oo 4

1.3 Searching for #include files ... eoreeommeeeeeooeeeooeooooooo 6

2. COMPIlEr OPLONS «.courvernes ceeeeesieeneceeeeeeeemeees e 7
2.1 Summary of OPtionsSeeceeemeeeeeeemnesreesseeseoeeoess oo oo 7

2.2 Description 0f OPLiONScveeee weeeeeeeeoeeseeeeeoeoeoeooeooeooeoooeoe 9

3. Programmer INfOrmMation eoooveeveeeesoeeooooeoeeosoooooooooooooonn, 14
3.1 Supported Language Features oo 14

3.2 Structure ASSINMENTcoovvue. cemeeeereeeeeereeeceoeeeeeoooseos oo 14

3.3 Line CONtifUatioNooec. eoveereeeeremeesese e 14

3.4 The void Data TYDPE «.uuceeeeees eeeeeeeeesreeeeees s oo 14

3.5 Special SYMDOIS «..uvuueeoceeesee e ceeses et 15

3.6 String MEIBINGoeovuuiee eeeeeemeresemeseesseessees oo 15

3.7 LONE NAIMES «..cvvrvnrrees rersenseeaeemsssssessses s oo 16

3.8 ReESEIVEd WOTMScooveeees covereeieeeeeeseseeseseees oo oo 16

3.9 Global Variablesuveeeveveeemeemcmmeeessessess oo ossss s eoses oo 16

3.10 Data FOTmMALSc..... covverenresereneeceerseessessmess oo essss s oo 17

3.11 Floating Point EXCEPtiONSceen voeemerreereeereeeeorsnonns 18

3.11 Register Variablescoooovmeeeveerveeneersssoens ceeernenes 20

3.12 In-line Assembly Language Code ... 20

3.13 Writing Machine-Independent Code ..., 21

4. Error Processing trerrsesreenetareranessenessrenes 23
The Assemblers .. sres tvesresssbitsasntsstearananarnesreneauresEenass s st n e anesaenranen ense as

- viii -

1. Operating Instructions w“ we 3

L1 The SOUICE FilE c.uuuureueeereensere oo eeeeesseess oo 3

1.2 The Object Code File . ceeerennetarters e trasrberestetseenesnnees 4

TRCHD B L1730 L 4

1.4 Searching for instxt Files ... oo 4

2. ASSEMDBIET OPLONS .cuuvvevvveneeeen seeeeeeseeeseees oo 5

3. Programmer infOrmationooeeeoomeemveesososoososoooooooooooon 5
THE LANKET cououeveevctimnes cevetseneeersnessssses s seesessssssosse s ses e oo ees e In
1. Introduction to linking . w3

2. Using the Linker cttraeresanererennas e 7

3. LANKET OPHONS .oovvvvenrrreerasns e eeeessesses s e ess oo 9
UtILY PrOBIAMS ..ooveuecerrecenennnerns covteeeeeerenesmseessssesesssses e eeseeeseseeoeee e util
arcv rerreserer et sttt e e en e s saseneshe e sn st e seneesensases 4
CIUINES oot isnssases s sevsmssssssssenesmseseesessees oo ss e seeeeeeeeseesesse e 5
L ettt s snrssr s sssss e be et sssne e st senes st seetsse e somem e e e 9
hd et e 10
REXES .ot ettt e eseeess e e 11
IDOS oot seveeesen et ee e e et 14
INAKE oottt civescmasenessss s saesossesssesesssmsesssessoesssese e see s eeees e oo 25
TKAICY oot e esssnans s s ssssese s eeessesseses s eee e s eeeseeeeesesen e 4
ODAOS oottt srvaae et ssseeer e e eson 43
OPHNES «.oooooceeseeenncresceveenssvesn s sssseeseesse e sess e see oo 44
OFABS .cveomiteeecsniecessiansss s ssssecessesemmessseesees oo e ee s e 45
SAZES c.ovrrevvurnermssscenensssessssnes sramsa st meeeesssees s s oo s see s eeeeee oo 46
Library generationo..... voeceeeeeeeeemeeseeeemesseooseoosoosoeoeoooeoooeeoeeooeos libgen
L. Rewriting the functionsooeeeeeeeeoveesmsoeoeooooeooeooooooo 3
1.1 The start-up function ooeeeeeveoemmoomreooooooooooooo 3

1.2 The __main fUNCHONouveueceeoeeeeeeeeeeeeeeeeeeoooeoeoooooooooo 4

1.3 The Unbuffered i/0 functionsooo.voooooovooomvcooooooo 4

1.4 The standard i/o functions *agetc’ and aAPULC e e, 9

1.5 The sbrk heap management fUnCtionvu.voovvoeoeoo 9

1.6 The exit and __exit fUNCHONS vuuecvveee oo 9

2. Building the HBIAriesovvuevee ceveeeeeeeeemeeeeoee oo 10

3. Function deSCriptions oeceeeeeeeeoessoesesoss oo 11
Technical INfOTMAtIONcuecvuees e oo tech
1. Memory Organizationco..eeeeeeeemeeoeesvesesceoosooeseooooeoeooooeoooe 4

2. OVETIAYS oottt e se e e e 7

3. Interfacing to Assembly Languageo 14

4. Object Code FOrmatoeueeeree cooeeeeeemeeeseees oo 18

5. The PSEUdO SLACK ..covuees coveveeeeneeeeeeeeeeeee oo 29
Overview of Library FUDCHONScceeeeeemveeeeeeoeeeoeooeoooooooeooeoss libov
Lo T/O OVEIVIEW ..t eeee e e oo 4
1.1 Pre-opened devices, command line args ..o, 4

L2 FAlE I/ O ottt eeee s sess s eenes e 6

1.2.1 Sequential I/ ... eneeeseesnessesess e e 6

1.2.2 Random I/0O .6
1.2.3 Opening Filesc.oeviveerciececrecceecneeces s sossses e, 6
1.3 DEVICE I/ O ..uererreereeenneiesesieeseeesesensssssssssssssssssssesss e 7
1.3.1 Console 1/0 7
1.3.2 1/0 t0 Other DEVICESuvuveeeerereereeeeeneeeeeees s, 7
1.4 Mixing unbuffered and standard I/O calls ... 7
2 Standard I/O OVervieweeecvreeeeeennnnns eeeeeneenenrerenee .9
1 Opening files and deVICESoeuemeeereeeeeeeeeeeeeeeeeeeeeeeee e, 9
2 2 CloSing Streamsoeceveeeeerecoeverseesnessenns .9
2.3 Sequential I/O 10
2.4 Random 1/0 10
2.5 BUFTETING ..ccecreererretencsensencestesensnsessnssssensssssessssssossssssssesessessesenee 10
2.6 Errors ... 11
2.7 The standard I/0 functions 12
3. Unbuffered I/O OVErVIEW ..o 14
31 FIE J/0 eeecesnceeensensesssssssesessssesssessessssssssmssnenoes 15
3.2 Device 1/0 15
3.2.1 Unbuffered I/0 to the Console 15
3.2.2 Unbuffered 1/0 to Non-Console Devices 16
4. Console I/O OVEIVIEWeeeecoeceeeeeeeeermeerseesseeseeseessoses s s essssenn,
4.1 Line-oriented inPutooveriveeervesennenns
4.2 Character-oriented input
4.3 Using ioctloceuruene.n.
4.4 The sgtty fields
4.5 EXAMPIES .cocererereeenrenreeesetecoserecvessssseesssssesesssssssssesossesssssssemsennes
5. Dynamic Buffer AHOCAtONooooveeeeereeeeeeeeceeeeeeeeeoeseeoeseoos
6. Error Processing OVEIVIEWooooeoemeeeomeeeeeeeeoeeeoeeeeoeeeoosooooo

System Independent FUNCLIONScvveeeeeevereeeeeeeeeeeeoeee oo lib
INACX oottt s sresess s eesssss s s s et e eee oo 5
THE fUNCHIONS ..coueriieerrestceeet et see et e ees e 8

SEYIE ettt ceteere s ttes e eeeee s ees s se s e ee s et s
L INPOQUCHION ...ttt eeeesessesse s e e eenesaeesesse s
2. Structured Programmingcoeeeoveereroueeronsossreninns
3. Top-down Programmingeeeeeeorevemernressrosnonnnn.s
4. Defensive Programming and Debugging
5. Things to watch out for

COMPIIEr EFTOT COAESouuueveeeencenn ceremreeseesemsssesssasssssessesesssssssssssssossssones err
1. Summary - - crerrenetesaeresressansaes 4
2. EXPIANALIONScooeueererserncrsenecsscveseosnsesssessesmsssssessossssssosssssssssessssneseeseens 7
3. Fatal Error MESSABESccouueeuiverenmsceessecmessessesssssssssssssessessssesanes 35

INAEX ceecercnerrtretee s sereee s esssssesstssssssassssmssnssesssssesessorssessens index

OVERVIEW

-ov.l -

Overview Aztec CG65

-ov.2 -

Aztec CG65 Overview

The

Overview

Aztec CG65 Software Development Package is a set of

programs for developing programs in the C programming language; the
resulting programs run on ROM- and/or RAM-based systems that use
a 65xx microprocessor. The development can be done on several host

systems,

as defined below.

Some of the features of Aztec CG65 are:

L]

The full C language, as defined in the book The C
Programming Language, by Brian Kernighan and Dennis
Ritchie, is supported.

Two pairs of compilers and assemblers are provided. One pair
generates native 65xx or 65C02 code, and the other "pseudo
code". A program’s native code is directly executed by the
processor, while its pseudo code is executed by an Aztec
routine that is in the program. A program can contain both
native and pseudo code.

An extensive set of user-callable functions is provided, in
source form. To use these functions, you must first compile
and assemble them, and create libraries of the resulting object
modules. To use the standard and/or unbuffered i/o
functions, you’ll have to rewrite the unbuffered i/o functions,
which are designed for an Apple // ProDOS system.

Code can be partitioned into overlays, allowing programs to
be created and executed that are larger than available
memory. To wuse this feature, you must rewrite the
unbuffered i/o functions.

Modular programming is supported, allowing the components
of a program to be compiled separately, and then linked
together.

Assembly language code can either be combined in-line with
C source code, or placed in separate modules which are then
linked with C modules.

Special features are provided for programs that are to be
burned into ROM: (1) a utility program is provided that will
generate Intel hex records for a program. ROM chips
generated from these records will contain the program’s code,
a copy of its initialized data, and optionally, in the 65xx
power-up and interrupt vector fields, pointers to the routine
that handle these events; (2) a ROM program can contain both

-ov.3-

Overview Aztec CG65S

initialized and uninitialized global and static variables, When
the program starts, its initialized variables will be
automatically set from the copy in ROM, and its uninitialized
variables will be cleared.

In order to create fast-executing programs, the compilers generate
code that use variables in the zero page of the 65xx. Since each 65xx-
based system uses different sections of the zero page, the compilers
allow you to specify the locations in the zero page that will be used by
your programs.

The functions provided with this package are UNIX compatible and
are compatible with Aztec C packages provided for other systems,
.Thus, once you have customized the functions, you can create
programs that will run on UNIX-based systems or on other systems
supported by Aztec C with little or no change.

Host systems
The Aztec CG65 software runs on several host systems, including:
* PCDOS/MSDOS systems, such as the IBM PC;
* Vax systems that use the Ultrix operating system;
* PDP-11 systems that use UNIX version 7 or later
Components
Aztec CG635 contains the following components:
* ¢g65 and as65, the native-code compiler and assembler;
* cci and asi, the interpretive-code compiler and assembler;
* In65, the linker;
* b, the object module librarian;
Source for the library functions;

-

* Several utility programs.
Preview
This manual is divided into two sections, each of which is in turn
divided into chapters. The first section presents 65xx-specific

information; the second describes features that are common to all
Aztec C packages. Each chapter is identified by a symbol.

The 65xx-specific chapters and their identifying codes are:

tutor describes how to get started with Aztec CG65: it
discusses the installation of Aztec CG65, and gives an
overview of the process for turning a C source program into
Intel hex code;)

-ov.d -

Aztec CG65S Overview
cc, as, and In present detailed information on the compilers,
assemblers, and linker;

util describes the utility programs that are provided with Aztec
CG65;

libgen describes the creation of object module libraries from
the provided source;

tech discusses several miscellaneous topics, including memory
organization, overlays, writing assembly language functions,
and object module format,

The System-independent chapters and their codes are:

libov presents an overview of the system-independent features
of the functions provided with Aztec CG65;

lib describes the system-independent functions provided with
Aztec CG65;

style discusses several topics related to the development of C
programs;

err lists and describes the error messages which are generated
by the compiler and linker.

-ov.S-

Overview Aztec CG65S

- 0v.6 -

TUTORIAL INTRODUCTION

- tutor.1 -

TUTORIAL Aztec CG65S

Chapter Contents

Tutorial INtTOAUCLIONcceveecieceies et st sessesesneseseesonis tutor
1. Installing AZteC CGOS ...evvrnies certrereesnsisiier et enesssssesesesssssssssnennes 3

2. Creating Object Module Libraries e erereaseesnaneessneeenearenseneas 5

3. Translating a program into Intel hex code ... vovvererereeinennnee. 7

4. SpPeCial FEALUIEScovveeeueververieirirerencnasnsessssssssaesssssessssestemrsnssssesenen 11
4.1 Native code vs. pseudo COAEovmmnmirimirreeierrecenereesssseessseens 11

4.2 ZETO-PABE USAGE ...cvveererrererresesnsrsisesessesesesssssssessessssssssssssssssssssesescs 12

3. Where t0 0 fTom HETEvrenerccenrereencecensieeeeee e csessseseesevenee 13

- tutor.2 -

Aztec CG65 TUTORIAL

Tutorial Introduction

This chapter describes how to quickly start using your Aztec CG65
cross development software. We first present the steps to install the
Aztec CG65 software on your disks. We then briefly mention the fact
that you must generate object module libraries from the source that
comes with Aztec CG6S5, and refer you to the chapter in which this is
discussed. Then we describe the steps to translate a C program to Intel
hex code. Finally, we introduce the rest of the manual.

Ideally, this chapter should consist of a cookbook set of steps that
you can follow to get started using Aztec CG65. However, since one
of those steps is a long and involved one, (ie, to modify the library
functions and then generate libraries), we recommend that you follow
the first step, which leads you through the installation of Aztec CG65
on your system, and then simply read the rest of chapter to get a idea
of how programs are developed using Aztec CG65. Then you can read
the chapter that discusses library generation, make any needed
revisions to the library function source, and generate your libraries.
Finally, you can come back to this chapter and translate a C program
into Intel hex code.

1. Installing Aztec CG65

To install Aztec CG65 on your system, copy the files from the
distribution media (disk or tape) onto your disks.

If your system is one (such as the IBM PC running PCDOS, or a
UNIX system) that supports a hierarchical directory structure, we
recommend that you place the Aztec CG65 software in a set of related
directories, as shown in the following diagram.

- tutor.3 -

TUTORIAL Aztec CG65

Directory Contents
CG65

BIN ’ executable programs

INCLUDE header files

LIB object module libraries
STDIO stdio.arc files
MCH65 mché5.arc files
MISC misc.arc files
PRODOS prodos.arc files
DEV dev.arc files
TIME time.arc files
OVLY ovly.arc files
ROM rom.arc files

UTILITY
XFER xfer.arc files
TTY tty.arc files
CONFIG configarc files

WORK your programs

Copy the Aztec CG6S5 files into the directories as follows:

*

*

Into the BIN directory, copy all executable Aztec CG65
programs.

Into the INCLUDE directory, copy all "include files" (that is,
files having extension .h).

Into the LIB directory, copy the source archive libmake.arc.
The libraries that you create will reside in this directory.

Extract the files from this archive using the arcv
command, and then delete libmake.arc from the LIB directory.

To extract files from libmake.arc follow these steps: (1)
make sure that the BIN directory is in the path of directories
that will be searched by the operating system for programs
(on PCDOS and UNIX, this means adding the BIN directory
name to the PATH environment variable); (2) enter the
appropriate command to make LIB the default or current
directory (for example, on PCDOS this command is cd
\CG65\ LIB); (3) enter the command arcv libmake.arc.

Into the STDIO, MCHS6S, ..., and ROM directories, copy the
corresponding source archive (for example, copy stdio.arc into
the STDIO directory, mch65.arc into MCH65, and so on).

Extract the files from each archive using arcv, and then
delete the archive.

Each of these directories contains the source and object
modules generated from the corresponding source archive
file. For example, the source files in STDIO were extracted

- tutor.4 -

Aztec CG65 TUTORIAL

from the stdio.arc source archive file by the arcv program.

* Into XFER, TTY, and CONFIG, copy the corresponding
source archive (xfer.arc into XFER, etc). xfer transfers files
between computers; #y is a terminal emulator; and config is
used to define device attributes for programs generated with
Aztec C65 for the Apple //. These programs are not
absolutely necessary for the development of programs with
Aztec CG65, and in fact you will probably have to modify
them for use with your system, but they can be very useful.

* Into the WORK directory, copy the exmplc sample C
program. Later in this chapter, we are going to lead you
through the steps to convert this program to Intel hex code.

2. Creating Object Module Libraries

The functions that are provided with Aztec CG65 are in source
form. Before you can create an executable program using CG65, you
must compile and assemble the functions and generate object module
libraries that contain them, after first making any needed
‘modifications. For more information, see the Library Generation
chapter.

/

- tutor.S -

TUTORIAL Aztec CG65S

| Editor :
I
/ C \
| source file |
\ /
|
. { Aztec C Compiler ’
|
/ assembler \
| source file |
\ 7/
|
2 { Assembler {
|
- \
| object file |---> : Librarian {
| |
3. | . . | / subroutine \
| Link Editor P | library |
| \ /
| executable file |
\ /
|
4. I Hex65 |

\
| Intel hex file |
N\

Figure 1: Program Development with Aztec CG65

- tutor.6 -

Aztec CG65 TUTORIAL

3. Translating & program into Intel hex code

In this section we will lead you through the steps necessary to
translate the sample C program whose source is in exmpl.c into Intel
hex code. For a diagram of this procedure, see figure 1.

This program will be created so that it can reside in a system whose
RAM occupies the bottom part of the memory space and whose ROM
occupies the top part. In particular:

* The program’s data will be in RAM, beginning at address
0x200, thus leaving the first two pages of the memory space
free for the usual page 0 and page 1 purposes;

* The program’s code will be in ROM, beginning at address
0xe000.

* The 65xx power-up and interrupt vectors will be in ROM and
will point to routines in the generated program.

3.1 Step 0' Create the Source Program

The first step to creating a C program is, of course, to create a disk
file containing its source. This step isn’t needed for this
demonstration, since the source code already exists in the file exmpl.c.

For your own programs, you can create the C source using any text
editor.

3.2 Steps 1 and 2: Compile and Assemble

To compile and assemble a C module, you must first decide which
compiler and assembler you are going to use. For this example, we
will assume that you are going to use the ones that generate native
65xx/65C02 code, cg65 and as65. Later in this chapter we describe the
compilers and assemblers that are provided with Aztec CG6S.

Next, you must decide what zero-page locations you want the
compiler-generated code to use. For this example, we will use the
locations that are suitable for programs that are going to run on an
Apple //. Later in this chapter we describe in more detail a program’s
use of the zero page.

Finally, having made the above decisions, you can compile and
assemble exmpl.c by entering the following command:

cgbs +20,8,80,10 exmpl.c

This first starts the cg65 compiler, which translates the C source that’s
in exmpl.c into assembly language source. When done, cg65 starts the
as65 assembler. as65 assembles the assembly language source for the
sample program, translating it into object code and writing the object
code to the file exmplr in the current directory. When done, as65
deletes the file that contains the assembly language source, since it is
no longer needed.

- tutor.7 -

TUTORIAL Aztec CG65

The +£0,8,80,10 argument tells the compiler about the generated
code’s use of the 65xx zero page. It says that the stack, temporary, and
register areas begin at locations 0, 8, and 0x80, respectively; and the
register area is 0x10 bytes long. This is discussed in more detail below.

3.3 Step 3: Link

The object code version of the exmpl program must next be linked
to needed functions that are in the c.ib library of object modules and
converted into 2 memory image.

Before entering this command, you must set the CLIB65
environment variable, to define the directory that contains the object
module libraries. For example, on PCDOS, if the libraries are in
e\ cg65\ lib, the command to define CLIB6S is

set CLIB65=¢:\cg65\1ib\

Note the terminating slash: this is usually required, because of the way
the linker builds the complete name of a library that is partially
identified using the linker’s -/ option. This is described below.

The command to link the sample program is
In65 -t -b 200 -d 200 -¢ €000 exmpl.r -Ic

There’s a lot of parameters to this command, so let’s go through them,
one at a time:

3.3.1 The symbol table file and the -T option

The -T option tells the linker to write the program’s symbol table
information to the file exmplsynz this symbol table is needed by
hex65, which converts the output of the linker into Intel hex code.

3.3.2 Segment addresses and the -B, -D, -U, and -C options

As you recall, we want the program’s data to begin at 0x200 and its
code at 0xe000. We tell this to the linker using the segment
specification options: -B, -D, -U, and -C.

The -B 200 option tells the linker that the program’s "base address",
that is, the address at which the linker-generated memory image can
begin to be loaded into memory, is 0x200.

The -D 200 option tells the linker that the program’s initialized data
is to begin at location 0x200. The linker organizes a program’s data
into two segments: its initialized data segment contains those of the
program’s global and static variables that are assigned an initial value
(e.g. static int var=1); and its uninitialized data segment contains the
program’s other global and static variables. Just as the linker supports
an option that tells it where to put the program’s initialized data, it also
supports a -U option, that tells it where to put the program’s
uninitialized data. When the -U option isn’t used, the linker places
uninitialized data immediately above the initialized data.

- tutor.8 -

Aztec CG65 TUTORIAL

The -C e000 option tells the linker that the program’s code is to
begin at location 0xe000. Just as the linker groups all of a program’s
initialized and uninitialized data into segments, it groups all of a
program’s code into a code segment. The -C option defines the
starting address of this segment.

On a 65xx, the top 6 bytes of the memory space contain vectors to
the power-up and interrupt routines, and the first 512 bytes of
memory contain dynamically-changing information. Because of this,
most 65xx ROM systems have their ROM at the top of the memory
space and their RAM at the bottom. The linker has default values for
a program’s base address and the beginning addresses of its segments,
as follows:

* The base address default to 0x800;
* The code segment begins three bytes past the base address;
* The initialized data segment begins immediately after the
code segment;
* The uninitialized data segment begins immediately after the
initialized data segment.
These default values are usually not appropriate for a ROM system, sO
you will usually use the linker's segment-specification options when
generating a program that’s going to be burned into ROM.

3.3.3 The input object module file and the memory image output file

The exmplr parameter explicitly tells the linker to include this
module in the program that it’s generating.

By default, the linker sends the output of the memory image it
creates to a file whose name is derived from that of the first object
module file that it encounters, by deleting the extension. Thus, the
memory image for the above command is sent to the file exmpl. You
can explicitly define the name of the memory image file using the
linker’s -O option.

3.3.4 Libraries and the -L option

The -Lc option tells the linker to search the c.lib library that’s in the
directory defined by the CLIB65 environment variable for needed
functions.

As you can see, the -L option doesn’t completely define the name
of a library file; the linker generates the complete name by taking the
letters that follow the -L, prepending them with the value of the
CLIB65 environment variable, and appending the letters .lib. Thus,
when CLIB65 has the value e\ cg65\ lib\, the -Lc option specifies the
library whose complete file name is e cg65\ lib\ c.lib.

During the link step, the linker will search the libraries specified to
it for modules containing needed functions; when such a module is
found, the linker will include the module in the executable file it’s

- tutor.9 -

TUTORIAL Aztec CG65S
building.

All C programs need to be linked with c.lib (or its cci-compiled
equivalent, cilib, as described below). This library contains the non-
floating point functions which are defined in the functions chapter, lib
of this manual It also contains functions which are called by
compiler-generated code.

If a program performs floating point operations, it must also be
linked with a math library. The math library that you will use when
getting familiar with Aztec C is m.lb. You can alternatively use its
cci-compiled equivalent, m.kib.

When a program is linked with a math library, that library must be
specified before c.lib. For example, if exmpl.c performed floating
point, the following would link it

In65 exmplr -lm -Ic
3.4 Step 4: Convert to Intel hex code

The next step is to convert the memory image generated by the
linker into Intel hex code. The is done with the following command:

hex65 exmpl

This command causes hex65 to translate the program’s memory
image into Intel hex code. When this code is fed into a ROM
programmer, the resulting ROM code will contain the program’s code
segment, a copy of its initialized data segment immediately following
the code, and the power-up and reset vectors up at the top of memory.

Note: when the ROM system is started, its RAM contains random
values, and the Aztec startup routine sets up the initialized data
segment that resides in RAM from the copy that’s in ROM.

hex65 generates Intel hex records, named exmpl.x00, exmpl.x01,
and so on, for each 2 kb section of memory, beginning with the
program’s code segment. Thus, exmplx00 contains the records for
0xe000-0xe800, exmpl.x0I contains the records for 0x¢800-0xf000, and
SO on.

The last hex file generated by hex65 will contain records to
initialize the nmi, reset, and irq vectors at the top of the 65xx address
space. With the supplied software, these vectors point to locations in
rom.a65. you can modify the software so that the vectors point to your
own handlers.

If the ROM corresponding to the last hex file generated to hold the
program’s code and copy of its initialized data isn’t the section of
ROM that would be at the top of the 65xx memory space, hex65 will
output a separate file containing just those records needed to initialize
the vectors in this last ROM. The extension on this file will indicate
its sequence in the set of ROM chips needed to fill the memory space

- tutor.10 -

Aztec CG65 TUTORIAL

from the beginning of the program’s code to the top of memory; for
example, if two 2 kb ROMs were sufficient to hold the program’s code
and copy of its initialized data, then the code and data would be in
exmpl.x00 and exmplx0l, and the vectors would be in the file
exmpl.x03.

There are several additional features of hex65. For example, hex65
assumes that the size of each ROM is 2 kb long; using the -P option,
you can explicitly define the size of each ROM. And by default,
hex65 generates the Intel hex records that set up these vectors; you can
tell hex65 not to generate these vector-initializing records. For a
detailed description of hex65, see the Utility Programs chapter.

4. Spedial features of Aztec CG65

That concludes our step-by-step, cookbook introduction to Aztec
CG65. In the following paragraphs, we want to describe two special
features of Aztec CG65: its ability to generate either 65xx code or
pscudo code, and the feature that allows you to define the locations
within the zero page that generated programs will use.

.4.1 Native Code vs. Pseudo Code

Aztec CG65 comes with two compilers and two assemblers: The
cg65 compiler and as65 assembler, which together generate native
machine code; and the cci compiler and asi assembler, which together
generate pseudo code that must be interpreted.

There are advantages and disadvantages to using each
compiler/assembler pair: ’

* Code generated by cg65 and as65 is fast but large;
* Code generated by cci and asi is small but slow.

Thus, when you are going to create an executable program, you
must decide which compiler/assembler pair to use. We recommend
that you first use cg65 and as65. If it gets too large, use cci and asi. If
neither of these alternatives is acceptable, with a native code version
being too large and an interpreted version being too slow, you can
divide the program into modules, compiling and assembling some of
them into native code, the rest into interpreted code, and linking them
all into a single executable program.

4.1.1 Native code and pseudo code libraries

Aztec CG65 provides "makefiles” with which you can generate two
versions of each library: one whose modules are compiled with cg65,
the other whose modules are compiled with cci. These libraries are:

clib General purpose functions (cg65-compiled);
ci.lib General purpose functions (cci-compiled);
mlib Floating point functions (cg65-compiled);
mi.lib Floating point functions (cci-compiled).

- tutor.11 -

TUTORIAL Aztec CG65S

As always, you can freely intermix cg65-compiled modules with
cci-compiled modules, even when some of the modules come from one
library or another,

4.2 Zero-page usage

The first 256 bytes of memory on a 65xx-based system are known
as the "zero page", and are used differently by each system. Code
generated by the Aztec CG65 compilers also makes use of the zero
page, for storing variables. In order to allow CG65-generated code to
be used on any 65xx-based system, the Aztec CG65 compilers group
the zero-page variables used by generated code into three areas and
allow you to define the location of these areas.

One area, which is 8 bytes long, contains the pseudo stack and
frame pointers, and, if the program contains a cci-compiled module,
the pseudo code interpreter’s program counter.

Another area, which is 24 bytes long, contains five temporary
registers, each of which is four bytes long.

The last area contains a program’s register variables, and its size is
specified by you when you compile a program. Thus, if your system
uses most of the zero page, you can specify that your program uses
few, or no, register variables. If your system has extra space in the
zero page, you can fill it with register variables, thereby increasing the
performance of your programs.

For example, the following table lists the starting addresses of the
three areas and the size of the register variable area on the Apple //,
Commodore 64, and the Atari 400/800. All values are in hexadecimal.

Apple // C-64 Atari

stack area addr 0 2 EO
temporary area addr 8 A ES8
Register var area addr 80 30 D4
Reg var area size 10 8 6

The location of these zero page locations are defined in two ways:
with the cg65 compiler’s +G option, and in the assembly language file
zpage.h:

4.2.1 Zero page usage of cg65-compiled modules

The cg65 compiler’s +G option defines the zero page usage of
cg65-compiled, C language modules. For example, the following
command compiles hello.c for use on the Commodore 64:

cgb5 +g2,A,30,8 hello.c
4.2.2 Zero page usage of assembly language modules

The assembly language file zpage.h defines the zero page usage of
assembly language modules. Normally, you will create a zpage.h file

- tutor.12 -

Aztec CG65 TUTORIAL

early in your development cycle, before you create your libraries,
since this file is included in the assembly of many of the library’s
assembly language modules. A version of zpage.h is supplied with
Aztec CG65, and you can customize it for use with your system.

4.2.3 Zero page usage of cci-compiled modules

zpage.h also indirectly defines the zero page usage of cci-compiled,
C language modules. The reasons for this are (1) the pseudo code
interpreter, which executes cci-generated pseudo code, is an assembly
language module that accesses zero page locations on behalf of a cci-
compiled module, and (2) the locations of these zero page locations are
defined by the zpage.h with which the interpreter is assembled.

cci itself produces machine-independent code; the same cci-
generated object module can be executed on different 65xx systems,
just by linking it with different object module versions of the
interpreter, each of which has been generated by assembling the
interpreter together with a zpage.h that defines the zero-page usage of
the target system.

5. Where to go from here

In this chapter, we’ve just begun to describe the features of Aztec
CG65.

One chapter that you must read is the Library Generation chapter,
which discusses the generation of object module libraries from the
source that comes with Aztec CG6S.

We encourage you to use the make program-maintenance program
to generate libraries, if such a program is available for your host
system. To provide this encouragement, Aztec CG65 provides
"makefiles” that can be used by UNIX-compatible make programs. If
your host system is one, such as PCDOS, that doesn’t have its own
make program, and if the Aztec make is available for your system, it
will be included in your Aztec CG65 package. A description of the
Aztec make program is in the Utility Programs chapter.

For more information on the sections of a program, see the
Program Organization section of the Technical Information chapter,
and the section of the Linker chapter that discusses the segment
specification options. .

The hex65 program supports several options that haven’t been
discussed in this introduction. For a complete description of this
program see the Utility Programs chapter.

The Technical Information chapter contains information on several
interesting topics, including the writing of assembly language
functions, the pseudo stack, and object code format.

- tutor.13 -

TUTORIAL Aztec CG65

You should also read the Compiler, Assembler, and Linker

chapters, to become familiar with all the options that these programs
provide.

- tutor.14 -

THE COMPILERS

-cc.l -

COMPILERS Aztec CG65

Chapter Contents

The compilers ceeerreseessesassnens . eeereseeereessnssssnnnes cc

1. Operating INStIUCTIONS v......uouueccerereneeemneeeeeees oo 3
1.1 The C Source File cessbesresssteaeressnnantsstesnansaessasesrasost smsensns 3
1.2 The Output Files 4
1.3 Searching for #include fleso...ovormeoeeeeoeseeeeoeeeeoooooo 6

2. Compiler Options e 7
2.1 Summary of Options .7
2.2 Description of Options 9

3. Programmer Information creetstersasrainrsssas s nsastese ssssasannnsaes 14
3.1 Supported Language Featuresoooeoooooooooooooo, 14
3.2 Structure ASSINMIENEoueeceee oo 14
3.3 Line Continuation . 14
3.4 The v0id Data TYDE cuuuvveeeee oo 14
3.5 Special SYMDBOISovvueeeeceeeee e 15
3.6 String Merging e e sasesst s s e s eeeas s 15
3.7 LONG NAMEScecrrrnsttrereeeeeeeeneeeses e 16
3.8 ReSEIrVEd WOTS w.couceevveeec oo 16
3.9 Global Variables ... oveeoeeeeeereemmsoveeseooseooeoooooeoooosoeoooeo 16
3.10 Data FOIMALScvvuee coveeeeeeeneeeeeeeesness s e oeese oo oo 17
3.11 Floating Point EXCEPONS .vue.vveeeeee eeeoeeeeeeereoeooooooooooosoo 18
3.11 Register Variables ... ueeeeeeeoemeeeseoeoeoeeesoooeoooeoooooooooo 20
3.12 In-line Assembly Language COdeoooovooooooo 20
3.13 Writing Machine-Independent Code oo 21

RN 5 ¢ ol g o JoTuN 73 1T RO 23

-cc2 -

Aztec CG65 COMPILERS

The Compilers

This chapter describes cg65 and cci, the Aztec C compilers for the
65xx and 65C02 microprocessors. It is not intended to be a complete
guide to the C language; for that, you must consult other texts. One
such text is The C Programming Language, by Kernighan and Ritchie.
The compilers were implemented according to the language description
in the Kernighan and Ritchie book.

cg65 translates C source code into native 6502 assembly language
source code. cci translates C source code into assembly language source
for a "pseudo machine™ in an executable program, cci-compiled code
must be interpreted by a special Aztec C routine.

This description of the compilers is divided into four subsections,
which describe how to use the compilers, compiler options,
.information related to the writing of programs, and error processing.

To the operator and programmer, the two compilers are very
similar. In the discussion that follows, we will use the name cgb5
when describing features that are common to both compilers. Where
differences exist, we will say so.

1. Compiler Operating Instructions
cg65 is invoked by a command of the form:
cg65 [-options] filename.c

where [-options] specify optional parameters, and Sfilename.c is the
name of the file containing the C source program. Options can appear
either before or after the name of the C source file.

The compiler reads C source statements from the input file,
translates them to assembly language source, and writes the result to
another file.

Upon completion, the compiler by default activates the as65
assembler (cci by default starts the asi assembler). The assembler
translates the assembly language source to relocatable object code,
writes the result to another file, and deletes the assembly language
source file. The -4 option tells the compiler not to start the assembler.

1.1 The C source file

The extension on the source file name is optional If not specified,
it's assumed to be .c. For example, with the following command, the
compiler will assume the file name is text.cc

-cc.3 -

COMPILERS Aztec CG6S

cg65 text

The compiler will append .c to the source file name only if it doesn’t
find a period in the file name. So if the name of the source file really
doesn’t have an extension, you must compile it like this:

cg65 filename,

The period in the name prevents the compiler from appending .c to
the name.

1.2 The output files
1.2.1 Creating an object code file

Normally, when you compile a C program you are interested in the
relocatable object code for the program, and not in its assembly
language source. Because of this, the compiler by default writes the
assembly language source for a C program to an intermediate file and
then automatically starts the assembler. The assembler then translates
the assembly language source to relocatable object code, writes this
code to a file, and erases the intermediate file.

By default, the object code generated by a cg65-started assembly is
sent to a file whose name is derived from that of the file containing
the C source by changing its extension to .r (the default extension for a
cci-started assembly is ./). This file is placed in the directory that
contains the C source file. For example, if the compiler is started with
the command

cg65 prog.c

the file prog.r will be created, containing the relocatable object code
for the program.

The name of the file containing the object code created by a
compiler-started assembler can also be explicitly specified when the
compiler is started, using the compiler’s -O option. For example, the
command

cg65 -O myobj.rel prog.c

compiles and assembles the C source that’s in the file prog.c, writing
the object code to the file myobj.rel.

When it’s going to automatically start the assembler, the compiler
by default writes the assembly language source to a temporary file
named ctmpxxx.xxx, where the x’s are replaced by digits in such a
way that the name becomes unique. This temporary file is placed in
the directory specified by the environment variable CCTEMP. If this
variable doesn’t exist, the file is placed in the current directory.

When CCTEMP exists, the fully-qualified name of the temporary
file is generated by simply prefixing its value to the CtmMpXXX.XXX
name. For example if CCTEMP has the value

- ccd -

Aztec CG6S COMPILERS

/RAM/TEMP/

then the temporary file is placed in the TEMP directory on the RAM
volume.

For a description on the setting of environment variables, see your
operating system manual.

If you are interested in the assembly language source, but still want
the compiler to start the assembler, specify the option -T when you
start the compiler. This will cause the compiler to (1) send the
assembly language source to a file whose name is derived from that of
the file containing the C source by changing its extension to .asm and
(2) include the C source statements as comments in the assembly
language source. For example, the command

cg65 -T prog.c
compiles and assembles prog.c, creating the files prog.asm and prog.r.
1.2.2 Creating just an assembly language file

There are some programs for which you don’t want the compiler to
automatically start the assembler. For exampie, you may want to
modify the assembly language generated by the compiler for a
particular program. In such cases, you can use the compiler’s -4
option to prevent the compiler from starting the assembler.

When you compile a program using the -4 option, you can tell the
compiler the name and location of the file to which it should write the
assembly language source, using the -O option.

If you don’t use the -O option but do use the -4 option, the
compiler will send the assembly language source to a file whose name
is derived from that of the C source file by changing the extension to
.asm, placing this file in the same directory as the one that contains the
C source file. For example, the command

cg65 -A prog.c
compiles but doesn’t assemble the C source that’s in prog.c, sending the
assembly language source to prog.asm.

As another example, the command

cg65 -A -O temp.ab5 prog.c

compiles but doesn’t assemble the C source that’s in prog.c, sending the
assembly language source to the file temp.a65.

When the -A option is used, the option -T causes the compiler to
include the C source statements as comments in the assembly language
source.

-cc.S -

COMPILERS Aztec CG65

1.3 Searching for #include files

You can make the compiler search for #include files in a sequence
of directories, thus allowing source files and #include files to be
contained in different directories.

Directories can be specified with the -I compiler option, and with
the INCL65 environment variable. The compiler itself also selects a
few areas to search. The maximum number of searched areas is eight.

If the file name in the #include statement specifies a directory, just
that directory is searched.

1.3.1 The -I option.

A -I option defines a single directory to be searched. The area
descriptor follows the -1, with no intervening blanks. For example, the
following -/ option tells the compiler to search the /ram/include
directory:

-1/ram/include
1.3.2 The INCLS6S environment variable.

The INCL65 environment variable also defines a directory to be
searched for #include files. The value of this variable is the name of
the directory to be searched.

The command that is used to set environment variables varies from
system to system. For example, on PCDOS the following command
sets INCL65 so that the directory \CG65\ INCLUDE is searched for
include files:

set INCL65=\CG65\INCLUDE

For a description of the command that’s used on your system to set
environment variables, see your operating system manual.

1.3.3 The search order for include files
Directories are searched in the following order:

I. If the #include statement delimited the file name with the
double quote character, ", the current directory is
automatically searched. If delimited by angle brackets, < and
>, this area isn’t automatically searched.

2. The directories defined in -I options are searched, in the
order listed on the command line.

3. The directory defined in the INCL65 environment variable is
searched.

- cc.6 -

Aztec CG65 COMPILERS

2. Compiler Options

There are two types of options in Aztec C compilers: machine
independent and machine dependent. The machine-independent
options are provided on all Aztec C compilers. They are identified by
a leading minus sign.

The Aztec C compiler for each target system has its own, machine-
dependent, options. Such options are identified by a leading plus sign.

- The following paragraphs first summarize the compiler options and
then describe them in detail.

2.1 Summary of options
2.1.1 Machine-independent Options
-A Don’t start the assembler when compilation is done.

-Dsymbolf=value]
Define a symbol to the preprocessor.

-Idir Search the directory named dir for #include files.

-0 file Send output to file.

-S Don’t print warning messages.

-T Include C source statements in the assembly code

output as comments. Each source statement appears
before the assembly code it generates.

-B Don’t pause after every fifth error to ask if the
compiler should continue. See the Errors subsection
for details.

-Enum Use an expression table having num entries.
-Lnum Use a local symbol table having num entries.
-Ynum Use a case table having num entries.
-Znum Use a literal table having num bytes.

2.1.2 Special Options for the 65xx Compilers

+C Generate 65C02 code (cg65 only).

+B Don’t generate the statement "public .begin".

+L Turn automatic variables into statics (cg65 only).
+Gstktmp,reg,siz

(cg65 only). Define zero-page locations for cg65-
compiled modules: stack area begins at stk, temporary
register area at mp; register variable area begins at reg
and is siz bytes long. The values are in hex. The zero
page locations used by cc-compiled modules are

-cc.7 -

COMPILERS Aztec CG65

defined in zpage.h, when the pseudo code interpreter
is assembled.

-cc.8-

Aztec CG65S COMPILERS

2.2 Detailed description of the options
2.2.1 Machine-independent options
The -D Option (Define a macro)

The -D option defines a symbol in the same way as the
preprocessor directive, #define. Its usage is as follows:

cg65 -Dmacro[=text] prog.c
For example,

¢g65 -DMAXLEN=1000 prog.c
is equivalent to inserting the following line at the beginning of the
program:

#define MAXLEN 1000

Since the -D option causes a symbol to be defined for the
preprocessor, this can be used in conjunction with the preprocessor
directive, #ifdef, to selectively include code in a compilation. A
common example is the following code:

#ifdef DEBUG
printf("value: %d\n", i);
#endif

This debugging code would be included in the compiled source by
the following command:

cg65 -dDEBUG program.c

When no substitution text is specified, the symbol is defined to have
the numerical value 1.

The -I Option (Include another source file)

The -7 option causes the compiler to search in a specified directory
for files included in the source code. The name of the directory
immediately follows the -I, with no intervening spaces. For more
details, see the Compiler Operating Instructions, above.

The -S Option (Be Silent)

The compiler considers some errors to be genuine errors and others
to be possible errors. For the first type of error, the compiler always
generates an error message. For the second, it generates a warning
message. The -S option causes the compiler to not print warning
messages.

2.2.1.1 The Local Symbol Table and the -L Option

When the compiler begins processing a compound statement, such
as the body of a function or the body of a for loop, it makes entries
about the statement’s local symbols in the local symbol table, and

-9 -

COMPILERS Aztec CG65

removes the entries when it finishes processing the statement. If the
table overflows, the compiler will display a message and stop.

By default, the local symbol table contains 40 entries. Fach entry is
26 bytes long; thus by default the table contains 520 bytes.

You can explicitly define the number of entries in the local symbol
table using the -L option. The number of entries immediately follows
the -L, with no intervening spaces. For example, the following
compilation will use a table of 75 entries, or almost 2000 bytes:

cg65 -L75 program.c
2.21.2 The Expression Table and the -E Option

The compiler uses the expression table to process an expression.
When the compiler completes its processing of an expression, it frees
all space in this table, thus making the entire table available for the
processing of the next expression. If the expression table overflows,
the compiler will generate error number 36, "no more expression
space", and halt.

By default, the expression table contains 80 entries. Each entry is
14 bytes long; thus by default the table contains 1120 bytes.

You can explicitly define the number of entries in the expression
table using the -E option. The number of entries immediately follows
the -E, with no intervening spaces. For example, the following
compilation will use a table of 20 entries:

cg65 -E20 program.c
2.21.3 The Case Table and the -Y Option

The compiler uses the case table to process a switch statement,
making entries in the table for the statement’s cases. When it
completes its processing of a switch statement, it frees up the entries
for that switch. If this table overflows, the compiler will display error
76 and halt.

For example, the following will use a maximum of four entries in
the case table:

- ¢c.10 -

Aztec CG65 COMPILERS

switch (a) {

case 0: /* one */
a+=1;
break;
case I: /* two ¥/
switch (x) {
case ’a"; /* three */
funcl (a);
break;
case 'b”: /* four */
func2 (b);
break;
} /* release the last two */
a=>5;
case 3: /* total ends at three */
func2 (a);
break;

By default, the table contains 100 entries. Each entry is four bytes
long; thus by default, the table occupies 400 bytes.

You can explicitly define the number of entries in the case table
using the compiler’s -Y option. The number of entries immediately
follows the -Y, with no intervening spaces. For example, the following
compilation uses a case table having 50 entries:

cg65 -Y50 file
2.21.4 The String Table and the -Z Option

When the compiler encounters a "literal" (that is, a character
string), it places the string in the literal table. If this table overflows,
the compiler will display error 2, "string space exhausted", and halt.

By default, the literal table contains 2000 bytes.

You can explicitly define the number of bytes in this table using
the compiler’s -Z option. The number of bytes immediately follows
the -Z, with no intervening spaces. For example, the following
command will reserve 3000 bytes for the string table:

cgb5 -Z3000 file
2.2.1.5 The Macro/Global Symbol Table

The compiler stores information about a program’s macros and
global symbols in the Macro/Global Symbol Table. This table is
located in memory above all the other tables used by the compiler. Its
size is set after all the other tables have been set, and hence can’t be
set by you. If this table overflows, the compiler will display the
message "Out of Memory!" and halt You must recompile, using
smaller sizes for the other tables.

-cc.11 -

COMPILERS Aztec CG65

2.2.2 65xx Options
2.22.1 The +G Option (Define zero page usage for cg65-compiled modules)

The +G option defines the zero page locations that will be used by
cg65-generated code. The option has the form

+Gsaddr, taddr,uaddr,ucnt
where

saddr Starting address, in hex, of the stack area. This area is
8 bytes long and by default begins at location 0.

taddr Starting address, in hex, of the temporary register
area. This area is 24 bytes long and by default begins
at location 8.

uaddr Starting address, in hex, of the user register area. The
size of this area is two times the value that is specified
for the +G option’s ucnt parameter. By default, this
area begins at location 0x80.

ucnt The number of bytes in the register variable area, in
hex. By default, this area is 16 bytes long; ie, contains
space for eight register variables.

No spaces are allowed in the +G option.

The default values for unspecified +G fields are those used for
Apple // programs.

As an example of the use of this option, the following command
compiles the "hello, world" program for use on a Commodore 64,
which uses saddr=2, taddr=0xa, uaddr=0x30, and ucnt=8:

cg65 +g2,a,30,8 hello.c

The +G option is not used by the cci compiler. The zero page usage
of cci-compiled modules is defined when the pseudo code interpreter
.nterp is assembled.

2.2.2.2 The +C Option (Generate 65002 code - cg65 only)

The +C option causes cg65 to generate assembler source for a
65C02 processor. If this option isn’t used, cg65 will generate code for
a 6502 processor.

2.2.2.3 The +B Option (Don’t generate reference to .begin)

Normally when compiling a module, the compilers generate a
reference to the entry point named .begin. Then when the module is
linked into a program, the reference causes the linker to include in the
program the library module that contains .begin.

The +B option prevents the compilers from generating this
reference.

-cc.12 -

Aztec CG65 COMPILERS

For example, if you want to provide your own entry point for a
program, and its name isn’t .begin, you should compile the program’s
modules with the +B option. If you don’t, then the program will be
bigger than necessary, since it will contain your entry point module
and the standard entry point module. In addition, the linker by default
sets at the program’s base address a jump instruction to the program’s
entry point; if it finds entry points in several modules, it will set the
jump to the last one encountered.

2.2.2.4 The +L Option (Turn Autos into Statics - cg65 only)

The +L option causes the compiler to change the class of variables
whose class is automatic to static. This can cause a significant increase
in execution speed, since it is faster to address static variables, which
are directly addressable, than automatic variables, which are on the
stack and must be indirectly addressed.

Automatic variables that are declared using the auto keyword, (for
example auto int i), aren’t affected by the +L option: they will remain
automatic.

Also, if a register is available for an automatic variable that is
declared using the register keyword (for example, register int i), the
variable will be placed in a register and will not be turned into a static.
If a register is not available, however, such a variable will be turned
into a static variable.

Like any other static data, an auto-turned-static is initialized to zero
before the program begins.

A function that recursively calls itself may not work correctly when
it is compiled with the +L option. For example, the following program
will print 1 when compiled without the +L option, and 100 when
compiled with the +L option:

main()

printf("%d", qtest());

qtest()
.
int i;
if (++i < 100)
qtest(i);
return (i);

-cc13 -

COMPILERS Aztec CG65

3. Writing programs

The previous sections of this description of the compiler discussed
operational features of the compiler; that is, presented information that
an operator would use to compile a C program. In this section, we
want to present information of interest to those who are actually
writing programs,

3.1 Supported Language Features

Aztec C supports the entire C language as defined in The C
Programming Language by Kernighan and Ritchie. This now includes
the bit field data type.

The following paragraphs describe features of the standard C
language that are supported by Aztec C but aren’t described in the K &
R text.

3.2 Structure assignment

Aztec C supports structure assignment With this feature, a
program can cause one structure to be copied into another using the
assignment operator.

For example, if sI and s2 are structures of the same type, you can
say:

sl =s2;
thus causing the contents of structure sl to be copied into structure s2.

Unlike other operators, the assignment operator doesn’t have a
value when it’s used to copy a structure. Thus, you can’t say things
like "a = b = ¢", or "(a=b).fld" when a, b, and ¢ are structures.

3.3 Line continuation

If the compiler finds a source line whose last character is a
backslash, \, it will consider the following line to be part of the current
line, without the backslash. For example, the following statements
define a character array containing the string "abcdef™

char array[]="ab\
cd\

ef";
3.4 The void data type
Functions that don’t return a value can be declared to return a void.
This provides a safety check on the use of such functions. If a void
function attempts to return a value, or if a function tries to use the

value returned by a void function, the compiler will generate an error
message.

Variables can be declared to point to a void, and functions can be
declared as returning a pointer to a void.

-cc.14 -

Aztec CG65 COMPILERS

When an assignment of one pointer to another is made, the
compiler usually wants both pointers to point at the same type of
object; otherwise, it will issue a warning message. However, a pointer
to an object of type void can be assigned to, and can itself be assigned
to, a pointer to an object of any type without causing the compiler to
complain.

That is, the compiler will generate a warning message for the
assignment statement in the following program:

main()
char *cp;
int *ip;
ip=cp;
The compiler won’t complain about the following program:
main()
char *cp;

void *getbuf();
cp = getbuf();

3.5 Spedal symbols
Aztec C supports the following symbols:

__FILE Name of the file being compiled. This is a
character string.
__LINE__ Number of the line currently being
compiled. This is an integer.
FUNC Name of the function currently being

compiled. This is a character string.

In case you can’t tell, these symbols begin and end with two
underscore characters.

For example,
printf("file= %s\n", FILE_),

printf("line= %d\n", LINE);
printf("func=%s\n", FUNC);
3.6 String merging
The compiler will merge adjacent character strings. For example,

printf("file=" FILE " line= %d func=" FUNC R
LINE__);

- cc.15 -

COMPILERS Aztec CG65S

3.7 Long names

Symbol names are significant to 31 characters. This includes
external symbols, which are significant to 31 characters throughout
assembly and linkage.

3.8 Reserved words

const, signed, and volatile are reserved keywords, and must not be
used as symbol names in your programs.

3.9 Global variables

Aztec C supports the rule of the standard C language regarding
global variables that are to be accessed by several modules. This rule
requires that in the modules that want to access such a variable, exactly
one module declare it without the extern keyword and all others
declare it with the extern keyword.

Previous versions of Aztec C did not strictly enforce this rule. In
these versions, the following modified version of the rule was
enforced:

* multiple modules could declare the same variable, with the
extern keyword being optional;

* when several modules declared a variable without using the
extern keyword, the amount of space reserved for the variable
was set to the largest size specified by the various
declarations;

* when onc module declared a variable using the extern
keyword, at least one other module must have declared the
variable without using the extern keyword;

* at most one module could specify an initial value for a global
variable;

* when a module specificd an initial value for a global variable,
the amount of storage reserved for the variable was set to the
amount specified in the declaration that specified an initial
value, regardless of the amounts specified in the other
declarations.

In order to (1) enforce the standard C rule regarding global
variables and (2) provide compatibility with previous versions of Aztec
C, the current Aztec linker will generate code consistent with the
previous versions, but will by default generate a "multiply defined
symbol" message when multiple modules are found that declare a
global variable without the extern keyword. The -M linker option can
be used to cause the linker to treat global variables just as they were in
previous versions of Aztec C; in this case, the "multiply defined
symbol" message won’t occur when several modules declare the same
variable without the extern keyword, as long as no more than one
specifies an initial value for the variable. If multiple modules declare
an initial value for the same variable this message will be issued,

- cc.16 -

Aztec CG6S COMPILERS

regardless of the use of the -M option.

Both previous and current versions of Aztec C prevent a global
symbol from being both a variable name and a function name. When
such a situation arises, the linker will issue the "multiply defined
symbol" message, regardless of the use of the -M option.

3.10 Data formats
3.10.1 char

Variables of type char are one byte long, and can be signed or
unsigned. By default, a char variable is unsigned.

When a signed char variable is used in an expression, it’s converted
to a 16-bit integer by propagating the most significant bit. Thus, a char
variable whose value is between 128 and 255 will appear to be a
negative number if used in an expression.

When an unsigned char variable is used in an expression, it's
converted to a 16-bit integer in the range 0 to 255.

A character in a char is in ASCII format.
3.10.2 pointer

Pointer variables are two bytes long.
3.10.3 int, short

Variables of type short and int are two bytes long, and can be signed
or unsigned.

A negative value is stored in two’s complement format. A -2 stored
at location 100 would look like:

location contents in hex
100 FE
101 FF
3.10.4 long

Variables of type long occupy four bytes, and can be signed or
unsigned.

Negative values are stored in two’s complement representation.
Longs are stored sequentially with the least significant byte stored at
the lowest memory address and the most significant byte at the highest
memory address.

3.10.5 float

A float variable is represented internally by a sign flag, a base-256
exponent in excess-64 notation, and a three-character, base-256
fraction. All variables are normalized.

-ccl7 -

COMPILERS Aztec CG65S

The variable is stored in a sequence of four bytes. The most
significant bit of byte 0 contains the sign flag; 0 means it’s positive, 1
negative.

The remaining seven bits of byte 0 contain the excess-64 exponent.

Bytes 1,2, and 3 contain the three-character mantissa, with the most
significant character in byte 1 and the least in byte 3. The ’decimal
point’ is to the left of the most significant byte.

As an example, the internal representation of decimal 1.0 is 41 01
00 00.

3.10.6 Doubles

A floating point number of type double is represented internally by
a sign flag, a base-256 exponent in excess-64 notation, and a seven-
character, base-256 fraction.

The variable is stored in a sequence of ecight bytes The most
significant bit of byte 0 contains the sign flag; 0 means positive, 1
negative,

The excess-64 exponent is stored in the remaining seven bits of
byte 0.

The seven-character, base-256 mantissa is stored in bytes ! through
7, with the most significant character in byte 1, and the least in byte 7.
The "decimal point” is to the left of the most significant character.

As an example, (256**3)*(1/256 + 2/256**2) is represented by the
following bytes: 43 01 02 00 00 00 00 00.

For accuracy, floating point operations are performed using
mantissas which are 16 characters long. Before the value is returned to
the user, it is rounded.

3.11 Foating Point Exceptions

When a C program requests that a floating point arithmetic
operation be performed, a call will be made to functions in the floating
point support software.

While performing the operation, these functions check for the
occurrence of the floating point exception conditions; namely,
overflow, underflow, and division by zero. On return to the caller, the
global integer flterr indicates whether an exception has occurred:

flterr value returned meaning
0 computed valueno error has occurred
1 +/- 2.9¢-157 underflow
2 +/- 5.2el51 overflow
3 +/-5.2e151 division by zero

-cc.18 -

Aztec CG65 COMPILERS

If the value of flterr is zero, no error occurred, and the value
returned is the computed value of the operation. Otherwise, an error
has occurred, and the value returned is arbitrary. The table lists the
possible settings of flterr, and for each setting, the associated value
returned and the meaning.

When a floating point exception occurs, in addition to returning an
indicator in flterr, the floating point support routines will either log an
error message to the console or call a user-specified function. The
error message logged by the support routines define the type of error
that has occurred (overflow, underflow, or division by zero) and the
address, in hex, of the instruction in the user’s program which follows
the call to the support routines.

Following the error message or call to a user function, the floating
point support routines return to the user’s program which called the
support routines.

To determine whether to log an error message itself or to call a
user’s function, the support routines check the first pointer in Sysvec,
the global array of function pointers. If it contains zero (which it will,
unless the user’s program explicitly sets it), the support routines log a
message; otherwise, the support routines call the function pointed at by
this field.

A user’s function for handling floating point exceptions can be
written in C. The function can be of any type, since the support
routines don’t use the value returned by the user’s function. The
function has two parameters: the first, which is of type int, is a code
identifying the type of exception which has occurred. The value 1
indicates underflow, 2 overflow, and 3 division by zero.

The second parameter passed to the user’s exception-handling
routine is a pointer to the instruction in the user’s program which
follows the call instruction to the floating point support routines. One
way to use this parameter would be to declare it to be of type int. The
user’s routine could then convert it to a character string for printing in
an error message.

The example below demonstrates how floating point errors can be
trapped and reported. In main, a pointer in the Sysvec array is set to
the routine, usertrap. If a floating point exception occurs during the
execution of the program, this routine is called with the arguments
described above. The error handling routine prints the appropriate
error message, and returns to the floating point support routines.

- ¢cc.19 -

COMPILERS Aztec CG6S

#include <stdio.h>

main() { .
Sysvec| FLT _FAULT] = usertrap;

usertrap(errcode,addr)
int errcode,addr;

{
char buff[4];

switch (errcode) {
case ’1”
printf("floating point underflow at %x\ n",buff);
break;
case "2"
printf("floating point overflow at %x\n",buff);
break;
case ’3”
printf("division by zero at %x\n", buff);
break;
default
printf("usertrap: invalid code %d \n", errcode);
break;
}

3.12 Register Variables

A cg65-compiled program can have up to eight register variables.
A cci-compiled program can declare variables to be of type register, but
the compiler will ignore the declaration.

3.13 In-Line Assembly Language Code

Assembly language source can be included in a C program, by
surrounding the assembly language code with the preprocessor
directives #asm and #endasm.

When the compiler encounters a #asm statement, it copies lines
from the C source file to the assembly language file that it’s
generating, until it finds a #endasm statement. The #asm and
#endasm statements are not copied.

While the compiler is copying assembly language source, it doesn’t
try to process or interpret the lines that it reads. In particular, it won’t
perform macro substitution.

A program that uses #asm ..#endasm must avoid placing in-line
assembly code immediately following an if block; that is, it should
avoid the following code:

- cc.20 -

Aztec CG65 COMPILERS
if ()¢
)

#asm
#endasm

The code generated by the compiler will test the condition and if false
branch to the statement following the #endasm instead of to the
beginning of the assembly language code. To have the compiler
generate code that will branch to the beginning of the assembly
language code, you must include a null statement between the end of
the if block and the asm statement:

if ()
-
#asm

#endasm

3.14 Writing machine-independent code

The Aztec family of C compilers are almost entirely compatible.
The degree of compatibility of the Aztec C compilers with v7 C,
system 3 C, system 5 C, and XENIX C is also extremely high. There
are, however, some differences. The following paragraphs discuss
things you should be aware of when writing C programs that will run
in a variety of environments,

If you want to write C programs that will run on different
machines, don't use bit fields or enumerated data types, and don’t pass
structures between functions. Some compilers support these features,
and some don’t.

3.14.1 Compatibility Between Aztec Products

Within releases, code can be easily moved from one
implementation of Aztec C to another. Where release numbers differ
(i.e. 1.06 and 2.0) code is upward compatible, but some changes may
be needed to move code down to a lower numbered release. The
downward compatibility problems can be eliminated by not using new
features of the higher numbered releases.

3.14.2 Sign Extension For Character Variables

If the declaration of a char variable doesn’t specify whether the
variable is signed or unsigned, the code generated for some machines
assumes that the variable is signed and others that it's unsigned. For

-cc.21 -

COMPILERS Aztec CG65S

example, none of the 8 bit implementations of Aztec C sign extend
characters used in arithmetic computations, whereas all 16 bit
implementations do sign extend characters. This incompatibility can be
corrected by declaring characters used in arithmetic computations as
unsigned, or by AND’ing characters used in arithmetic expressions
with 255 (0xff). For instance:

char a=129;

int b;

b = (a & Oxff) * 21;
3.14.3 The MPU... symbals

To simplify the task of writing programs that must have some
system dependent code, each of the Aztec C compilers defines a
symbol which identifies the machine on which the compiler-generated
code will run. These symbols, and their corresponding processors, are:

symbol processor
MPU68000 68000
MPU8086 8086/8088
MPUS80186 80186/80286
MPU6502 6502
MPU8080 8080
MPUZ80 Z80

Only one of these symbols will be defined for a particular compiler.

For example, the following program fragment contains several
machine-dependent blocks of code. When the program is compiled for
execution on a particular processor, just one of these blocks will be
compiled: the one containing code for that processor.

#ifdef MPU68000
/¥ 68000 code */

#else

#ifdef MPUB8086
/* 8086 code */

#else

#ifdef MPUS8080
/* 8080 code */

#endif

#endif

#endif

-cc.22 -

Aztec CG65 COMPILERS
4. Error checking

Compiler errors come in two varieties-- fatal and not fatal. Fatal
errors cause the compiler to make a final statement and stop. Running
out of memory and finding no input are examples of fatal errors. Both
kinds of errors are described in the Errors chapter. The non-fatal sort
are introduced below.

The compiler will report any errors it finds in the source file. It
will first print out a line of code, followed by a line containing the
up-arrow (caret) character. The up-arrow in this line indicates where
the compiler was in the source line when it detected the error. The
compiler will then display a line containing the following:

* The name of the source file containing the line;

* The number of the line within the file;

* An error code;

* The symbol which caused the error, when appropriate.

The error codes are defined and described in the Errors chapter.

The compiler writes error messages to its standard output. Thus,
error messages normally go to the console, but they can be associated
with another device or file by redirecting standard output in the usual
manner. For example,

¢gb5 prog errors sent to the console
cgb5 prog >outerr errors sent to the file outerr

The compiler normally pauses after every fifth error, and sends a
message to its standard output asking if you want to continue. The
compiler will continue only if you enter a line beginning with the
character ’y’. If you don’t want the compiler to pause in this manner,
(if, for example, the compiler’s standard output has been redirected to
a file) specify the -B option when you start the compiler.

The compiler is not always able to give a precise description of an
error. Usually, it must proceed to the next item in the file to ascertain
that an error was encountered. Once an error is found, it is not
obvious how to interpret the subsequent code, since the compiler
cannot second-guess the programmer’s intentions. This may cause it to
flag perfectly good syntax as an error.

If errors arise at compile time, it is a general rule of thumb that the
very first error should be corrected first. This may clear up some of
the errors which follow.

The best way to attack an error is to first look up the meaning of
the error code in the back of this manual Some hints are given there
as to what the problem might be. And you will find it easier to
understand the error and the message if you know why the compiler
produced that particular code. The error codes indicate what the
compiler was doing when the error was found.

- ¢cc.23 -

COMPILERS Aztec CG65

- ¢c.24 -

THE ASSEMBLERS

- as.l -

ASSEMBLERS Aztec CG65S

Chapfer Contents

TRE ASSEIMDICTS ..oovivviiieens et istesesseessareessessesnsssassssssesasssessesasrsssessesn as
1. Operating INStIUCLIONScoceriveeeeeereenen sevesresseesesseesssssecssessessessssssssonnens 3
1.1 THE SOUICE FIIE ...ococeeceiierecrrerentessenenterserinsssesssssasessnessssssnenesns 3

1.2 The Object Code Fileerceie e ereerenensseeresesatessanene 4

1.3 LiStiNG File oot et ctre e st se e s e nese e saesesanresasaanessonsnes 4

1.4 Searching {Or iStxt FIIESuuvieerrereverrrreeresrenesssaessessssssssssess 4

2. ASSEMDIET OPONS ..cvviveeriieireerinne svereesnsvesssssssssssssssssnesessessossssssassnsssrans 5

3. Programmer iNfOrMatiONocoeevrirereermsesrerenssemsessssssrsnesisssssssssssessens 5

- as.2 -

Aztec CG65 ASSEMBLERS

The Assemblers

as65 and asi are relocating assemblers that translate an assembly
language source program into relocatable object code. The two
assemblers support different machines: as65 accepts assembly language
for a 6502 or 65c02; asi accepts assembly language for a "pseudo
machine”,

In an executable program, an agsi-assembled module must be
interpreted by a routine that is in the Aztec libraries.

An executable program can contain both modules that have been
assembled with as65 and modules that have been assembled with asi.

This description has three sections: the first describes how to
operate the assembler; the second describes the assembler’s options;
and the third presents information of interest to those writing
assembly language programs.

1. Operating Instructions

Operationally, the two assemblers are very similar. In the following
paragraphs, we will use the name as65 when referring to features that
arc common to both assemblers. When the two assemblers differ, we
will say so.

as65 is started with a command line of the form
as65 [-options) prog.asm

where [-options] are optional parameters and prog.asm is the name of
the file to be assembled. as65 reads the source code from the specified

file, translates it into object code, and writes the object code to another
file.

1.1 The Source File

The extension on the source file name is optional. If not specified,
it’s assumed to be .asm. For example, with the following command,
the compiler will assume that the file name is test.asnt

asb5 test

as65 will append .asm to the source file name only if it doesn’t find
a period in the file name. So if the name of the source file really
doesn’t have an extension, you must compile it like this:

as65 filename.
The period tells the assembler not to append .asm to the name.

- as.3 -

ASSEMBLERS Aztec CG6S

1.2 The Object File

By default, the name of the file to which as65 writes object code is
derived from the name of the source code file, by changing its
extension to .r (or to .7, if asi is used). Also by default, the object code
file is placed in the directory that contains the source code file. For
example, the command

as65 test.asm

writes object code to the file test.r (or to testi, if asi is used), placing
this file in the current directory.

You can explicitly specify the name of the object code file, using
the -O option. The name of the object code file follows the -0, with
spaces between the -O and the file name. For example, the following
command assembles fest.asm, writing the object code to the file
prog.out.

as -0 prog.out test.asm
1.3 The Listing File

The -L option causes the assembler to create a file containing a
listing of the program being assembled. The file is placed in the
directory that contains the object file; its name is derived from that of
the object file by changing the extension to .Ist.

1.4 Searching for instxz files

The instxt directive tells as65 to suspend assembly of one file and
assemble another; when assembly of the second file is completed,
assembly of the first continues.

You can make the assembler search for instxt files in a sequence of
directories, thus allowing source files and insext files to be in different
directories.

Directories that are to be searched are defined just as for the
compilers; that is, using the -I assembler option and the INCL65
environment variable. Optionally, the compiler can also search the
current directory.

Directory search for a particular instxt directive can be disabled by
specifying a directory name in the directive. In this case, just the
specified directory is searched.

1.4.1 The -1 option

A -I option defines a single directory to be searched. The directory
name follows the -I, with no intervening blanks. For example, the
following -I option tells the assembler to search the /ram/include
directory:

- as.4 -

Aztec CG65 ASSEMBLERS

-I/ram/include
1.4.2 The INCL6S environment variable,

The INCL65 environment variable defines a directory to be
searched for instxt files. The value of this variable is the name of the
directory to be searched.

The command that is used to set environment variables varies from
system to system. For example, on PCDOS the following command
sets INCL6S so that the directory \CG65\ INCLUDE is searched for
include files:

set INCL65=\CG65\INCLUDE

For a description of the command that’s used on your system to set
environment variables, see your operating system manual.

1.4.3 The search order
Directories are searched in the following order:

1. If the instxt directive delimited the file name with the double
quote character, ", the current directory on the default drive
is searched. If delimited by angle brackets, < and >, this
directory isn’t automatically searched.

2. The directories defined in -I options are searched, in the
order listed on the command line.

3. The directory defined in the INCL65 environment variable is
searched.

2. Assembler Options
The assembler supports the following options:

Option Meaning

-0 objname Send object code to objname.

-L Generate listing.

-C Disable assembly of 65C02 instructions. Not
supported by asi.

-ZAP Delete the source file after assembling it.

3. Programming Information

This section discusses the assembly language that is supported by
as65. A description of the assembly language supported by asi is not
available.

as65 supports the standard MOS Technology syntax: a program
consists of a sequence of statements, each of which is in the standard
MOS Tech form; and the assembler supports the MOS Tech
mnemonics for the standard instructions. as65 supports some of the
MOS Tech directives and their mnemonics; it also supports others, as

- as.5 -

ASSEMBLERS Aztec CG65

defined below.

The following paragraphs define in more detail the language
supported by asé5.

3.1 Statement Syntax

[label] [opcode] [arguments] [[;]comment]
where the brackets "[...]" indicate an optional element.
3.2 Labels

A statement’s label field defines a symbol to the assembler and
assigns it a value. If present, the symbol name begins in column one.
If a statement is not labeled, then column one must be a blank, tab, or
asterisk. An asterisk denotes a comment line.

Normally, the symbol in a label field is assigned as its value the
address at which the statement’s code will be placed. However, the equ
directive can be used to create a symbol and assign it some other
value, such as a constant.

A label can contain up to 32 characters. Its first character must be
an alphabetic character or one of the special characters *__* or °.’. Its
other characters can be alphabetic characters, digits,*_’, or°.". A label
followed by "#" is declared external

The compilers place a’__’ character at the end of all labels that they
generate.

3.3 Opcodes

The assembier supports the standard MOS Tech instruction
mnemonics for both the 6502 and 65C02 processors. The directives it
supports are defined below.

3.4 Arguments

A statement’s arguments can specify a register, a memory location,
or a constant.

A memory location can be referenced using any of the standard
6502 or 65C02 addressing modes, and using the standard MOS Tech
syntax.

A memory location reference or a constant can be an expression
containing any of the following operators:

- as.6 -

Aztec CG65 ASSEMBLERS

multiply

divide

add

subtract

constant

constant

low byte of expression
high byte of expression

VAL ' +>~ #

"Expressions are evaluated from left to right with no precedence as
to operator or parentheses.

3.5 Constants

The default base for numeric constants is decimal Other bases are
specified by the following prefixes or suffixes:

Base Prefix Suffix
2 % b,B
8 @ 0,0,q,Q
10 null,& null
16 3 h,H

A character constant consists of the character, preceded by a single
quote. For example: ’A.

3.6 Directives

The following paragraphs describe the directives that are supported
by the assembler.

END
end
The end directive defines the end of the source statements.
CSEG
cseg

The cseg directive selects a module’s code segment. information
generated by statements that follow a cseg directive is placed in
the module’s code segment, until another segment-selection
directive is encountered.

DSEG
dseg

The dseg directive selects a module’s data segment information
generated by statements that follow a dseg directive is placed in
the module’s data segment, until another segment-selection
directive is encountered.

- as.7 -

ASSEMBLERS Aztec CG65

EQU
symbol equ . <expr>

The equ directive creates a symbol named symbol (if it doesn’t
already exist), and assigns it the value of the expression expr.

PUBLIC
public <symbol>[,<symbol>...]

The public directive identifies the specified symbols as having
external scope. If a specified symbol was created in the within
the module that’s being assembled (by being defined in a
statement’s label field), this directive allows it to be accessed by
other modules. If a symbol was not created within the module
that’s being assembled, this directive tells the assembler that the
symbol was created and made public in another module.

bss <symname>,<size>

The bss directive creates a symbol named symname and reserves
size bytes of space for it in the uninitialized data segment. The
symbol cannot be accessed by other modules.

GLOBAL
global <symnam><size>

The global directive creates a symbol named symmam that other
modules can access using the global and public directives.

If other modules create symnam using just the global directives,
then symnam will be located in a program’s uninitialized data
area. In this case, the amount of space reserved in this area for
symnam will equal the largest value specified by the size fields in
the global statements that define symnam.

If other modules define symnam in a public statement, but none
of them create symnam (by specifying it in a label field), then
symnam will still be located in the uninitialized data segment and
space will be reserved for it as defined above.

If one module both defines symmam using a public statement and
creates the symbol by specifying it in a label field, then synmam
will be located in the program’s code or data segment and no
space will be reserved for it in the uninitialized data segment.

ENTRY
entry <symnam>

The entry directive defines the symbol symmam as being a
program’s entry point.

- as.8 -

Aztec CG65 ASSEMBLERS

When a program is linked, the linker normally places a jump
instruction at the program’s base address. If the linker finds a
module containing an entry directive, it sets the target of the
jump to the location that was specified in the last entry directive
that it found; otherwise, it sets the target to the beginning of the
program’s code segment.

FCB
[label] feb <value>[,<value>, <value> ...]

Each value in an fcb directive causes one or more bytes of
memory to be allocated and then initialized to the specified
value. The memory is allocated in the currently active segment
(code or data, as defined by the last segment-selection directive).

[label] fdb <value>[,<value>, <value> ...]

The fdb directive is like fcb, except that each value causes a two-
byte field of memory to be allocated and initialized.
FCC
[label] fec "string”

The fcc directive allocates a field that has the same number of
characters as are in string, and places string in it. The field is
placed in the currently-active segment.

RMB
[label] rmb <expr>

The rmb directive reserves a field containing expr bytes in the
currently-active segment. The contents of the field are not
defined.

INSTXT

instxt <file>
nstxt "file”
nstxt / file/

The instxt directive causes the assembler to suspend assembly of
the current source file and to assemble the source that's in file.
When done, the assembler will continue assembling the original
file.

The assembler can search for a file in several directories. If file
is surrounded by quotes or slashes, the assembler will begin the
search at the current directory; it will then search directories
specified in the -1 option and the INCL65 environment variable.
If file is surrounded by <>, the assembler will search just the -I
and INCL6S directories.

- as9 -

ASSEMBLERS Aztec CG65

- as.10 -

THE LINKER

-In.1-

LINKER Aztec CG65

Chapter Contents

The Linker ¢ tetesreteseenesneste et ssarestane st e aet e aenarsesae e sreseranas st st sarase In
1. Introduction to HNKINGccceeeerrreecevnesersecsninseresessessssssessssssesssssnans 3
2. USIDG the LINKET .u..ueeeereeeeereene corenearevessesenesnssssssssssssssassssssssssrsssssens 7
3. LiNKET OPLIONScovvueereeerense cermsneneeesssssesesessnssases ssenssessasssssessmsosseseasnnen 9

-In.2-

Aztec CG6S LINKER

The Linker

The In65 linker has two functions:

* It ties together the pieces of a program which have been
compiled and assembled separately;

* It converts the linked pieces to a format which can be loaded
and executed.

The pieces must have been created by the Manx assembler.

The first section of this chapter presents a brief introduction to
linking and what the linker does. If you have had previous experience
with linkage editors, you may wish to continue reading with the
second section, entitled "Using the Linker." There you will find a
concise description of the command format for the linker.

1. Introduction to linking
Relocatable Object Files

The object code produced by the assembler is "relocatable” because
it can be loaded anywhere in memory. One task of the linker is to
assign specific addresses to the parts of the program. This tells the
operating system where to load the program when it is run.

Linking hello.r

It is very unusual for a C program to consist of a single, self-
contained module. Let’s consider a simple program which prints "hello,
world" using the function, printf. The terminology here is precise;
printf is a function and not an intrinsic feature of the language. It is a
function which you might have written, but it already happens to be
provided in the file, c.lib. This file is a library of all the standard i/o
functions. It also contains many support routines which are called in
the code generated by the compiler. These routines aid in integer
arithmetic, operating system support, ctc.

When the linker sees that a call to printf was made, it pulls the
function from the library and combines it with the "hello, world"
program. The link command would look like this:

In65 hello.r c.lib

When hello.c was compiled, calls were made to some invisible support
functions in the library. So linking without the standard library will
cause some unfamiliar symbols to be undefined.

-In.3-

LINKER Aztec CG6S

The modules in c.lib have been compiled with the native code
compiler, cg65. You can alternatively link your programs with cilib,
which has the same modules as c.lib, except that they have been
compiled with cgi instead of cg85.

The Linking Process

Since the standard library contains only a limited number of
general purpose functions, all but the most trivial programs are certain
to call user-defined functions. It is up to the linker to connect a

function call with the definition of the function somewhere in the
code.

In the example given below, the linker will find two function calls
in file 1. The reference to funcl is "resolved” when the definition of
funcl is found in the same file. The following command

In65 filel.r c.lib

will cause an error indicating that func2 is an undefined symbol. The
reason is that the definition of func2 is in another file, namely file2.r.
The linkage has to include this file in order to be successful:

In65 filel.r file2.r c.lib

Sile 1 file 2

main() func2()
funcl(); return;
func2(); }

}

funcl()

{
return;

}

Libraries

A library is a collection of object files put together by a librarian.
Libraries intended for use with /n65 must be built with the Manx
librarian, /b. This utility is described in the Utility Programs chapter.

All object files specified to the linker will be "pulled into" the
linkage; they are automatically included in the final executable file.
However, when a library is encountered, it is searched. Only those
modules in the library which satisfy a previous function call are pulled
in.

For Example

Consider the "hello, world" example. Having looked at the module,
hello.r, the linker has built a list of undefined symbols. This list
includes all the global symbols that have been referenced but not

-In4 -

Aztec CG6S LINKER

defined. Global variables and all function names are considered to be
global symbols.

The list of undefined symbols for hello.r includes the symbol printf.
When the linker reaches the standard library, this is one of the symbols
it will be looking for. It will discover that printf is defined in a library
module whose name also happens to be printf (There is not any
necessary relation between the name of a library module and the
functions defined within it).

The linker pulls in the printf module in order to resolve the
reference to the printf function.

Files are examined in the order in which they are specified on the
command line. So the following linkages are equivalent

In65 hello.r
In65 c.lib hello.r

Since no symbols are undefined when the linker searches c.lib in the
second line, no modules are pulled in. It is good practice to leave all
Jlibraries at the end of the command line, with the standard library last
of all

The Order of Library Modules

For the same reason, the order of the modules within a library is
significant. The linker searches a library once, from beginning to end.
If a module is pulled in at any point, and that module introduces a new
undefined symbol, then that symbol is added to the running list of
undefineds symbols. The linker will not search the library twice to
resolve any references which remain unresolved. A common error lies
in the following situation:

module of program re ferences (function calls)
main.r getinput, do__calc
input.r gets

calc.r put__value

output.r printf

Suppose we build a library to hold the last three modules of this
program. Then our link step will look like this:

In65 main.r proglib.lib c.lib

But it is important that proglib.lib is built in the right order. Let’s
assume that main() calls two functions, getinput() and do_ calc().
getinput() is defined in the module input.r. It in turn calls the standard
library function gets(). do__cale() is in calc.r and calls put _value().
put_value(') is in output.r and calls printf().

What happens at link time if proglib.lib is built as follows?

-1n.5 -

LINKER Aztec CG65

proglib.lib: input.r
outputr
cale.r

After main.r, the linker has getinput and do__calc undefined (as well as
some other support functions in c.ib). Then it begins the search of
proglib.lib. 1t looks at the library module, input, first. Since that module
defines getinput, that symbol is taken off the list of undefined’s. But
gets is added to it.

The symbols do__calc and gets are undefined when the linker
examines the module, output. Since neither of these symbols is defined
there, that module is ignored. In the next module, calc, the reference
to do_calc is resolved but put_ value is a new undefined symbol.

The linker still has gets and put__value undefined. It then moves on
to clib, where gets is resolved. But the call to put value is never
satisfied. The error from the linker will look like this:

Undefined symbol: put__value__

This means that the module defining put__value was not pulled into the
linkage. The reason, as we saw, was that pu/_value was not an
undefined symbol when the output module was passed over. This
problem would not occur with the library built this way:

proglib.lib: input.r
cale.r
output.r

The standard libraries were put together with much care so that this
kind of problem would not arise.

Occasionally it becomes difficult or impossible to build a library so
that all references are resolved. In the example, the problem could be
solved with the following command:

In65 main.r proglib.lib proglib.lib c.lib

The second time through proglib.lib, the linker will pull in the
module output. The reason this is not the most satisfactory solution is
that the linker has to search the library twice; this will lengthen the
time needed to link.

-In.6 -

Aztec CG65 LINKER

2. Using the Linker
The general form of a linkage is as follows:
In65 [-options] filel.r [file2.r ...] [libl.lib ...]

The linker combines object modules produced by the as65 and/or
asi assemblers into an executable program. It can search libraries of
object modules for functions needed to complete the linkage; including
just the needed modules in the executable program. The linker makes
just a single pass through a library, so that only forward references
within a library will be resolved.

The executable file

The name of the executable output file can be selected using the -O
linker option. If this option isn’t used, the linker will derive the name
of the output file from that of the first object file listed on the
command line, by deleting its extension. In the default case, the
executable file will be located in the directory in which the first object
file is located. For example,

In65 prog.r c.lib

will produce the file prog. The standard library, c./ib, will have to be
included in most linkages.

A different output file can be specified with the -O option, as in
the following command:

In65 -0 program modl.r mod2.r c.lib

This command also shows how several individual modules can be
linked together. A "module”, in this sense, is a section of a program
containing a limited number of functions, usually related. These
modules are compiled and assembled separately and linked together to
produce an executable file.

Libraries

Function source is provided with CG65, with which you can
generate several libraries. Two of these libraries are c.lib and ci.lib,
which contain general-purpose functions. The other two are m.lib and
mi.lib, which contain floating point functions. The modules in c.lib and
m.lib have been compiled with the native code compiler, while those in
ci.lib and mi.lib have been compiled with the pseudo code compiler.

All programs must be linked with one of the versions of c./ib. In
addition to containing 6502 versions of all the non-floating point
functions described in the Functions chapter, it contains internal
functions which are called by compiler-generated code, such as
functions to perform long arithmetic.

Programs that perform floating point operations must be linked
with one of the versions of m.lib, in addition to a version of c.lib. The

-1n.7 -

LINKER Aztec CG65
floating point library must be specified on the linker command line
before c.lib.

You can also create your own object module libraries using the /b

program. These libraries must be listed on the linker command line
before the Manx libraries.

For example, the following links the module program.r, searching
the libraries mylib.lib, new.lib, m.lib, and c.lib for needed modules:

In65 program.r mylib.lib new.lib m.lib c.lib

Each of the libraries will be searched once in the order in which
they appear on the command line.

Libraries can be conveniently specified using the -L option. For
example, the following command is equivalent to the following:

In65 -0 program.r -lmylib -Inew -Im -Ic

For more information, see the description of the -L option in the
Options section of this chapter.

Aztec CG65

LINKER

3. Linker Options
3.1 Summary of options
3.1.1 General Purpose Options

-0 file
-Lname
-F file

Write executable code to the file named file.
Search the library name.lib for needed modules.
Read command arguments from file.

Generate a symbol table file.

Don’t issue warning messages.

Don’t abort if there are undefined symbols.

Be verbose.

3.1.2 Options for Segment Address Specification

-B addr
-C addr

-D addr

-U addr

Set the program’s base address to the hex value addr.

Set the starting address of the program’s code segment
to the hex value addr.

Set the starting address of the program’s data segment
to the hex value addr.

Set the starting offset of the program’s uninitialized
data segment to the hex value addr.

3.1.3 Options for Overlay Usage

-R

+C size

+D size

Create a symbol table to be used when linking
overlays.

Reserve size bytes at end of the program’s code
segment (the overlay’s code segment is loaded here).
size is a hex value.

Reserve size bytes at end of the program’s initialized
and uninitialized data segments (the overlay’s data is
loaded here). size is a hex value.

3.1.4 65xx Options
+H startend Define a hole in the program, whose beginning and

ending addresses are the hex values start and end.

-In.9 -

LINKER Aztec CG65S

3.2 Detailed description of the options
3.21 General Purpose Options:
The -O option

The -O option can be used to specify the name of the file to which
the linker is to write the executable program. The name of this file is
in the parameter that follows the -O. For example, the following
command writes the executable program to the file progout.

In65 -0 progout prog.o c.lib

If this option isn’t used, the linker derives the name of the
executable file from that of the first input file, by deleting its
extension.

The -L option

The -L option provides a convenient means of specifying to the
linker a library that it should search, when the extension of the library
is .lib.

The name of the library is derived by concatenating the value of
the environment variable CLIB6S, the letters that immediately follow
the -L option, and the string .lib. For example, with the libraries
subs.lib, io.lib, m.lib, and c.lib in a directory specified by CLIB6S5, you
can link the module prog.o, and have the linker search the libraries for
needed modules by entering

In65 prog.o -Isubs -lio -Im -lc

The command that sets CLIB65 varies from system to system. On
PCDOS, the set command is used. For example, the following
command defines CL/B65 when the libraries are in the directory
/cg65/lib:

set CLIB65=/cg65/1ib/

Note the terminating slash on the CLIB65 variable: this is required
since the linker simply prepends the value of the CLIB65 variable to
the -L string.

The -F option

-F file causes the linker to merge the contents of the given file with
command line arguments. For example, the following command causes
the linker to create an executable program in the file myprog. The
linker includes the modules myprog.o, modl.o, and mod2.0 in the

program, and searches the libraries mylib.lib and c.hb for needed
modules.

In65 myprog.o -f argfil c.lib
where the file argfil, contains the following:

- In.10 -

Aztec CG65 LINKER

modl.o mod2.0
mylib.lib

The linker arguments in argfile can be separated by tabs, spaces, or
newline characters.

There are several uses for the -F option. The most obvious is to
supply the names of modules that are frequently linked together. Since
all the modules named are automatically pulled into the linkage, the
linker does not spend any time in searching, as with a library.
Furthermore, any linker option except -F can be given in a -F file. -F
can appear on the command line more than once, and in any order.
The arguments are processed in the order in which they are read, as
always. ’

The -T option

The -T option causes the linker to write a program’s symbol table to
a file. You must specify this option if the generated program is going
to be converted into Intel hex records by hex65.

_ Each line of the symbol table file contains a symbol name and its
address.

The symbol table file will have the same name as that of the file
containing the executable program, with extension changed to .sym.

) There are several special symbols which will appear in the table.
They are defined in the Memory Organization section of the Technical
Information chapter.

The -M option

The linker issues the message "multiply defined symbol" when it
finds a symbol that is defined with the assembly language directives
global or public in more than one module. The -M option causes the
linker to suppress this message unless the symbol is defined in more
than one public directive.

To maintain compatibility with previous versions of Aztec C, the
linker will generate code for a variable that is defined in multiple
global statements and in at most one public statement, and also issue the
"multiply defined symbol" message. Thus, if you use the global and
public directives in this way, and don’t want to get this message, use
the -M option to suppress them.

The definition of a symbol in more than one public directive is
never valid, so the -M option doesn’t suppress messages in this case.

For more information, see the discussion on global symbols in the
Programmer Information sections of the Compiler and Assembler
chapters.

- In.11 -

LINKER Aztec CG65

The -N option

Normally, the linker halts without generating an executable
program if there are undefined symbols; The -N option causes the
linker to go ahead and generate an executable program anyway.

The -V option

The -V option causes the linker to send a progress report of the
linkage to the screen as each input file is processed. This is useful in
tracking down undefined symbols and other errors which may occur
while linking.

3.22 Options for segment address specification

The linker organizes a program into three segments code,
initialized data, and uninitialized data areas. You can define the
starting address of thesc segments using the -C, -D, and -U linker
options, respectively. A fourth linker option, -B, will set the "base
address™ of the program. These options are followed by the desired
offset, in hex.

By default, the base address of a program is 0x800. Also by default,
a program’s code segment starts three bytes after the base address, its
initialized data segment follows the code, and its uninitialized data
follows the initialized data.

A file created by the linker begins with a 4-byte header; this is
followed by a memory image of the program, from its base address
through the end of its code or initialized data segments (whichever is
higher). This image can be loaded into memory, with the first byte in
the file loaded at the program’s base address.

The base address

By default, the linker assumes that a program will begin execution
at its base address, and so creates a jump instruction and places it at the
program’s base address. This jump instruction, when executed,
transfers control to the program’s startup routine, which is usually
somewhere in the middle of the program’s code segment. A startup
routine performs initialization activities and then calls the program’s
main function.

The linker won’t generate the base address jump instruction if
there isn’t room for it in program’s memory image; that is, if the
segment (code, initialized data, or uninitialized data) that is closest to
the base address begins less than three bytes above the base address.

The startup routine

A program's startup routine is defined using the assembly language
entry directive. If, among the modules that are linked together into an
executable program, the linker finds one that contains the entry
directive, the location specified in that directive is used as the

«ln.12-

Aztec CG65 LINKER

program’s entry point. If none of the linked modules contain an entry
directive, the start of the program’s code segment is used as the
program’s entry point.

The presence of an entry directive in a library module, however,
does not cause the linker to include that module in a program that it’s
building. Inclusion of a library module in a program is caused only
when one of the module’s globally-accessible symbols (defined by
specifying the symbol in a public directive) is also on the linker’s list of
undefined symbols.

For example, the rom startup routine contains the directives public
.begin and entry .begin. By default, the compiler generates a reference
to .begin when it compiles any module; this reference causes the linker,
when it encounters the rom module in c.lib, to include the rom module
in the program it's building; the module’s entry .begin directive then
causes the linker to define .begin as the program’s entry point.

Example 1

In a typical 65xx ROM system, the ROM is at the top of the
memory space, and the RAM is at the bottom. The fields in the 65xx
memory space between Oxfffa and Oxffff contain pointers of locations
to which the 65xx will transfer control upon the occurrence of special
events such as power-up, system reset, and receipt of an interrupt.
Hence the code for a 65xx ROM system is usually placed near the top
of memory, so that the same ROM can contain both the program’s
code and the special pointers. Pages 0 and 1, which occupy memory
locations O through Oxff and 0x100 through OxIff, are special on a
65xx, and always contains RAM. Hence the data for a 65xx ROM
system is usually placed just above pages 0 and 1, so that the same
RAM that is used for these two pages can also hold the program’s data.

Since, on a typical ROM system, the two bytes beginning at Oxfffc
contain the address to which the processor will transfer control on
system reset or power-up, there is no need for the linker’s base address
jump instruction. So for a typical ROM system, the base address and
the beginning of the data segments are set to the same value.

For example, the following command creates the memory image of
a program that will be burned into ROM, where its code begins at
0xf000, its initialized data at 0x200, its uninitialized data immediately
following the initialized data:

In65 -b 200 -d 200 -c f000 prog.r -lc
Example 2

In some cases, a ROM program fits into another ROM system; a
system whose ROM occupies the high section of memory, handling
interrupts, power-up, etc, and whose RAM occupies the low section of
memory. In this case, the add-on ROM program will fit somewhere in

-In.13 -

LINKER Aztec CG65

the middle of the 65xx memory space, with its code beginning at a
known place so that separately-linked ROM programs can access it by
issuing a call to that known place. If, in this case, the add-on
program’s code is below its data, use can be made of the linker’s
generation of a jump instruction at the program’s base address to the
program’s entry point. That is, the program’s base address is set to that
known address, the beginning of the program’s code segment is set
three bytes past the base address, and the program’s data segments are
placed somewhere above the code segment.

For example, the following command links such a program, where
its base address begins at 0x8000, its code at 0x8003, its initialized data
at 0xa000, and its uninitialized data immediately after the initialized
data:

In65 -b 8000 -d a000 prog.r -lc

It wasn’t necessary to use the -C option to explicitly specify the
starting address of the code segment; by default, it starts three bytes
after the base address.

Example 3

In this example, we want to modify the example 2 program slightly,
so that the program’s data is below its code. In this case, you can’t
make use of the linker’s automatic generation of a jump instruction to
the program’s entry point, since this instruction won’t be burned into
ROM.

For this, you must explicitly specify the module that contains the
program’s entry point, as the first module to be linked, which causes
the linker to place it at the beginning of the program’s code segment.
And you must explicitly tell the linker that the program’s code
segment begins at the program’s "known address”; that is, the address
that other programs will call to access the program. For example, the
following command links a program so that its code begins at 0x8000,
its initialized data at 0x4000, and its uninitialized data right after the
initialized data:

In65 -b 4000 -d 4000 -c 8000 -0 prog rom.r prog.r -lc

Setting the program’s base address equal to the address at which its
data begins tells the linker not to generate a jump instruction at the
base address. rom.r is the startup module, which could have been
obtained by extracting it from c.lib. prog.r contains the main body of
the program, including its main function.

3.2.3 Options for Overlay Usage

The -R option causes the linker to generate a file containing the
symbol table. It’s used when linking a program which calls overlays.

-In.14 -

Aztec CG65 LINKER

The name of the symbol table file is derived from that of the
executable file by changing the extension to .rsm. The file is placed in
the same directory as the executable file.

The linker reserves space in a program between its uninitialized
data area and its heap, into which the program’s overlays will be
loaded. The amount of space equals the sum of the values that you
define using the +C and +D options. For example,

In65 +c 3000 +d 1000 prog.o -Ic

will reserve 0x4000 bytes for overlays. See the Overlay section of the
Technical Information chapter for more details.

3.2.4 65xx options
The +H Option

The +H option defines a "hole"; that is, an area of memory into
which the linker should not place a program’s code or data. You can
create at most four holes in a program using +H options.

The option has the following form:
+h start,end

where start and end are the addresses, in hex, of the hole’s starting and
ending addresses.

For example, suppose you want to create a program, line, that
begins at address 0x800, and that the program is going to access a
graphics area that resides between addresses 0x2000-0x4000. The
following command will link the program:

In65 +h 2000,4000 line.o -Ic

The linker will place as much of the program’s code and data as
possible in the area between 0x800-0x2000, and place any additional
code and data in the area above 0x4000.

The linker creates a program’s code segment by concatenating
module code segments, until and unless a module’s code overlaps a
reserved area. If this occurs, the linker moves the module’s entire
code segment above the reserved area, in the first non-reserved area in
which it will entirely fit, and then continues the concatenation of
module code segments.

The linker creates a program’s initialized data segment in the same
way: it concatenates module initialized data segments as much as
possible, without overlapping a reserved area and without breaking a
module’s initialized data segment into discontiguous pieces.

Because the linker won’t break up a module’s code segment or data
segment, it’s likely that some space below a hole will be left unused by
the linker.

- In.15 -

LINKER Aztec CG65S

- In.16 -

UTILITY PROGRAMS

- util.1 -

UTILITIES Aztec CG65S

Chapter Contents

ULIIEY PIOBIAIMIS ..o ereresensseeesrcsessenessasssssesesssssssssssssresesssnsssaos util
ATCV ctiieeiieiiiiicterees sreeereesssnsietesessassnsesersesssnssssssassssssnsnaresssssssonnnsasasnssassnnnsane 4
CIIIMIOS ... cerctiercrieresiereaies sesvesssressorsabenssssssssssssaesssenssnsenbessssssnesssssossones 5
CIC trerireeceereereseereerssessasesnesssesssessssssessesassassessesassessesssesssessssssssssesssassnsassssssaessssen 9
1 Lo SO OO 10
REXOS .ot ettt et e st e e n b e be e s e e s s an b ta s sne 11
TDOS .covereeeereeirsniriieri et ias srssessesessssisstosesnenesstasensentinsssnnsasessartenestesnans i4
INAKE cveicretieerieiete et ereercr et er e sesecssseseasesesssnessssssesesasassssenssssssneserastonens 25
INKATCV etiietveeccrreeeenrsteeestes eresrsrsatssssesesontassssessassss ssensersassmssnsassosens st snses 4
ODAOS ...t vt sae et e sen s e sea e sen s b esanssaes b sreates 43
OPLINES .ot ettt v ere e sesas e seasesesbaasenassesins seasanesssnanen 44
OTAOS ..ttt es s er b esesesaesssessesesesassessensssseonsstassnsssasesen 45
SAZOS ..o eteeetere it seeseer s serbesteese et shess s et sbesber s ss s soe e saesa b senen e sntatens 46

- util.2 -

Aztec CG6S UTILITIES

Utility Programs

This chapter describes utility programs that are provided with
Aztec CG65.

- util.3 -

ARCYV Program commands ARCY

NAME
arcv & mkarcv - source dearchiver & archiver
SYNOPSIS

arcv arcfile [destpfix]
mkarcy arcfile

DESCRIPTION
arcv extracts the source from the archive arcfile, which has been
previously created by mkarcv.

destpfix defines the directory in which the generated files are
placed: if it is not specificd, the generated files are placed in the
current directory. If it is specified, it is prepended to the name of the
file that arcv would otherwise use.

mkarcv creates the archive file arcfile, placing in it the files whose
names it reads from its standard input. Only one file name is read
from a standard input line.

EXAMPLES

For example, the file header.arc contains the source for all the
header files. To create these header files in the current directory,
enter:

arcv header.arc

The following command creates the archive mwyarc.arc containing
the files in.c, out.c, and hello.c

mkarcv myarc.arc <myarc.bld

The names of the following three files are contained in the file
myarc.bld:

in.c

out.c

hello.c

- util.4 -

CNM65 Aztec Utility Program CNM65

NAME

cnm635 - display object file info
SYNOPSIS

cnmé6S5 [-sol] file [file ...]
DESCRIPTION

cnm65 displays the size and symbols of its object file arguments.
The files can be object modules created by the Manx assembler,
libraries of object modules created by the /b librarian, and, when
applicable, 'rsm’ files created by the Manx linker during the linking of
an overlay root.

For example, the following displays the size and symbols for the
object module subl.o and the library c.lib:

cnmé6S5 subl.o clib

By default, the information is sent to the console. It can be
redirected to a file or device in the normal way. For example, the
following commands send information about subl.o to the display and
to the file dispfile:

cnm635 subl.o
cnmbé3 subl.o > dispfile

The first line listed by cwm65 for an object module has the
following format:

file (module): code: cc data: dd udata: uu total: tt (Oxhh)
where

* file is the name of the file containing the module,

* module is the name of the module; if the module is unnamed,
this field and its surrounding parentheses aren’t printed;

* cc is the number of bytes in the module’s code segment, in
decimal;

* dd is thc number of bytes in the module’s initialized data
segment, in decimal;

* un is the number of bytes in the module’s uninitialized data
segment, in decimal;

* 1t is the total number of bytes in the module’s three segments,
in decimal;

* hh is the total number of bytes in the module’s three
segments, in hexadecimal.

If cnm65 displays information about more than one module, it
displays four totals just before it finishes, listing the sum of the sizes
of the modules’ code segments, initialized data segments, and
uninitialized data segments, and the sum of the sizes of all segments of
all modules. Each sum is in decimal; the total of all segments is also

- util.5 -

CNM65 Aztec Utility Program CNM65

given in hexadecimal,

The -s option tells cnm63- to display just the sizes of the object
modules. If this option isn’t specified, cnmé65 also displays information
about each named symbol in the object modules.

When cnm65 displays information about the modules’ named
symbols, the -/ option tells cnmé65 to display each symbol’s information
on a separate line and to display all of the characters in a symbol’s
name; if this option isn’t used, cnm65 displays the information about
several symbols on a line and only displays the first eight characters of
a symbol’s name.

The -0 option tells cnm6b65 to prefix each line generated for an
object module with the name of the file containing the module and the
module name in parentheses (if the module is named). If this option
isn’t specified, this information is listed just once for each module:
prefixed to the first line generated for the module.

The -0 option is useful when using cnm65 in combination with
grep. For example, the following commands will display all
information about the module perror in the library c.lib:

cnmé635 -0 c.lib >tmp
grep perror tmp

cnm65 displays information about an module’s 'named’ symbols;
that is, about the symbols that begin with something other than a dollar
sign followed by a digit. For example, the symbol guad is named, so
information about it would be displayed; the symbol 30123 is
unnamed, so information about it would not be displayed.

For each named symbol in a module, cnm65 displays its name, a
two-character code specifying its type, and an associated value. The
value displayed depends on the type of the symbol.

If the first character of a symbol’s type code is lower case, the
symbol can only be accessed by the module; that is, it’s local to the
module. If this character is upper case, the symbol is global to the
module: either the module has defined the symbol and is allowing
other modules to access it or the module needs to access the symbol,
which must be defined as a global or public symbol in another module.
The type codes are:

ab The symbol was defined using the assembler’s EQU
directive. The value listed is the equated value of its
symbol.

The compiler doesn’t generate symbols of this type.

rg The symbol is in the code segment. The value is the
offset of the symbol within the code segment.

- util.6 -

CNM65

at

oy

un

bs

Aztec Utility Program CNM65

The compiler generates this type symbol for function
names. Static functions are local to the function, and
so have type pg; all other functions are global, that is,
callable from other programs, and hence have type Pg.

The symbol is in the initialized data segment. The
value is the offset of the symbol from the start of the
data segment.

The compiler generates symbols of this type for
initialized variables which are declared outside any
function. Static variables are local to the program and
so have type dr, all other variables are global, that is,
accessable from other programs, and hence have type
Dt.

When an overlay is being linked and that overlay itself
calls another overlay, this type of symbol can appear
in the rsm file for the overlay that is being linked. It
indicates that the symbol is defined in the program
that is going to call the overlay that is being linked.

The value is the offset of the symbol from the
beginning of the physical segment that contains it.

The symbol is used but not defined within the
program. The value has no meaning.

In assembly language terms, a type of Un (the U is
capitalized) indicates that the symbol is the operand of
a public directive and that it is perhaps referenced in
thc operand ficld of some statements, but that the
program didn’t create the symbol in a statement’s label
field.

The compiler generates Un symbols for functions that
are called but not defined within the program, for
variables that are declared to be extern and that are
actually used within the program, and for
uninitialized, global dimensionless arrays. Variables
which are declared to be extern but which are not used
within the program aren’t mentioned in the assembly
language source file generated by the compiler and
hence don’t appear in the object file.

The symbol is in the uninitalized data segment. The
value is the space reserved for the symbol

The compiler generates bs symbols for static,
uninitialized variables which are declared outside all
functions and which aren’t dimensionless arrays.

- util.7 -

CNM65

Gl

Aztec Utility Program CNM6é65

The assembler generates bs symbols for symbols
defined using the bss assembler directive.

The symbol is in the uninitialized data segment. The
value is the space reserved for the symbol.

The compiler generates G! symbols for non-static,
uninitialized variables which are declared outside all
functions and which aren’t dimensionless arrays.

The assembler generates G/ symbols for variables
declared using the global directive which have a non-
Zero size.

- util.8 -

CRC CRC generator CRC

NAME
crc - Utility for generating the CRC for files
SYNOPSIS
crc filel file2 ...
DESCRIPTION
crc computes a number, called the CRC, for the specified files.

The CRC for a file is entirely dependent on the file’s contents, and
it is very unlikely that two files whose contents are different will have
the same CRCs. Thus, crec can be used to determine whether a file has
the expected contents.

As an example of the usage of crc, the following command
computes the crc of all files whose extension is .c

crc *¢

- util.9 -

HD Hex dump utility HD

NAME

hd - hex dump utility
SYNOPSIS

hd [+n].]] filel [+n][.]] file 2 ...
DESCRIPTION

hd displays the contents of one or more files in hex and ascii to its
standard output

filel, file2, ... are the names of the files to be displayed.

+n specifies the offset into the file where the display is to start, and
defaults to the beginning of the file. If +n is followed by a period, n is
assumed to be a decimal number; otherwise, it’s assumed to be
hexadecimal. Each file will be displayed beginning at the last specified
offset.

EXAMPLES

The following command displays the contents of files oldtest and
newtest, beginning at offset Ox16b, and of the file named junk,
beginning at its first byte:

hd +16b oldtest newtest +0 junk

The next command displays the contents of tstfil, beginning at byte
1000:

hd -r +1000. tstfil

- util.10 -

HEX65 Intel Hex Generator HEX6S

NAME

hex65 - Intel hex generator
SYNOPSIS

hex65 [-options] progfile
DESCRIPTION

hex65 translates a program that was generated by the Aztec CG65
linker, into Intel hex records. The program can then be burned into
ROM by feeding the hex records into a ROM programmer. The
records are written to one or more files, each of which contains the
hex records for one ROM chip.

The ROM chips that are generated from the hex65 output files will
contain the program’s code, followed by a copy of its initialized data.

Note: when a ROM system is started, its RAM contains random values;
the Aztec CG6S startup routine sets up its initialized data area, using
the copy that’s in ROM.

Optionally, the last ROM chip will occupy the top section of the 65xx
memory space, and contain in the top 6 bytes, pointers to the
program’s power-up/reset routine, the nmi interrupt handler, and the
irq interrupt handler.

hex65 assumes that the size of each ROM chip is 2 kb. You can
explicitly define the size of each ROM using hex65’s -P option.

The input files

When you tell the linker to create the memory image of a program
that’s to be burned into ROM, you must specify the -T option, to make
the linker also create a file containing the program’s symbol table.
That’s because when hex65 translates the memory image of a program
into hex records, it reads both of these files.

The names of the files that are read by hex65 must obey the
linker’s conventions. the memory image file should not have an
extension, and the name of the symbol table file should be the same as
that of the memory image file, with extension .sym.

The only filec name you specify when you start hex65 is that of the
memory image file; hex65 derives the name of the symbol table file by
appending .sym to it.

The output files

hex65 derives the name of each output file from that of the file
that contains the memory image, by appending an extension of the
form .xnn, where nn is a2 number. For example, if the name of the
memory image file is prog, then the name of the output files generated
by hex65 are prog.x00, prog.x01, and so on, where the .x00 file

- util.11 -

HEX65 Intel Hex Generator HEX65

contains the hex records for the lowest-addressed ROM, .x0] the hex
records for the next ROM, etc. When hex65 generates hex records that
will initialize the 65xx power-up and interrupt vector fields, it will
create a separate file, if necessary, that contains just these Intel hex
records. The extension of this separate file indicates the position of its
ROM in the memory space.

For example, supposc that hex65 is creating hex records for a
program whose code and copy of initialized data will reside in two 2-
kb ROMs that begin at 0xe000, and that it is also generating the hex
records that will initialize the power-up and interrupt vectors. Then
hex65 will create the following files, of which the first two contain the
records for the code and copy of initialized data and the third the
records for the vectors:

prog.x00 Contains the hex records for the ROM chip that
occupies 0xe000-0xe 7T

prog.x01 Contains the hex records for the ROM that occupies
0xc800-0xeffT;

prog.x03 Contains the hex records for the ROM that occupies
0xf800-0xfT{T.

The position of each file’s corresponding ROM in the memory
space is indicated by the number in its file’s extension:

* The number in the first file’s extension is 00, so its ROM
occupies the 2-kb block that begins at 0xe000+0*0x400. Note:
nothing in the names of these files indicates the memory
location of these ROMs, but you know that the first one
begins at the starting address of the program’s code segment;
that is, at 0xc000.

* The number in the second file’s extension is 01, so its ROM
occupies the 2-kb block that begins at 0xe000+ 1*0x400.

* The number in the third file’s extension is 03, so its ROM
occupies the 2-kb block that begins at 0xe000+2*0x400.

The options
hex65 supports the following options:

-Pnn Each ROM is nn bytes long, where nn is a decimal
number. If this option isn’t specified, each ROM is
assumed to be 2 kb long.

-Z Don’t generate hex records for the power-up and
interrupt vectors. If this option isn’t specified, these
vectors are generated.

-Bnnnn The program’s base address is Oxnnnn (this is the
address that was specified as the base address when the
program was linked, using either the -B option or the

- util.12 -

HEX65

Intel Hex Generator HEX6S

default value). If this option isn’t specified, it’s
assumed to be the lesser of the beginning addresses of
the program’s code or initialized data segments.

Output spaces between the fields of each hex record,
to make the records more readable.

Output hex digits using lower case characters.
List the options.

- util.13 -

LB65 Object file librarian LB6S

NAME

1b65 - object file librarian
SYNOPSIS

Ib6S library [options| [modl mod2 ...]
DESCRIPTION

Ib65 is a program that crcates and manipulates libraries of object
modules. The modules must be created by the Manx assembler,

This description of /b65 is divided into three sections: the first
describes briefly /b65°s arguments and options, the second /b65’s basic
features, and the third the rest of 665°s features.

1. The arguments to /b65
1.1 The library argument

When started, [b65 acts upon a single library file. The first
argument to /b65 (library, in the synopsis) is the name of this file. The
filename extension for library is optional; if not specified, it’s assumed
to be .lib.

1.2 The options argument

There are two types of options argument: function code options, and
qualifier options. These options will be summarized in the following
paragraphs, and then described in detail below.

1.2.1 Function code options

When /665 is started, it performs one function on the specified
library, as defined by the options argument The functions that [b65
can perform, and their corresponding option codes, are:

function code
create a library (no code)
add modules to a library -3, -1, -b
list library modules -t
move modules within a library -m
replace modules -r
delete modulcs -d
extract modulcs -X
ensure module uniqueness -u
define module extension -e
help -h

In the synopsis, the options argument is surrounded by square
brackets. This indicates that the argument is optional; if a code isn’t
specified, /b65 assumes that a library is to be created.

- util.14 -

LB65 Object file librarian LB65S

1.2.2 Qualifier options

In addition to a function code, the opfions argument can optionally
specify a qualifier, that modifies /b65’s behavior as it is performing the
requested function. The qualifiers and their codes are:

verbose -V
silent -5

The qualifier can be included in the same argument as the function
code, or as a scparate argument. For example, to cause /665 to append
modules to a library, and be silent when doing it, any of the following
option arguments could be specified:

-as
-5a
-a -S
-§ -a

1.3 The rmod arguments

The arguments modl, mod2, etc. are the names of the object
modules, or the files containing these modules, that /565 is to use. For
some functions, /b65 requires an object module name, and for others it
requires the name of a file containing an object module. In the latter
case, the file’s extension is optional; if not specified, the /b65 that’s
supplied with native Aztec C systems assumes that it’s .o, and the /565
that’s supplicd with cross development versions of Aztec C assumes
that the extension is .r. You can explicitly define the default module
extension using the -e option.

1.4 Reading arguments from another file

b65 has a special argument, -f filename, that causes it to read
command line arguments from the specified file. When done, it
continues reading arguments from the command line. Arguments can
be read from more than one file, but the file specified in a -f filename
argument can't itself contain a -f filename argument.
2. Basic features of /b65

In this section we want to describe the basic features of b65. With
this knowledge in hand, you can start using /b65, and then read about
the rest of the fcatures of /h65 at your leisure.

The basic things you need to know about /665, and which thus are
described in this section, are:

* How to create a library
* How to list thc names of modules in a library
* How modules get their names

- util. 15 -

LB65 Object file librarian LB65

* Order of modules in a library
* QGetting /b65 arguments from a file

Thus, with the information presented in this section you can create
libraries and get a list of the modules in libraries. The third section of
this description shows you how to modify selected modules within a
library.

2.1 Creating a Library

A library is created by starting /b65 with a command line that
specifies the name of the library file to be created and the names of
the files whose object modules are to be copied into the library. It
doesn’t contain a function code, and it’s this absence of a functlon
code that tells /565 that it is to create a library.

For example, the following command creates the library exmpllib,
copying into it the object modules that are in the files objl.o and
obj.o:

Ib65 exmpl.lib objl.o obj.0

Making use of /b65’s assumptions about file names for which no
extension is specified, the following command is equivalent to the
above command:

1b65 exmpl objl obj2

An object module file from which modules are read into a new
library can itself be a library created by /b65. In this case, all the
modules in the input library are copied into the new library.

2.1.1 The temporary library

When /b65 creates a library or modifies an existing library, it first
creates a new library with a temporary name. If the function was
successfully performed, [b65 erases the file having the same name as
the specified library, and then renames the new library, giving it the
name of the specified library. Thus, [b65 makes sure it can create a
library before erasing an existing one.

Note that there must be room on the disk for both the old library
and the new.

2.2 Getting the table of contents for a library

To list the names of the modules in a library, use [b65’s -¢ option.
For example, the following command lists the modules that are in
exmpl.lib:

Ib65 exmpl -t

The list will include some **DIR** entries. These identify blocks
within the library that contain control information. They are created
and deleted automatically as necded, and cannot be changed by you

- util.16 -

LB65 Object file librarian LBé6S

2.3 How modules get their names

When a module is copied into a library from a file containing a
single object module (that is, from an object module generated by the
Manx assembler), the name of the module within the library is derived
from the name of the input file by deleting the input file’s volume,
path, and extension components.

For example, in the example given above, the names of the object
modules in exmpl.lib are objl and obj2.

An input file can itself be a library. In this case, a module’s name
in the new library is the same as its name in the input library.

2.4 Order in a library

The order of modules in a library is important, since the linker
makes only a single pass through a library when it is searching for
modules. For a discussion of this, see the tutorial section of the
Linker chapter.

When [b65 creates a library, it places modules in the library in the
order in which it reads them. Thus, in the example given above, the
modules will be in the library in the following order:

objl obj2

As another example, suppose that the library oldlib.lib contains the
following modules, in the order specified:

subl sub2 sub3

If the library newlib.lib is created with the command
Ib65 newlib mod1 oldlib.lib mod2 mod3

the contents of the newly-created newlib.lib will be:
modl subl sub2 sub3 mod2 mod3

The ord utility program can be used to create a library whose
modules are optimally sorted. For information, see its description later
in this chapter.

2.5 Getting [b65 arguments from a file

For librarics containing many modules, it is frequently
inconvenient, if not impossible, to enter all the arguments to /b65 on a
single command line. In this case, 1b65’s -f filename feature can be of
use: when [b65 finds this option, it opens the specified file and starts
reading command arguments from it. After finishing the file, it
continues to scan the command line,

For example, suppose the file build contains the line
exmpl objl obj2

- util.17 -

LB65S Object file librarian LB65S

Then entering the command
Ib65 -f build

causes /b65 to get its arguments from the file build, which causes /b65
to create the library exmpl.lib containing objl and 0bj2.

Arguments in a -f file can be separated by any sequence of
whitespace characters ("whitespace’ being blanks, tabs, and newlines).
Thus, arguments in a -f file can be on separate lines, if desired.

The /565 command line can contain multiple -/ arguments, allowing
Ib65 arguments to be read from several files. For example, if some of
the object modules that are to be placed in exmpllib are defined in
arith.inc, input.inc, and output.inc, then the following command could be
used to createc exmpl.lib:

1665 exmpl -f arith.inc -f inputinc -f output.inc
A -f file can contain any valid /b65 argument, except for another -f.
That is, -f files can’t be nested.
3. Advanced /b65 features

In this section we describe the rest of the functions that /b65 can
perform. These primarily involve manipulating selected modules
within a library.

3.1 Adding modules to a library

165 allows you to add modules to an existing library. The modules
can be added before or after a specified module in the library or can
be added to the beginning or end of the library.

The options that select /b665°s add function are:

option Sfunction
-b target add modules before the module target
-1 target same as -b target
-a target add modules after the module target
-b+ add modules to the beginning of the library
-1+ same as -b+
-a+ add modules to the end of the library

In an /65 command that selects the add function, the names of the
files containing modules to be added follows the add option code (and
the target module name, when appropriate). A file can contain a single
modulc or a library of modules.

Modules are added in the order that they are specified. If a library
is to be added, its modules are added in the order they occur in the
input library.

- util.18 -

LB65 Object file librarian LB65

3.1.1 Adding modules before an existing module

As an example of the addition of modules before a selected module,
suppose that the library exmpllib contains the modules

objl obj2 obj3
The command
1b65 exmpl -1 obj2 modl mod2

adds the modules in the files modl.o and mod2.0 to exmpllib, placing
them before the module 0bj2. The resultant exmpl.lib looking like this:

objl modl mod2 obj2 obj3

Note that in the /565 command we didn’t need to specify the
extension of either the file containing the library to which modules
were to be added or the extension of the files containing the modules
to be added. /b65 assumed that the extension of the file containing the
target library was ./ib, and that the extension of the other files was .0.

As an example of the addition of one library to another, suppose
that the library myiib.lib contains the modules

modl mod2 mod3

and that the library exmpl.lib contains
objl obj2 obj3

Then the command
1b65 -b obj2 mylib.lib

adds the modules in myliblib to exmpllib, resulting in exmpllib
containing

obj! modl mod2 mod3 obj2 ob;3

Note that in this example, we had to specify the extension of the
input file mylib.lib. If we hadn’t included it, /b65 would have assumed
that the file was named mylib.o.

3.1.2 Adding modules after an existing module

As an example of adding modules after a specified module, the
command

1b65 exmpl -a objl modl mod2

will insert mwdl! and mod2 after objl in the library exmpllib. 1If
exmpl.lib originally contained

objl obj2 obj3
then after the addition, it contains

- util.19 -

LB65 Object file librarian LB65

objl modl mod2 obj2 obj3
3.1.3 Adding modules at the beginning or end of a library

The options -b+ and -a+ tell [b65 to add the modules whose names
follow the option to the beginning or end of a library, respectively.
Unlike the -i and -a options, these options aren’t followed by the name
of an existing module in the library.

For example, given the library exmpl.lib containing
objl obj2

the following command will add the modules mod! and mod2 to the
beginning of exmpl.lib.

1665 exmpl -i+ modl mod2
resulting in exmpl.lib containing
modl mod2 objl ob;2

The following command will add the same modules to the end of
the library:

1b65 exmpl -a+ modl mod2
resulting in exmpl.lib containing

objl obj2 modli mod2
3.2 Moving modules within a library

Modules which already exist in a library can be easily moved about,
using the move option, -n.

As with the options for adding modules to an existing library, there
are several forms of move functions:

option meaning
-mb target move modules before the module target
-ma target move modules after the module target
-mb+ move modules to the beginning of the library
-ma+ move modules to the end of the library

In the 65 command, the names of the modules to be moved
follows the move’ option code.

The modules are moved in the order in which they are found in
the original library, not in the order in which they are listed in the
1b65 command.

3.2.1 Moving modules before an existing module

As an example of the movement of modules to a position before an
existing module in a library, suppose that the library exmpllib contains

- util.20 -

LB65 Object file librarian LB65S

objl obj2 obj3 obj4 obj5 objb
The following command moves 0bj3 before obj2:
1665 exmpl -mb obj2 ob;3
putting the modules in the order:
objl obj3 obj2 obj4 obj5 obj6

And, given the library in the original order again, the following
command moves 0bj6, obj2, and objl before obj3:

1b65 exmpl -mb obj3 obj6 obj2 objl
putting the library in the order:
objl obj2 obj6 obj3 objd obj5

As an example of the movement of modules to a position after an
existing module, suppose that the library exmpllib is back in its
original order. Then the command

1b65 exmpl -ma obj4 obj3 obj2
moves ob;j3 and obj2 after obj4, resulting in the library
objl objd obj2 obj3 obj5 obj6
3.2.2 Moving modules to the beginning or end of a library

The options for moving modules to the beginning or end of a
library are -mb+ and -ma+, respectively.

For exampie, given the library exmpl.lib with contents
objl obj2 obj3 obj4 obj5 obj6

the following command will move 0bj3 and 0bj5 to the beginning of
the library:

1b65 exmpl -mb+ obj5 obj3
resulting in exmpllib having the order
obj3 obj5 objl obj2 obi4d obj6

And the following command will move o0bj2 to the end of the
library:

1b65 exmpl -ma+ obj2
3.3 Deleting Modules

Modules can be deleted from a library using /b65’s -d option. The
command for deletion has the form

1b65 libname -d mod] mod2 ...
where nwdl, mod2, ... are the names of the modules to be deleted.

- util.21 -

LB65 Object file librarian LB65

For example, suppose that exmpl.lib contains
objl obj2 obj3 obj[d obj5 objo
The following command deletes 0b;3 and obj5 from this library:
1b65 exmpl -d obj3 obj5
3.4 Replacing Modules

The [b65 option ’replace’ is used to replace one module in a library
with one or more other modules.

The ’replace’ option has the form -r target, where target is the name
of the module being replaced. In a command that uses the ’replace’
option, the names of the files whose modules are to replace the target
module follow the ‘replace’ option and its associated target module.
Such a file can contain a single module or a library of modules.

Thus, an /65 command to replace a module has the form:
1b65 library -r target modl mod2 ...

For example, suppose that the library exmpl.lib looks like this:
objl obj2 obj3 objd

Then to replace obj3 with the modules in the files modl.0 and mod2.0,
the following command could be used:

Ib65 exmpl -r obj3 modl mod2
resulting in exmpl.lib containing

objl obj2 modl mod2 oby
3.5 Uniqueness

b65 allows librarics to be crecated containing duplicate modules,
where one module is a duplicate of another if it has the same name.

The option -u causcs /P65 to delete duplicate modules in a library,
resulting in a library in which ecach module name is unique. In
particular, the -u option causes /b65 to scan through a library, looking
at module names. Any modules found that are duplicates of previous
modules are deleted.

For example, suppose that the library exmpllib contains the
following:

objl obj2 obj3 objl obj3
The command
Ib65 exmpl -u

will delete the second copics of the modules ob/! and 0bj2, leaving the
library looking like this:

- util.22 -

LB65 Object file librarian LB65

objl obj2 obj3
3.6 Extracting modules from a Library

The Ib65 option -x extracts modules from a library and puts them
in separate files, without modifying the library.

The names of the modules to be extracted follows the -x option. If
no modules are specified, all modules in the library are extracted.

When a module is extracted, it’s written to a new file; the file has
same name as the module and extension .o.

For example, given the library exmpl.lib containing the modules
objl obj2 obj3
The command
1b65 exmpl -x

extracts all modules from the library, writing objl to objl.o, 0bj2 to
obj2.0, and obj3 to obj3.o.

And the command
Ib65 exmpl -x obj2
extracts just obj2 from the library.
3.7 The ’verbose’ option

The ’verbose’ option, -v, causes /b65 to be verbose; that is, to tell
you what it’s doing.

This option can be specified as part of another option, or all by
itself. For examplc, the following command creates a library in a
chatty manner:

1b65 c¢xmpl -v modl mod2 mod3

And the following cquivalent commands cause /565 to remove some
modules and to be verbose:

1b65 exmpl -dv mod] mod2
1b65 exmp! -d -v modi mod2

3.8 The ’silence’ option
The ’silence’ option, -5, tells /665 not to display its signon message.

This option is especially useful when redirecting the output of a list
command to a disk file, as described below.

3.9 Rebuilding a library

The following commands provide a convenient way to rebuild a
library:

- util.23 -

LBé65S Object file librarian LB65

1b65 exmpl -st > tfil
1b65 exmpl -f tfil

The first command writes the names of the modules in exmpllib to
the file ¢fil The second command then rebuilds the library, using as
arguments the listing generated by the first command.

The -s option to the first command prevents /b65 from sending
information to tfil that would foul up the second command. The
names sent to tfil include entries for the directory blocks, **DJ/R**, but
these are ignored by /b65.

3.10 Defining the default module extension.

Specification of the extension of an object module file is optional;
the [b65 that comes with native development versions of Aztec C
assumes that the extension is .o, and the /565 that comes with cross
development versions of Aztec C assumes that it's .~ You can
explicitly define the default extension using the -e option. This option
has the form

- .ext

For example, thc following command creates a library; the
extension of the input object module files is .i.

Ib65 my.lib -e .i mod]l mod2 mod3
3.11 Help

The -k option is provided for bricf lapses of memory, and will
generate a summary of /h65 functions and options.

- util.24 -

MAKE Program maintenance utility MAKE

NAME

make - Program maintenance utility
SYNOPSIS

make [-n] [-f makefile] [-a] [namel name2 ...]
DESCRIPTION

make is a program, similar to the UNIX program of the same name,
whose primary function is to create, and keep up-to-date, files that are
created from other files, such as programs, libraries, and archives.

When told to make a file, make first ensures that the files from
which the target file is created are up-to-date or current, recreating
just the ones that aren’t. Then, if the target file is not current, make
creates it.

Inter-file dependencics and the commands which must be executed
to create files are specified in a file called the *makefile’, which you
must write.

make has a rule-processing capability, which allows it to infer,
without being explicitly told, the files on which a file depends and the
commands which must be executed to create a file. Some rules are
built into make; you can define others within the makefile.

A rule tells make something like this:

"a target [ile having extension *.x* depends on the file
having thc samc basic name and extension ’.y’. To
create such a target file, apply the commands ..

Rules simplify the task of writing a makefile: a file’s dcpendcncy
information and command scquences need be explicitly specified in a
makefile only if this information can’t be inferred by the application
of a rule.

make has a macro capability. A character string can be associated
with a macro name; when the macro name is invoked in the makefile,
it’s replaced by its string.

Preview

The rest of this description of make is divided into the following
sections:

1. The basics
2. Advanced fcatures
3. Examples

1. The basics

In this scction we want to present the basic features of make, with
which you'll be able to start using make. Section 2 describes the other

- util.25 -

MAKE Program maintenance utility MAKE

features of make.

Before you can begin using make, you must know what make does,
how to create a simple makefile that contains dependency entries, how
to take advantage of muake’s rule-processing capability, and, finally,
how to tell make to make a file. Each of these topics is discussed in the
following paragraphs.

1.1 What make does

The main function of make is to make a target file "current”, where
a file is considered "current" if the files on which it depends are
current and if it was modified more recently than its prerequisite files.
To make a file current, make makes the prerequisite files current;
then, if the target file is not current, make executes the commands
associated with the file, which usually recreates the file.

As you can see, make is inherently recursive: making a file current
involves making each of its prerequisite files current; making these
files current involves making each of their prerequisite files current;
and so on.

make is very efficient: it only creates or recreates files that aren’t
current. If a file on which a target file depends is current, make leaves
it alone. If the target file itsclf is current, make will announce the fact
and halt without modifying the target.

It is important to have the time and date set for make to
behave properly, since make uses the ’last modified’ times
that are recorded in files’ directory entries to decide if a
target file is not current.

1.2 The makefile

When make starts, onc of the first things it does is to read a file,
which you must write, called the ’makefile’. This file contains
dependency entries defining inter-file dependencies and the commands
that must be executed to makc a file current It also contains rule
definitions and macro definitions.

In the following paragraphs, we want to just describe dependency
entries. In section 2 we discuss the somewhat more advanced topics of
rule and macro definition.

A dependency entry in a makefile defines one or more target files,
the files on which the targets depend, and the operating system
commands that are to b¢ executed when any of the targets is not
current. The first line of the entry specifies the target files and the
files on which they depend; the line begins with the target file names,
followed by a colon, followed by one or more spaces or tabs, followed
by the names of the prerequisite files. It’s important to place spaces or
tabs after the colon that scparates target and dependent files; on
systems that allow colons in file names, this allows rmake to distinguish

- util.26 -

MAKE Program maintenance utility MAKE

between the two uses of the colon character.

The commands are on the following lines of the dependency
information entry. The first character of a command line must be a
tab; make assumes that the command lines end with the last line not
beginning with a tab.

For example,consider the following dependency entry:

prog.com: prog.o subl.o sub2.0
In -0 prog.com prog.o subl.o sub2.0 -Ic

This entry says that the file prog.com depends on the files prog.o,
subl.o, and sub2.0. It also says that if prog.com is not current, make
should execute the In command. make considers prog.com to be current
if it exists and if it has been modified more recently than prog.o,
subl.o, and sub2.o.

The above entry describes only the dependence of prog.com on
prog.o, subl.o, and sub2.0. It doesn’t define the files on which the .0’
files depend. For that, we need either additional dependency entries in
the makefile or a rule that can be applied to create *.0’ files from ’.c’
files.

For now, we'll add dependency entries in the makefile for prog.o,
subl.o, and sub2.0, which will define the files on which the object
modules depend and the commands to be executed when an object
module is not current. In section 1.3 we’ll then modify the makefile to
make use of make’s built-in rule for creating a *.0’ file from a ’.¢’ file.

Suppose that the *.0’ files are created from the C source files prog.c,
subl.c, and sub2.c; that subl.c and sub2.c contain a statement to include
the file defs.h and that prog.c doesn’t contain any #include statements.
Then the following long-winded makefile could be used to explicitly
define all the information needed to make prog.com

prog.com: prog.o subl.o sub2.0

In -0 prog.com prog.o subl.o sub2.0 -l¢
prog.o: prog.c

cC prog.c

subl.o: subl.c defs.h
cc subl.c

sub2.0: sub2.c defs.h
cc sub2.c

This makefile contains four dependency entries: for prog.com,
prog.o, subl.o, and sub2.0. Each entry defines the files on which its
target file depends and the commands to be executed when its target
isn’t current. The order of the dependency entries in the makefile is
not important.

- util.27 -

MAKE Program maintenance utility MAKE

We can use this makefilc to make any of the four target files
defined in it. If none of the target files exists, then entering

make prog.com

will cause make to compile and assemble all three object modules from
their C source files, and then create prog.com by linking the object
modules together.

Suppose that you create prog.com and then modify subl.c. Then
telling make to make prog.com will cause make to compile and assemble
just subl.c, and then recreate prog.com.

If you then modify defs.h, and then tell make to make prog.com,
make will compile and assemble subl.c and sub2.c, and then recreate
prog.com.

You can tell make to make any file defined as a target in a

dependency entry. Thus, if you want to make sub2.0 current, you could
enter

make sub2.0

A makefile can contain dependency entries for unrelated files. For
example, the following dependency entries can be added to the above
makefile:

hello.exe: hello.o
In hello.o -l¢

hello.o: hello.c
cc hello.c

With these dependency entries, you can tell make to make hello.exe
and hello.o, in addition to prog.com and its object files.

1.3 Rules

You can see that the makefile describing a program built from
many .o files would be huge if it had to explicitly state that each .o file
depends on its .c source file and is made current by compiling its
source file.

This is where rules are useful. When a rule can be applied to a file
that make has been told to make or that is a direct or indirect
prerequisite of it, the rule allows make to infer, without being
explicitly told, the name of a file on which the target file depends
and/or the commands that must be executed to make it current, This
in turn allows makefiles to be very compact, just specifying
information that make can’t infer by the application of a rule.

Some rules are built into make; you can define others in a makefile.
In the rest of this scction, we're going to describe the properties of
rules and how you write makcfiles that make use of make’s built-in
rule for creating a .o filc from a .c file. For more information on rules,

- util.28 -

MAKE Program maintenance utility MAKE

including a complete list of built-in rules and how to define rules in a
makefile, scc section 2.2,

1.3.1 make’s use of rules

A rule specifies a target extension, source extension, and sequence
of commands. Given a file that make wants to make, it searches the
rules known to it for onc that meets the following conditions:

* The rule’s target extension is the same as the file’s extension;

* A file exists that has the same basic name as the file make is
working on and that has the rule’s source extension.

If a rule is found that meects these conditions, make applies the first
such rule to the file it’s working on, as follows:

* The file having the source extension is defined to be a
prerequisite of the file with the target extension;

* If the file having the target extension doesn’t have a
command sequence associated with it, the rule’s commands
are defined to be the ones that will make the file current.

One rule built into make, for converting .c files into .o files, says

"a file having extension .0’ depends on the file
having the same basic name, with extension ’.c’. To
make current such a .o file, execute the command

CC X.C
where X’ is the name of the file"

Another built-in rule exists for converting .asm files into .o files,
using the Manx asscmbler.

1.3.2 An example

The .c to .0 rule allows us to abbreviate the long-winded makefile
given in section 1.2 as follows:

prog.com: prog.o subl.o sub2.0
In -0 prog.com prog.o subl.o sub2.0 -Ic

subl.o sub2.0: defs.h

In this abbreviated makefile, a dependency entry for prog.o isn’t
needed; using the built-in ’.c to .0’ rule, make infers that the prog.c
depends on prog.c and that the command cc prog.c will make prog.o
current.

The abbreviated makefile says that both subl.o and sub2.0 depend
on defs.h. It doesn’t say that they also depend on subl.c and subl.c,
respectively, or that the compiler must be run to make them current;
make infers this information from the .c to .0 rule. The only
information given in the dependency entry is that which make couldn’t

- util.29 -

MAKE Program maintenance utility MAKE

infer by itself: that the two objcct files depend on defs.h.
1.3.3 Interaction of rules and dependency entries

As we showed in the above example, a rule allows you to leave
some dependency information unspecified in a makefile. The prog.o
entry in the long-winded makefile of section 1.2 was not needed, since
its information could be inferred by the .c to .o rule. And the
dependence of subl.o and sub2.0 on their respective C source files, and
the commands needed to create the object files was also not needed,
since the information could be inferred from the .c to .o rule.

There are occasions when you don’t want a rule to be applied; in
this case, information specified in a dependency entry will override
that which would be inferred from a rule. For example, the following
dependency entry in a makefile

add.o:
cc -DFLOAT add.c

will cause add.o to be compiled using the specified command rather
than the command specified by the .c to .0 rule. make still infers the
dependence of add.o on add.c, using the .c to .o rule, however.

2. Advanced features

In the last section we presented the basic features of muake, with
which you can start using make. In this section, we present the rest of
make’s features.

2.1 Dependent Files

A dependent file can be in a different volume or directory than its
target file, with the following provisos.

If the file name contains a colon (for example, because the file
name defines the volume on which the file is located), the colon must
be followed by characters other than spaces or tabs, so that make can
distinguish between this usc of the colon character and its use as a
separator between the target and dependent files in a dependency line.
This shouldn’t be a problem, since most systems don’t allow file names
to contain spaces or tabs.

All references to a file must use the same name. For example, if a
file is referred to in one place using the name

/root/src/foo.c
then all references to the {ile must use this exact same name.

On PCDOS and MSDOS, note that the following names may refer
to different files:

- util.30 -

MAKE Program maintenance utility MAKE

a:dir/sub/foo.c
a:/dir/sub/foo.c.

For the first name, the search for foo.c begins with the current
directory on the a: drive; for the second, the search begins with the
root directory on the a: drive.

2.2 Macros

 make has a simple macro capability that allows character strings to
be associated with a macro name and to be represented in the makefile
by the name. In the following paragraphs, we're first going to describe
how to use macros within a makefile, then how they are defined, and
finally some special features of macros.

2.2.1 Using macros

Within a makefile, a macro is invoked by preceding its name with a
dollar sign; macro names longer than one character must be
parenthesized. For example, the following are valid macro invocations:

$(CFLAGS)
$2

$(X)

$X

The last two invocations are identical.

When make encounters a macro invocation in a dependency line or
command line of a makefile, it replaces it with the character string
associated with the macro. For example, suppose¢ that the macro
OBJECTS is associated with the string a.0 b.o co do. Then the
dependency entries:

prog.exe: prog.o a.0 b.o c.o do
In prog.o a.0 b.o c.o d.o

a.0 b.o c.o d.o: defs.h
within a makefile could be abbreviated as:

prog.exe: prog.o $(OBJECTS)
In prog.o $(OBJECTS)

$(OBJECTS): defs.h

There are three special macros: $$, $*, and $@. $$ represents the
dollar sign. The other two are discussed below.

2.2.2 Defining macros in a makefile

A macro is defined in a makefile by a line consisting of the macro
name, followed by the character '=’, followed by the character string to
be associated with the macro.

- util.31 -

MAKE Program maintenance utility MAKE

For example, the macro OBJECTS, used above, could be defined in
the makefile by the line

OBJECTS = 2.0 b.0 c.0 do

A makefile can contain any number of macro definition entries. A
macro definition must appear in the makefile before the lines in which
it is used.

2.2.3 Defining macros in a command line

A macro can be defined in the command line that starts make. The
syntax for a command line definition has the following form:

mac=str
where mac is the name of the macro, and str is its value.
str cannot contain spaces or tabs.

For example, the following command assigns the value -DFLOAT to
the macro CFLAGS:

make CFLAGS=-DFLOAT

The assignment of a value to a macro in a command line overrides
an assignment in a makefile statement.

2.2.4 Macros used by built-in rules

make has two macros, CFLAGS and AFLAGS, that are used by the
built-in rules. These macros by default are assigned the null string.
This can be overriden by a macro definition entry in the makefile.

For example, the following would cause CFLAGS to be assigned
the string "-T"

CFLAGS = -T

These macros are discussed below in the description of built-in
rules.

2.2.5 Special macros

Before issuing any command, two special macros are set $@ is
assigned the full name of the target file to be made, and $* is the name
of the target file, without its extension. Unlike other macros, these can
only be used in command lines, not in dependency lines.

For example, suppose that the files x.c, y.c, and z.c need to be
compiled using the option "-DFLOAT". The following dependency
entry could be used:

X.0 y.0 Z.0:
cc -DFLOAT $*.c

When make decides that x.o0 needs to be recreated from x.c, it will
assign $* the string "x", and the command

- util.32 -

MAKE Program maintenance utility MAKE

cc -DFLOAT x.c

will be executed. Similarly, when y.o or z.0 is made, the command cc
-DFLOAT y.c or cc -DFLOAT z.c will be executed.

The special macros can also be used in command lines associated
with rules. In fact, the $@ macro is primarily used by rules. We'll
discuss this more in the description of rules, below.

2.3 Rules

In section 1, we presented the basic features of rules: what they are
and how they are used. We aliso noted that rules could be defined in
the makefile and that some rules are built into make. In the following
paragraphs, we describe how rules are defined in a makefile and list
the built-in rules.

2.3.1 Rule definition

A rule consists of a source extension, target extension, and
command list. In a makefile, an entry defining a rule consists of a line
defining the two extensions, followed by lines containing the
commands.

The line defining the extensions consists of the source extension,
immediately followed by the target extension, followed by a colon.

All command lines associated with a rule must begin with a tab
character. The first linc following the extension line that doesn’t begin
with a tab terminatcs the commands for the rule.

For example, the following rule defines how to create a file having
extension .rel from one having extension .c.

.crek
cc -0 $S@ $*c
The first line declares that the rule’s source and target extension are .c
and .rel, respectively.

The second line, which must begin with a tab, is the command to
be executed when a .rel file is to be created using the rule.

Note the existence of the special macros $@ and $* in the
command line. Before the command is executed to create a .rel target
file using the rule, thc macro $@ is replaced by the full name of the
target file, and thc¢ macro $* by the name of the target, less its
extension.

Thus, if make decides that the file x.rel needs to be created using
this rule, it will issue the command

cc -0 x.rel x.c

If a rule defined in a makefile has the same source and target
extensions as a built-in rule, the commands associated with the

- util.33 -

MAKE Program maintenance utility MAKE

makefile version of the rule replace those of the built-in version. For
example, the built-in rule for creating a .o file from a .c file looks like
this:

.C.0:
cc $(CFLAGS) $*¢c

If you want the rule to generate an assembly language listing,
include the following rule in your makefile:

.C.0:
cc $(CFLAGS) -a $*.c
as -ZAP -] $*.asm

2.3.2 Built-in rules

The following rules are built into make. The order of the rules is
important, since make searches the list beginning with the first one,
and applies the first applicable rule that it finds.

.C.0:
cc $(CFLAGS) -0 $@ $*.c

.c.obj:
cc $(CFLAGS) $*.¢c
obj $*.0 $@

.asm.obj.
as $(AFLAGS) $*.asm
obj $*.0 3@

.asm.o:
as $(AFLAGS) -0 $@ $*.asm

The two macros CFLAGS and AFLAGS that are used in the built-
in rules are built into make, having the null character string as their
values. To have make use other options when applying one of the
built-in rules, you can define the macro in the makefile.

For example, if you want the options -T and -DDEBUG to be used
when make applies the .c.o rule, you can include the line

CFLAGS = -T -DDEBUG

in the makefile. Another way to accomplish the same result is to
redefine the .c.o rule in the makefile; this, however, would use more
lines in the makefile than the macro redefinition.

2.4 Commands

In this section we want to discuss the execution of operating system
commands by make.

- util.34 -

MAKE Program maintenance utility MAKE

2.4.1 Allowed commands

A command line in a dependency entry or rule within a makefile
can specify any command that you can enter at the keyboard. This
includes batch commands, commands built into the operating system,
and commands that cause a program to be loaded and executed from a
disk file.

2.4.2 Logging commands and aborting make

Normally, before make executes a command, it writes the command
to its standard output device; and when the command terminates, make
halts if the command’s return code was non-zero. Either or both of
these actions can be suppressed for a command, by preceding the
command in the makefile with a special character:

@ Tells make not to log the command;
- Tells make to ignore the command’s return code.

For example, consider the following dependency entry in a
makefile:

prog.exe: a.0 b.o c.o d.o
In -0 prog.cxe a.0 b.o c.od.o-lc
@ccho all done

When the echo command is executed, the command itself won't be
logged to the console.

2.4.3 Long command lines

Makefile commands that start a Manx program, such as cc, as, or in,
or that start a program crcated with cc, as, In, and c.lib, can specify a
command line containing up to 2048 characters.

For example, if a program depends on fifty modules, you could
associate them with the macro OBJECTS in the makefile, and also
include the dependency entry

prog.exe: $(OBJECTS)
In -0 prog.exc $(OBJECTS) -lc

This will result in a very long command line being passed to In.

In the ncxt section we will describe how OBJECTS could be
defined.

For thc execution of other commands, the command line can
contain at most 127 characters.

2.5 Makefile syntax

We’ve already prescnted most of the syntax of a make_ﬁle; that is,
how to define rules, macros, and dependencies. In this section we want
to present two features of the makefile syntax not presented elsewhere:

- util.35 -

MAKE Program maintenance utility MAKE

comments and line continuation.
2.5.1 Comments

make assumes that any line in a makefile whose first character is
#’ is a comment, and ignores it. For example:

#

the following rule generates an 8080 object module
from a C source file:
#

.c.080:
cc80 -0 cc.tmp $*.c
as80 -ZAP -0 $*.080 cc.tmp

2.5.2 Line continuation

Many of the items in a makefile must be on a single line: a macro
definition, the file dependency information in a dependency entry,
and a command that make is to execute must each be on a single line.

You can tell make that several makefile lines should be considered
to be a single line by terminating each of the lines, except the last,
with the backslash character, ’\’. When muake sees this, it replaces the
current line’s backslash and newline, and the next line’s leading blanks
and tabs by a single blank, thus effectively joining the lines together.

The maximum length of a makefile line after joining continued
lines is 2048 characters.

For example, the following macro definition equates OBJ to a string
consisting of all the specified object module names.

OBIJ = printf.o fprintf.o format.o\
scanf.o fscanf.o scan.o\
getchar.o getc.o

As another example, the following dependency entry defines the

dependence of driver.lib on several object modules, and specifies the
command for making driver.lib:

driver.lib: driver.o printer.o \
ino \
out.o
Ib driver.lib driver.o\
printer.o \
in.o out.o

This second example could have been more cleanly expressed using
a macro:

- util.36 -

MAKE Program maintenance utility MAKE

DRIVOBIJ= driver.o printer.o\
in.o out.o

driver.lib: $(DRIVOBYJ)
Ib driver.lib $(DRIVOBJ)

This was done to show that dependency lines and command lines can
be continued, too.

2.6 Starting make

"You've already scen how muake is told to make a single file.
Entering

make filename

makes the file named filename, which must be described by a
dependency entry in the makefile. And entering

make

makes the first file listed as a target file in the first dependency entry
in the makefile.

In both of these cases, make assumes the makefile is named
’makefile’ and that it’s in the current directory on the default drive.

In this section we want to describe the other features available
when starting make.

2.6.1 The command line
The complete syntax of the command line that starts make is:
make [-n] [-f makefilc] [-a] [macro=str] [file]] [file2] ...
Square brackets indicate that the enclosed parameter is optional

The parameters filel, file2 ... are the names of the files to be made.
Each file must be described in a dependency entry in the makefile.
They are made in the order listed on the command line.

The other command line parameters are options, and can be
entered in upper or lower case. Their meanings are:

-n Suppresses command execution. make logs the
commands it would execute to its standard
output device, but doesn’t execute them.

-f makefile Specifies the name of the makefile

-a Forces make to make all files upon which the
specified target files directly or indirectly
depend, and to make the target files, even those
that it considers current.

MACROs=str :

Crcates a macro named MACRO, and assigns str

as its valuc.

- util.37 -

MAKE Program maintenance utility MAKE

2.6.2 make’s standard output

make logs commands and crror messages to its standard output
device. This can be redirected in the standard way. For example, to
make the first target filc in thc first dependency entry and log
messages to the file owt, enter

make >out

The standard input and output devices of programs started by make
are set as they are for make itself, unless one or both of them are
explicitly redirected in the command that starts the program.

27 Executing commands

When make decides that a command needs to be executed, it
executes it immediately, and waits for the command to finish. It
activates a command whose code is contained in a disk file by issuing
an fexec function call It activates DOS built-in commands and batch
commands by calling the system function, which causes a new copy of
the command processor to be loaded. Thus, to use make, your system
must have enough memory for DOS, make, and whatever programs are
loaded by make to be in memory simultaneously.

28 Differences between the Manx and UNIX *make’ programs

The Manx make supports a subset of the features of the UNIX
make. The following comments present features of the UNIX make
that aren’t supported by the Manx make.

* The UNIX make will lct you make a file that isn’t defined as a
target in a makefile depcndcency entry, so long as a rule can be
applied to creatc it. The Manx make doesn’t allow this. For
example, if you want to create the file hello.o from the file hello.c
you could say, on UNIX

make hello.o

even if hello.o wasn’t defined to be a target in a makefile
dependency entry. With the Manx make, you would have to have a
dependency entry in a makefile that defines hello.o as a target.

* The UNIX make supports the following options, which aren’t
supported by the Manx make:

piLksrbemtdq

The Manx make supports the option ’-a’, which isn’t supported by
the UNIX ruake.

* The special names .DEFAULT, .PRECIOUS, .SILENT, and
JGNORE are supported only by the UNIX make.

* Only the UNIX make allows the makefile to be read from make’s
standard input.

- util.38 -

MAKE Program maintenance utility MAKE

* Only the UNIX make supports the special macros $<, $7, and $%,
and allows an upper case D or F to be appended to the special
macros, which thus modifies the meaning of the macro.

* Only the UNIX make requires that the suffixes for additional rules
be defined in a .SUFFIXES statement.

* Only the UNIX make allows macros to be defined on the command
line that activates make.

* Only the UNIX make allows a target to depend on a member of a
library or archive.

3. Examples

3.1 First example

This example shows a makefile for making several programs. Note
the entry for arc. This docsn’t result in the generation of a file called
arc, it's just used so that we can generate arcv and mkarcy by entering
make arc.

- util.39 -

MAKE Program maintenance utility MAKE

#
rules:
#
.c.080:
cc80 -DTINY -0 $@ $*.c
#
macros:
#
OBJ=make.o parse.o scandir.o dumptrec.o rules.o command.o
#

dependency entry for making make:
#

make.com: $(OBJ) cntic.o envcopy.o
In -0 make.com $(OBJ) envcopy.o cntlc.o -Ic
#

dependency entries for making arcv & mkarcv:
#

arc. mkarcv.com arcv.com
@echo done

mkarcv.com: mkarcv.o
In -0 mkarcv.com mkarcv.o -lc
arcv.com : arcv.o
In -0 arcv.com arcv.o -l¢
#
dependency entries for making CP/M-80 versions of arcv & mkarcv:
#
mkarcv80.com: mkarcv.080
In80 -0 mkarcv80.com mkarcv.080 -t -Ic
arcv80.com: arcv.080
In80 -0 arcv80.com arcv.080 -1t -Ic

$(OBJ): libc.h make.h
3.2 Second example

This example uses nmake to make a library, my.lib. Three directories
are involved: the directory libc and two of its subdirectories, sys and
misc. The C and assembly language source files are in the two
subdirectories. There are makefiles in each of the three directories,
and this example makes usc of all of them. With the current directory
being libc, you enter

make my.lib

This starts make, which reads the makefile in the libc directory. make
will change the current directory to sys and then start another make
program.

- util.40 -

MAKE Program maintenance utility MAKE

This second make compiles and assembles all the source files in the
sys directory, using the makefile that’s in the sys directory.

When the ’sys’ nuke finishes, the ’libc’ make regains control, and
then starts yet another make, which compiles and assembles all the
source files in the musc subdircctory, using the makefile that’s in the
misc directory.

When the ’mis¢’ make is done, the ’lib¢’ make regains control and
builds my.lib. You can then remove the object files in the
subdirectories by entering

make clean
3.2.1 The makefile in the ’libc’ directory

my.lib: sys.mk misc.mk
del my.lib
Ib my.lib -f my.bid
@echo my.lib done

sys.mk:
cd sys
make
cd..

misc.mk:
cd misc
make
cd ..

clean:
cd sys
make clean
cd ..
¢d misc
make clean
cd ..

- util.4l -

MAKE Program maintenance utility MAKE

3.2.2 Makefile for the *sys’ directory

REL=asctime.o bdos.o begin.o chmod.o croot.o csread.o ctime.o \
dostime.o dup.o exec.o execl.o execlp.o execv.o execvp.o \
fexec.o fexecl.o fexecv.o ftime.o getcwd.o getenv.o \
isatty.o localtim.o mkdir.o open.o stat.o system.o time.o\
utime.o wait.o diocth.o ttyio.o access.o syserr.o

COPT=
HEADER-=../header

.c.o:
cc $(COPT) -I$S(HEADER) $*.c -0 $@
sqz 3@

as $*.asm -0 $@
sqz $@

all: $(REL)
@echo sys done

clean:
del *o

3.2.3 Makefile for the *misc directory

REL=atoi.o atol.o calloc.o ctype.o format.o malloc.o gsort.o \
sprintf.o sscanf.o fformato fscan.o

COPT=
HEADER-=../hcader

.C.0:
cc $(COPT) -I$(HEADER) $*.c -0 $@
sqz $@

.asm.o:
as $*.asm -0 $@
sqz $@

all: $(REL)
@echo misc done

fformat.o: format.c
cc -IS(HEADER) -DFLOAT format.c -o fformat.o

fscan.o: scan.c
cc -IS(HEADER) -DFLOAT scan.c -0 fscan.o

clean:
del *o

- util.42 -

OBDé6S Aztec Utility Program OBD65

NAME

obd65 - list object code
SYNOPSIS

obd65 <objfile>
DESCRIPTION

obd65 lists the loader items in an object file. It has a single
parameter, which is the name of the object file.

- util.43 -

OPTINT6S Pseudo Code Optimizer OPTINTGS

NAME

optint65 - pscudo-code aptimizer
SYNOPSIS

optint65 [-ZAP] |-o outfile] [-a] [-v] infile
DESCRIPTION

optint65 optimizes the assembly language source that’s generated by
cci. The resulting code can then be assembled by asi.

infile is the name of the file whose assembly language source is to
be optimized.

The -ZAP option tells optint65 to delete the input file when the
optimization is completed.

The -0 outfile tells optint65 1o write the optimized code to the file
named outfile. If this option isn’t used, the optimized code is written
to a file whose name is derived from that of the input file, by
changing its extension to .opt.

The -a option tells optint65 not to start asi. If this option isn’t used,
optint63, when done, starts asi, which assembiles the optimized code and
writes the resultant object code to a file. The name of this file is
derived from the optimized code file by changing the extension to .i
In this default case, asi, when done, deletes the optimized code file.

The -v option tells optint65 to display information about the
optimizations that it performs.

- util.44 -

ORDé65 Aztec Utility Program ORDG65

NAME

ord65 - sort object module list
SYNOPSIS

ord65 [-v] linfile [outfile]]
DESCRIPTION

ord65 sorts a list of object file names. A library of the object
modules that is generated from the sorted list by the Manx object
module librarian will have a minimum number of ‘’backward
references’; that is, global symbols that are defined in one module and
referenced in a later module.

Since the specification of a library to the linker causes it to search
the library just once, a library having no backward references need be
specified just once when linking a program, and a library having
backward references may need to be specified multiple times.

infile is the name of a file containing an unordered list of file
names. These files contain the object modules that are to be put into a
library. If infile isn’t specified, this list is read from ord65’s standard
input. The file names can be separated by space, tab, or newline
characters.

outfile is the name of the file to which the sorted list is written. If
it’s not specificd, the list is written to ord65’s standard output. outfile
can only be specified il infile is also specified.

The -v option causcs ord65 to be verbose, sending messages to its
standard error device as it procecds.

- util. 45 -

SQZ65 Aztec Utility Program SQZ65

NAME

$qz65 - squeeze an object library
SYNOPSIS

sqz65 file foutfile|
DESCRIPTION

5gz65 compresses an object module that was created by the Manx
assembler.

The first parameter is the name of the file containing the module
to be compressed. The second paramecter, which is optional, is the
name of the file to which the compressed module will be written.

If the output file is specified, the original file isn’t modified or
erased.

If the output file isn’t specified, sgz65 creates the compressed
module in a file having a temporary name, erases the original file, and
renames the output file to the name of the original file. The temporary
name is derived from the input file name by changing it’s extent to
.5qz.

If the output file isn’t specified and an error occurs during the
creation of the compressed module the original file isn’t erased or
modified.

- util.46 -

LIBRARY GENERATION

- libgen.1 -

LIBGEN Aztec CG6S

Chapter Contents

Library generationcccoce coeviieeerceieereernsseescssessessenesssssessensssesesacsssnses libgen
1. Rewriting the fUNCHONSccocet oo vreere e evessessesasrssessessnssssese 3
1.1 The Start-up fUNCHIONcoivriies corerereirersenneriasssssnnenssenesscsasesssneness 3

1.2 The __main fUNCLIONccvverserrnirsrciriniisessisessesensssssssessssssnsss 4

1.3 The Unbuffered i/0 fUNCHONSccccoereeeieerecenrenenicaeseseonsasnsnenss 4

1.4 The standard i/0 functions "agetc’ and *aputc’ceevnineen 9

1.5 The sbrk heap management fUNCIONcceee cevreverecerermenssessisenes 9

1.6 The exit and _exit fUNCHONS .cuccvensvenersiirieeiiiesensensssssesnsssnes 9

2. Building the LIDrariescvies ceveeievensecnsnennessenesnsensssssssossresssens 10

3. FUNCtion deSCIiPLIONS ..cvccivee cevrereerinnssseseessersesnsrsssssssessessesnssssssnessens il

- libgen.2 -

Aztec CG65 LIBGEN

Library Generation

The Aztec CG65 functions are provided in source form. Before you
can create programs that use them, you will have to create object
module librarics of them, after making any necessary modifications.

In the following discussion, we assume that you have installed
Aztec CG65 in a set of subdirectories, as directed in the Tutorial
chapter. We also assume that your system has a »uake program
maintenance program that is UNIX compatible; this program, under
direction of "makefiles" provided with Aztec CG65, will control the
compilation and assembly of library modules and the generation of the
libraries. For systems whose standard software doesn’t include make,
we will provide the Aztec make with your Aztec CG65 package, if one
is available; otherwise, the release document will describe the
procedure for creating the libraries.

The description of the Aztec make is in the Utility Programs
chapter.
1. Rewriting the functions

Many of the functions provided with this package will run, without
modification, on any 65xx-based system. Some, however, may need to
be rewritten for usc on different systems. We’ve included the source
for the Apple // versions of these functions, which you can modify
for use on your system.

The functions that may need to be rewritten arc:
* The start-up function;
* The __main function;
* The unbuffcred i/o functions;
* The standard i/0 functions agetc and aputc.
1.1 The start-up function

The start-up function is the first routine to be executed when the
program is started. It scts up pointers, moves the copy of the
initialized data segment from ROM to RAM, clears the uninitialized
data segment, and jumps to the program’s main function. The startup
function is named .begin; its source is in the file rom.a65, in the
ronm.arc archive.

The following paragraphs describe some changes that you might
want to make to rom.a65:

- libgen.3 -

LIBGEN Aztec CG65

* rom.a65 contains a statement that creates a 2kb area for the
program’s pseudo stack in the uninitialized data area. You
can change this statement to, for example, change the size of
this area, or to place pseudo stack outside of the initialized
data area, or ...

* roma65 contains statements that define the boundaries of a
program’s 'heap’; that is, the area of memory from which
buffers are dynamically allocated. By default, this area is 1 kb
long, and immediately follows the space reserved for the
program’s uninitialized data and, if present, its overlays. You
can change these statements to, for example, change the size
of the heap, or to place it in some other section of memory,
or ...

* The 65xx has three fields at the top of memory that contain
pointers to routines that handle power-up/reset, nmi
interrupt, and irq interrupt. hex65 can optionally generate
hex records that initialize the 65xx power-up/reset and
interrupt vectors; when it does so, it sets the address of the
global symbol .begin in the power-up/reset vector, .nmi in the
nmi vector, and .irg in the irq vector. You already know that
.begin is in rom.a65. It also contains the directives that define
.drqg and .nmi; no code, just the definition directives. So if
your program is going to handle these interrupts, you must
either add the code to rom.a65 or remove these directives
from rom.a65 and put them and the interrupt-handling code
in another module.

1.2 The __ruin function

The __main function, whose source is in wmain.c within the rom.arc
archive, acts as an interface between the .begin and main functions. In
the supplied version, __main just calls main, passing null values for
main’s argc and argv paramcters. You may want to modify this
function, to initialize the program’s stdin, stdout, and stderr devices, to
handle i/o0 redirection, to pass command line arguments to main via
the argc and argv parameters, ...

1.3 The Unbuffered i/o functions

There are two classes of UNIX-compatible i/o functions: standard
and unbuffered The unbuffercd i/o functions are system dependent,
and the standard i/o functions call the unbuffered. Aztec CG65
contains the Apple ProDOS versions of these functions; so you must
rewrite those that your functions call, and those that are called by the
standard i/0 functions that your functions call

The unbuffered i/0 functions are:

- libgen.4 -

Aztec CG65 LIBGEN

open creat close read write
Iseek rename unlink ioctl isatty

Descriptions of the unbuffered i/o functions are in the "System
Independent Functions" and "Library Functions Overview" chapters.
The following paragraphs present additional information that may be
of use when writing your own versions of these functions.

1.3.1 File descriptors

Associated with each file or device that is open for unbuffered i/o
is a positive integer called a "file descriptor”. A file descriptor is one
of the parameters that is passed to an unbuffered i/o function; it
defines the file or device on which the i/0 is to be performed. There’s
usually a limited number of file descriptors, which of course limits the
number of files and/or devices that can be simultaneously open for
i/o.
1.3.1.1 When there’s lots of files and devices...

If a system supports disk files and/or supports more devices than
file descriptors, the file descriptors must be dynamically allocated.
That is, before i/o with a file or device can begin, a function must be
called that assigns a file descriptor to it; and when the i/o is done
another function must be called to de-assign the file descriptor. In this
case, a table is usually provided that has entries defining the status of
each file descriptor and that is accessible to all the unbuffered i/o
functions. Here’s how the unbuffered i/o functions make use of the
table:

* open and creat prepare a file or device for unbuffered i/o.
They scan the table for an unused entry, and initialize the
cntry with information about the file or device. For example,
the entry for an open device might contain the device’s
address; that for an open file might contain the file’s current
position and access mode. As the file descriptor for the
opened file or device, open and creat return the entry’s index
into the table.

* read, write, Iseek, ioctl, and isatty perform operations on, and
determine the status of, an open file or device. The file
descriptor of the file or device is one of the parameters passed
to them. They examine the file descriptor’s table entry for
information about the file or device.

« close completes i/o to the open file or device having a
specificd file descriptor. Most of the operations that close
performs depend on the particular file or device; but it always
marks the descriptor’s table entry as being unused.

* unlink and rename don’t use the file descriptor table at all.

- libgen.5S -

LIBGEN Aztec CG65

1.3.1.2 When only devices are supported...

If programs access just devices (i.e. not files), if there are fewer
devices than file descriptors, and if your programs make limited use of
the standard i/o functions (as defined below), you can simplify the
unbuffered i/o functions by doing away with the file descriptor table,
hard-coding the assignment of devices and file descriptors into the
unbuffered i/o functions, and leaving open, creat, and close as mere
stubs that simply return when called.

For example, you could code into the write function the fact that
file descriptor 5 is associated with a printer at a certain address. Then
to write to the printer, a program could simply issue a call to write,
telling it to write to file descriptor 5. It wouldn’t have to first call open
or subsequently call close.

1.3.1.3 Pre-assigned file descriptors

By convention, file descriptors 0, 1, and 2 are pre-assigned to the
system console, even when all other file descriptors are dynamically
assigned. To perform an unbuffered i/o operation on the console, a
program simply calls the appropriate function, specifying one of these
file descriptors; it need not first call open or subsequently call close.

Some systems allow the operator to redirect file descriptors 0 and |
to other files and/or dcvices, by specifying special operands on the
command line that starts a program. This is done by inserting a special
function between the startup routine and the user’s main function. If
any redirection operands are found in the command line, this special
function closes the specified file descriptor by calling close and reopens
it to the new file or devicc by calling open. By convention, the
command line operand to redirect file descriptor O consists of "<"
followed by the file or device name. The command line operand to
redirect file descriptor 1 consists of ">" or ">>" followed by the file or
device name. ">" causes a new file to be created. ">>" causes a file to
be appended to, if it alrcady cxists, or to be created, if it doesn’t exist.

1.3.2 Interaction of the standard i/o and unbuffered i/o functions

The standard i/o functions call the unbuffered i/o functions.
Because of this, the standard i/o operations that a program will
perform places implementation requirements on the unbuffered i/o
functions. This section discusses those requirements, after first
presenting general information on standard i/o file pointers and their
relationship to unbuffered i/o file descriptors.

Before standard i/o can be performed on a file or device, an
unbuffered i/o file descriptor must be assigned to it, and a standard
i/o "file pointer" must be assigned to the file descriptor. The
assignment of a file pointer and file descriptor can be done
dynamically, by calling the standard i/o fopen function. Three file
pointers, named stdin, stdout, and stderr, are pre-assigned to file

- libgen.6 -

Aztec CG65 LIBGEN

descriptors 0, 1, and 2; these file descriptors in turn are pre-assigned to
the console.

When a program calls a standard i/o0 function, it often must pass a
file pointer, which identifies the file or device on which i/o is to be
performed. There are a spccial set of standard i/o functions for
accessing stdin, stdout, and stderr: for these, the file pointer isn’t
passed, since the functions know what file pointer is being accessed.

1.3.21 Supporting the standard i/o fopen and fclose functions

The dynamic assignment of a file pointer and file descriptor to a
file or device is done by the fopen function. This function selects a
file pointer for the file or device and then calls the unbuffered i/o
open function, which selects a file descriptor.

If programs call fopen, you must implement the unbuffered i/o
open function, and open must return the file descriptor that’s associated
with the file or device. This requirement (for a functional open when
fopen is called) must be met even if file descriptors are pre-assigned to
devices; open in this case could be very simple, just searching a table
for a device name and returning the associated file descriptor.

Conversely, the use of the standard i/o functions to access those
devices that don’t first have to be fopened (i.e. stdin, stdout, and
stderr) places no requiremcnts on open. In particular, if file
descriptors are pre-assigned to devices and open simply returns when
called, programs can still call the standard i/o functions to access the
devices associated with the stdin, stdout, and stderr file pointers.

The standard i/0 function fclose calls the unbuffered i/o function
close. Thus, if programs call fclose, you must implement a close
function. If assignments of devices to file descriptors is hard-coded,
close can usually just return the value 0, since nothing special (such as
calling the opcrating system to close an open file or deallocating a file
descriptor) nceds to be done.

1.3.2.2 Supporting the standard i/o input and output functions

If programs call any of the standard i/o input functions, you must
implement the unbuffcred i/o read function. And if they call any of
the standard i/o output functions, you must implement the write
function.

1.3.2.3 Supporting the standard i/o fseek function

If programs will call the standard i/o fseek function, you must
implement the unbuffcred i/0 Iseek function, since fseek calls Iseek.

1.3.2.4 Standard i/o and the isa#ty function

If programs call any standard i/o functions, you must implemex}t
the unbuffered i/o function isarty. The standard i/o functions call this
function to decide whether their i/o to a file or device should be

- libgen.7 -

LIBGEN Aztec CG65

buffered or unbuffered.

This use of the word "unbuffered" in describing standard i/o might
be a little confusing, since the use of the expression "unbuffered i/o
functions" to describe onc sct of i/0 functions implies that the other
set, the "standard i/0 functions", are buffered. Nevertheless, a standard
i/o stream can be either buffered or unbuffered: if buffered, data
that's exchanged between user-written functions and the unbuffered
1/0 functions passes through a buffer; if unbuffered, data doesn’t pass
through a buffer.

For a given file descriptor, isatty should return non-zero if standard
i/o to the device associated with the file descriptor is to be buffered,
and zero if it is to be unbuffered.

For example, isatty should probably return non-zero for a file
descriptor that’s associated with the system console and zero for file
descriptors associated with files; it could return either zero or non-zero
for other devices, such as printers, depending on your system’s
requirements.

1.3.3 Error codes

We’ve presented most of the factors you should consider when
writing your unbuffcred i/o functions. In this section we want to list
error codes that the functions could return in the global int ermo.

open error codes:

ENOENT File does not exist and O__CREAT wasn’t specified.
EEXIST File cxists, and O__CREAT+0O__ EXCL was specified.
EMFILE Invalid file descriptor passed to open.

close error codes:

EBADF Bad file descriptor passed to close.
creat error codes:

EMFILE All file descriptors are in use.
Iseek error codes:

EBADF Invalid file descriptor
EINVAL Offset paramcter is invalid, or the requested position
is before the beginning of the file.

read error codes:
EBADF Invalid file descriptor
write error codes:

EBADF Invalid filc descriptor
EINVAL Invalid opcration; i.e. writing not allowed.

- libgen.8 -

Aztec CG65 LIBGEN

1.4 The standard i/o functions ’agetc’ and ’aputc

The characters used to terminate lines of text differ form system to
system. On UNIX, it’s the newline (linefeed) character, \n’. On the
Apple //, it’s carriage return, ’\r’. On CPM, it’s carriage return-line
feed. In order to allow programs to access files of text in a system-
independent manner, the standard i/o functions agetc and aputc are
provided: agetc reads a character from the standard input channel,
translating the line termination sequence into ’\n’. aputc writes a
character to the standard output channel, translating '\n’ to the line
termination sequence.

The following standard i/o functions call agetc and aputc.

scanf fscanf printf fprintf
getchar gets fgets
putchar puts fputs

Hence, if you intend to write programs that access text and the line
termination sequence on your system differs from that on the Apple
// (that is, it isn’t carriage return), you'll have to modify agetc and
apulc.

The source for these functions are in the files agetc.c and aputc.c,
within the stdio.arc archive. If you followed our recommendations for
installing Aztec CG65, dearchived versions are also in the STDIO
subdirectory of the LIB directory.

1.5 The sbrk heap management function

shrk provides an elementary means of allocating and deallocating
space from a program’s heap. sbrk is called by the more sophisticated
heap-allocation functions (mualloc, etc), and malloc is called by the
standard i/0 functions; thus, if your programs call malloc or the other
high-level hcap management functions, or if they call the standard i/o
functions, you will neced an shrk function.

You probably won’t have to modify sbrk, since the most system-
dependent code (which decfincs the boundaries of the heap) is in the
startup routine.

A description of sbrk’s calling sequence is appended to this chapter.
1.6 The exit and __exit functions

exit and __exit arc callcd to terminate the execution of a program.
They aren’t usually called by ROM-based programs, since such
programs usually don’t terminate.

They are called, however, by RAM-based programs that are
running in an opcrating system environment, since these programs
usually do terminate.

- libgen.9 -

LIBGEN Aztec CG6S

When these functions are needed, you will have to modify __exit,
since it must return to the operating system. But you can probably use
exit as is, since it closes open files and devices in a system-independent
way and then calls __exit.

Descriptions of the calling sequences to exit and _ exit are
appended to this chapter.

2. Building the libraries

Once you’ve made modifications to the supplied unbuffered i/o
functions, you can build your libraries. We recommend that you
create the following libraries:

c.lib General purpose functions (¢cg65-compiled)
ci.lib General purpose functions (cci-compiled)
m.lib Floating point functions (cg65-compiled)
mi.lib Floating point functions (cci-compiled)

To simplify the creation of these libraries, Aztec CG65 contains
several "makefiles" that give directions to the make program
maintenance utility, and a few files that give directions to the /b object
module librarian. If you followed our recommendations for installing
Aztec CG6S5, each of the LIB directory’s subdirectories contains a
makefile that causes make to compile and assemble the subdirectory’s
source files. There is a makefile in the LIB directory that can be used
on systems having lots of memory, to have make first generate each
subdirectory’s object modules and then make a library.

Before you can generate the libraries, you must do several things:

1. In each makefile, modify the rules that define how to convert
a C source file to an object module, so that the command that
starts the compiler uses a +G option that correctly defines
Zero-page usage on your system,

2. Modify the zpage.h file in the INCLUDE directory. This file
defines the use of zero page for assembly language modules.

3. You’ve probably crcated a subdirectory of the LIB directory, a
subdirectory that contains your own unbuffered i/o modules.
In this subdirectory you should create a makefile that tells
make how to generatc object modules from your files.

4. In the LIB directory arc four files (c.bld, cibld, m.bld, and
mi.bld), each of which tells /6 how to create a library. c.bld
and ci.bld are used for generating ProDOS versions of c.lib and
ci.lib, so you will nced to modify these files. Some of the
changes that you’ll nced to make are these: (1) instead of
including the Apple // startup routine crt0.r that’s in the
PRODOS directory, include the 65xx ROM startup routine
rom.r that’s in the ROM directory; (2) instead of including the

- libgen.10 -

Aztec CG65 LIBGEN

ProDOS __ main routine that’s in the shmain.r module in the
PRODOS directory, include the 65xx ROM _ main routine
that's in the umain.r module in the ROM directory; (3) replace
the ProDOS unbuffered i/0 modules with your own.

5. The environment variable INCL65 must be set to the name of
the INCLUDE dircctory; that is, to the name of the directory
that contains the include files. The command to do this varies
from system to system; on PCDOS, it’s the set command.

6. If you have a RAM disk, you can speed up the library-
generation process by defining it using the CCTEMP
environment variable. For more information, see the
description of CCTEMP in the Compiler chapter.

You are now ready to create the libraries. If your system has lots
of memory, you can create a library setting the default or current
directory to the LIB directory starting make, passing to it the name of
the library you want created. For example, to create c.lib, you would
enter;

make c.lib

For non-UNIX systems, a special makefile (named makepc) is provided
in libmake.arc that should be used in place of the standard makefile
(named make file). To make c.lib using makepc, type

make -f makepc c.lib

Once started, make will activate several other copies of make, each of
which will compile and assemble the files in one of LIB’s
subdirectories; it will then start /b, which will make the specificd
library from the object modules that are in the subdirectories, as
directed by the appropriate .bid file.

If your system doesn’t have lots of memory (if there’s not enough
memory, make will abort with the message "EXEC failure"), you can
create and execute batch files that will generate the libraries. A batch
file will first, for each subdirectory, make that subdirectory the default
or current directory and then activate make, using the command make
rel to make cg65-compiled modules, or rake int to make cci-compiled
modules. The batch file will then activate /b, passing to it the name of
the appropriate .bld file.

3. Function descriptions

The System Indecpcendent Functions chapter presents the calling
sequences of most of the functions that are discussed in this chapter.
The remainder of this chapter presents the calling sequences of the
other functions.

- libgen.11 -

BREAK (O) Heap management functions BREAK

NAME
sbrk

SYNOPSIS
void *sbrk(size)

DESCRIPTION
sbrk provides an elemcentary means of allocating and deallocating
space from the heap. More sophisticated buffer management
schemes can be built using this function; for example, the
standard functions malloc, free, etc call sbrk to get heap space,
which they then manage for the calling functions.

sbrk increments a pointer, called the *heap pointer’, by size
bytes, and, if successful, returns the value that the pointer had
on entry. Initially, the heap pointer points to the base of the
heap. size is a signed int; if it is negative, the heap pointer is
decremented by the specified amount and the value that it had
on entry is returned. Thus, you must be careful when calling
sbrk: if you try to pass it a value greater than 32K, sbrk will
interpret it as a negative number, and decrement the heap
pointer instead of incrementing it.

SEE ALSO
The functions malloc, free, etc, implement a dynamic buffer-
allocation scheme using the shrk function. See the Dynamic

Buffer Allocation section of the Library Functions Overview
chapter for morec information.

The standard i/0 functions usually call malloc and free to allocate
and release buffers for use by i/o streams. This is discussed in
the Standard I/O section of the Library Functions Overview.

Your program can safcly mix calls to the malloc functions, the
standard i/o functions, and sbrk, as long as the calls to sbrk don’t
decrement the heap pointer. Mixing sbrk calls that decrement
the heap pointer with calls to the malloc functions and/or the
standard i/o0 functions is dangerous and probably shouldn’t be
done by normal programs.

ERRORS
If an sbrk call is made that would result in the heap pointer
passing beyond the end of the heap, sbrk returns -1, after setting
the global integer errno to the symbolic value ENOMEM.

- libgen.12 -

EXIT (C) Program termination functions EXIT

NAME
exit, __exit

SYNOPSIS
exit(code)

__exit(code)

DESCRIPTION
These functions cause a program to terminate and control to be
returncd to the opcrating system.

code is returned to the operating system, as the program’s
termination code.

exit and __exit differ in that exit closes all files opened for
standard and unbuffered i/0, while __exit doesn’t.

- libgen.13 -

EXIT (O) Program termination functions EXIT

- libgen.14 -

TECHNICAL INFORMATION

- tech.1 -

TECH INFO Aztec CG65

Chabter Contents

Technical INfOrmationcceies ceiveiveeececscrsiensesseseessassesasssssesassesssssessenes tech
1. Memory OrganizZation ecccecereeeeeesneessesssesssssnsossseessssesssessssssnes 4
2. OVEIIAYS ettt st sas et sesasssesaensssssnsonsas et st susssssbssnsneses 7
3. Interfacing to Assembly Language cvvccvcrnnnneesnsisssssessisnsnnns 14
4. Object Code FOrmatccccvcernres cerveveeensensaeeseeneseene eesressaseesaeensesrere 18
5. The PSeUdO SACK ...ccccvees covereeerrertrrccccerseserseenssasnseassssnssesosseesssassssnnases 29

- tech.2 -

Aztec CG65S TECH INFO

Technical Information

This chapter discusses technical topics, and topics that couldn’t be
conveniently discussed elsewhere.

It’s divided into the following sections:

L.

Memory Organization. Discusses the factors that affect the
memory organization of a program.

Overlays. Describes overlays: what they are, and how they’re
used.

Mixing Assembler and C Routines. Describes how to interface
assembly language routines with C routines.

Object Code Format. Describes the format of object modules
and libraries.

The pseudo stack. Describes the pseudo stack that is used by
programs that have been created by Aztec CG65.

- tech.3 -

TECH INFO Aztec CG65

1. Memory Organization

A ROM program is organized into several sections. The linker lets
you specify the position of some of these sections, but for a ROM
system they are frequently positioned as follows:

ROM
fereterereettereesee st eeernrsress e seraesserensensenes | top of memory
| ptrs to power-up |
| & interrupt routines |
bueresrnsressensanssessssnssnsssesaoess |
| Copy of initialized data |
Leecereeestsenesnreesnrsssesesessssssnsessesaneasens |
| Code |
beveerseessresmneenessenesenasersseessssssanesesssesenes]

RAM
bevreereererensnrannsennssenesrssnsensressanessaseneseaes |
| Heap I
... }
| Overlay Area I
... |
j Uninitialized Data |
| (& pseudo stack) I
e re e e e s teres bt es et enne |
| Initialized Data |
beteeerteseseereae et s seseaes e e s s s a et enr e enens |
| Page I: |
| hardware stack |
boreeerieneseraraessrienneearesre st ssanssaessesseans |
| Page O |
foerrrernrsnsenereessesnsnssesessenssssnssanssessessons | bottom of memory

The following paragraphs discuss these areas.
1.1 ROM sections
1.1.1 The code area

The code area contains the executable code for a program’s root
segment (i.e. for its non-overlay segment).

1.1.2 Copy of initialized data

A program’s initialized data area resides in RAM and contains
global and static variables that are assigned an initial value. For
example, if the following statement occurs outside all functions, then
the variable var would be placed in the program’s initialized data area:

- tech.4 -

Aztec CG6S TECH INFO

int var=1;

Since the initialized data segment resides in RAM, its contents will
initially be unknown when the system is turned on. The Aztec CG65
startup routine sets up this segment, using the copy of the initialized
data area that resides in ROM above the code segment.

The ROM-resident copy of the RAM-resident initialized data area
is created automatically by hex65 when it translates the memory image
of the program, as generated by the linker, into Intel hex records.

1.1.3 Pointers to the power-up and interrupt routines

These pointers define the locations to which the 65xx will transfer
control when power is turned on, when the processor is reset, or when
an interrupt occurs. By default, they are generated by hex65 when it
converts the memory image of the program, as created by the linker,
into Intel hex records. hex65 sets the addresses of the .nmi, .begin, and
.irg routines in the nmi power-up/reset, and irq fields, respectively.

1.2 RAM sections

1.2.1 The Initialized Data Area
This area was discussed above.

1.2.2 The Uninitialized data area

This area contains the global and static variables that aren’t assigned
an initial value.

It also contains the area in which the program’s pseudo stack is
placed. The "pseudo stack” is a stack simulated by the Aztec CG65
software to get around the limitations of the 65xx hardware stack (the
hardware stack can be at most 256 bytes long).

When a program starts, the Aztec CG65 startup routine
automatically clears the uninitialized data area.

1.2.3 The Overlay Area

A program’s overlays are loaded into the overlay area. The size of
this area is set when you link the program’s root segment, to the sum
of the values specified in the +C and +D options. By default, these
options are set to zero, resulting in an overlay area that is zero bytes
long.

For more information on overlays, see the Overlay section of this
chapter.

1.2.4 The Heap

The heap is the area of memory from which buffers are
dynamically allocated.

- tech.S -

TECH INFO Aztec CG65

As defined by the Aztec CG6S5 startup routine, the heap is 1 kb
long.

1.3 Symbols related to Program Organization

The following global symbols are related to program organization.
The symbols are given in the form that an assembly language program
would use to access them. A C module can access the symbols by
removing the appended underscore from the symbol name.

__Corg__ Name of the beginning of the program’s code.

_Cend__ Name of the first byte beyond the program’s
executable code.

__Dorg__ Name of the beginning of the program’s initialized

data.

__Dend__ Name of the first byte beyond the program’s
initialized data.

__Uorg__ Name of the beginning of the program’s uninitialized
data.

__Uend__ Name of the first byte beyond the program’s
uninitialized data.

mbot__ Name of a field containing a pointer to the beginning
of the program’s heap.

__Top__ Name of a field containing a pointer to the next byte
to be allocated from the heap.

__End__ Name of a field containing a pointer to the end of the
program’s heap.

1.4 For more information

For more information on the positioning of a program’s segments,
see the Tutorial chapter and the Linker chapter’s discussion of
segment-positioning options. '

- tech.6 -

Aztec CG6S Overlay Support TECH INFO

2. Overlay Support

In order to allow you to run programs which are larger than the
limited memory size of a microcomputer, Manx provides overlay
support. To use this feature, you must rewrite the unbuffered i/o
functions whose source is provided with Aztec CG65. This feature
allows you to divide a program into several segments. One of the
segments, called the root segment, is always in memory. The other
segments, called overlays, reside on disk and are only brought into
memory when requested by the root segment.

If an overlay is in memory when the root requests that another be
loaded, the newly specified overlay replaces the first in memory.

Overlays can also be "nested”; that is, an overlay at one level can
call another overlay nested one level deeper. However, an overlay
cannot call an overlay which is at the same level

Figure 1 shows a program, run as a single module, that can be
logically divided into three segments. Figure 2 shows the same
program run as an overlay. In figure 2, module 1 and module 2 occupy
the same memory locations. A possible flow of control would be for
the base routine to call module 1, module 1 then returns to the root
and the root calls module 2, module 2 returns to the root and the root
calls module 1 again. Module 1 then returns to the root and the root
exits to the operating system.

Notice that all overlay segments must return to their caller and that
overlays at the same level cannot directly invoke each other.

0x800 i root segment i
0x9F0 i module 1 i
0x1C20 i module 2 i

- \

Figure 1

| |
0x800 ! root segment !
0X9F0 | | Ox9F0 |
1- module 1 H module 2 i
% B {

Figure 2

- tech.7 -

TECH INFO Overlay Support Aztec CG65

2.1 Calling an Overlay

A program segment (root or overlay) activates an overlay by calling
the Manx-supplied function ovloader, which must reside in the root.
The call has the form

ovloader(ovlyname, pl, p2, p3, ...)

where ovilyname is a pointer to a character string identifying the
overlay name, and pl, p2, p3, ... are parameters that are to be passed to
the overlay as its first, second, third, ... parameters.

ovloader derives the name of the file containing the overlay from
the string pointed at by oviyname, by appending the extension .ovr to
1t.

We provide you with the source to ovioader. When you compile it,
you define the directories in which it will look for overlays: compiling
it with the option -DPATH will cause it to search all directories
specified in the PATH environment variable; compiling it without this
option causes it to search just the current directory. If you create an
overlaid program that will run under ProDOS outside of the SHELL
environment or that will run under DOS 3.3, you must use a version
of ovloader for it that looks for overlays in just the current directory,
since environment variables are only available to programs running in
the SHELL environment.

Each overlay must contain a function named ovmain, which you
must write and which can be different for each overlay, and must also
contain the Manx-supplied function named ovbgn. When an overlay is
loaded, oviloader calls the overlay’s ovbgn function, which in turn calls
the overlay’s ovmain function, passing to it the second, third, ...
arguments that were passed to oviloader.

When ovmain completes its processing, it simply returns. oviloader
then returns to the caller, returning as its value the value that was
returned by ovmain.

An overlay can access any global functions and variables that are
defined in the root segment and in the overlays that are currently
active. For example, if the root calls overlay ovlyl, which calls overlay
oviyll, which calls overlay ovlylll, then ovilylll can access the global
variables and functions that are defined in the root, in the overlays
ovlyl and ovlyll, and in itself. But if the root also calls overlay oviy2,
oviylll cannot access the global functions and variables that are in
ovly2, since ovly2 is not active when oviyl11 is.

2.2 Creating a root and its overlays

To create a root and its overlays, the linker must be run several
times, once to create the root, and once for each overlay. Ea_ch
program segment (root or overlay) will be placed in a separate disk
file.

- tech.8 -

Aztec CG65S Overlay Support TECH INFO

The root must be created first When overlays are nested, an
overlay that itself calls overlays must be linked before the overlays that
it calls.

When creating a program segment (root or overlay) which calls an
overlay, the option -R must be specified; this causes the linker to
generate a symbol table for use in linking the called overlay, placing it
in a file whose filename is the same as that of the first file specified in
the command line and whose extent is .rsm. When an overlay is
linked, the symbol table file of the program segment that calls the
overlay must be included in the linkage of the overlay.

When the root module is linked, the linker has to reserve some
space into which the overlay can be loaded This is done using the +C
and +D linker options, which define the amount of space needed for
the overlay code and data, respectively. If overlays are nested, a called
overlay is located in memory immediately following the calling
overlay. The amount of space reserved for the overlays must be
enough to hold the longest 'thread’ of overlays.

2.3 Example 1: Non-nested Overlays

This example demonstrates overlay usage when the overlays are not
nested. The root segment, which consists of the function main and any
necessary run-time library routines, behaves as follows:

1. It calls the overlay oviyl, passing as a parameter a pointer to
the string "first message".

2. It prints the integer value returned to it by oviyl;

3. It calls the overlay ovly2, passing a pointer to the string
"second message";

4. 1t prints the integer value returned to it by oviy2.

The overlay ovly! consists of the function ovlyl, the Manx function
ovbgn, and any necessary run-time library routines. It prints the
message "in ovlyl" plus whatever character string was passed to it by
main.

The overlay ovly2 consists of the function ovly2, the function
ovbgn, and any necessary run-time library routines. It prints the
message "in ovly2", plus whatever character string was passed to it by
main.

- tech.9 -

TECH INFO Overlay Support Aztec CG65

Here then is the main function:

main() {
int a;
a = ovloader("ovlyl","first message");
printf("in main. ovlyl returned %d\n", a);
a = ovloader("ovly2","second message");
printf("in main. ovly2 returned %d\n",a);

)

Here is oviyl:

ovmain(a)
char *a;

printf("in ovlyl. %s\n",a);
return I;

}

Here is ovly2:

ovmain(a)
char *3a;

printf("in ovly2. %s\n",a);
return 2;

)

The following commands link the root (which is in the file root.c)
and the overlays:

In65 -R +C 4000 +D 1000 root.r ovloader.r -Ic
In65 ovlyl.r ovbgn.r root.rsm -lc
In65 ovly2.r ovbgn.r root.rsm -Ic

The command to link the root reserves 0x4000 bytes for the
overlay’s code and 0x1000 bytes for it’s data. Techniques for
determining this value are discussed below.

When the segments are generated and the root activated, the
following messages appear on the console:

in ovlyl. first message.

in main. ovlyl returned 1.
in ovly2. second message.
in main. ovly?2 returned 2.

2.4 Example 2: Nested Overlays

In this example, there are three segments: a root segment, root, and
two overlays segments, ovlyl and ovly2. root calls oviyl, which calls
ovly2. ovly2 just returns.

- tech.10 -

Aztec CG65 Overlay Support TECH INFO

Here is the root

main()

ovloader("ovly1","in ovlyl");

)

Here is ovlyl:

ovmain(a)
char * a;

printf("%s\n",a);
ovioader("ovly2", "in ovly2");

)

Here is ovly2:

ovmain(a)
char *a;

printf("%s\n",a);

The following commands link the root and the two overlays:

In65 -R root.r ovloader.r -Ic
In65 -R ovlyl.r ovbgn.r root.rsm -Ic
In65 ovly2.r ovbgn.r ovlyl.rsm -Ic

When executed, the following messages appear on the console:

in ovlyl
in ovly2

2.5 Determining the size of the overlay area

When you link the root module, you will have to know how much
memory to reserve for the overlay, that is, you will have to know how
large the overlay is. But since the overlays haven't been linked yet,
how can you know how much space is needed for overlays?

The easiest way is to guess. That is, estimate the size and go ahead
and link the root and the overlays, keeping track of the size of the
code and data for the overlays as reported by the linker.

After all overlays have been linked, the size of the area needed for
overlays is the size of the largest overlay (if overlays aren’t nested) or
the size of the longest *thread’ of overlays (if they are nested). You can
then go back and relink the root, if necessary, with this value. You
won’t have to relink any overlays, since the +C and +D options don’t
affect the position of the overlays in memory.

- tech.11 -

TECH INFO Overlay Support Aztec CG65S

2.6 Error messages from ovloader

If an error occurs while loading an overlay, ovicader will print a
message of the form

Error %d loading overlay: %s

where %d is a number defining the error and %s is the name of the
overlay. The error codes and their meanings are:

10 Can’t open overlay file

20 Can’t read overlay header record

30 Invalid header record

40 Overlay code & data overlaps with heap
50 Error reading overlay

2.7 Possible Problems

A possible source of difficulty in using overlays concerns initialized
data. In the following program module, a global variable is initialized:
inti=3;
function()

{

return;

}

The initialization of "i" is performed by the linker, rather than at
run time. In the same program, the following module is allowed:

int i;

main()
function();

}

The global variables in each module refer to the same integer, "i".
At link time, this variable is set to the value 3. Although this works
when the two modules are linked together, a problem arises when the
first module is linked as an overlay:

In65 func.r ovbgn.r main.rsm -lc

From the .rsm file, the linker knows that "int i" has been declared
in main.r, the root. But it tries to initialize "i" from the statement in
the func.r module. This attempt fails because the variable "i" is part of
main.r, a module which is not included in the linkage.

An attempt to initialize, in an overlay, a variable which has been
declared in the root will produce an error:

attempt to initialize data in root

- tech.12 -

Aztec CG65 Overlay Support TECH INFO

The simple solution is to change the statement, "int i = 3", to the
following:
int i;
i=3;
This assignment will be performed at run time, so that the linker
does not try to perform an initialization.

2‘8 Source

The source for the ovioader and ovbgn functions are in the files
ovld.c and ovbgn.a65. ovid must be compiled by cg65; as mentioned
above, it can be compiled with or without the option -DPATH, as
defined above. ovbgn must be assembled using as65.

- tech.13 -

TECH INFO Assembly Language Functions Aztec CG65

3. Interfadng to Assembly Language

This section discusses assembly-language functions that can call, or
be called by C-language functions.

3.1 Naming Convention

The compilers translate a global function or variable name into
assembler by truncating it to contain no more than 31 characters,
appending an underscore character ’_’ to the truncated name, and
then generating a public directive for the resultant name.

For example, the following assembly language statements define the
entry point to an assembly language function that would be referred to
in a C language program using the name sunt

public sum__
sum__ ;entry point to sum

3.2 Calling and Returning

On entry to a function, information about the call are at the top of
both the 6502 hardware stack and the pseudo stack

At the top of the 6502 stack is the function’s primary return
address; this is the address to which the function should return by
issuing an rts instruction. A non-reentrant function (ie, a function that
doesn’t call itself) can leave its return address on the 6502 stack and
then return by issuing the 6502 r¢s instruction. For example, the very
simplest assembly language function, which does nothing but return to
the caller, would consist of just an rzs instruction:

public nop__
nop__ rts

Because of limitations of the 6502 stack, a reentrant function
should save its return address on the pseudo stack. When done, it
should return by doing an indirect jmp to the location whose address is
one greater than the saved address.

3.3 Returning a value

A function can return an in¢ or long value by setting the value in
pseudo register RO, which is located in memory page 0. (The equ
statements that defines RO and all the other 0 page locations used by
Aztec C-generated programs are in the file zpage.h). The bytes of the
value are stored in order, with the least significant byte at address 8
and the most significant byte at the highest addressed location.

For example, here’s a function that always returns the int value 1:

- tech.14 -

Aztec CG65 Assembly Language Functions TECH INFO

instxt "zpage.h"

public one__

one__ Ida #1
sta RO
Ida #0
sta RO+1
rts

3.4 Passing parameters

On entry to a function, the parameters that are being passed to the
function and a secondary return address are on the pseudo stack, and
are accessed using the field named SP that is located in memory page 0
and that points to the top of the pseudo stack. Note: as with RO, the
equ statement that defines SP is in the file zpage.h.

At the top of the pseudo stack is the two-byte secondary return
address. This is a different address from the return address that is on
the 6502 stack - a function should return using the address that’s on
the 6502 stack. The secondary return address is discussed in the
section of the Tech Info chapter that discusses the pseudo stack.

Above the secondary return address on the pseudo stack are the
parameters that are being passed to the function. The function
parameters are in order on the pseudo stack, with the first parameter
immediately following the secondary return address, the second
parameter following the first, and so on. The bytes for a parameter are
also on the pseudo stack in order, with a parameter’s least significant
byte at the lowest address and its most significant byte at the highest
address.

For example, suppose the function sum is passed two parameters, as
follows:

sum(argl, arg2);

On entry to sum__, the pseudo stack will look like this (SRA means
"secondary return address"):

- tech.15 -

TECH INFO Assembly Language Functions Aztec CG65

—
arg2, high byte

arg?, low byte

argl, low byte

SRA, high byte

SRA, low byte

|
I
I
|
I
|
|
|
I
|
!
| <-- SP
I

)

|
I
|
|
I
|
|
argl, high byte |
i
)
|
|
|
1
1
|
i
]

3.5 An Example

The following assembly language function, named sum, is passed
two ints as arguments. It returns their sum as its value.

instxt "zpage.h"

public sum__
sum__ clc

dy #2

Ida (SP),Y

Idy #4

adc (SP),Y

sta RO

1dy #3

1da (SP),Y

1dy #5

adc (SP),Y

sta RO+1

rts

3.6 Page 0 Usage

A 6502 program makes extensive use of memory page 0. An
assembly language 6502 function should obey the following restrictions
on its usage of memory page 0 locations;

* It may use, without preserving, the two-byte-long VAL field
and the following four-byte-long fields: VAL, RO, R1, R2, R3,
R4, and TMP.

* It must preserve the contents of the SP, FRAME, and
LFRAME (alias PC) fields and of the 16-byte REGS field.

These locations are defined in the file zpage.h.

- tech.16 -

Aztec CG65 Assembly Language Functions TECH INFO

3.7 Writing Programs that contain only Assembler

There are several topics concerning the linker which are important
if the assembler and linker are to be used without any compiled code.
The linker automatically creates several symbols that can be of use to
an assembly language program, defining the beginning and end of the
various program segments. These are described in the Mermory
Organization section of this chapter.

The entry point to a program is defined using the assembly
language statement

entry loc

where loc is the name of the symbol where program execution is to
begin. If a module containing an entry statement isn’t encountered by
the linker, it will set the program’s entry point to the beginning of its
code segment. For a discussion of the startup routines that are
provided with Aztec C65, see the Command Programs section of this
chapter.

3.8 Mixing C and Assembler in one Module

To include assembly language source in a C language module,
surround the assembly language code with #asm and #endasm
directives.

Finding a good example where this construct is necessary is very
difficult, but here’s a possible example:

rotate(arg)

register int i;

1= arg;
#asm

Ida $81

rol A

rol $80

rol $$1
#endasm

return(i);

}

This routine rotates a two byte quantity one bit to the left. This
operation is messy in C and in a time critical application not feasible
to make an assembly language subroutine. This routine is not a good
example, since it would be better to write the entire thing in assembly.
However, in the middle of a larger routine, it might conceivably be
useful. This facility is provided as a last resort and is generally not
recommended as it is completely non-portable.

- tech.17 -

TECH INFO Object Code Format Aztec CG65S

4. Object module format

This section describes the format of object modules and libraries.
The symbols and structures referred to in this paper are defined in the
header file object.h.

4.1 Object Module Format

An object module contains four sections: header, code, table of
named symbols, and table of unnamed symbols. These sections are
described in the following paragraphs.

4.1.1 The Header Section

The header section of an object module has the following structure:

struct module {
int m__magic; /* type of object module */
char m__name{8];/* module name “/
unsigned short m__code; /* module’s code size */
unsigned short m data, /* module’s data size "‘/
unsigned short m_static; /* module’s bss data size */
unsigned short m global, /*named sym tbl off.*/

short m__nglobal;/* # of named symbols */
unsigned short m__local; /*unnamed sym tbl off.*/
short m nlocal, /* # of unnamed symbols */

unsigned short m cnd, /* unnamed sym tbl end*/
unsigned short m__next; /* offset to next module */
unsigned short m__nfix /* # segment fixes required */
%
The following paragraphs discuss the fields within the header structure.
m__magic

Each of the different object module-related files created by
the Aztec C software begins with the m__magic field, which
contains a "signature" that identifies the file’s contents.
m__magic can have the following values:

M_MAGIC Object module created by the assembler
M_OVROOT Rsm file created by the linker
M_LIBRARY Library of object modules

m__name

Contains the name of the object module. For object modules
created by the assembler and for rsm files, this field normally
contains null characters.

m__code, m__data, and m_ static

Contain the size, in bytes, of an object module’s code, data
and uninitialized data segments, respectively.

- tech.18 -

Aztec CG65 Object Code Format TECH INFO

m__global and m__nglobal

m__global contains the offset, in bytes, from the beginning of
the module to the module’s table of named symbols.
m__nglobal contains the number of entries in this table.

m__local and m__nlocal

m__local contains the offset, in bytes, from the beginning of
the module to the module’s table of unnamed symbols.
m__nlocal contains the number of entries in this table.

m__end

m__end contains the offset, in bytes, from the beginning of
the module to the end of its table of unnamed symbols.

m__next

m__next contains the offset, in bytes, from the beginning of
the module to the end of the module.

4.1.2 Symbol Tables

An object module contains two types of symbols: unnamed and
named. An ‘unnamed symbol’ is a symbol whose name begins with a
period followed by a digit. A ‘named symbol’ is any symbol that is not
unnamed.

An object module has two symbol tables, one containing its named
symbols, and the other its unnamed symbols. A symbol table contains
entries, each of which describes one of the module’s symbols. The
entry for a symbol has the following structure:

struct symtab {
char s_type; /¥ type of symbol */
char s_flags; /* attributes of symbol */
unsigned short s__value; /* another attr of symbol */

}

In addition, the entry for a named symbol is followed by a null-
terminated string, which is the symbol’s name.

The following paragraphs discuss the fields of the symtab structure.
S__type

The s__type field in a symbol’s table entry defines the type of
the symbol Possible values:

S_ABS Symbol was defined to be a constant
value, using the assembler’s equ
directive.

S_CODE Symbol was defined within the code
segment.

S_DATA Symbol was defined within the data

- tech.19 -

TECH INFO Object Code Format Aztec CG65

segment.

S_UND . Symbol was used but not defined within
the program. Symbols that are defined
using the assembler’s public directive
but aren’t defined in any statement’s
label field have this type, as do symbols
defined using the assembler’s global
directive. The directive used to define
a S__UND symbol can be determined
from the symbol's s_value field, as
defined below.

S_BSS Symbol was defined wusing the
assembler’s bss directive.

s_ flags
This field defines other attributes of a symbol. Possible values:

S_GLOBL Set for symbols specified in public and
global directives.

S__FIXED Set for symbols defined in some
statement’s label field.

s__value

The meaning of this field depends on the type of the symbol
Symbol types and their associated values are:

s_type Meaning of s__value

S_ABS Value specified for the symbol in the
equ directive.

S_CODE Offset of the symbol from the beginning

of the module’s code segment.
S_DATA Offset of the symbol from the beginning
of the module’s data segment.

S__BSS Size, in bytes, of the symbol as defined
in the bss directive.
S_UND For an S__UND symbol, s_ value is zero

if the symbol was defined in a public
directive and non-zero if it was defined
in a global directive. For a global-
defined symbol, s_value contains the
value specified in the directive’s size
operand.

4.1.3 The Code Section

The code section of an object module contains a translated version
of the program. This format can be efficiently processed by the linker
as it generates an executable version of the program. It contains a
sequence of items, each of which directs the action of the linker. For
example, some items contain actual code and data, which the linker

- tech.20 -

Aztec CG65 Object Code Format TECH INFO

places in the output file, some cause the linker to reserve space in the
output file, and some just pass information to the linker.

The linker builds several segments of a program simultaneously: a
code segment, data segment, and an uninitialized data segment.
Exactly one of these segments is said to be *selected’ at a time. There
are loader items that select a segment.

The linker maintains a location counter for each of the segments
that it is building When a loader item requests that information be
placed in the program or that space be reserved in it, the linker
performs the requested operation in the current location of the
currently-selected segment.

A loader item is a sequence of one or more bytes, with the first
byte containing a code that identifies the item. Some codes are four
bits long, and some are eight bits long; in the former case, the code
occupies the most significant four bits of the byte.

Frequently, a loader item is two bytes long, with the item’s code in
the high order four bits of the item’s first byte and a value in the other
12 bits. In this case, the value’s least significant four bits are stored in
the first byte’s least significant four bits, and the wvalue’s most
significant eight bits are stored in the second byte. We call this format
"12-bit packed".

Descriptions of the loader items follow.
USECODE - Select code segment

The USECODE loader item selects the code segment. Data
generated by loader items that follow the USECODE item will
be placed in the code segment until another segment is
selected.

The code for a USECODE loader item is 8 bits long: 0xf4.
USEDATA - Select initialed data segment

The USEDATA loader item selects the initialized data
segment. Data generated by loader items that follow the
USEDATA item will be placed in the code segment until
another segment is selected.

The code for the USEDATA loader item 1s Oxf35.
ABSDAT - Absolute data

The ABSDAT loader item defines a sequence of bytes that the
linker is to output ’as is’ to the current location in the
currently-selected segment.

The loader item’s first byte contains the code identifier, 1,
in the most significant four bits, and the number of bytes to
be output, less one, in the least significant four bits. Thus,

- tech.21 -

TECH INFO Object Code Format Aztec CG65

this item can define one to sixteen bytes of absolute data.
The remaining bytes in the item are the absolute data.

For example, the following ABSDATA loader item defines
the three bytes Al, B2, and C3:

12 A1 B2 C3
LCLSYM - local (ie, unnamed) symbol

The value of a LCLSYM loader item is the address at which
an unnamed symbol is located in memory.

The item is two bytes long, with the item’s code, 6, in the
first byte’s most significant four bits. The item’s other twelve
bits contain the number of the symbol’s entry in the local
symbol table, in 12-bit packed format.

For example, given the assembly language code

dw .98
.98 dw 12

with .98 occupying the second entry in the table of unnamed
symbols, the following code would be generated for the dw
.98:

61 00
GBLSYM - Global Symbol

The GBLSYM loader item is just like LCLSYM except that it
references an entry in the global symbol table rather than the
local symbol table.

The code for GBLSYM is the four-bit value 7.
SPACE - Reserve space

The SPACE loader item reserves a specified amount of space
at the current location in the currently-selected segment.

The item is two bytes long, with the item’s code, 8, in the
most significant four bits of the item’s first byte. The other
twelve bits contain the number of bytes to reserve, less one,
in 12-bit packed format.

For example, the following loader item reserves 5 bytes:
84 00
CODEREF - Code segment offset

The CODEREF loader item defines an offset from the
beginning of the module’s code segment. The loader item has
as its value the absolute address corresponding to that offset.

- tech.22 -

Aztec CG65 Object Code Format TECH INFO

The CODEREF loader item is in two bytes, with the
CODEREF code, 0xa, in the high-order four bits of the item’s
first byte. The item’s other 12 bits contain the offset, as a
positive number, in 12-bit packed format.

DATAREF - Data segment offset

The DATAREF loader item is the same as the CODEREF
loader item, except that the offset is relative to the beginning
of the module’s data segment.

The code for DATAREF is Oxb.
BSSREF - BSS segment offset

The BSSREF loader item is the same as the CODEREEF loader
item, except that the offset is relative to the beginning of the
module’s bss segment.

The code for BSSREF is Oxc.
LRGCODE - Code segment offset, large form

The LRGCODE loader item takes a 16-bit value that
represents an offset from the beginning of its code segment,
and generates as its value the absolute memory address of the
location.

The loader item is in three bytes. The first byte contains
the item’s 8-bit code, 0xf7, the second contains the offset’s
least significant eight bits, and the third contains the offset’s
most significant eight bits.

LRGDATA - Data segment offset, large form

The LRGDATA loader item is the same as LRGCODE except
that the offset is relative to the beginning of the module’s data
segment.

The code for the LRGDATA loader item is 0xf8.
LRGBSS - BSS segment offset, large form

The LRGBSS loader item is the same as LRGCODE except
that the offset is relative to the beginning of the module’s BSS
segment.

The code for the LRGBSS loader item is Oxfb.
SMLINT - small integer

The SMLINT loader item defines an integer between 0 and
15, inclusive. This item can be used by itself or as an element
of an EXPR loader item

The loader item consists of a single byte. Its most
significant four bits are the item’s code, 3; and the least

- tech.23 -

TECH INFO Object Code Format Aztec CG65

significant four bits are the integer value.
For example, the following defines the integer value 8:
38

SMLNEG - Small negative integer

The SMLNEG loader item defines a negative integer between
-1 and -16 inclusive. It can be used by itself or in an EXPR
loader item.

The loader item is a single byte: the high order 4 bits are
the item’s code, 4. The low order four bits are the absolute
value of the integer, less 1.

For example, the following defines the negative value -8:
47

MEDINT

The MEDINT loader item defines an integer in the range
-2048 to 2047, inclusive, that can be used by itself or in an
EXPR loader item.

The item consists of two bytes, with the high-order four
bits of the least significant byte containing the item’s code, 5,
and the remaining twelve bits defining the value, in 12-bit
packed format.

The value is in ’excess-2048’ notation. The number
actually in the 12-bit field is an integer between O and 4095;
the integer denoted by the item is derived from the actual
integer by subtracting 2048 from it.

For example, the following represents the value -1024:
50 40

LRGINT - Large integer

EXPR -

The LRGINT loader item defines an integer in the range
-32K to +32K, for use in an expression loader item.

The item consists of three bytes. Its first byte contains the
8-bit code identifying the item, Oxf3. The other two bytes
contain the value, in two’s-complement notation.

Evaluate expression

The EXPR loader item has as its value the 16-bit value of the
expression that follows it The size of the loader item
depends on the size of the items that comprise the expression.
The most significant four bits of the item’s first byte contains
the code for the loader item, 2, and the least significant four
bits contain a code for the operation that is to be performed

- tech.24 -

Aztec CG6S Object Code Format TECH INFO

on the loader items that follow. The codes and their
corresponding values and operations are:

code value operation

ADD 1 Add the two loader items that follow

SUB 2 Subtract the following two loader items

MUL 3 Multiply the following two loader items

DIV 4 Divide the first item that follows by the
second

MOD 5 Compute the modulus of the first item
relative to the second.

AND 6 Logical AND of the following two items

OR 7 Logical OR of the following two items

XOR 8 Exclusive OR of the following two
items

RSH 9 Right shift first item the number of bits

defined by second item

LSH 10 Left shift first item the number of bits
defined by the second

NOT 11 Logical NOT of item that follows

NEG 12 Compute two’s complement of the item
that follows

The items that can follow an EXPR item are SMLINT,
MEDINT, LRGINT, LCLSYM, GBLSYM, CODEREF,
DATAREF, BSSREF, LRDCODE, LRDDATA, LRDBSS, and
another EXPR.

For example, given the assembly language code
dw a+4

with the entry for a being the fourth entry in the table of
named symbols, the following loader items would be
generated:

21 7300 34

As mentioned above, an EXPR can have another EXPR as
one of its loader items. In this case, the inner EXPR is
evaluated, using the loader items that follow it, and then the
outer EXPR is evaluated, using the resultant value of the
inner EXPR as one value and whatever loader items are left
for the other values. The loader items for the entire
expression are thus in prefix-Polish notation. For example,
the above expression, a+4, is represented by the loader items
that correspond to

+a4
And the expression

- tech.25 -

TECH INFO Object Code Format Aztec CG65

BEXPR

BREL -

WREL -

(at+b)*c

would be represented by loader items that correspond to
*+abc

- Evaluate byte expression

The BEXPR loader item has as its value the 8-bit value of the
expression that follows it BEXPR has an 8-bit code, 0xfl.
BEXPR doesn’t have an extra four bits in which an operation
code can be placed; thus, to generate an 8-bit value from an
expression, a BEXPR loader item will usually precede an
EXPR loader item that is in turn followed by the loader items
for the expression.

compute offset from location counter, byte form

The BREL loader item takes a relocatable value that
represents a location in the module and generates the offset of
the location from the current location counter.

The BREL loader item begins with a 8-bit code, 0xf2. It’s
followed by loader items representing the location.

For example, if the symbol abc is the fourth symbol in the
global symbol table, then the loader items to generate the
offset of the location that is four bytes beyond abc are

£2 21 73 00 34
compute offset from location counter, word form

The WREL loader item is the same as BREL except that it
generates a 16-bit value instead of an 8-bit value.

STARTAD - Define program start address

INTJSR

The STARTAD loader item defines the address at which a
program containing the module is to begin execution.

The item begins with the item’s 8-bit code, Oxf6. It's
followed by loader items identifying the starting address; these
can be GBLSYM, LCLSYM, EXPR, or any of the other
"expression items" mentioned above.

- Generate opcode for a subroutine call

The INTISR loader item is translated by the linker into a
machine-specific opcode that will cause a subroutine to be
called. The loader item has the value 0xf9.

The instructions in a function that has been compiled with
the interpretive compiler consist of a call to the Aztec
interpreter routine followed by the function’s other
instructions. This first instruction is directly executed by the

- tech.26 -

Aztec CG65 Object Code Format TECH INFO

machine; the function’s other instructions are in a pseudo
code that is indirectly executed, by the Aztec interpreter.

It is desirable to allow the interpretive compiler to
generate object modules that can be executed on different
machines, and to allow a single object module generated using
this compiler to be linked for execution on different
processor chips. To support this, the interpretive compiler
generates as a function’s first instruction a special call
instruction, in the pseudo code assembly language, to the
interpreter. The pseudo code assembler translates this
instruction into an INTJSR loader item followed by a
GBLSYM loader item that references the interpreter routine.
The machine-specific linker then translates this pair of loader
items into a machine-specific call to the interpreter.

THEEND - End of code

The THEEND loader item identifies the end of the code
section of the object file.

The code for the item is 00.

4.2 Object Library Format

A library of object modules consists of the object modules and a
directory of symbol names.

4.2.1 Object Modules in a Library

When an object module is placed in a library its sections are
reorganized but the contents of the module are left unchanged (with
the exception of the module’s header, whose fields are modified to
reflect the reorganization). The module’s header still is at the
beginning of the module. This is followed by the table of named
symbols, the table of unnamed symbols, and the code section.

The header is modified to define the positions of the tables in the
reorganized module, and the module is given a name in its m__name
field. The name is derived from the name of the file that contained
the module by removing the file name’s extension.

4.2.2 Library Dictionary

A library’s dictionary consists of one or more blocks that are
chained together. A block has the following structure:

struct newlib {
short nl__magic; /* magic number for libraries */
unsigned short nl_next; /* loc of next dir block */
char nl__dict{ LBSIZE]; /* dictionary for block */

)

- tech.27 -

TECH INFO Object Code Format Aztec CG65

nl__dict contains entries, each of which defines one symbol that is
defined in a library module. The entry for a symbol consists of a short
int that defines the position of the module that defines the symbol (the
absolute location at which the module begins, divided by 128), and a
null-terminated string that is the symbol’s name.

- tech.28 -

Aztec CG65 Pseudo Stack TECH INFO

5. The pseudo stack

Information in the zero page and in the pseudo stack can be used in
conjunction with a linker-generated symbol table to help debug a
program. For example, when a program mysteriously aborts and exits
to the monitor, this information can be used to determine where the
program was and how it got there.

During the execution of a program, the pseudo stack contains a list
of "frames", each of which contains information about a function that
has been called but hasn’t returned. A function’s frame defines the
parameters that were passed to it, the address to which it will return,
the values of its local variables, information about the function that
called it, and other information.

At the top of the pseudo stack is the frame for the "active"
function; that is, about the currently-executing function. Above that is
the frame for the function that called the active function; above that is
the frame for the function that called the function that called the
active function, and so on, back to the frame for the first function
called by the program’s startup code.

A function’s frame has the following organization:

1
|
| parameters |
| passed to function |

| secondary
| return addr

calling func’s
page 0 info
& misc info

|

|

|

E

| caller’s register
| variables

| (cg65 funcs only)
I-
I
|
|

called func’s
local vars

| temporary |
| storage |
[e P | <-- SP

In the above diagram, SP, FRAME, and LFRAME are the names of
zero-page fields that point to areas within the frame of the active
function. These fields are defined in the file zpage.h, along with other
zero page fields used by Aztec C-compiled functions, as described in
the Memory Organization section of the Tech Info chapter.

- tech.29 -

TECH INFO Pseudo Stack Aztec CG65

The LFRAME field is used for two purposes: when a function that
has been coppiled with the cg65 compiler is active, this field goes by
the ngme L ME and pomts into the active funcnon s frame. When
a cci- compxled function is active, this field goes by the name PC and
acts as a program counter, pointing to the next pseudo-code instruction
that is to be executed by the Aztec interpreter routine.

Locations in the active function’s frame are specified by adding a
value to the contents of a zero page field To abbreviate the definition
of these locations, the following paragraphs will refer to them using an
expression consisting of the parenthesized name of the zero-page field
plus or minus the value. For example, the expression (FRAME)+11
refers to the location within the active function’s frame whose address
is obtained by adding eleven to the contents of the zero page field
named FRAME.

5.1 Secondary Return Address

The secondary return address field in a called function’s frame,
which we’ll refer to here as SRA, defines the address within the calling
function at which execution will continue when the called function
returns.

To be exact, if the calling function was compiled with cg65,
execution within it will continue at the address (SRA)+1; ie, at the
location whose address is one greater than that contained in the called
function’s secondary return address field.

If the calling function was compiled with cci and if no parameters
were passed to the called function, execution of pseudo-code
instructions within the calling function by the interpreter will resume
at address (SRA). If parameters were passed, execution will instead
resume at address (SRA)+1.

The secondary return address field for the active function is in the
two-byte field the begins at address (FRAME)+9; ie, 9 bytes above the
location within the active function’s frame that is pointed at by the
zero page FRAME field.

5.2 Determining the function in which a program aborted

When a program aborts and exits to the monitor, the first thing you
should do is determine the identity of the active function. This can be
done as follows:

1. Find the active function’s secondary return address;

2. In the code that precedes this address, find the address of the
active function;

3. From the program’s linker-generated symbol table, find the
name of the active function.

If the address of the active function isn’t in this table, because the
function is declared to be static, you can at least determine from an

- tech.30 -

Aztec CG65 Pseudo Stack TECH INFO

examination of the symbol table the module in which it was defined

The function calling sequences are different for cg65- and cci-
compiled functions. So the following paragraphs first describe the
code generated for a function call by the two compilers and then
describe how to examine it to find the address of a called function.

5.2.1 Calling sequence for cg65-compiled functions

The cg65 compiler translates a direct function call into 6502 code
that first pushes the arguments onto the 6502 stack and then issues a
Jsr to the Aztec routine .cpystk. Following the jsr is a two-byte field
that contains the address of the called function and then a one-byte
field that defines the number of bytes that the called function’s
parameters and secondary return address will occupy on the pseudo
stack. The secondary return address of the called function is set to the
calling sequence’s one-byte field.

For example, suppose the following call is made to the function
func:

func(a,b,c,d)

The compiler will first generate code to push d, ¢, b, a (in that order)
onto the 6502 stack. Then it will generate the following code:

jsr .cpystk
fdw func__
fcb 10

.cpystk will pull the arguments off the hardware stack, push them
onto the pseudo stack, push the address of the fcb 10 onto the pseudo
stack and issue a jsr to func. The address of the fcb 10 is the called
function’s secondary return address.

cg65 translates an indirect function call (eg, (*foo)()) into 6502
code that pushes the arguments on the 6502 stack, moves the address
of the function into RO (the zero-page simulated register), and issues a
Jjsr to the Aztec routine .cpystk2. Then cg65 generates a one-byte field
that defines the number of bytes on the pseudo stack that the
function’s parameters and secondary return address will use. The
secondary return address of the called function is set to the address of
the one-byte field.

5.2.2 Calling sequence for cci~compiled functions

The cci compiler translates a direct function call by first generating
pseudo-code that pushes the parameters onto the pseudo stack. It then
generates a three-byte call pseudo-instruction, consisting of an op code
(Oxac if no parameters are specified in the call, Oxe9 if there are
parameters) and a two byte field containing the address of the called
function. The secondary return address of the called function is set to
the byte that follows the interpreter’s call instruction.

- tech.31 -

TECH INFO Pseudo Stack Aztec CG65

cci translates an indirect function call into pseudo code that first
pushes the parameters onto the pseudo stack, then loads the called
function’s address into RO. It then generates a one-byte call pseudo
instruction (0xdd if no parameters arre specified, Oxea if they are).
The secondary return address of the called function is set to the
address of the byte following the call instruction.

5.2.3 Examining the calling sequence

To find the address of the active function from the sequence of
instructions that called it, you should examine the bytes that precede
the function’s secondary return address:

* If the fifth through the third preceding bytes are jsr .cpystk
(indicating a direct function call from a cg65-compiled
function) or if the third preceding byte is Oxdd or Oxea (a
direct function call from a cci-compiled function), the second
and first preceding bytes contain the address of the function.

* If the fifth through the third preceding bytes are jsr .cpystk2
(an indirect function call from a cg65-compiled function), or
if the third preceding byte is Oxac or 0xe9 (an indirect
function call from a cci-compiled function), you’ll have to
find the function address by examining the variables from
which the function address was computed.

5.3 Determining the parameters passed to the active function

To determine the parameters that have been passed to the active
function, you should first determine the identity of the active
function. This knowledge will then give you the number and types of
the function’s parameters. You can then simply examine the
function’s arguments on the pseudo stack: the first parameter begins at
address (FRAME)+11 and occupies the number of bytes appropriate
for a value of its type. The second parameter begins immediately
above the first, and occupies the required number of bytes, and so on.

5.4 Determining the values of the active function’s local variables

The active function’s local variables occupy a section of the
function’s frame on the pseudo stack. This section extends downward
from the first byte below the location pointed at either (1) by the
zero-page LFRAME field, if the function was compiled by cg65 or (2)
by the zero-page FRAME field, if it was compiled by cci.

Local variables are allocated space in a function’s frame in the
order in which they are defined, at successively decreasing locations.
For example, consider the following function:

- tech.32 -

Aztec CG65 Pseudo Stack TECH INFO
foo()
{

int a,b,c;

)

The local variable a will occupy the first two bytes below the location
pointed at by LFRAME (for a cg65-compiled function) or FRAME
(for a cci-compiled function); b will occupy the next two bytes, and ¢
will occupy the next two bytes.

5.5 Determining the values of register variables for the active function

Register variables are supported only for cg65-compiled functions.
There are eight two-byte pseudo registers. They are in the zero page,
beginning at the location whose name is REG (defined in zpage.h to
be 0x80).

Variables are allocated to registers in the order in which their
declarations are encountered. For example, consider the following
function:

foo(a,b,c)
register int b;

int d;
register ¢;
int f}

)

The variable b will occupy the register at addresses REG and REG+1,
and the variable d occupies the register at REG+2 and REG+3.

5.6 Function entry and exit

When a function is entered, the zero page fields SP, FRAME, and
LFRAME are saved, and updated for the new function. The saved
values are then moved into the new function’s frame, in locations
(FRAME)+2, (FRAME)+4, and (FRAME)+6. When the function is
exited, these fields are restored.

When a function is entered, its primary return address, which is on
the top of the hardware stack, is saved in the new function’s frame, in
location (FRAME).

When a C function calls another function, the call is indirectly
made by transferring control to an intermediary routine, which in turn
calls the other function. When the called function returns, control is
again transferred to the intermediary routine, which then returns to
the calling function. A called function’s primary return address is the
address in the intermediary routine to which control is returned by
issuing an rts from the called function. And the called function’s

- tech.33 -

TECH INFO Pseudo Stack Aztec CG65

secondary return address is the address is the calling function to which
the intermediary routine returns. On entry to a called function, its
primary return address is at the top of the 6502 hardware stack and its
secondary return address is at the top of the pseudo stack.

5.7 Getting information about a calling function

Once you’ve gotten all the information you can about the active
function, using its frame on the pseudo stack, you can get information
about the function that called it by examining the calling function’s
frame on the pseudo stack. If necessary, you can continue examining
frames on the pseudo stack until you know the state of all the
function’s that have been called but that have not yet returned. In the
following discussion, we’ll call the function that called the active
function function 2, the function that called it function 3, and so on.

First of all, since the active function’s secondary return address,
whose value you know, is the address of the location in function 2 (ie,
the calling function) to which the active function will return, you can
scan the program’s symbol table and learn the identity of function 2.

In the active function’s frame, the two-byte fields at (FRAME)+4
and (FRAME)+6 contain the values that were in the FRAME and
LFRAME fields at the time function 2 was active. Using these values,
you can examine function 2’s frame and determine the parameters that
were passed to it and the values of its local variables. You can also
determine the identity of function 3 (ie, the function that called
function 2) from the secondary return address field within function 2’s
frame, and you can locate function 3's frame using the fields in
function 2’s frame that were in the FRAME and LFRAME fields when
function 2 was active.

- tech.34 -

OVERVIEW OF LIBRARY FUNCTIONS

- libov.1 -

Library Overview Aztec C

Chapter Contents

Overview of Library FUNCLIONScovveeeeeeeeeieeceeseeneeeeeeeeesesessnssssssans libov
L T/ O OVEIVIEW ettt ettt et e sesennesesssessssanesssmsssessssens 4
1.1 Pre-opened devices, command line argsceeeuenen. eeereenene 4
1.2 FIIE T/O e enesscsssst et s eenesessesesesees s s seasessseneas 6
1.2.1 Sequential I/ O .eeeeeecccrceiceecciceeeee e eeeoeeesessneas 6

1.2.2 RANAOM I/ O vt eeeeeeeeteseeesessanssssennanas 6

1.2.3 Opening Filesouoiiiveuiiieereneeeeieeeeeeesersssssesssasssssssesssns 6

1.3 DEVICE I/ O ettt s e e see e et sen s s eeseaseseaes 7
L.3.1 COnSOIE I/O ettt eeees e e s essnseeen 7

1.3.2 T/O t0 Other DEVICES ...coeeerieiieeecererererseseevereesesssssssesseeesesnns 7

1.4 Mixing unbuffered and standard I/O call§ccoooevveenrrrunn.... 7

2. Standard I/O OVEIVIEWveeeoniceiiresisie e seeeeeeeeeseeessssssessessssanes 9
2.1 Opening files and dEVICEScvuviereiveeeeeeereeeeeeeeeeserssssessrsesssens 9
2.2 ClOSINE SIEAIMServerereeecrerereeiresievereemeeeeesaessessssassssssssssessssssosens 9
2.3 SequeNtial I/ O ..o seeeersevssassssssrassssessessssssssens 10
2.4 RaNdom I/ Oeeeceeeresssseeci st s e seesssss e enssssssasnens 10
2.5 BUFFETING ..ot sieseseteee s se e eeeesssssssssnsnssessssessnsaees 10
2.6 EITOTS .oorerceieveensenssssse e ssssssstststecnrasesseseeesesssassessnssasssassssennssen 11
2.7 The standard I/O fUNCHONSoveeeerieivinrmneeeeeeeeeeeeeneeeesssesssenens 12

3. Unbuffered I/ O OVEIVIEWeoeeeeereeerreersssssessssssssesssesssssssssnans 14
3.1 FAIE I/ O et s eee s e ees s eas s ven e 15
3.2 DIEVICE /O ettt eeee e eeeeeseevsssssesteessesesssasassssesosseans 15
3.2.1 Unbuffered I/O to the COnSOLE ..cocevuereveeeeeerereeererenns 15

3.2.2 Unbuffered I/O to Non-Console Devices ... 16

4. Console I/O OVEIVIEW ...ouereceeeeeereeee e eece s eseseesssverssesessessssssns 17
4.1 Line-oriented INPUL ..ovveceeiveireeceeeemeeeeenessessereessessssssssssssssssesssens 17
4.2 Character-oriented iNPUL ..o eeceeeeeeeeeeeeeeeeeeeeere e e s s een e 18
4.3 USINE 10CLL ..cevvevreierrirereiseeresesssessseneneeeeesssssssnsessssesssasssssssssssssmssns 19
4.4 The SGLY FIELAS ...eeeeeiieceee e eers s e enenssssesessseseesssrs s 19
4.5 EXAMPIES ..o eeerecscasscss s ieseesesemeeseeee e sossessnssesessranns 20

5. Dynamic Buffer ALIOCAtIONcceuieeirieinceeeeeeemeeeeeeneesesrenesssssessesesens 22
6. Error Processing OVEIVIEWieevueeireeeeieeeeseeeeseseeeesesssssssssans 23

- libov.2 -

Aztec C Library Overview

Overview of Library Functions

This chapter presents an overview of the functions that are
provided with Aztec C. It's divided into the following sections:

1. 1/0: Introduces the i/o system provided in the Aztec C
package.

2. Standard I1/0: The i/o functions can be grouped into two
sets; this section describes one of them, the standard i/o
functions.

3. Unbuffered 1/0: Describes the other set of i/0 functions,
the unbuffered.

4. Console 1/0: Describes special topics relating to console
i/o.

5. Dynamic Buffer Allocation: Discusses topics related to
dynamic memory allocation.

6. Errors: Presents an overview of error processing.

The overviews present information that is system independent.
Overview information that is specific to your system is in the form of

an appendix to this chapter; it accompanies the system dependent
section of your manual.

- libov.3 -

LIBRARY I/0 Overview Aztec C
1. Overview of 1/0

There are two sets of functions for accessing files and devices: the
unbuffered i/o functions and the standard i/o functions. These
functions are identical to their UNIX equivalents, and are described in
chapters 7 and 8 of The C Programming Language.

The unbuffered i/o functions are so called because, with few
exceptions, they transfer information directly between a program and a
file or device. By contrast, the standard i/o functions maintain buffers
through which data must pass on its journey between. a program and a
disk file.

The unbuffered i/o functions are used by programs which perform
their own blocking and deblocking of disk files. The standard i/o
functions are used by programs which need to access files but don’t
want to be bothered with the details of blocking and deblocking the
file records.

The unbuffered and standard i/o functions each have their own
overview section (UNBUFFERED I/O and STANDARD 1/0). The
remainder of this section discusses features which the two sets of
functions have in common.

The basic procedure for accessing files and devices is the same for
both standard and unbuffered i/o: the device or file must first be
“opened”, that is, prepared for processing; then i/o operations occur;
then the device or file is "closed".

There is a limit on the number of files and devices that can
simultaneously be open; the limit on your system is defined in this
chapter’s system dependent appendix.

Each set of functions has its own functions for performing these
operations. For example, each set has its own functions for opening a
file or device. Once a file or device has been opened, it can be
accessed only by functions in the same set as the function which
performed the open, and must be closed by the appropriate function in
the same set. There are exceptions to this non-intermingling which are
described below.

There are two ways a file or device can be opened: first, the
program can explicitly open it by issuing a function call. Second, it can
be associated with one of the logical devices standard input, standard
output, or standard error, and then opened when the program starts.

1.1 Pre-opened devices and command line arguments

There are three logical devices which are automatically opened
when a program is started: standard input, standard output, and
standard error. By default, these are associated with the console. The
operator, as part of the command line which starts the program, can
specify that these logical devices are to be "redirected" to another

- libov.4 -

Aztec C 1/0 Overview LIBRARY

device or file. Standard input is redirected by entering on the
command line, after the program name, the name of the file or device,
preceded by the character ’<’. Standard output is redirected by
entering the name of the file or device, preceded by ’>’.

For example, suppose the executable program cpy reads standard
input and writes it to standard output. Then the following command
will read lines from the keyboard and write them to the display:

cpy

The following will read from the keyboard and write it to the file
testfile:

cpy >testfile

This will copy the file exmplfil to the console:
cpy <exmplfil

And this will copy exmplfil to testfile:
cpy <exmplfil >testfile

Aztec C will pass command line arguments to the user’s program via
the user’s function main(argc, argv). argc is an integer containing the
number of arguments plus one; argv is a pointer to a an array of
character pointers, each of which, except the first, points to a
command line argument. On some systems, the first array element
points to the command name; on others, it is a null pointer.
Information on your system’s treatment of this pointer is presented in
this chapter’s system dependent appendix.

For example, if the following command is entered:
prog argl arg2 arg3

the program prog will be activated and execution begins at the user’s
function main. The first parameter to main is the integer 4. The second
parameter is a pointer to an array of four character pointers; on some
systems the first array element will point to the string "prog" and on
others it will be a null pointer. The second, third, and fourth array
elements will be pointers to the strings "argl", "arg2", and "arg3"
respectively.

The command line can contain both arguments to be passed to the
user’s program and i/o redirection specifications. The i/0 redirection
strings won’t be passed to the user’s program, and can appear anywhere
on the command line after the command name. For example, the
standard output of the "prog" program can be redirected to the file
outfile by any of the following commands; in each case the argc and
argv parameters to the main function of ’prog’ are the same as if the
redirection specifier wasn’t present:

- libov.5 -

LIBRARY I/0 Overview Aztec C

prog argl arg2 arg3 >outfile
prog >outfile argl arg?2 arg3
prog argl >outfile arg2 arg3

1.2 File I/O

A program can access files both sequentially and randomly, as
discussed in the following paragraphs.

1.2.1 Sequential 1/O

For sequential access, a program simply issues any of the various
read or write calls. The transfer will begin at the file’s "current
position", and will leave the current position set to the byte following
the last byte transferred. A file can be opened for read or write access;
in this case, its current position is initially the first byte in the file. A
file can also be opened for append access; in this case its current
position is initially the end of the file.

On systems which don’t keep track of the last character written to a
file, it isn’t always possible to correctly position a file to which data is
to be appended. If this is a problem on your system, it’s discussed in
the system dependent appendix to this chapter, which accompanies the
system dependent section of your manual.

1.2.2 Random I/O

Two functions are provided which allow a program to set the
current position of an open file: fseek, for a file opened for standard
i/0; and Iseek, for a file opened for unbuffered i/o.

A program accesses a file randomly by first modifying the file’s
current position using one of the seek functions. Then the program
issues any of the various read and write calls, which sequentially access
the file.

A file can be positioned relative to its beginning, current position,
or end. Positioning relative to the beginning and current position is
always correctly done. For systems which don’t keep track of the last
character written to a file, positioning relative to the end of a file can’t
always be correctly done. For information on this, see this chapter’s
system dependent appendix.

1.2.3 Opening files

Opening files is somewhat system dependent: the parameters to the
open functions are the same on the Aztec C packages for all systems,
but some system dependencies exist, to conform with the system
conventions. For example, the syntax of file names and the areas
searched for files differ from system to system.

For information on the opening of files on your system, see this
chapter’s system dependent appendix.

- libov.6 -

Aztec C 1/0 Overview LIBRARY
1.3 Device I/O

Aztec C allows programs to access devices as well as files. Each
system has its own names for devices: for the names of devices on
your system, see this chapter’s system dependent appendix.

1.3.1 Console I/O

Console I/O can be performed in a variety of ways. There’s a
default mode, and other modes can be selected by calling the function
joctl, We'll briefly describe console I/O in this section; for more
details, see the Console 1/0 section of this chapter and the system
dependent appendix to this chapter.

When the console is in default mode, console input is buffered and
is read from the keyboard a line at a time. Typed characters are echoed
to the screen and the operator can use the standard operating system
line editing facilities. A program doesn’t have to read an entire line at
a time (although the system software does this when reading keyboard
input into it’s internal buffer), but at most one line will be returned to
the program for a single read request.

The other modes of console i/o allow a program to get characters
from . the keyboard as they are typed, with or without their being
echoed to the display; to disable normal system line editing facilities;
and to terminate a read request if a key isn’t depressed within a certain
interval.

Output to the console is always unbuffered: characters go directly
from a program to the display. The only choice concerns translation of
the newline character; by default, this is translated into a carriage
return, line feed sequence.

Optionally, this translation can be disabled.
1.3.2 1/0 to Other Devices

On most systems, few options are available when writing to devices
other than the console. For a discussion of such options, if any, that
are available on your system, see this chapter’s system dependent
appendix,

1.4 Mixing unbuffered and standard i/o calls

As mentioned above, a program generally accesses a file or device
using functions from one set of functions or the other, but not both.

However, there are functions which facilitate this dual access: if a
file or device is opened for standard i/o, the function fileno returns a
file descriptor which can be used for unbuffered access to the file or
device. If a file or device is open for unbuffered i/o, the function
fdopen will prepare it for standard 1/0 as well.

- libov.7 -

LIBRARY I/0 Overview Aztec C

Care is warranted when accessing devices and files with both
standard and unbuffered i/o functions.

- libov.8 -

Aztec C Standard I/O Overview LIBRARY

2. Overview of Standard I/O

The standard i/o functions are used by programs to access files and
devices. They are compatible with their UNIX counterparts, with few
exceptions, and are also described in chapter 8 of The C Programming
Language. The exceptions concern appending data to files and
positioning files relative to their end, and are discussed below.

These functions provide programs with convenient and efficient
access to files and devices. When accessing files, the functions buffer
the file data; that is, handle the blocking and deblocking of file data.
Thus the user’s program can concentrate on its own concerns.

Buffering of data to devices when using the standard i/0 functions
is discussed below.

For programs which perform their own file buffering, another set
of functions are provided. These are described in the section
UNBUFFERED 1/0.

2.1 Opening files and devices

Before a program can access a file or device, it must be "opened",
and when processing on it is done it must be "closed".

An open device or file is called a "stream" and has associated with it
a pointer, called a "file pointer”, to a structure of type FILE. This
identifies the file or device when standard i/o functions are called to
access it.

There are two ways for a file or device to be opened for standard
i/o: first, the program can explicitly open it, by calling one of the
functions fopen, freopen, or fdopen. In this case, the open function
returns the file pointer associated with the file or device. fopen just
opens the file or device. freopen reopens an open stream to another
file or device; it’s mainly used to change the file or device associated
with one of the logical devices standard output, standard input, or
standard error. fdopen opens for standard i/o a file or device already
opened for unbuffered i/o.

Alternatively, the file or device can be automatically opened as one
of the logical devices standard input, standard output, or standard
error. In this case, the file pointer is stdin, stdout, or stderr,
respectively. These symbols are defined in the header file stdio.h. See
the section entitled I/O for more information on logical devices.

2.2 Closing streams

A file or device opened for standard i/o can be closed in two ways:
first, the program can explicitly close it by calling the function fclose.

Alternatively, when the program terminates, either by falling off
the end of the function main, or by calling the function exit, the
system will automatically close all open streams.

- libov.9 -

LIBRARY Standard 1/0 Overview Aztec C

Letting the system automatically close open streams is error-prone:
data written to files using the standard i/o functions is buffered in
memory, and a buffer isn’t written to the file until it’s full or the file
is closed. Most likely, when a program finishes writing to a file, the
file’s buffer will be partially full, with this information not having
been written to the file. If a program calls fclose, this function will
write the partially filled buffer to the file and return an error code if
this couldn’t be done. If the program lets the system automatically
close the file, the program won’t know if an error occurred on this last
write operation.

2.3 Sequential 1/0

Files can be accessed sequentially and randomly. For sequential
access, simply issue repeated read or write calls; each call transfers data
beginning at the "current position" of the file, and updates the current
position to the byte following the last byte transferred. When a file is
opened, its current position is set to zero, if opened for read or write
access, and to its end if opened for append.

On systems which don’t keep track of the last character written to a
file, such as CP/M and Apple // DOS, not all files can be correctly
positioned for appending data. See the section entitled I/0 for details.

2.4 Random I/0

The function fseek allows a file to be accessed randomly, by
changing its current position. Positioning can be relative to the
beginning, current position, or end of the file.

For systems which don’t keep track of the last character written to a
file, such as CP/M and Apple // DOS, positioning relative to the end
of a file cannot always be correctly done. See the I/O overview section
for details.

2.5 Buffering

When the standard i/o functions are used to access a file, the i/o is
buffered. Either a user-specified or dynamically- allocated buffer can
be used.

The user’s program specifies a buffer to be used for a file by calling
the function setbuf after the file has been opened but before the first
i/0 request to it has been made.

If, when the first i/o request is made to a file, the user hasn’t
specified the buffer to be used for the file, the system will
automatically allocate, by calling malloc, a buffer for it. When the file
is closed it’s buffer will be freed, by calling free.

Dynamically allocated buffers are obtained from the one region of
memory (the heap), whether requested by the standard i/o functions
or by the user’s program. For more information, see the overview

- libov.10 -

Aztec C Standard I/O Overview LIBRARY

section Dynamic Buffer Allocation.

The size of an i/o buffer differs from system to system. See this
chapter’s system-dependent appendix for the size of this buffer on
your system.

A program which both accesses files using standard i/o functions
and has overlays has to take special steps to insure that an overlay
won’t be loaded over a buffer dynamically allocated for file i/o. For
more information, see the section on overlay support in the Technical
Information chapter.

By default, output to the console using standard i/o functions is
unbuffered; all other device i/o using the standard i/o functions is
buffered. Console input buffering can be disabled using the ioctl
function; see the overview section Console I/0 for details.

2.6 Errors

There are three fields which may be set when an exceptional
condition occurs during stream i/o. Two of the fields ‘are unique to
each stream (that is, each stream has its own pair). The other is a
global integer.

One of the fields associated with a stream is set if end of file is
detected on input from the stream; the other is set if an error occurs
during i/o to the stream. Once set for a stream, these flags remain set
until the stream is closed or the program calls the clearerr function for
the stream. The only exception to the last statement is that when
called, fseek will reset the end of file flag for a stream. A program can
check the status of the eof and error flags for a stream by calling the
functions feof and ferror, respectively.

The other field which may be set is the global integer errno. By
convention, a system function which returns an error status as its value
can also set a code in errno which more fully defines the error. The
overview section Errors defines the values which may be set in errno.

If an error occurs when a stream is being accessed, a standard i/0
function returns EOF (-1) as its value, after setting a code in errno and
setting the stream’s error flag.

If end of file is reached on an input stream, a standard i/0 function
returns EOF after setting the stream’s eof flag.

There are two techniques a program can use for detecting errors
during stream i/o. First, the program can check the result of each i/o
call. Second, the program can issue i/o calls and only periodically
check for errors (for example, check only after all i/o is completed).

On input, a program will generally check the result of each
operation.

- libov.11 -

LIBRARY Standard I/O Overview Aztec C

On output to a file, a program can use either error checking
technique; however, periodic checking by calling ferror is more
efficient. When characters are written to a file using the standard i/o
functions they are placed in a buffer, which is not written to disk until
it is full. If the buffer isn’t full, the function will return good status. It
will only return bad status if the buffer was full and an error occurred
while writing it to disk. Since the buffer size is 1024 bytes, most write
calls will return good status, and hence periodic checking for errors is
sufficient and most efficient.

Once a file opened for standard i/o is closed, ferror can’t be used to
determine if an error has occurred while writing to it. Hence ferror
should be called after all writing to the file is completed but before the
file is closed. The file should be explicitly closed by fclose, and its
return value checked, rather than letting the system automatically close
it, to know positively whether an error has occurred while writing to
the file. The reason for this is that when the writing to the file is
completed, it's standard i/o buffer will probably be partly full. This
buffer will be written to the file when the file is closed, and fclose will
return an error status if this final write operation fails,

2.7 The standard i/o functions

The standard i/o functions can be grouped into two sets: those that
can access only the logical devices standard input, standard output, and
standard error; and all the rest.

Here are the standard i/o functions that can only access stdin,
stdout, and stderr. These are all ASCII functions; that is, they expect to
deal with text characters only.

getchar Get an ASCII character from stdin

gets Get a line of ASCII characters from stdin
printf Format data and send it to stdout

puterr Send a character to stderr

putchar Send a character to stdout

puts Send a character string to stdout

scanf Get a line from stdin and convert it

Here are the rest of the standard i/o functions;

- libov.12 -

Aztec C Standard I/O Overview LIBRARY

agetc Get an ASCII character

aputc Send an ASCII character

fopen Open a file or device

fdopen Open as a stream a file or device already open
for unbuffered i/o

freopen Open an open stream to another file or device

fclose Close an open stream

feof Check for end of file on a stream

ferror Check for error on a stream

fileno Get file descriptor associated with stream
fflush Write stream’s buffer

fgets Get a line of ASCII characters

fprintf Format data and write it to a stream

fputs Send a string of ASCII characters to a stream

fread Read binary data
fscanf Get data and convert it

fseek Set current position within a file
ftell Get current position

fwrite Write binary data

getc Get a binary character

getw Get two binary characters

putc Send a binary character

putw Send two binary characters

setbuf Specify buffer for stream
ungetc Push character back into stream

- libov.13 -

LIBRARY Unbuffered I/0 Overview Aztec C
3. Overview of Unbuffered I/0

The unbuffered I/O functions are used to access files and devices.
They are compatible with their UNIX counterparts and are also
described in chapter 8 of The C Programming Language.

As their name implies, a program using these functions, with two
exceptions, communicates directly with files and devices; data doesn’t
pass through system buffers. Some unbuffered I/O, however, is
buffered: when data is transferred to or from a file in blocks smaller
than a certain value, it is buffered temporarily. This value differs from
system to system, but is always less than or equal to 512 bytes. Also,
console input can be buffered, and is, unless specific actions are taken
by the user’s program.

Programs which use the unbuffered i/o functions to access files
generally handle the blocking and deblocking of file data themselves.
Programs requiring file access but unwilling to perform the blocking
and deblocking can use the standard i/o functions; see the overview
section Standard I1,/0 for more information.

Here are the unbuffered i/o functions:

open Prepares a file or device for unbuffered i/o
creat Creates a file and opens it

close Concludes the i/o on an open file or device
read Read data from an open file or device
write Write data to an open file or device

Iseek Change the current position of an open file
rename Renames a file

unlink Deletes a file

ioctl Change console i/0 mode

isatty Is an open file or device the console?

Before a program can access a file or device, it must be "opened", and
when processing on it is done, it must be "closed".

An opch file or device has an integer known as a "file descriptor"
associated with it; this identifies the file or device when it’s accessed.

There are two ways for a file or device to be opened for unbuffered
i/o. First, it can explicitly open it, by calling the function open. In this
case, open returns the file descriptor to be used when accessing the file
or device.

Alternatively, the file or device can be automatically opened as one
of the logical devices standard input, standard output, or standard
error. In this case, the file descriptor is the integer value 0, 1, or 2,
respectively. See the section entitled I/O for more information on this.

An open file or device is closed by calling the function close. When
a program ends, any devices or files still opened for unbuffered i/o
will be closed.

- libov.14 -

Aztec C Unbuffered I/O Overview LIBRARY

If an error occurs during an unbuffered i/o operation, the function
returns -1 as its value and sets a code in the global integer errmo. For
more information on error handling, see the section ERRORS.

The remainder of this section discusses unbuffered i/o to files and
devices.

3.1 File1/O

Programs call the functions read and write to access a file; the
transfer begins at the "current position" of the file and proceeds until
the number of characters specified by the program have been
transferred.

The current position of a file can be manipulated in various ways
by a program, allowing both sequential and random acccess to the file.
For sequential access, a program simply issues consecutive i/0
requests. After each operation, the current position of the file is set to
the character following the last one accessed.

The function Iseek provides random access to a file by setting the
current position to a specified character location.

Iseek allows the current position of a file to be set relative to the
end of a file. For systems which don’t keep track of the last character
written to a file, such positioning cannot always be correctly done. For
more information, see the section entitled I/0.

open provides a mode, O__APPEND, which causes the file being
opened to be positioned at its end. This mode is supported on UNIX
Systems 3 and 5, but not UNIX version 7. As with Iseek, the
positioning may not be correct for systems which don’t keep track of
the last character written to a file.

3.2 Device I/O
3.2.1 Unbuffered I/O to the Console

There are several options available when accessing the console,
which are discussed in detail in the Console 1/O sections of this
chapter and of the system-dependent appendix to this chapter. Here
we just want to briefly discuss the line- or character-modes of console
I/0 as they relate to the unbuffered i/o functions.

Console input can be either line- or character-oriented. With line-
oriented input, characters are read from the console into an internal
buffer a line at a time, and returned to the program from this buffer.
Line buffering of console input is available even when using the so-
called "unbuffered" i/o functions.

With character-oriented input, characters are read and returned to
the program when they are typed: no buffering of console input
OCCUrs.

- libov.15 -

LIBRARY Unbuffered I/0 Overview Aztec C

3.2.2 Unbuffered I/O to Non-Console Devices

Unbuffered I/O to devices other than the console is truly
unbuffered.

- libov.16 -

Aztec C Console I/0 Overview LIBRARY
4. Overview of Console 1/O

A program has control over several options relating to console i/o.
The primary option allows console input to be either line- or
character-oriented, as described below.

On most systems, a program can selectively enable and disable the
echoing of typed characters to the screen; this is called the ECHO
option. A program can also enable and disable the conversion of
carriage return to newline on input and of newline to carriage return-
linefeed on output; this is called the CRMOD option.

On some systems, additional options are available. If your system
supports additional options, they are discussed in the system dependent
appendix to this chapter.

All the console i/o options have default settings, which allow a
program to easily access the console without having to set the options
itself. In the default mode, console .i/o is line-oriented, with ECHO
and CRMOD enabled.

A program can easily change the console i/o options, by calling the
function ioctl.

Console i/o behaves the same on all systems when the console
options have their default settings. However, the behavior of console
i/o differs from system to system when the options are changed from
their default values. Thus, a program requiring machine independence
should either use the console in its default mode or be careful how it
sets the console options. In the paragraphs below, we will try to point
out system dependencies.

4.1 Line-oriented input

With line-oriented input, a program issuing a read request to the
console will wait until an entire line has been typed. On some systems
a non-UNIX option (NODELAY) is available that will prevent this
waiting. If this option is available on your system, it’s discussed in the
system-dependent appendix to this chapter.

The program need not read an entire line at once; the line will be
internally buffered, and characters returned to the program from the
buffer, as requested. When the program issues a read request to the
console and the buffer is empty, the program will wait until an entire
new line has been typed and stored in the internal buffer (again, on
some systems programs can disable this wait by setting the non-UNIX
NODELAY option).

A single unbuffered read operation can return at most one line.

On most systems , selecting line-oriented console input forces the
ECHO option to be enabled. On such systems the program still has
control over the CRMOD option. To find out if, on your system,

- libov.17 -

LIBRARY Console I/O Overview Aztec C

line-oriented mode always has ECHO enabled, see the system-
dependent appendix to this chapter.

4.2 Character-oriented input

The basic idea of character-oriented console input is that a program
can read characters from the console without having to wait for an
entire line to be entered.

The behavior of character-oriented console input differs from
system to system, so programs requiring both machine independence
and character-oriented console input have to be careful in their use of
the console. However, it is possible to write such programs, although
they may not be able to take full advantage of the console i/o features
available for a particular system.

There are two varieties of character-oriented console input, named
CBREAK and RAW. Their primary difference is that with the console
in CBREAK mode, a program still has control over the other console
options, whereas with the console in RAW mode it doesn’t. In RAW
mode, all other console options are resett ECHO and CRMOD are
disabled.

Thus, to some extent RAW mode is simply an abbreviation for
’CBREAK on, all other options off. However, there are some
differences on some systems, as noted below and in this chapter’s
system-dependent appendix.

The system-dependent appendix to this chapter, which accompanies
your manual, presents information about character-oriented console
that is specific to your system.

4.2.1 Writing system-independent programs

To write system-independent programs that access the console in
character-oriented input mode, the console should be set in RAW
mode, and the program should read only a single character at a time
from the console. All the non-UNIX options that are supported by
some systems should be reset.

The standard i/o functions all read just one character at a time
from the console, even when the calling program requests several
characters. Thus, programs requiring system independence and
character-oriented input can read the console using the standard i/o
functions.

Some systems require a program that wants to set console option to
first call ioctl to fetch the current console options, then modify them as
desired, and finally call ioctl to reset the new console options. The
systems that don’t require this don’t care if a program first fetches the
console options and then modifies them. Thus, a program requiring
system-independence and console i/o options other than the default
should fetch the current console options before modifying them.

- libov.18 -

Aztec C Console I/0 Overview LIBRARY

4.3 Using ioctl

A program selects console 1/0 modes using the function foctl. This
has the form:

#include <sgtty.h>

ioctl(fd, code, arg)
struct sgttyb *arg;

The header file sgty.h defines symbolic values for the code
parameter (which tells ioctl what to do) and the structure sgttyb.

The parameter fd is a file descriptor associated with the console. On
UNIX, this parameter defines the file descriptor associated with the
device to which the ioctl call applies. Here, ioctl always applies to the
console.

The parameter code defines the action to be performed by ioctl. It
can have these values:

TIOCGETP Fetch the console parameters and store them in
the structure pointed at by arg.

TIOCSETP Set the console parameters according to the
structure pointed at by arg.

TIOCSETN Equivalent to TIOCSETP.

The argument arg points to a structure named sgttyb that contains
the following fields:

int sg_ flags;
char sg__erase;
char sg__ kill;

The order of these fields is system-dependent.

The sg_ flags field is supported by all systems, while the other
fields are not supported by some systems. If these fields are supported
on your system, the system-dependent appendix to this chapter that
accompanies your manual says so, and describes them.

To set console options, a program should fetch the current state of
the sgtty fields, using ioctl's TIOCGETP option. Then it should
modify the fields to the appropriate values and call ioctl again, using
ioctl’s TIOCSETP option.

4.4 The sgiy fields
4.4.1 The sg_ flags field
sg__flags contains the following UNIX-compatible flags:

RAW Set RAW mode (turns off other options). By
default, RAW is disabled.
CBREAK Return each character as soon as typed. By

default, CBREAK is disabled.

- libov.19 -

LIBRARY Console I/0O Overview Aztec C

ECHO Echo input characters to the display. By default,
ECHO is enabled.
CRMOD Map CR to LF on input; convert LF to CR-LF

on output. By default, CRMOD is enabled.

On some systems, other flags are contained in sg_ flags. If your
system supports other flags, they're described in the system-dependent
appendix to this chapter that accompanies your manual.

More than one flag can be specified in a single call to ioctl; the
values are simply ’or’ed together. If the RAW option is selected, none
of the other options have any effect.

When the console i/o options are set and RAW and CBREAK are
reset, the console is set in line-oriented input mode.

4.5 Examples
4.5.1 Console input using default mode

The following program copies characters from stdin to stdout. The
console is in default mode, and assuming these streams haven’t been
redirected by the operator, the program will read from the keyboard
and write to the display. In this mode, the operator can use the
operating system’s line editing facilities, such as backspace, and
characters entered on the keyboard will be echoed to the display. The
characters entered won’t be returned to the program until the operator
depresses carriage return.

#include <stdio.h>

main()
int ¢;
while ((c = getchar()) != EOF)
putchar(c);
}

4.5.2 Console input - RAW mode

In this example, a program opens the console for standard i/o, sets
the console in RAW mode, and goes into a loop, waiting for characters
to be read from the console and then processing them. The characters
typed by the operator aren’t displayed unless the program itself
displays them. The input request won’t terminate until a character is
received. This example assumes that the console is named ’con;’; on
systems for which this is not the case, just substitute the appropriate
name.

- libov.20 -

Aztec C Console I/O Overview

#include <stdio.h>
#include <sgtty.h>
main()
{ .

int c;

FILE *{p;

struct sgttyb stty;

if ((fp = fopen("con:", "r") == NULL){
printf("can’t open the console\n");

exit();
}

ioctl(fileno(fp), TIOCGETP, &stty);

stty.sg__flags = RAW;
ioctl(fileno(fp), TIOCSETP, &stty);
for (;;)(

¢ = getc(fp);

}
}

4.5.3 Console input - console in CBREAK + ECHO mode

LIBRARY

This example modifies the previous program so that characters read
from the console are automatically echoed to the display. The program
accesses the console via the standard input device. It uses the function
isatty to verify that stdin is associated with the console; if it isn’t, the
program reopens stdin to the console using the function freopen.

Again, the console is assumed to be named con..

#include <stdio.h>
#include <sgtty.h>

main()

{ .
nt c;
struct sgttyb stty;
if (lisatty(stdin))

freopen("con:", "r", stdin);
ioctl(0, TIOCGETP, &stty);
stty.sg__ flags | CBREAK | ECHO;
ioctl(0, TIOCSETP, &stty);
for ;X

¢ = getchar();

- libov.21 -

LIBRARY Dynamic Buffer Alloc Aztec C

5. Overview of Dynamic Buffer Allocation

Several functions are provided for the dynamic allocation and
deallocation of buffers from a section of memory called the *heap’.
They are:

malloc Allocates a buffer

calloc Allocates a buffer and initializes it to zeroes
realloc Allocates more space to a previously allocated buffer
free Releases an allocated buffer for reuse

These standard UNIX functions are described in the System
Independent Functions section of this chapter.

In addition, on some systems the UNIX-compatible functions shrk
and brk are provided that provide a more elementary means to allocate
heap space. The malloc-type functions call sbrk to get heap space,
which they then manage.

On some systems, non-UNIX memory allocation functions are also
supported. If such functions are supported on your system, they are
described in the system-dependent appendix to this chapter that
accompanies your manual.

Dynamic allocation of standard i/o buffers

Buffers used for standard i/o are dynamically allocated from the
heap unless specific actions are taken by the user’s program. Standard
i/o calls to dynamically allocate and deallocate buffers can be
interspersed with those of the user’s program.

Programs which perform standard i/o and which must have
absolute control of the heap can explicitly define the buffers to be used
by a standard i/0 stream.

Where to go from here

For descriptions of the sbrk and brk functions and, when applicable,
non-UNIX memory allocation functions see the System Dependent
Functions chapter.

For a discussion of i/o buffer allocation, see the Standard I/O
section of the Library Functions Overviews chapter.

For more information on the heap, see the Program Organization
section of the Technical Information chapter.

- libov.22 -

Aztec C Errors Overview LIBRARY

6. Overview of Error Processing

This section discusses error processing which relates to the global
integer errno. This variable is modified by the standard i/o, unbuffered
i/o, and scientific (eg, sin, sqrt) functions as part of their error
processing.

The handling of floating point exceptions (overflow, underflow, and
division by zero) is discussed in the Tech Info chapter.

When a standard i/o, unbuffered i/0, or scientific function detects
an error, it sets a code in errno which describes the error. If no error
occurs, the scientific functions don’t modify errmo. If no error occurs,
the i/o functions may or may not modify errno.

Also, when an error occurs,

* A standard i/o function returns -1 and sets an error flag for
the stream on which the error occurred;

* An unbuffered i/o function returns -1;
* A scientific function returns an arbitrary value.

When performing scientific calculations, a program can check errno
for errors as each function is called. Alternatively, since errno is
modified only when an error occurs, errmo can be checked only after a
sequence of operations; if it’s non-zero, then an error has occurred at
some point in the sequence. This latter technique can only be used
when no i/o operations occur during the sequence of scientific
function calls.

Since errno may be modified by an i/o function even if an error
didn’t occur, a program can’t perform a sequence of i/o operations and
then check errmo afterwards to detect an error. Programs performing
unbuffered i/o must check the result of each i/o call for an error.

Programs performing standard i/o operations cannot, following a
sequence of standard i/o calls, check errno to see if an error occurred.
However, associated with each open stream is an error flag. This flag is
set when an error occurs on the stream and remains set until the
stream is closed or the flag is explicitly reset. Thus a program can
perform a sequence of standard i/o operations on a stream and then
check the stream’s error flag. For more details, see the standard i/o
overview section.

The following table lists the system-independent values which may
be placed in errno. These symbolic values are defined in the file
errmo.h. Other, system-dependent, values may also be set in errno
following an i/o operation; these are error codes returned by the
operating system. System dependent error codes are described in the
operating system manual for a particular system.

- libov.23 -

LIBRARY

error code
ENOENT
E2BIG
EBADF

ENOMEM
EEXIST
EINVAL
ENFILE
EMFILE
ENOTTY
EACCES
ERANGE
EDOM

Errors Overview Aztec C

The system-independent error codes and their meanings are:

meaning

File does not exist

Not used

Bad file descriptor - file is not open

or improper operation requested
Insufficient memory for requested operation
File already exists on creat request

Invalid argument

Exceeded maximum number of open files
Exceeded maximum number of file descriptors
Ioctl attempted on non-console

Invalid access request

Math function value can’t be computed
Invalid argument to math function

- libov.24 -

SYSTEM-INDEPENDENT FUNCTIONS

- lib.1 -

FUNCTIONS Aztec C

Chapter Contents

System Independent FUNCLIONScccooviniineeereeennceeneeneseeeceesessessessesenes lib
INAECX et eeerertts s s te s ssnessesae e ssressnessasstessaessessressnessessnsssne sssebessassss 5
THeE fUNCHONSoverrerierierrereenceeeneeressessestessnsssssessessassensaassseestesssasasesssssans 8

- 1ib.2 -

Aztec C FUNCTIONS

System Independent Functions

This chapter describes in detail the functions which are UNIX-
compatible and which are common to all Aztec C packages.

The chapter is divided into sections, each of which describes a group
of related functions. Each section has a name, and the sections are
ordered alphabetically by name. Following this introduction is a cross
reference which lists each function and the name of the section in
which it is described.

A section is organized into the following subsections:

TITLE
Lists the name of the section, a phrase which is intended to
catagorize the functions described in the section, and one or
more letters in parentheses which specify the libraries
containing the section’s functions,

The letters which may appear in parentheses and their
corresponding libraries are:

C c.lib
M m.lib

On some systems, the actual library name may be a variant on
the name given above. For example, on TRSDOS, the libraries
are named ¢/lib and m/lib.

With Apprentice C, the functions are all in the run-time system,
and not libraries.
SYNOPSIS

Indicates the types of arguments that the functions described in
the section require, and the values they return. For example, the
function atof converts character strings into double precision
numbers. It is listed in the synopsis as

double atof(s)
char *s;

This means that atof() returns a value of type double and
requires as an argument a pointer to a character string. Since
atof returns a non-integer value, prior to use of the function it
must be declared:

double atof();
The notation

- 1ib.3 -

FUNCTIONS Aztec C

#include "header.h"

at the beginning of a synopsis indicates that such a statement
should appear at the beginning of any program calling one of
the functions described in the section.

On Radio Shack systems, a header file can use either a period or
a slash to separate the filename from the extent. That is, the
include statement can be as listed above, or

#include "header/h"

DESCRIPTION
Describes the section’s functions.

SEE ALSO
Lists relevant sections. A letter in parentheses may follow a
section name. This specifies where the section is located: no
letter means that the section is in the current chapter; ’Q’ means
that it’s in the Functions Overview chapter; S’ means that it’s in
the System Dependent Functions chapter.

DIAGNOSTICS
Describes the error codes that the section’s functions may
return. The section ERRORS in the Functions Overview chapter
presents an overview of error processing.

EXAMPLES
Gives examples on use of the section’s functions.

- lib.4 -

Index to System Independent Functions

function page description
ACOS .eveeeverrerearerens SIN .ot cresnrereerrvessessnsessesssssansonsane compute arccosine
AZELC worvrrerernanns GETC eerrrrcnscensrenns get ASCII char from a stream
APULC .cvverreveerennee PUTC .eeieeereeneereseecssenns put ASCII char to a stream
F:1:))) AN SIN overieerrresreresteresnssssssssssessssssssssssssesseses compute arcsine
AtaN ...ccoeveerernene SIN e cteereeeeseesssesssssnessnsssssssssses compute arctangent
atan?ooeeveeeen SIN oceeeerererernreeresenarenssines another arctangent function
F:174) AR ATOF .oeeevvrereeenreveenenns convert char string to a double
F:10) SV ATOFooeeeviriresrsasseanaenne convert char string to an inf
atol ..cccocevirinnnen ATOFreeerrrcerarssienns convert char string to a long
callogccceeuenene MALLOC .ooveevreectrennriseenreseneessssssessenes allocate a buffer
(731 N FLOORcccevevenene get smallest integer not less than x
clearerr FERRORovceveereercceccenns clear error flags on a stream
cloSe .evererereeeens CLOSEooveeererreeneenes close of unbuffered file/device

COS eovrererrerereereses SIN coierciceersreseseersssenmreesesasasensssssssassssasans compute cosine
(701 1 SINHoovreeerereeecnessecsennne compute hyperbolic cosine
cotaneeeeereneee SIN oeeeeeverterrenseestessenesasesecnsanesasanennse compute cotangent
Creat .ceveeereeens CREAT create a file & open for unbuffered i/o
(234 J ST EXP oeereeeecerrreeenceseessessaessssnsnens compute exponential
fabs ...coveevreeeenees | 2 5.0, 0) SO compute absolute value
£close .oeeeeeicennne FCLOSE ...oteeerteereeecessesssssssasesasaseses close i/0 stream
fdopenc..... FOPENccceuvnue open file descriptor as an i/o stream
 {10) AT FERRORcoveveerenen check for eof on an i/o stream
ferrorcoeuen. FERRORcccovcnnae check for error on an i/o stream
fflushcccoeevenene FCLOSE .o cerviesrenrernensseessssesnesssesses flush an i/0 stream
fgets ..ovvmrvereneen GETS ooeeeeverrerreseeeseonens get a line from an i/o stream
filenocceeeeeee FERRORccoovvvernnes get file descriptor for i/o stream
floorcccecceveeeee FLOORcvvveenieernenees get largest int not greater than x
fopenccceuenne FOPEN ... everirevteeenseernessessessssassossssssnans open i/o stream
format PRINTEFoccermrecvonssenenns formatting utility for printf
fprintf PRINTF ...cccceveerrens format string & send to i/0 stream
fputscceceveneee | 5 08 D S put char string to i/o stream
fread ...cocoverevenene FREADcovnvvveene read binary data from i/0 stream
 § ¢ N MALLOC ..ouricerrerererenesesssssessonsessssssaensns release buffer
freopen FOPENooortereeeeireeseressesansnsesssasasens reopen i/o stream
frexp .oooeervecennne FREXP ...coovererverrenrrnnessessaee get components of a double
fscanfcccoevenee SCANF input string from i/o stream & convert
fseek .oovrerernenens FSEEK ...oeevreievervrrernssesnssesscssssassssses position i/o stream
1] | R FSEEKcoreerceane determine position in i/0 stream
ftoa ..ceeveverrrenenes ATOFeecccvrnans convert float/double to char string

- 1ib.5 -

fwrite ..oevveeann. FREAD ... write binary data to i/o stream

=13 (A GETC ... get binary char from i/o stream
getchar €120 | G2 get ASCII char from stdin
[0 1- S GETS .oereeetseeveenns get ASCII line from stdin
BEtW e, GETW ... get ASCII word from stdin
index ..o STRINGoovtrrreerrererereenseenssssseresenns find char in string
TTv11 S TOCTL e set mode of device
isalpha, etc. CTYPE ... char classification functions
JTE: 140,/ AT | (0G4 | SRR is this a console?
{6153 4 o JUNR FREXPoovevreeveeeeeseesesessisessessesesssssssnensonensas build double

(o7 S EXP oreeeeeerenrieseseeeeeees compute natural logarithm
logl0 EXP .t enes compute base-10 log
longjmp SETIMPeeeeieeeeeeeeeeessorsssnens non-local goto
Iseek ..cvevvurenenen N 21 21 L G position unbuffered i/o file
malloc |17 =N 1 50, O O allocate buffer
movmem MOVMEM ...t copy a block of memory
modf ... FREXP ...oovvvvreeireveeieseneeeeeeeenens get components of double
OPEN ..oovveverirnene OPEN ... open file/device for unbuffered i/o
POW oerreerenene, EXP et eereset e ses st et sesnsnaens compute x**y
printf PRINTF ..., format data and print on stdout
10011 R PUTC ... put binary char to i/o stream
putchar PUTC ..ot put ASCII char to stdout
puterr PUTC ... put ASCII char to stderr
PULS oo PUTS ...t put ASCII string to stdout
PUtWcccevvrnenee PUTCoeeereererereceesreenenns put ASCII word to stdout
14170) o QR QSORT ...t sssesseses s ses Quick sort
-1 1 EORUN RAN ..ot compute random number
read ..., READ ... read unbuffered file/device
realloc MALLOC ..ot ereseeseecseesens reallocate buffer
rename RENAMEoecteeecreeesecsvserasesenesessanns rename file
rindex STRINGceeeeerercerrreereescesesennens find char in string
scanfeeneene. SCANF ... input string from stdin & convert
setbuf SETBUF ... set buffer for i/o stream
setjmp SETIMP ...ttt eesesaons long jmp partner
setmem MOVMEM ..., set memory to specified byte
1) | N SIN et sssssaeeseseesssnnes compute sine
sinh ... N 4] (U compute hyperbolic sine
sprintf PRINTEFeeeeveeeeerenne format string into buffer
0) o SR | 30 € ST compute square root
sscanf SCANEF ... convert string from buffer
strcatoeenennees STRINGcoeeerererrcrereensesnns concatenate two strings
strcmp STRINGoereecieeeercrneesssessssas compare two strings
Strepy ... - STRINGoeeeeeeeeeecencecsvsesee e copy char string
strlen STRINGoeeeeerreceereneriaens get length of char string
strncat ..., STRING ...t seaenes concatenate strings
strncmp STRINGcoovveerecererecrenenerssreesssssessnes compare strings
StINCPY .ovvevenneeee STRING ...rrererecctsaceensnssssnsesseasans copy string
swapmem MOVMEMcoceurmonnen.. swap two blocks of memory

111 SRR SIN cooeecteererntrrr e etereesresserasacsssessssesss compute tangent

17:111 2 RSN SINHoovvereeeeecreveneernenneaes compute hyperbolic tangent
tolower TOUPPER convert upper case char to lower
tOUPPET .eevevereneen TOUPPERc.... convert lower case char to upper
ungetecoeeew. UNGETC ..ooeevrirervernrrereseeeas return char to i/0 stream
unlink UNLINK ...oooirtmrierecrerreereceesesensssassssssssssssssesseases delete file
27 5 1 (S WRITEcoovvveeeenee unbuffered write of binary data

- 1ib.7 -

ATOF (C, M) ATOF

NAME
atof, atoi, atol - convert ASCII to numbers
ftoa - convert floating point to ASCII

SYNOPSIS
double atof(cp)
char *cp;

atoi(cp)
char *cp;

long atol(cp)
char *cp;

ftoa(val, buf, precision, type)
double val;
char *buf;

int precision, type;

DESCRIPTION
atof, atoi, and atol convert a string of text characters pointed at

by the argument cp to double, integer, and long representations,
respectively.

atof recognizes a string containing leading blanks and tabs,
which it skips, then an optional sign, then a string of digits
optionally containing a decimal point, then an optional ’¢’ or 'E’
followed by an optionally signed integer.

atoi and atol recognize a string containing leading blanks and
tabs, which are ignored, then an optional sign, then a string of
digits.

ftoa converts a double precision floating point number to ASCIL
val is the number to be converted and buf points to the buffer
where the ASCII string will be placed. precision specifies the
number of digits to the right of the decimal point. type specifies
the format 0 for "E" format, 1 for "F' format, 2 for "G" format.

atof and ftoa are in the library m.lib; the other functions are in
c.lib.

- 1ib.8 -

CLOSE (C) CLOSE

NAME
close - close a device or file

SYNOPSIS
close(fd)
int fd;

DESCRIPTION
close closes a device or disk file which is opened for unbuffered
i/o.

The parameter fd is the file descriptor associated with the file
or device. If the device or file was explicitly opened by the
program by calling open or creat, fd is the file descriptor
returned by open or creat.

close returns 0 as its value if successful.

SEE ALSO
Unbuffered I/0 (O), Errors (O)

DIAGNOSTICS

If close fails, it returns -1 and sets an error code. in the global
integer errno.

- 1ib.9 -

CREAT (C) CREAT

NAME
creat - create a new file

SYNOPSIS
creat(name, pmode)
char *name;
int pmode;

DESCRIPTION
creat creates a file and opens it for unbuffered, write-only
access. If the file already exists, it is truncated so that nothing is
in it (this is done by erasing and then creating the file).

creat returns as its value an integer called a "file descriptor".
Whenever a call is made to one of the unbuffered i/o functions
to access the file, its file descriptor must be included in the
function’s parameters.

name is a pointer to a character string which is the name of the
device or file to be opened. See the I/O overview section for
details.

For most systems, pmode is optional: if specified, it’s ignored. It
should be included, however, for programs for which UNIX-
compatibility is required, since the UNIX creat function
requires it. In this case, pmode should have the octal value 0666.

For some systems, pmode is required and has a special meaning,
If it is required for your system, the System Dependent
Functions chapter will contain a description of the creat
function, which will define the meaning.

SEE ALSO
Unbuffered 1/0 (O), Errors (O)

DIAGNOSTICS

If creat fails, it returns -1 as its value and sets a code in the
global integer errno.

- lib.10 -

CTYPE (C)

NAME

CTYPE

isalpha, isupper, islower, isdigit, isalnum, isspace,
ispunct, isprint, iscntrl, isascii
- character classification functions

SYNOPSIS

#include "ctype.h"

isalpha(c)

DESCRIPTION

These macros classify ASCII-coded integer values by table
lookup, returning nonzero if the integer is in the catagory, zero
otherwise. isascii is defined for all integer values. The others are
defined only when isascii is true and on the single non-ASCII

value EOF (-1).

isalpha
isupper
islower
isdigit
isalnum
isspace

ispunct
isprint

iscntrl

isascii

c is a letter

¢ is an upper case letter

c is a lower case letter

c is a digit

¢ is an alphanumeric character

¢ is a space, tab, carriage return, newline, or
formfeed

c is a punctuation character

¢ is a printing character, valued 0x20 (space)
through 0x7¢ (tilde)

¢ is a delete character (0xff) or ordinary control
character (value less than 0x20)

¢ is an ASCII character, code less than 0x100

- lib.11 -

EXP (M) EXP

NAME
exponential, logarithm, power, square root functions:
exp, log, logl0, pow, sqrt

SYNOPSIS
#include <math.h>

double exp(x)
double x;

double log(x)
double x;

double logl0(x)
double x;

double pow(x, y)
double x,y;

double sqrt(x)
double x;

DESCRIPTION
exp returns the exponential function of x.

log returns the natural logarithm of x; logl0 returns the base 10
logarithm,

pow returns x ** y (x to the y-th power).
sqrt returns the square root of x.

SEE ALSO
Errors (O)

DIAGNOSTICS

If a function can’t perform the computation, it sets an error
code in the global integer errno and returns an arbitrary value;
otherwise it returns the computed value without modifying
errno. The symbolic values which a function can place in errmo
are EDOM, signifying that the argument was invalid, and
ERANGE, meaning that the value of the function couldn’t be
computed. These codes are defined in the file errno.h.

The following table lists, for each function, the error codes that
can be returned, the function value for that error, and the
meaning of the error. The symbolic values are defined in the
file math.h.

- lib.12 -

EXP (M)
function error f(x) Meaning |
exp ERANGE I HUGE x > LOGHUGE
" ERANGE | 0.0 x < LOGTINY
log EDOM -HUGE | x <=0
logl0 EDOM -HUGE | x<=0
pow EDOM -HUGE | x < 0, x=y=0
" ERANGE | HUGE | y*log(x)>LOGHUGE
" ERANGE | 0.0 y*log(x)<LOGTINY
sqrt EDOM 0.0 x < 0.0]

- lib.13 -

FCLOSE (C) FCLOSE

NAME
fclose, fflush - close or flush a stream

SYNOPSIS
#include "stdio.h"

fclose(stream)
FILE *stream;

fflush(stream)
FILE *stream;

DESCRIPTION
fclose informs the system that the user’s program has completed
its buffered i/o operations on a device or file which it had
previously opened (by calling fopen). fclose releases the control
blocks and buffers which it had allocated to the device or file.
Also, when a file is being closed, fclose writes any internally
buffered information to the file.

fclose is called automatically by exir.

Sfflush causes any buffered information for the named output
stream to be written to that file. The stream remains open.

If fclose or fflush is successful, it returns 0 as its value.

SEE ALSO
Standard I/0 (O)

DIAGNOSTICS
If the operation fails, -1 is returned, and an error code is set in
the global integer errno.

- lib.14 -

FERROR (C) FERROR

NAME _
feof, ferror, clearerr, fileno - stream status inquiries

SYNOPSIS
#include "stdio.h"

feof(stream)
FILE *stream;

ferror(stream)
FILE *stream;

clearerr(stream)
FILE *stream;

fileno(stream)
FILE *stream;

DESCRIPTION

feof returns non-zero when end-of-file is reached on the
specified input stream, and zero otherwise.

Jerror returns non-zero when an error has occurred on the
specified stream, and zero otherwise. Unless cleared by clearerr,
the error indication remains set until the stream is closed.

clearerr resets an error indication on the specified stream.

fileno returns the integer file descriptor associated with the
stream.

These functions are defined as macros in the file stdio.h.

SEE ALSO
Standard 1/0 (O)

- lib.15 -

FLOOR (M) FLOOR

NAME
fabs, floor, ceil - absolute value, floor, ceiling routines

SYNOPSIS
#include <math.h>

double floor(x)
double x;

double ceil(x)
double x;

double fabs(x)
double x;

DESCRIPTION
fabs returns the absolute value of x.

floor returns the largest integer not greater than x.
ceil returns the smallest integer not less than x.

- lib.16 -

FOPEN (C) FOPEN

NAME
fopen, freopen, fdopen - open a stream

SYNOPSIS
#include "stdio.h"

FILE *fopen(filename, mode)
char *filename, *mode;

FILE *freopen(filename, mode, stream)
" char *filename, *mode;
FILE *stream;

FILE *fdopen(fd, mode)
char *mode;

DESCRIPTION
These functions prepare a device or disk file for access by the
standard i/o functions; this is called "opening" the device or file.
A file or device which has been opened by one of these
functions is called a "stream".

If the device or file is successfully opened, these functions
return a pointer, called a "file pointer" to a structure of type
FILE. This pointer is included in the list of parameters to
buffered i/o functions, such as gefc or putc, which the user’s
program calls to access the stream.

fopen is the most basic of these functions: it simply opens the
device or file specified by the filename parameter for access
specified by the mode parameter. These parameters are
described below.

freopen substitutes the named device or file for the device or
file which was previously associated with the specified stream. It
closes the device or file which was originally associated with the
stream and returns stream as its value. It is typically used to
associate devices and files with the preopened streams stdin,
stdout, and stderr.

fdopen opens a device or file for buffered i/o which has been
previously opened by one of the unbuffered open functions
open and creat. It returns as it’s value a FILE pointer.

fdopen is passed the file descriptor which was returned when the
device or file was opened by open or creat. It’s also passed the
mode parameter specifying the type of access desired. mode must
agree with the mode of the open file.

The parameter filename is a pointer to a character string which
is the name of the device or file to be opened. For details, see
the I/0 overview section.

- lib.17 -

FOPEN (C)

FOPEN

mode points to a character string which specifies how the user’s

program intends to access the stream. The choices are as follows:

mode

r

r+

w+

a+

X+

meaning

Open for reading only. If a file is opened, it is
positioned at the first character in it. If the file
or device does not exist, NULL is returned.
Open for writing only. If a file is opened
which already exists, it is truncated to zero
length. If the file does not exist, it is created.
Open for appending. The calling program is
granted write-only access to the stream. The
current file position is the character after the
last character in the file. If the file does not
exist, it is created.

Open for writing. The file must not previously
exist. This option is not supported by Unix.
Open for reading and writing. Same as "r", but
the stream may also be written to.

Open for writing and reading. Same as "w", but
the stream may also be read; different from "r+"
in the creation of a new file and loss of any
previous one.

Open for appending and reading. Same as "a",
but the stream may also be read; different from
"r+" in file positioning and file creation.

Open for writing and reading. Same as "x" but
the file can also be read.

On systems which don’t keep track of the last character in a file
(for example CP/M and Apple DOS), not all files can be
correctly positioned when opened in append mode. See the I/0
overview section for details.

SEE ALSO

I/0 (O), Standard 1/0 (O)

DIAGNOSTICS

If the file or device cannot be opened, NULL is returned and an
error code is set in the global integer.-errno.

EXAMPLES

The following example demonstrates how fopen can be used in a

program.

- 1ib.18 -

FOPEN (C) FOPEN

#include "stdio.h"

main(argc,argv)
char **argv;

FILE *fopen(), *p;

if ((fp = fopen(argv] 1], argv[2])) == NULL) {
printf("You asked me to open %s",argv{ 11);
printf("in the %s mode", argv{2]);
printf("but I can’t!\n");
} else
printf("%s is open\n", argv 1]);
Here is a program which uses freopen:

#include "stdio.h"
main()

FILE *fp;

fp = freopen("dskfile", "w+", stdout);

printf("This message is going to dskfile\n");
}

Here is a program which uses fdopen:
#include "stdio.h"
dopen__it(fd)
int fd;” /* value returned by previous call to open */
FILE *fp;

if ((fp = fdopen(fd, "r+")) == NULL)
printf("can’t open file for r+\n");
else
return(fp);

- lib.19 -

FREAD (C) FREAD

NAME
fread, fwrite - buffered binary input/output

SYNOPSIS
#include "stdio.h"

int fread(buffer, size, count, stream)
char *buffer;

int size, count;

FILE *stream;

int fwrite(buffer, size, count, stream)
char *buffer;

int size, count;

FILE *stream;

DESCRIPTION
fread performs a buffered input operation and fwrite a buffered
write operation to the open stream specified by the parameter
Stream.

buffer is the address of the user’s buffer which will be used for
the operation.

The function reads or writes count items, each containing size
bytes, from or to the stream.

fread and fwrite perform i/o using the functions getc and putc;
thus, no translations occur on the data being transferred.

The function returns as its value the number of items actually
read or written,

SEE ALSO
Standard I/0 (0), Errors (O), fopen, ferror

DIAGNOSTICS
fread and fwrite return 0 upon end of file or error. The
functions feof and ferror can be used to distinguish between the
two. In case of an error, the global integer errno contains a code
defining the error.

EXAMPLE
This is the code for reading ten integers from file 1 and writing
them again to file 2. It includes a simple check that there are
enough two-byte items in the first file:

- 1ib.20 -

FREAD (C)

FREAD

#include "stdio.h"
main()

{

FILE *pl, *fp2, *fopen();
char *buf;
int size = 2, count = 10;

fpl = fopen("file1","r");

fp2 = fopen("file2","w");

if (fread(buf, size, count, fpl) = count)
printf("Not enough integers in file1\n");

fwrite(buf, size, count, fp2);

- 1ib.21 -

FREXP (M) FREXP

NAME

frexp, ldexp, modf - build and unbuild real numbers
SYNOPSIS

#include <math.h>

double frexp(value, eptr)
double value;
int *eptr;

double ldexp(value, exp)
double value;

double modf(value, iptr)
double value, *iptr;

DESCRIPTION

Given value, frexp computes integers x and n such that
value=x*2**n, x is returned as the value of frexp, and n is
stored in the int field pointed at by eptr.

Ildexp returns the double quantity value*2**exp.

mod f returns as its value the positive fractional part of value and
stores the integer part in the double field pointed at by iptr.

- lib.22 -

FSEEK (O) FSEEK

NAME
fseek, ftell - reposition a stream

SYNOPSIS
#include "stdio.h"

int fseek(stream, offset, origin)
FILE *stream;

long offset;

int origin;

long ftell(stream)
FILE *stream;

DESCRIPTION
fseek sets the "current position" of a file which has been opened
for buffered i/o. The current position is the byte location at
which the next input or output operation will begin.

stream is the stream identifier associated with the file, and was
returned by fopen when the file was opened.

offset and origin together specify the current position: the new
position is at the signed distance offset bytes from the
beginning, current position, or end of the file, depending on
whether origin is 0, 1, or 2, respectively.

offset can be positive or negative, to position after or before
the specified origin, respectively, with the limitation that you
can’t seek before the beginning of the file.

For some operating systems (for example, CP/M and Apple
DOS) a file may not be able to be correctly positioned relative

to its end. See the overview sections I/O and STANDARD I/0
for details.

If fseek is successful, it will return zero.

ftell returns the number of bytes from the beginning to the
current position of the file associated with stream.

SEE ALSO
Standard I/0 (0), 1/0 (0), Iseck

DIAGNOSTICS

fseek will return -1 for improper seeks. In this case, an error
code is set in the global integer errno.

EXAMPLE

The following routine is equivalent to opening a file in "a+"
mode:

- 1ib.23 -

FSEEK (C) FSEEK

a_ plus(filename)
char *filename;

{
FILE *fp, *fopen();
if ((fp = fopen(filename, r+)) == NULL)
fp = fopen(filename, w+);
fseek(fp, OL, 2); /* position 1 byte past
last character */

To set the current position back 5 characters before the present
current position, the following call can be used:

fseek(fp, -5L, 1)

- 1ib.24 -

GETC

NAME

© GETC

getc, agetc, getchar, getw

SYNOPSIS

#include "stdio.h"

int getc(stream)
FILE *stream;

int agetc(stream) /* non-Unix function */
FILE *stream;

int getchar()

int getw(stream)
FILE *stream;

DESCRIPTION

getc returns the next character from the specified input stream.

agetc is used to access files of text. It generally behaves like getc
and returns the next character from the named input stream. It
differs from getc in the following ways:

* It translates end-of-line sequences (eg, carriage return
on Apple DOS; carriage return-line feed on CP/M) to a
single newline ("\\n’) character.

* It translates an end-of-file sequence (eg, a null
character on Apple DOS; a control-z character on
CP/M) to EOF;

* It ignores null characters (* ’) on all systems except
Apple DOS;

* On some systems, the most significant bit of each
character returned is set to zero.

agelc is not a UNIX function. It is, however, provided with all
Aztec C packages, and provides a convenient, system-
independent way for programs to read text.

getchar returns text characters from the standard input stream
(stdin). It is implemented as the call agetc(stdin).

getw returns the next word from the specified input stream. It
returns EOF (-1) upon end-of-file or error, but since that is a
good integer value, feof and ferror should be used to check the
success of getw. It assumes no special alignment in the file.

SEE ALSO

1/0 (O), Standard I/0 (O), fopen, fclose

DIAGNOSTICS

These functions return EQF (-1) at end of file or if an error
occurs. The functions feof and ferror can be used to distinguish
the two. In the latter case, an error code is set in the global

- 1ib.25 -

GETC (C) GETC

integer errno.

- 1ib.26 -

GETS (C) GETS

NAME
gets, fgets - get a string from a stream

SYNOPSIS
#include "stdio.h"

char *gets(s)
char *s;

char *fgets(s, n, stream)
char *s;
FILE *stream;

DESCRIPTION
gets reads a string of characters from the standard input stream,
stdin, into the buffer pointed by s. The input operation
terminates when either a newline character (\\n) or end of file
is encountered.

fgets reads characters from the specified input stream into the
buffer pointer at by s until either (1) n-1 characters have been
read, (2) a newline character (\\n) is read, or (3) end of file or
an error is detected on the stream.

Both functions return s, except as noted below.

gets and fgets differ in their handling of the newline character:
gets doesn’t put it in the caller’s buffer, while fgets does. This is
the behavior of these functions under UNIX.

These functions get characters using agetc; thus they can only be
-used to get characters from devices and files which contain text
characters.

SEE ALSO
I/0 (O), Standard I/O (O), ferror

DIAGNOSTICS
gets and fgets return the pointer NULL (0) upon reaching end
of file or detecting an error. The functions feof and ferror can
be used to distinguish the two. In the latter case, an error code
is placed in the global integer ermo.

- 1ib.27 -

IOCTL (C) I0CTL

NAME

ioctl, isatty - device i/o utilities
SYNOPSIS

#include "sgtty.h"

ioctl(fd, cmd, stty)

struct sgttyb *stty;

isatty(fd)

DESCRIPTION
ioctl sets and determines the mode of the console.

For more details on ioctl, see the overview section on console
I/0.

isatty returns non-zero if the file descriptor fd is associated with
the console, and zero otherwise.

SEE ALSO
Console 1/0 (O)

- 1ib.28 -

LSEEK (C) LSEEK

NAME
Iseek - change current position within file

SYNOPSIS
long int Iseek(fd, offset, origin)
int fd, origin;
long offset;

DESCRIPTION
Iseek sets the current position of a file which has been opened
for unbuffered i/o. This position determines where the next
character will be read or written.

fd is the file descriptor associated with the file.

The current position is set to the location specified by the offset
and origin parameters, as follows:

* If origin is 0, the current position is set to offset bytes
from the beginning of the file.

* If origin is 1, the current position is set to the current
position plus offset.

* If origin is 2, the current position is set to the end of the
file plus offset.

The offset can be positive or negative, to position after or
before the specified origin, respectively.

Positioning of a file relative to its end (that is, calling Iseek with
origin set to 2) cannot always be correctly done on all systems
(for example, CP/M and Apple DOS). See the section entitled
I/0 for details.

If Iseek is successful, it will return the new position in the file
(in bytes from the beginning of the file).

SEE ALSO
Unbuffered I/0 (0O), 1/0 (O)

DIAGNOSTICS
If Iseek fails, it will return -1 as its value and set an error code
in the global integer errno. errno is set to EBADF if the file
descriptor is invalid. It will be set to EINVAL if the offset
parameter is invalid or if the requested position is before the
beginning of the file.

EXAMPLES
1. To seek to the beginning of a file:

Iseek(fd, OL, 0);

Iseek will return the value zero (0) since the current position in
the file is character (or byte) number zero.

- 1ib.29 -

LSEEK (C) LSEEK

2. To seek to the character following the last character in the
file:
pos = Iseek(fd, 0L, 2);

The variable pos will contain the current position of the end of
file, plus one.

3. To seek backward five bytes:
Iseek(fd, -5L, 1);

The third parameter, 1, sets the origin at the current position in
the file. The offset is -5. The new position will be the origin
plus the offset. So the effect of this call is to move backward a
total of five characters.

4. To skip five characters when reading in a file:

read(fd, buf, count);
Iseek(fd, 5L, 1);
read(fd, buf, count);

- 1ib.30 -

MALLOC (C) MALLOC

NAME
malloc, calloc, realloc, free - memory allocation

SYNOPSIS
char *malloc(size)
unsigned size;

char *calloc(nelem, elemsize)
unsigned nelem, elemsize;

char *realloc(ptr, size)
char *ptr;
unsigned size;

free(ptr)
char *ptr;

DESCRIPTION
These functions are used to allocate memory from the "heap",
that is, the section of memory available for dynamic storage
allocation,

malloc allocates a block of size bytes, and returns a pointer to it.

calloc allocates a single block of memory which can contain
nelem elements, each elemsize bytes big, and returns a pointer to
the beginning of the block. Thus, the allocated block will contain
(nelem * elemsize) bytes. The block is initialized to zeroes.

realloc changes the size of the block pointed at by pir to size
bytes, returning a pointer to the block. If necessary, a new block
will be allocated of the requested size, and the data from the
original block moved into it. The block passed to realloc can
have been freed, provided that no intervening calls to calloc,
malloc, or realloc have been made.

free deallocates a block of memory which was previously
allocated by malloc, calloc, or realloc, this space is then available

for reallocation. The argument ptr to free is a pointer to the
block.

malloc and free maintain a circular list of free blocks. When
called, malloc searches this list beginning with the last block
freed or allocated coalescing adjacent free blocks as it searches.
It allocates a buffer from the first large enough free block that it
encounters. If this search fails, it calls sbrk to get more memory
for use by these functions,

SEE ALSO
Memory Usage (O), break (S)
DIAGNOSTICS

malloc, calloc and realloc return a null pointer (0) if there is no
available block of memory.

- lib.31 -

MALLOC (C) MALLOC

free returns -1 if it’s passed an invalid pointer.

- 1ib.32 -

MOVMEM (C) MOVMEM

NAME
movmem, setmem, Swapmem

SYNOPSIS
movmem(src, dest, length) /* non-Unix function */
char *src, *dest;
int length;

setmem(area,length,value) /* non-Unix function */
char *area; '
swapmem(s1, s2, len) /* non-Unix function */
char *s1, *s2;

DESCRIPTION

movmem copies length characters from the block of memory
pointed at by src to that pointed at by dest.

movmem copies in such a way that the resulting block of
characters at dest equals the original block at src.

setmem sets the character value in each byte of the block of
memory which begins at area and continues for length bytes.

swapmem swaps the blocks of memory pointed at by s/ and s2.
The blocks are len bytes long.

- 1ib.33 -

OPEN (C) OPEN

NAME
open

SYNOPSIS
#include "fcntl.h"

open(name, mode) /* calling sequence on most systems */
char *name;

/* calling sequence on some systems (see below): */
open(name, mode, param3)
char *name;

DESCRIPTION
open opens a device or file for unbuffered i/o. It returns an
integer value called a file descriptor which is used to identify
the file or device in subsequent calls to unbuffered i/o
functions.

name is a pointer to a character string which is the name of the
device or file to be opened. For details, see the overview section
1/0.

mode specifies how the user’s program intends to access the file.
The choices are as follows:

mode meaning

O_RDONLY read only

O_WRONLY write only

O_RDWR read and write

O_CREAT Create file, then open it

O_TRUNC Truncate file, then open it

O_EXCL Cause open to fail if file already exists;
used with O CREAT

O_APPEND Position file for appending data

These open modes are integer constants defined in the files
Sfentlh. Although the true values of these constants can be used
in a given call to open, use of the symbolic names ensures
compatibility with UNIX and other systems.

The calling program must specify the type of access desired by
including exactly one of O_RDONLY, O_WRONLY, and
O_RDWR in the mode parameter. The three remaining values
are optional. They may be included by adding them to the mode
parameter, as in the examples below.

By default, the open will fail if the file to be opened does not
exist. To cause the file to be created when it does not already
exist, specify the O__CREAT option. If O__ EXCL is given in
addition to O CREAT, the open will fail if the file already
exists; otherwise, the ﬁle is created.

- 1ib.34 -

OPEN (C) OPEN

If the O__TRUNC option is specified, the file will be truncated
so that nothing is in it. The truncation is performed by simply
erasing the file, if it exists, and then creating it. So it is not an
error to use this option when the file does not exist.

Note that when O__TRUNC is used, O__CREAT is not needed.

If O__APPEND is specified, the current position for the file
(that is, the position at which the next data transfer will begin)
is set to the end of the file. For systems which don’t keep track
of the last character written to a file (for example, CP/M and
Apple DOS), this positioning cannot always be correctly done.
See the I/0 overview section for details. Also, this option is not
supported by UNIX.

param3 is not needed or used on many systems. If it is needed
for your system, the System Dependent Library Functions
chapter will contain a description of the open function, which
will define this parameter.

If open does not detect an error, it returns an integer called a
"file descriptor." This value is used to identify the open file
during unbuffered i/o operations. The file descriptor is very
different from the file pointer which is returned by fopen for
use with buffered i/o functions.

SEE ALSO
I/0 (O), Unbuffered 1/0 (O), Errors (O)

DIAGNOSTICS

If open encounters an error, it returns -1 and sets the global
integer errno to a symbolic value which identifies the error.

EXAMPLES
1. To open the file, testfile, for read-only access:

fd = open("testfile", O__ RDONLY);

If testfile does not exist open will just return -1 and set errno to
ENOENT.

2. To open the file, subl, for read-write access:
fd = open("subl", O_RDWR+O__ CREAT);
If the file does not exist, it will be created and then opened.

3. The following program opens a file whose name is given on
the command line. The file must not already exist.

- 1ib.35 -

OPEN (C) OPEN

main(arge, argv)
char **argv;
{

int fd;

fd = open(*++argv, O__ WRONLY+O__CREAT+O__EXCI
if(fd=-1) {
if (errno == EEXIST)
printf("file already exists\n");
else if (errno == ENOENT)
printf("unable to open file\n");
else
printf("open error\n");

- 1ib.36 -

PRINTF (C, M) PRINTF

NAME
printf, fprintf, sprintf, format
- formatted output conversion functions

SYNOPSIS
#include "stdio.h"

printf(fmt [,arg] ...)
char *fmt;

fprintf(stream, fmt [,arg] ...)
FILE *stream;
char *fmt;

sprintf(buffer, fmt [,arg] ...)
char *buffer, *fmft;

format(func, fmt, argptr)
int (*func)();

char *fmt;

unsigned *argptr;

DESCRIPTION
These functions convert and format their arguments (arg or
argptr) according to the format specification fmt. They differ in
what they do with the formatted result;

printf outputs the result to the standard output stream,
stdout,

fprintf outputs the result to the stream specified in its first
argument, stream,

sprintf places the result in the buffer pointed at by its first
argument, buffer, and terminates the result with the null
character, ’ °’

format calls the function func with each character of the result.

In fact, printf, fprintf, and sprintf call format with each character
that they generate.

These functions are in both c.lib and m.lib, the difference being
that the c.lib versions don’t support floating point conversions.
Hence, if floating point conversion is required, the m.lib
versions must be used. If floating point conversion isn’t
required, either version can be used. To use m./ib’s version, m.lib
must be specified before c.lib at the time the program is linked.

The character string pointed at by the fmt parameter, which
directs the print functions, contains two types of items: ordinary
characters, which are simply output, and conversion
specifications, each of which causes the conversion and output
of the next successive arg.

- 1ib.37 -

PRINTF (C, M) : PRINTF

A conversion specification begins with the character % and
continues with:

*

An optional minus sign (-) which specifies left adjustment
of the converted value in the output field;

An optional digit string specifying the ’field width’ for the
conversion. If the converted value has fewer characters
than this, enough blank characters will be output to make
the total number of characters output equals the field
width. If the converted value has more characters than the
field width, it will be truncated. The blanks are output
before or after the value, depending on the presence or
absence of the left- adjustment indicator. If the field width
digits have a leading 0, 0 is used as a pad character rather
than blank.

An optional period, ’.’, which separates the field width
from the following field;

An optional nglt string specifying a precision; for floating

point conversions, this specifies the number of digits to
appear after the decimal point; for character string
conversions, this specifies the maximum number of
characters to be printed from a string;

Optionally, the character /, which specifies that a
conversion which normally is performed on an int is to be
performed on a long. This applies to the d, o, and x
conversions.

A character which specifies the type of conversion to be
performed.

A field width or precision may be * instead of a number,
specifying that the next available arg, which must be an int,
supplies the field width or precision.

The conversion characters are:

"d, 0, or x The int in the corresponding arg is converted to

decimal, octal, or hexadecimal notation,
respectively, and output;

u The unsigned integer arg is converted to
decimal notation;

c The character arg is output. Null characters are
ignored;

s The characters in the string pointed at by arg

are output until a null character or the number
of characters indicated by the precision is
reached. If the precision is zero or missing, all
characters in the string, up to the terminating
null, are output;

f The float or double arg is converted to decimal
notation in the style ’[-]ddd.ddd’. The number

- 1ib.38 -

PRINTF (C, M) PRINTF

SEE ALSO

of d's after the decimal point is equal to the
precision given in the conversion specification.
If the precision is missing, it defaults to six
digits. If the precision is explicitly 0, the
decimal point is also not printed.

e The float or double arg is converted to the style

’[-]d.ddde[-1dd’, where there is one digit before
the decimal point and the number after is equal
to the precision given. If the precision is
missing, it defaults to six digits.

g The float or double arg is printed in style d, f,
or e, whichever gives full precision in
minimum space.

% Output a %. No argument is converted.

Standard I/0 (O)

EXAMPLES

1.

The following program fragment:

char *name; float amt;
printf("your total, %s, is $%f\n", name, amt);

will print a2 message of the form
your total, Alfred, is $3.120000

Since the precision of the %f conversion wasn’t specified,
it defaulted to six digits to the right of the decimal point.

This example modifies example 1 so that the field width
for the %s conversion is three characters, and the field
width and precision of the %f conversion are 10 and 2,
respectively. The %f conversion will also use 0 as a pad
character, rather than blank.

char *name; float amt;
printf("your total, %3s, is $%10.2f\n", name, amt);

This example modifies example 2 so that the field width of
the %s conversion and the precision of the %f conversion
are taken from the variables nw and ap:

char *name; float amt; int nw, ap;
printf("your total %?*s,is $%10.*f\n",nw,name,ap,amt);
This example demonstrates how to use the format function

by listing printf, which calls format with each character
that it generates.

- 1ib.39 -

PRINTF (C, M)

printf(fmt,args)

char *fmt; unsigned args;

{
extern int putchar();
format(putchar,fmt,&args);

- 1ib.40 -

PRINTF

PUTC (C)

NAME
putc, aputc, putchar, putw, puterr
- put character or word to a stream

SYNOPSIS

PUTC

#include "stdio.h"

putc(c, stream)
char c;
FILE *stream;

aputc(c, stream) /* non-Unix function */
char ¢;
FILE *stream;

putchar(c)
char ¢;

putw(w,stream)
FILE *stream;

puterr(c) /* non-Unix function */
char ¢;
DESCRIPTION

putc writes the character ¢ to the named output stream. It
returns c as its value.

aputc is used to write text characters to files and devices. It
generally behaves like putc, and writes a single character to a
stream. It differs from putc as follows:

*

SEE ALSO

When a newline character is passed to aputc, an end- of-
line sequence (eg, carriage return followed by line feed on
CP/M, and carriage return only on Apple DOS) is written
to the stream;

The most significant bit of a character is set to zero before
being written to the stream.

aputc is not a UNIX function. It is, however, supported on
all Aztec C systems, and provides a convenient, system-
independent way for a program to write text.

putchar writes the character ¢ to the standard output
stream, stdout. It’s identical to aputc(c, stdout).

putw writes the word w to the spec1fled stream. It returns
w as its value. putw neither requires nor causes special
alignment in the file.

puterr writes the character ¢ to the standard error stream,
stderr. It’s identical to aputc(c, stderr). It is not a UNIX
function.

Standard 1/0

- lib.41 -

PUTC (C) PUTC

DIAGNOSTICS
These functions return EOF (-1) upon error. In this case, an
error code is set in the global integer errno.

- lib.42 -

PUTS (O PUTS

NAME
puts, fputs - put a character string on a stream

SYNOPSIS
#include "stdio.h"

puts(s)
char *s;
fputs(s, stream)
char *s;
FILE *stream;
DESCRIPTION
puts writes the null-terminated string s to the standard output

stream, stdout, and then an end-of-line sequence. It returns a
non-negative value if no errors occur.

fputs copies the null-terminated string s to the specified output
stream. It returns 0 if no errors occur.

Both functions write to the stream using aputc. Thus, they can
only be used to write text. See the PUTC section for more
details on aputc.

Note that puts and fputs differ in this way: On encountering a
newline character, puts writes an end-of-line sequence and fputs
doesn’t.

SEE ALSO
Standard 1/0 (O), putc

DIAGNOSTICS

If an error occurs, these functions return EOF (-1) and set an
error code in the global integer errmo.

- 1ib.43 -

QSORT (C) QSORT

NAME
gsort - sort an array of records in memory

SYNOPSIS
gsort(array, number, width, func)
char *array;
unsigned number;
unsigned width;
int (*func)();

DESCRIPTION
gsort sorts an array of elements using Hoare’s Quicksort
algorithm. array is a pointer to the array to be sorted; number is
the number of record to be sorted; width is the size in bytes of
each array element; func is a pointer to a function which is
called for a comparison of two array elements.

func is passed pointers to the two elements being compared. It
must return an integer less than, equal to, or greater than zero,
depending on whether the first argument is to be considered less
than, equal to, or greater than the second.

EXAMPLE
The Aztec linker, LN, can generate a file of text containing a
symbol table for a program. Each line of the file contains an
address at which a symbol is located, followed by a space,
followed by the symbol name. The following program reads such
a symbol table from the standard input, sorts it by address, and
writes it to standard output.

- lib.44 -

QSORT (C) QSORT

#include "stdio.h"

#define MAXLINES 2000

#define LINESIZE 16

char *linesyMAXLINES], *malloc();

main()

int i,numlines, cmp();
char buff{ LINESIZE];

for (numlines=0; numlines<MAXLINES; ++numlines){
if (gets(buf) == NULL)
break;
lines[numlines] = malloc(LINESIZE);
strepy(lines[numlines], buf);

gsort(lines, numlines, 2, cmp),
for (i = 0; i <numlines; ++1)
printf("%s\n", lines[i]);
}
cmp(a,b)
char **a, **p;

return strcmp(*a, *b);

- lib.45 -

RAN (M) RAN

NAME
ran - random number generator

SYNOPSIS
double ran()

DESCRIPTION
ran returns as its value a random number between 0.0 and 1.0.

- 1ib.46 -

READ (C) READ

NAME
read - read from device or file without buffering
SYNOPSIS

read (fd, buf,bufsize)
int fd, bufsize; char *buf;

DESCRIPTION
read reads characters from a device or disk file which has been
previously opened by a call to open or creat. In most cases, the
information is read directly into the caller’s buffer.

fd is the file descriptor which was returned to the caller when
the device or file was opened.

buf is a pointer to the buffer into which the information is to be
placed.

bufsize is the number of characters to be transferred.

If read is successful, it returns as its value the number of
characters transferred.

If the returned value is zero, then end-of-file has been reached,
" immediately, with no bytes read.

SEE ALSO
Unbuffered I/0O (O), open, close

DIAGNOSTICS
If the operation isn’t successful, read returns -1 and places a
code in the global integer errno.

- 1ib.47 -

RENAME (C) RENAME

NAME
rename - rename a disk file

SYNOPSIS
rename(oldname, newname) /* non-Unix function */
char *oldname,*newname;

DESCRIPTION
rename changes the name of a file.

oldname is a pointer to a character array containing the old file
name, and newname is a pointer to a character array containing
the new name of the file.

If successful, rename returns 0 as its value; if unsuccessful, it
returns -1.

If a file with the new name already exists, rename sets
E__EXIST in the global integer errno and returns -1 as its value
without renaming the file.

- 1ib.48 -

SCANF (C) SCANF

NAME
scanf, fscanf, sscanf - formatted input conversion

SYNOPSIS
#include "stdio.h"

scanf(format [,pointer] ...)
char *format;

fscanf(stream, format [,pointer] ...)
FILE *stream;
char *format;

sscanf(buffer, format [,pointer] ...)
char *buffer, *format;

DESCRIPTION
These functions convert a string or stream of text characters, as
directed by the control string pointed at by the format
parameter, and place the results in the fields pointed at by the
pointer parameters.

The functions get the text from different places:
scanf gets text from the standard input stream, stdin;

fscanf gets text from the stream specified in its first
parameter, stream,

sscanf gets text from the buffer pointed at by its first
parameter, buffer.

The scan functions are in both c.lib and m.lib, the difference
being that the c.lib versions don’t support floating point
conversions. Hence, if floating point conversion is required, the
m.lib versions must be used. If floating point conversions aren’t
required, either version can be used. To use m.lib’s version, m.lib
must be specified before c.lib when the program is linked.

The control string pointed at by format contains the following
’control items’:

* Conversion specifications;

* *White space’ characters (space, tab newline);

* Ordinary characters; that is, characters which aren’t
part of a conversion specification and which aren’t
white space.

A scan function works its way through a control string, trying to
match each control item to a portion of the input stream or
buffer. During the matching process, it fetches characters one at
a time from the input. When a character is fetched which isn’t
appropriate for the control item being matched, the scan
function pushes it back into the input stream or buffer and

- 1ib.49 -

SCANF (C) SCANF

finishes processing the current control item. This pushing back
frequently gives unexpected results when a stream is being
accessed by other i/0 functions, such as getc, as well as the scan
function. The examples below demonstrate some of the
problems that can occur.

The scan function terminates when it first fails to match a
control item or when the end of the input stream or buffer is
reached. It returns as its value the number of matched
conversion specifications, or EOF if the end of the input stream
or buffer was reached.

Matching *white space’ characters

When a white space character is encountered in the control
string, the scan function fetches input characters until the first
non-white-space character is read. The non-white-space
character is pushed back into the input and the scan function
proceeds to the next item in the control string.

Matching ordinary characters

If an ordinary character is encountered in the control string, the
scan function fetches the next input character. If it matches the
ordinary character, the scan function simply proceeds to the
next control string item. If it doesn’t match, the scan function
terminates.

Matching conversion specifications

When a conversion specification is encountered in the control
string, the scan function first skips leading white space on the
input stream or buffer. It then fetches characters from the
stream or buffer until encountering one that is inappropriate for
the conversion specification. This character is pushed back into
the input.

If the conversion specification didn’t request assignment
suppression (discussed below), the character string which was
read is converted to the format specified by the conversion
specification, the result is placed in the location pointed at by
the current pointer argument, and the next pointer argument
becomes current. The scan function then proceeds to the next
control string item.

If assignment suppression was requested by the conversion
specification, the scan function simply ignores the fetched input
characters and proceeds to the next control item.

Details of input conversion
A conversion specification consists of:
* The character *%’, which tells the scan function that it

- 1ib.50 -

SCANF (C)

SCANF

has encountered a conversion specification;

* Optionally, the assignment suppression character **;
* QOptionally, a ’field width’; that is, 2 number specifying

the maximum number of characters to be fetched for
the conversion;

* A conversion character, specifying the type of

conversion to be performed.

If the assignment suppression character is present ina conversion
specification, the scan function will fetch characters as if it was
going to perform the conversion, ignore them, and proceed to
the next control string item.

The following conversion characters are supported:

%

d

A single "%’ is expected in the input; no assignment
is done.

A decimal integer is expected; the input digit string
is converted to binary and the result placed in the int
field pointed at by the current pointer argument;

An octal integer is expected; the corresponding
pointer should point to an int field in which the
converted result will be placed;

A hexadecimal integer is expected; the converted
value will be placed in the int field pointed at by the
current pointer argument;

A sequence of characters delimited by white space
characters is expected; they, plus a terminating null
character, are placed in the character array pointed
at by the current pointer argument.

A character is expected. It is placed in the char field
pointed at by the current pointer. The normal skip
over leading white space is not done; to read a single
char after skipping leading white space, use ’%ls’.
The field width parameter is ignored, so this
conversion can be used only to read a single
character.

A sequence of characters, optionally preceded by
white space but not terminated by white space is
expected. The input characters, plus a terminating
null character, are placed in the character array
pointed at by the current pointer argument. The left
bracket is followed by:

* Optionally, a’*’ or ’~’ character;
* A set of characters;
* A right bracket, ’]’.

- lib.51 -

SCANF (C)

SCANF

If the first character in the set isn’t ~ or ~, the set
specifies characters which are allowed; characters are
fetched from the input until one is read which isn’t
in the set.

If the first character in the set is ~ or ~, the set
specifies characters which aren’t allowed; characters
are fetched from the input until one is read which is
in the set.

A floating point number is expected. The input string
is converted to floating point format and stored in
the float field pointed at by the current pointer
argument. The input format for floating point
numbers consists of an optionally signed string of
digits, possibly containing a decimal point, optionally
followed by an exponent field consisting of an E or e
followed by an optionally signed digit.

The conversion characters d, o, and x can be capitalized or
preceded by [to indicate that the corresponding pointer is to a
long rather than an int. Similarly, the conversion characters ¢
and f can be capitalized or preceded by / to indicate that the
corresponding pointer is to a double rather than a float.

The conversion characters o, x, and d can be optionally preceded
by A to indicate that the corresponding pointer is to a short rather
than an int. Since short and int fields are the same in Aztec C,
this option has no effect.

SEE ALSO

Standard 1/0 (O)

EXAMPLES
1.

1In this program fragment, scanf is used to read values for
the int x, the float y, and a character string into the char
array z

int x; float y; char 2[50];
scanf("%d%f%s", &x, &y, z);

The input line

32 75.36¢-1 rufus

will assign 32 to x, 7.536 to y, and "rufus " to z. scanf will
return 3 as its value, signifying that three conversion
specifications were matched.

The three input strings must be delimited by ’white space’
characters; that is, by blank, tab, and newline characters.
Thus, the three values could also be entered on separate

- 1ib.52 -

SCANF (C) SCANF

lines, with the white space character newline used to
separate the values.

2. This example discusses the problems which may arise
when mixing scanf and other input operations on the same
stream.

In the previous example, the character string entered for
the third variable, z, must also be delimited by white space
characters. In particular, it must be terminated by a space,
tab, or newline character. The first such character read by
scanf while getting characters for z will be ’pushed back’
into the standard input stream. When another read of stdin
is made later, the first character returned will be the white
space character which was pushed back.

This ’pushing back’ can lead to unexpected results for
programs that read stdin with functions in addition to
scanf. Suppose that the program in the first example wants
to issue a gets call to read a line from stdin, following the
scanf to stdin. scanf will have left on the input stream the
white space character which terminated the third value
read by scanf. If this character is a newline, then gets will
return a null string, because the first character it reads is
the pushed back newline, the character which terminates
gets. This is most likely not what the program had in mind
when it called gets.

It is usually unadvisable to mix scanf and other input
operations on a single stream.

3. This example discusses the behavior of scanf when there
are white space characters in the control string.

The control string in the first example was "%d%f{%s". It
doesn’t contain or need any white space, since scanf, when
attempting to match a conversion specification, will skip
leading white space. There’s no harm in having white
space before the %d, between the %d and %f, or between
the %f and %s. However, placing a white space character
after the %s can have unexpected results. In this case,
scanf will, after having read a character string for z, keep
reading characters until a non-white-space character is
read. This forces the operator to enter, after the three
values for x, y, and z, a non-white space character; until
this is done, scanf will not terminate.

The programmer might place a newline character at the
end of a control string, mistakenly thinking that this will
circumvent the problem discussed in example 2. One
might think that scanf will treat the newline as it would an

- 1ib.53 -

SCANF (C) SCANF

ordinary character in the control string; that is, that scanf
will search for, and remove, the terminating newline
character from the input stream after it has matched the z
variable. However, this is incorrect, and should be
remembered as a common misinterpretation.

4. scanf only reads input it can match. If, for the first
example, the input line had been

32 rufus 75.36¢e-1

scanf would have returned with value 1, signifying that
only one conversion specification had been matched. x
would have the value 32, y and z would be unchanged. All
characters in the input stream following the 32 would still
be in the input stream, waiting to be read.

5. One common problem in wusing scanf involves
mismatching conversion specifications and their
corresponding arguments. If the first example had declared
y to be a double, then one of the following statements
would have been required:

scanf("%d%lf%s", &x, &y, z);
or
scanf("%d%F%s", &x, &y, z);

to tell scanf that the floating point variable was a double
rather than a float.

6. Another common problem in using scanf involves passing
scanf the value of a variable rather than its address. The
following call to scanf is incorrrect:

int x; float y; char z{50];
scanf("%d%{%s", x, v, z);

scanf has been passed the value contained in x and y, and
the address of z, but it requires the address of all three
variables. The "address of" operator, &, is required as a
prefix to x and y. Since z is an array, its address is
automatically passed to scanf, so z doesn’t need the &
prefix, although it won’t hurt if it is given.

7. Consider the following program fragment:

int x; float y; char 2[50];
scanf("%2d%{%*d%[1234567890]", &x, &y, z);

When given the following input:
12345 678 90a65
scanf will assign 12 to x, 345.0 to y, skip *678, and place

- lib.54 -

SCANF (O) SCANF

the string ’90 ’ in z The next call to getchar will return ’a’.

- lib.55 -

SETBUF (C) SETBUF

NAME
setbuf - assign buffer to a stream

SYNOPSIS
#include "stdio.h"

setbuf(stream, buf)
FILE *stream;
char *buf;

DESCRIPTION
setbuf defines the buffer that’s to be used for the i/o stream
stream. If buf is not a NULL pointer, the buffer that it points at
will be used for the stream instead of an automatically allocated

buffer. If buf is a NULL pointer, the stream will be completely
unbuffered.

When buf is not NULL, the buffer it points at must contain
BUFSIZ bytes, where BUFSIZ is defined in stdio.h.

setbuf must be called after the stream has been opened, but
before any read or write operations to it are made.

If the user’s program doesn’t specify the buffer to be used for a
stream, the standard i/o functions will dynamically allocate a
buffer for the stream, by calling the function malloc, when the
first read or write operation is made on the stream. Then, when

the stream is closed, the dynamically allocated buffer is freed by
calling free.

SEE ALSO
Standard I/O (O), malloc

- 1ib.56 -

SETJMP (C) SETIMP

NAME
setjmp, longjmp - non-local goto

SYNOPSIS
#include "setjmp.h"

setjmp(env)
jmp__buf env;

longjmp(env, val)
jmp__buf env;

DESCRIPTION
These functions are useful for dealing with errors encountered
by the low-level functions of a'program.

setjmp saves its stack environment in the memory block pointed
at by env and returns 0 as its value.

long jmp causes execution to continue as if the last call to setjmp
was just terminating with value val. val cannot be zero.

The parameter env is a pointer to a block of memory which can
be used by setjmp and long jmp. The block must be defined using
the typedef jmp__buf.

WARNING
long jmp must not be called without env having been initialized
by a call to setjmp. It also must not be called if the function that
called setjmp has since returned.

EXAMPLE
In the following example, the function getall builds a record
pertaining to a customer and returns the pointer to the record if
no errors were encountered and 0 otherwise.

getall calls other functions which actually build the record.
These functions in turn call other functions, which in turn ...

getall defines, by calling setjmp, a point to which these functions
can branch if an unrecoverable error occurs. The low level
functions abort by calling long jmp with a non-zero value.

If a low level function aborts, execution continues in getall as if
its call to sefjmp had just terminated with a non-zero value.
Thus by testing the value returned by setjmp getall can
determine whether setjmp is terminating because a low level
function aborted.

- 1ib.57 -

SETJMP (C) SETJMP

#include "setjmp.h"

jmp__buf envbuf; /* environment saved here by setjmp */

getall(ptr)
char *ptr; /* ptr to record to be built */

if (setjmp(envbuf))
/* a low level function has aborted */
return 0;

getfield1(ptr);

getfield2(ptr);

getfield3(ptr);

return ptr;

Here’s one of the low level functions:

getsubfld2 1(ptr)
char *ptr;

{

1f (error)
longjmp(envbuf, -1);

- 1ib.58 -

SIN (M) SIN

NAME

trigonometric functions:

sin, cos, tan, cotan, asin, acos, atan, atan2
SYNOPSIS

#include <math.h>

double sin(x)
double x;

double cos(x)
double x;

double tan(x)
double x;

double cotan(x)
double x;

double asin(x)
double x;

double acos(x)
double x;

double atan(x)
double x;

double atan2(x,y)
double x;

DESCRIPTION

sin, cos, tan, and cotan return trigonometric functions of radian
arguments.

asin returns the arc sin in the range -pi/2 to pi/2.

acos returns the arc cosine in the range 0 to pi.

atan returns the arc tangent of x in the range -pi/2 to pi/2.

atan2 returns the arc tangent of x/y in the range -pi to pi.
SEE ALSO

Errors (O)

DIAGNOSTICS
If a trig function can’t perform the computation, it returns an
arbitrary value and sets a code in the global integer errno;
otherwise, it returns the computed number, without modifying
errno.

A function will return the symbolic value EDOM if the
argument is invalid, and the value ERANGE if the function
value can’t be computed. EDOM and ERANGE are defined in
the file errno.h.

- 1ib.59 -

SIN (M)

SIN

The values returned by the trig functions when the computation
can’t be performed are listed below. The symbolic values are
defined in math.h.

function | error | f(x) meaning

sin ERANGE 1 0.0 abs(x) > XMAX
cos ERANGE | 0.0 abs(x) > XMAX
tan ERANGE ; 0.0 abs(x) > XMAX
cotan ERANGE | HUGE 0<x< XMIN
cotan ERANGE | -HUGEi | -XMIN <x <0
cotan ERANGE | 0.0 abs(x) >= XMAX
asin EDOM 0.0 abs(x) > 1.0

acos EDOM 0.0 abs(x) > 1.0
atan2 EDOM 0.0 x=y=0

- 1ib.60 -

SINH (M) SINH

NAME
sinh, cosh, tanh

SYNOPSIS
#include <math.h>

double sinh(x)
double x;

double cosh(x)
double x;

double tanh(x)
double x;

DESCRIPTION
These functions compute the hyperbolic functions of their
arguments.

SEE ALSO
Errors (O)

DIAGNOSTICS
If the absolute value of the argument to sinh or cosh is greater
than 348.6, the function sets the symbolic value ERANGE in

the global integer errno and returns a huge value. This code is
defined in the file errno.h.

If no error occurs, the function returns the computed value
without modifying errno.

- 1ib.61 -

STRING (C) STRING

NAME
strcat, strncat, strcmp, strncmp, strepy, strncpy,
strlen, index, rindex - string operations

SYNOPSIS
char *strcat(s1, s2)
char *s1, *s2;

char *strncat(s1, s2, n)
char *s1, *s2;

strcmp(sl, s2)
char *s1, *s2;

strncmp(sl, s2, n)
char *s1, s2;

char *strcpy(sl, s2)
char *sl, *s2;

char *strncpy(sl, s2, n)
char *sl1, *s2;

strlen(s)
char *s;

char *index(s, ¢)
char *s;

char *rindex(s, c)
char *s;

DESCRIPTION
These functions operate on null-terminated strings, as follows:

strcat appends a copy of string s2 to string sl. strncat copies at
most n characters. Both terminate the resulting string with the
null character (\0) and return a pointer to the first character of
the resulting string.

stremp compares its two arguments and returns an integer
greater than, equal, or less than zero, according as s/ is
lexicographically greater than, equal to, or less than s2. strncmp
makes the same comparison but looks at » characters at most.

strcpy copies string s2 to sl stopping after the null character has
been moved. sirncpy copies exactly n characters: if s2 contains
less than »n characters, null characters will be appended to the
resulting string until n characters have been moved; if s2
contains n or more characters, only the first n will be moved,
and the resulting string will not be null terminated.

strlen returns the number of characters which occur in s up to
the first null character.

- 1ib.62 -

STRING (C) STRING

index returns a pointer to the first occurrance of the character ¢
in string s, or zero if ¢ isn’t in the string.

rindex returns a pointer to the last occurrance of the character ¢
in string s, or zero if ¢ isn’t in the string.

- 1ib.63 -

TOUP

NAME

PER (C) TOUPPER

toupper, tolower

SYNOPSIS

toupper(c)
tolower(c)
#include "ctype.h"
__toupper(c)
__tolower(c)

DESCRIPTION

toupper converts a lower case character to upper case: if ¢ is a
lower case character, toupper returns its upper case equivalent as
its value, otherwise c is returned.

tolower converts an upper case character to lowr case: if ¢ is an
upper case character folower returns its lower case equivalent,
otherwise c 1s returned.

toupper and tolower do not require the header file ctype.h.

__toupper and __ tolower are macro versions of toupper and
tolower, respectively. They are defined in ctype.h. The difference
between the two sets of functions is that the macro versions will
sometimes translate non-alphabetic characters, whereas the
function versions don’t.

- 1ib.64 -

UNGETC (C) UNGETC

NAME
ungetc - push a character back into input stream

SYNOPSIS
#include "stdio.h"

ungetc(c, stream)
FILE *stream;
DESCRIPTION
ungetc pushes the character ¢ back on an input stream. That

character will be returned by the next gefc call on that stream.
ungelc returns c as its value.

Only one character of pushback is guaranteed. EOF cannot be
pushed back.

SEE ALSO
Standard 1/0 (O)

DIAGNOSTICS
ungetc returns EOF (-1) if the character can’t be pushed back.

- 1ib.65 -

UNLINK (C) UNLINK

NAME
unlink

SYNOPSIS
unlink(name)
char *name;

DESCRIPTION
unlink erases a file.

name is a pointer to a character array containing the name of
the file to be erased.

unlink returns 0 if successful.

DIAGNOSTICS

unlink returns -1 if it couldn’t erase the file and places a code in
the global integer errno describing the error.

- 1ib.66 -

WRITE (C) WRITE

NAME
write
SYNOPSIS
write(fd,buf,bufsize)
int fd, bufsize; char *buf;
DESCRIPTION
write writes characters to a device or disk which has been

previously opened by a call to open or creat. The characters are
written to the device or file directly from the caller’s buffer.

fd is the file descriptor which was returned to the caller when
the device or file was opened.

buf is a pointer to the buffer containing the characters to be
written.

bufsize is the number of characters to be written.

If the operation is successful, wrife returns as its value the
number of characters written.

SEE ALSO
Unbuffered 1I/0 (O) , open, close, read

DIAGNOSTICS
If the operation is unsuccessful, write returns -1 and places a
code in the global integer errno.

- 1ib.67 -

WRITE (C) WRITE

- 1ib.68 -

STYLE

- style.1 -

STYLE Aztec C

Chapter Contents

... style
INTOAUCLION ...ttt ssessss ettt stasasss e e seensemene 3
Structured Programmingccccceeerecveeennennirivesss e scsssessnssesesnene 7
Top-down Programmingc.eeeeeeceeeeeinnnsesesee s e sesesesensssseses 8
Defensive Programming and Debuggingccooeeeveeeeeeeecrcsenne 10
Things to WatCh oUt fOrcceceeiiirerini ettt eeeee 15

- style.2 -

Aztec C STYLE

Style

This section was written for the programmer who is new to the C
language, to communicate the special character of C and the
programming practices for which it is best suited. This material will
ease the new user’s entry into C. It gives meaning to the peculiarities
of C syntax, in order to avoid the errors which will otherwise
disappear only with experience.

1. Introduction
what’s in it for me?

These are the benefits to be reaped by following the methods
presented here:

* Reduced debugging times;
* Increased program efficiency;
* Reduced software maintenance burden.

The aim of the responsible programmer is to write straightforward
code, which makes his programs more accessible to others. This section
on style is meant to point out which programming habits are
conducive to successful C programs and which are especially prone to
cause trouble.

The many advantages of C can be abused. Since C is a terse, subtle
language, it is easy to write code which is unclear. This is contrary to
the "philosophy" of C and other structured programming languages,
according to which the structure of a program should be clearly
defined and easily recognizable.

keep it simple

There are several elements of programming style which make C
easier to use. One of these is simplicity. Simplicity means keep it simple.
You should be able to see exactly what your code will do, so that when
it doesn’t you can figure out why.

A little suspicion can also be useful. The particular "problem areas"
which are discussed later in this section are points to check when code
"looks right" but does not work. A small omission can cause many
errors.

learn the C idioms

C becomes more valuable and more flexible with time. Obviously,
elementary problems with syntax will disappear. But more importantly,

- style.3 -

STYLE Aztec C

C can be described as "idiomatic." This means that certain expressions
become part of a standard vocabulary used over and over.

For example,
while ((c = getchar()) != EOF)

is readily recognized and written by any C programmer. This is often
used as the beginning of a loop which gets a character at a time from a
source of input. Moreover, the inside set of parentheses, often omitted
by a new C programmer, is rarely forgotten after this construct has
been used a few times.

be flexible in using the library

The standard library contains a choice of functions for performing
the same task. Certain combinations offer advantages, so that they are
used routinely. For instance, the standard library contains a function,
scanf, which can be used to input data of a given format. In this
example, the function "scans" input for a floating point number:

scanf("%f", &flt__num);

There are several disadvantages to this function. An important debit
is that it requires a lot of code. Also, it is not always clear how this
function handles certain strings of input. Much time could be spent
researching the behavior of this function. However, the equivalent to
the above is done by the following:

fit__num = atof(gets(inp__buf));

This requires considerably less code, and is somewhat more
straightforward. gets puts a line of input into the buffer, "inp__ buf,"
and atof converts it to a floating point value. There is no question
about what the input function is "looking for" and what it should find.

Furthermore, there is greater flexibility in the second method of
getting input. For instance, if the user of the program could enter
either a special command ("e" for exit) or a floating point value, the
following is possible:

gets(inp__buf);

if (inp__buf[0] == ’¢’)
exit(0);

flt__num = atof(inp__buf);

Here, the first character of input is checked for an "e", before the
input is converted to a float.

The relative length of the library description of the scanf function
is an indication of the problems that can arise with that and related
functions.

- styled -

Aztec C STYLE

write readable code

Readability can be greatly enhanced by adhering to what common
sense dictates. For instance, most lines can easily accommodate more
than one statement. Although the compiler will accept statements
which are packed together indiscriminately, the logic behind the code
will be lost. Therefore, it makes sense to write no more than one
statement per line.

In a similar vein, it is desirable to be generous with whitespace. A
blank space should separate the arithmetic and assignment operators
from other symbols, such as variable names. And when parentheses are
nested, dividing them with spaces is not being too prudent. For
example,

if((fp=fopen("filename","r")==NULL))
is not the same as
N if ((fp = fopen("filename", "r")) == NULL)

The first line contains a misplaced parenthesis which changes the
meaning of the statement entirely. (A file is opened but the file
pointer will be null.) If the statement was expanded, as in the second
line, the problem could be easily spotted, if not avoided altogther.

use straightforward logical expressions

Conditionals are apt to grow into long expressions. They should be
kept short. Conditionals which extend into the next line should be
divided so that the logic of the statement can be visualized at a glance.
Another solution might be to reconsider the logic of the code itself.

Iearn the rules for expression evaluation

Keep in mind that the evaluation of an expression depends upon
the order in which the operators are evaluated. This is determined
from their relative precedence.

Item 7 in the list of "things to watch out for", below, gives an
example of what may happen when the evaluation of a boolean
expression stops "in the middle". The rule in C is that a boolean will be
evaluated only until the value of the expression can be determined.

Item 8 gives a well known example of an "undefined" expression,
one whose value is not strictly determined.

In general, if an expression depends upon the order in which it is
evaluated, the results may be dubious. Though the result may be
strictly defined, you must be certain you know what that definition is.

a matter of taste

There are several popular styles of indentation and placement of
the braces enclosing compound statements. Whichever format you

- style.S -

STYLE Aztec C

adopt, it is important to be consistent. Indentation is the accepted way
of conveying the intended nesting of program statements to other
programmers. However, the compiler understands only braces. Making
them as visible as possible will help in tracking down nesting errors
later.

However much time is devoted to writing readible code, C is low-
level enough to permit some very peculiar expressions.

/* It is important to insert comments on a regular basis! */

Comments are especially useful as brief introductions to function
definitions.

In general, moderate observance of these suggestions will lessen the
number of "tricks" C will play on you-- even after you have mastered
its syntax.

- style.6 -

Aztec C STYLE

2. Structured Programming

"Structured programming" is an attempt to encourage programming
characterized by method and clarity. It stems from the theory that any
programming task can be broken into simpler components. The three
basic parts are statements, loops, and conditionals. In C, these parts are,
respectively, anything enclosed by braces or ending with a semicolon;
for, while and do-while; if-else.

modularity and block structure

Central to structured programming is the concept of modularity. In
one sense, any source file compiled by itself is a module. However, the
term is used here with a more specific meaning. In this context,
modularity refers to the independence or isolation of one routine from
another. For example, a routine such as main() can call a function to
do a given task even though it does not know how the task is
accomplished or what intermediate values are used to reach the final
result.

Sections of a program set aside by braces are called "blocks". The
"privacy” of C’s block structure ensures that the variables of each block
are not inadvertently shared by other blocks. Any left brace ({) signals
the beginning of a block, such as the body of a function or a for loop.
Since each block can have its own set of variables, a left brace marks
an opportunity to declare a temporary variable.

A function in C is a special block because it is called and is passed
control of execution. A function is called, executes and returns.
Essentially, a C program is just such a routine, namely, main.

A function call represents a task to be accomplished. Program
statements which might otherwise appear as several obscure lines can
be set aside in a function which satisfies a desired purpose. For
instance, getchar is used to get a single character from standard input.

When a section of code must be modified, it is simpler to replace a
single modular block than it is to delete a section of an unstructured
program whose boundaries may be unclear at best. In general, the
more precisely a block of program is defined, the more easily it can be
changed.

- style.7 -

STYLE Aztec C

3. Top-down Programming

"Top-down" programming is one method that takes advantage of
structured programming features like those discussed above. It is a
method of designing, writing, and testing a program from the most
general function (i.e., (main()) to the most specific functions (such as
getchar()).

All C programs begin with a function called main(). main() can be
thought of as a supervisor or manager which calls upon other functions
to perform specific tasks, doing little of the work itself. If the overall
goal of the program can be considered in four parts (for instance,
input, processing, error checking and output), then main() should call
at least four other functions.

step one

The first step in the design of a program is to identify what is to be
done and how it can be accomplished in a "programmable" way. The
main routine should be greatly simplified. It needs to call a function to
perform the crucial steps in the program. For example, it may call a
function, init(), which takes care of all necessary startup initializations.
At this point, the programmer does not even need to be certain of all
the initializations that will take place in init().

All functions consist of three parts: a parameter list, body, and
return value. The design of a function must focus on each of these
three elements.

During this first stage of design, each function can be considered a
black box. We are concerned only with what goes in and what comes
out, not with what goes on inside.

Do not allow yourself to be distracted by the details of the
implementation at this point. Flowcharts, pseudocode, decision tables
and the like are useful at this stage of the implementation.

A detailed list of the data which is passed back and forth between
functions is important and should not be neglected. The interface
between functions is crucial.

Although all functions are written with a purpose in mind, it is
easy to unwittingly merge two tasks into one. Sometimes, this may be
done in the interests of producing a compact and efficient program
function. However, the usual result is a bulky, unmanageable function.
If a function grows very large or if its logic becomes difficult to
comprehend, it should be reduced by introducing additional function
calls.

step two

There comes a time when a program must pass from the design
stage into the coding stage. You may find the top-down approach to

- style.8 -

Aztec C STYLE

coding too restrictive. According to this scheme, the smallest and most
specific functions would be coded last. It is our nature to tackle the
most daunting problems first, which usually means coding the low-
level functions.

Whereas the top-down approach is the preferred method for
designing software, the bottom-up approach is often the most practical
method for writing software. Given a good design, either method of
implementation should produce equally good results.

One asset of top-down writing is the ability to provide immediate
tests on upper level routines. Unresolved function calls can be satisfied
by "dummy" functions which return a range of test values. When new
functions are added, they can operate in an environment that has
already been tested.

C functions are most effective when they are as mutually
independent as is possible. This independence is encouraged by the
fact that there is normally only one way into and one way out of a
function: by calling it with specific arguments and returning a
meaningful value. Any function can be modified or replaced so long as
its entry and exit points are consistent with the calling function.

- style.9 -

STYLE Aztec C

4. Defensive Programming and Debugging

"Defensive programming" obeys the same edict as defensive
driving: trust no one to do what you expect. There are two sides to
this rule of thumb. Defend against both the possibility of bad data or
misuse of the program by the user, and the possibility of bad data
generated by bad code.

Pointers, for example, are a prime source of variables gone astray.
Even though the "theory" of pointers may be well understood, using
them in new ways (or for the first time) requires careful consideration
at each step. Pointers present the fewest problems when they appear in
familiar settings.

faced with the unknown

When trying something new, first write a few test programs to
make sure the syntax you are using is correct. For example, consider a
buffer, str__ buf, filled with null-terminated strings. Suppose we want to
print the string which begins at offset begin in the buffer. Is this the
way to do it?

printf("%s", str__buf] begin]);

A little investigation shows that str__buf] begin] is a character, not a
pointer to a string, which is what is called for. The correct statement is

printf("%s", str__buf + begin);

This kind of error may not be obvious when you first see it. There
are other topics which can be troublesome at first exposure. The
promotion of data types within expressions is an example. Even if you
are sure how a new construct behaves, it never hurts to doublecheck
with a test program.

Certain programming habits will ease the bite of syntax. Foremost
among these is simplicity of style. Top-down programming is aimed at
producing brief and consequently simple functions. This simplicity
should not disappear when the design is coded.

Code should appear as "idiomatic" as possible. Pointers can again
provide an example: it is a fact of C syntax that arrays and pointers
are one and the same. That is,

array[offset]
is the same as
*(array + offset)

The only difference is that an array name is not an lvalue; it is
fixed. But mixing the two ways of referencing an object can cause
confusion, such as in the last example. Choosing a certain idiom,
which is known to behave a certain way, can help avoid many errors in
usage.

- style.10 -

Aztec C STYLE
when bugs strike

The assumption must be that you will have to return to the source
code to make changes, probably due to what is called a bug. Bugs are
characterized by their persistence and their tendency to multiply
rapidly.

Errors can occur at either compile-time or run-time. Compile-time
errors are somewhat easier to resolve since they are usually errors in
syntax which the compiler will point out.

from the compiler

If the compiler does pick up an error in the source code, it will
send an error code to the screen and try to specify where the error
occurred. There are several peculiarities about error reporting which
should be brought up right away.

The most noticeable of these peculiarities is the number of spurious
errors which the compiler may report. This interval of inconsistency is
referred to as the compiler’s recovery. The safest way to deal with an
unusually long list of errors is to correct the first error and then
recompile before proceeding.

The compiler will specify where it "noticed" something was wrong.
This does not necessarily indicate where you must make a change in
the code. The error number is a more accurate clue, since it shows
what the compiler was looking for when the error occurred.

if this ever happens to you

A common example of this is error 69: "missing semicolon." This
error code will be put out if the compiler is expecting a semicolon
when it finds some other character. Since this error most often occurs
at the end of a line, it may not be reported until the first character of
the following line-- recall that whitespace, such as a newline character,
is ignored.

Such an error can be especially treacherous in certain situations.
For example, a missing semicolon at the end of a #include’d file may
be reported when the compiler returns to read input in the original
file.

In general, it is helpful to look at a syntax error from the
compiler’s point of view.

Consider this error:

- style.11 -

STYLE Aztec C

struct structag {
char c;
int i;

}
int j

This should generate an error 16: "data type conflict". The arrow in the
error message should show that the error was detected right after the
"int" in the declaration of j. This means that the error has to do with
something before that line, since there is nothing illegal about the int
keyword.

By inspection, we may see that the semicolon is missing from the
preceding line. If this fact escapes our notice, we still know that error
16 means this: the compiler found a declaration of the form

[data type] [data type] [symbol name]

where the two data types were incompatible. So while shortint is a
good data type, double int is not. A small intuitive leap leads us to
assume that the compiler has read our source as a kind of "struct int"
declaration; struct is the only keyword preceding the int which could
have caused this error. Since the compiler is reading the two
declarations as a single statement, we must be missing a delimiter.

run-time errors

It takes a bit more ingenuity to locate errors which occur at run-
time. In numerical calculations, only the most anomalous results will
draw attention to themselves. Other bugs will generate output which
will appear to have come from an entirely different program.

A bug is most useful when it is repeatable. Bugs which show up
only "sometimes" are merely vexing. They can be caused by a
corrupted disk file or a bad command from the user.

When an error can be consistently produced, its source can be more
easily located. The nature of an error is a good clue as to its source.
Much of your time and sanity will be preserved by setting aside a few
minutes to reflect upon the problem.

Which modules are involved in the computation or process? Many
possibilities can be eliminated from the start, such as pieces. of code
which are unrelated to the error.

The first goal is to determine, from a number of possibilities,
which module might be the source of the bug.

checking input data

Input to the program can be checked at a low cost. Error checking
of this sort should be included on a "routine" basis. For instance, "if
((fp=fopen("file","r"))==NULL)" should be reflex when a file is

- style.12 -

Aztec C STYLE

opened. Any useful error handling can follow in the body of the if.

It is easy to check your data when you first get your hands on it. If
an error occurs after that, you have a bug in your program.

printf it

It is useful to know where the data goes awry. One brute force way
of tracking down the bug is to insert printf statements wherever the
data is referenced. When an unexpected value comes up, a single
module can be chosen for further investigation.

The printf search will be most effective when done with more
refinement. Choose a suspect module. There are only two keys points
to check: the entry and return of the function. printf the data in
question just as soon as the function is entered. If the values are
already incorrect, then you will want to make sure the correct data was
passed in the function call.

If an incorrect value is returned, then the search is confined to the
guilty function. Even if the function returns a good value, you may
want to make sure it is handled correctly by the calling function.

If everything seems to be working, jump to the next tricky module
and perform another check. When you find a bad result, you will still
have to backtrack to discover precisely where the data was spoiled.

function calls

Be aware that data can be garbled in a funtion call. Function
parameters must be declared when they are not two byte integers. For
instance, if a function is called:

fseek(fp, 0, 0);

in order to "seek" to the beginning of a file, but the function is defined
this way:

fseek(fp, offset, origin)
FILE *fp;
long offset;
int origin;
there will be unfortunate consequences.

The second parameter is expected to be a long integer (four bytes),
but what is being passed is a short integer (two bytes). In a function
call, the arguments are just being pushed onto the stack; when the
function is entered, they are pulled off again. In the example, two
bytes are being pushed on, but four bytes (whatever four bytes are
there) are being pulled off.

The solution is just to make the second parameter a long, with a
suffix (OL) or by the cast operator (as in (long)i).

- style.13 -

STYLE Aztec C

A similar problem occurs when a non-integer return value is not
declared in the calling function. For example, if sqrt is being called, it
must be declared as returning a double:

double sqrt();

This method of debugging demonstrates the usefulness of having a
solid design before a function is coded. If you know what should be
going into a function and what should be coming out, the process of
checking that data is made much simpler.

found it

When the guilty function is isolated, the difficulty of finding the
bug is proportional to the simplicity of the code. However, the search
can continue in a similar way. You should have a good notion of the
purpose of each block, such as a loop. By inserting a printf in a loop,
you can observe the effect of each pass on the data.

printf’s can also point out which blocks are actually being executed.
“Falling through" a test, such as an if or a switch, can be a subtle source
of problems. Conditionals should not leave cases untested. An else, or a
de fault in a switch, can rescue the code from unexpected input.

And if you are uncertain how a piece of code will work, it is
usually worthwhile to set up small test programs and observe what
happens. This is instructional and may reveal a bug or two.

- style.14 -

Aztec C STYLE
5. Things to Watch Out for

Some errors arise again and again, Not all of them go away with
experience. The following list will give you an idea of the kinds of
things that can go wrong.

* missing semicolon or brace

The compiler will tell you when a missing semicolon or brace has
introduced bad syntax into the code. However, often such an error will
affect only the logical structure of the program; the code may compile
and even execute. When this error is not revealed by inspection, it is
usually brought out by a test printf which is executed too often or not
enough. See compiler error 69.

* assignment (=) vs comparison (==

Since variables are assigned values more often than they are tested
for equality, the former operator was given the single keystroke: =.
Notice that all the comparison tests with equality are two characters:
<=, >= and ==,

* misplaced semicolon

When typing in a program, keep in mind that all source lines do not
automatically end with a semicolon. Control lines are especially
susceptible to an unwanted semicolon:

for (i=0; i<100; i++);
printf("%d",i);

This example prints the single number 100.
* division (/) vs escape sequence (\)

C definitely distinguishes between these characters. The division
sign resides below the question mark on a standard console; the
backslash is generally harder to find.

* character constant vs character string

Character constants are actually integers equal to the ASCII values
of the respective character. A character string is a series of characters
terminated by a null character (\0). The appropriate delimiter is the
single quote and double quote, respectively.

* uninitialized variable

At some point, all variables must be given values before they are
used. The compiler will set global and static variables to zero, but
automatic variables are guaranteed to contain garbage every time they
are created.

- style.15 -

STYLE Aztec C

* evaluation of expressions

For most operations in C, the order of evaluation is rigidly defined;
thus, many expressions can be written without lots of parentheses.

However, the order in which unparenthesized expressions are
evaluated are not always what you would expect; therefore, it’s usually
a good idea to use parentheses liberally in expressions where there may
be doubt about the order of evaluation (in your mind or in the mind
of someone who may later read your program).

For example, the result of the following example is 6:
inta=2,b=3,¢c=4,4d;
d=a+b/a*c¢

The above expression is equivalent to the parenthesized expression d =
a+ ((b/ a)*c). You should probably use some parentheses in this
expression, to make its effect clear to yourself and to others.

Consider this example:
if((c=0)1(c=1))
printf("%d", ¢);

"1" will be printed; since the first half of the conditional evaluates
to zero, the second half must be also evaluated. But in this example:

if((c=0)&&(c=1))

printf("%d", c);

a "0" is printed. Since the first half evaluates to zero, the value of the
conditional must be zero, or false, and evaluation stops. This is a
property of the logical operators.

* undefined order of evaluation

Unfortunately, not all operators were given a complete set of
instructions as to how they should be evaluated. A good example is the
increment (or decrement) operator. For instance, the following is
undefined:

1= 441+ —-i/++i - i++]
How such an expression is evaluated by a particular implementation is
called a "side effect.” In general, side effects are to be avoided.
* evaluation of boolean expressions

Ands, ors and nots invite the programmer to write long
conditionals whose very purpose is lost in the code. Booleans should be
brief and to the point. Also, the bitwise logical operators must be fully
parenthesized. The table in sections 2.12 and 18.1 of The C
Programming Language, by Kernighan and Ritchie, shows their
precedence in relation to other operators.

- style.16 -

Aztec C STYLE

Here is an extreme example of how a lengthy boolean can be
reduced:

if ((c = getchar()) != EOF && ¢ >="2’ && ¢ <=7’ &&
(¢ = getchar()) >="1" && ¢ <="9’)
printf("good input\n");

if ((c = getchar()) != EOF)
if (c>="a && ¢ <="7)
if ((c = getchar()) >= "0 && ¢ <="9’)
printf("good input\n");

* badly formed comments

The theory of comment syntax is simply that everything occurring
between a left /* and a right */ is ignored by the compiler.
Nonetheless, a missing */ should not be overlooked as a possible error.

Note that comments cannot be nested, that is
/* /* this will cause an error */ */
And this could happen to you too:
/* the rest of this file is ignored until another comment /*

* nesting error

Remember that nesting is determined by braces and not by
indentations in the text of the source. Nested if statements merit
particular care since they are often paired with an else.

* usage of else

Every else must pair up with an if. When an else has inexplicably
remained unpaired, the cause is often related to the first error in this
list.

* falling through the cases in a switch

To maintain the most control over the cases in a switch statement, it
is advisable to end each case with a break, including the last case in the
switch.

strange loops

The behavior of loops can be explored by inserting printf
statements in the body of the loop. Obviously, this will indicate if the
loop has even been entered at all in course of a run. A counter will
show just how many times the loop was executed; a small slip-up will
cause a loop to be run through once too often or seldom. The
condition for leaving the loop should be doublechecked for accuracy.

- style.17 -

STYLE Aztec C

* use of strings

All strings must be terminated by a null character in memory.
Thus, the string, "hello", will occupy a six-clement array; the sixth
clement is * °. This convention is essential when passing a string to a
standard library function. The compiler will append the null character
to string constants automatically.

* pointer vs object of a pointer

The greatest difficulty in using pointers is being sure of what is
needed and what is being used. Functions which take a pointer
argument require an address in memory. The best way to ensure that
the correct value is being passed is to keep track of what is being
pointed to by which pointer.

* array subscripting

The first element in a C array has a subscript of zero. The array
name without a subscript is actually a pointer to this element.
Obviously, many problems can develop from an incorrect subscript.
The most damaging can be subscripting out of bounds, since this will
access memory above the array and overwrite any data there. If array
elements or data stored with arrays are being lost, this error is a good
candidate.

* function interface

During the design stage, the components of a program should be
associated with functions. It is important that the data which is passed
among or shared by these functions be explicitly defined in the
preliminary design of the program. This will greatly facilitate the
coding of the program since the interface between functions must be
precise in several respects.

First of all, if the parameters of a function are established, a call
can be made without the reservation that it will be changed later.
There is less chance that the arguments will be of the wrong type or
specified in the wrong order.

A function is given only a private copy of the variables it is passed.
This is a good reason to decide while designing the program how
functions should access the data they require. You will be able to detail
the arguments to be passed in a function call, the global data which the
function will alter, the value which the function will return and what
declarations will be appropriate-- all without concern for how the
function will be coded.

Argument declarations should be a fairly simple matter once these
things are known. Note that this declaration list must stand before the
left brace of the function body.

- style.18 -

Aztec C STYLE

The type of the function is the same as the type of the value it
returns. Functions must be declared just like any variable. And just
like variables, functions will default to type int, that is, the compiler
will assume that a function returns an integer if you do not tell it
otherwise with a declaration. Thus if function f calls function g which
returns a variable of type double, the following declaration is needed:

function ()
double g(), bigfloat;
g(bigfloat);

}
double g(arg)
double arg;

return(arg);

}

* be sure of what a function returns

You will probably know very well what is returned by a function
you have written yourself. But care should be taken when using
functions coded by someone else. This is especially true of the standard
library functions. Most of the supplied library functions will return an
int or a char pointer where you might expect a char. For instance,
getchar() returns an int, not a char. The functions supplied by Manx
adhere to the UNIX model in all but a few cases.

Of course, the above applies to a function’s arguments as well
* shared data

Variables that are declared globally can be accessed by all functions
in the file. This is not a very safe way to pass data to functions since
once a global variable is altered, there is no returning it to its former
state without an elaborate method of saving data. Moreover, global data
must be carefully managed; a function may process the wrong variable
and consequently inhibit any other function which depends on that
data.

Since C provides for and even encourages private data, this
definitely should not be a common bug,

- style.19 -

STYLE Aztec C

- style.20 -

COMPILER ERROR MESSAGES

-err.l -

Compiler Error Messages Aztec C

Chapter Contents

Compiler ETTOT COAEScovvnmimrmrmnssssrssssssssssssssssasssssssisssssssissssssssssassss err
1. SUITIMATY cecverrerrererrnsiscescsssssssssnsmssasssssssosssanssssssssanassasssssssseussassssssassnssass 4
2. EXPIANAtIONS ..vovveerrecrecsnrsimsesersmssssssssscsscssemssassnesssssssssssstasescisssssnsens 7
3. Fatal Error MESSAZES .eovcerererersresreresesissmsssssssssseessisssessssssnsansnsacasasass 35

-err.2 -

Aztec C Compiler Error Messages

Compiler Error Messages

This chapter discusses error messages that can be generated by the
compiler. It is divided into three sections: the first summarizes the
messages, the second explains them, and the third discusses fatal
compiler error messsages.

-err.3 -

Compiler Error Messages Aztec C

1. Summary of error codes

No. Interpretation

VR NR W

bad digit in octal constant

string space exhausted
unterminated string

internal error

illegal type for function
inappropriate arguments

bad declaration syntax

syntax error in typecast

array dimension must be constant
array size must be positive integer
data type too complex

illegal pointer reference

: unimplemented type
: internal

internal

data type conflict
unsupported data type
data type conflict
obsolete

structure redeclaration

: missing)
. syntax error in structure declaration
. incorrect type for library function (Apprentice C only)

obsolete (other Aztec C compilers)

. need right parenthesis or comma in arg list
: structure member name expected here

must be structure/union member

. illegal typecast
: incompatible structures

illegal use of structure
missing : in ? conditional expression

: call of non-function

illegal pointer calculation

: illegal type

undefined symbol

typedef not allowed here

Nno more expression space

invalid expression for unary operator

. no auto. aggregate initialization allowed

obsolete
internal

: initializer not a constant

too many initializers

- err.d -

Aztec C Compiler Error Messages

43: initialization of undefined structure

44: obsolete

45: bad declaration syntax

46: missing closing brace

47: open failure on include file

48: illegal symbol name

49: multiply defined symbol

50: missing bracket

51: lvalue required

52: obsolete

53: multiply defined label

54: too many labels

55: missing quote

56: missing apostrophe

57. line too long

58: illegal # encountered

59: macro too long

60: obsolete

61: reference of member of undefined structure
62: function body must be compound statement
63: undefined label

64: inappropriate arguments

65: illegal argument name

66: expected comma

67. invalid else

68: syntax error

69: missing semicolon

70: goto needs a label

71: statement syntax error in do-while

72: *for’ syntax error: missing first semicolon
73: ’for’ syntax error: missing second semicolon
74: case value must be an integer constant
75: missing colon on case

76. too many cases in switch

77: case outside of switch

78: missing colon on default

79: duplicate default

80: default outside of switch

81: break/continue error

82: illegal character

83: too many nested includes

84: too many array dimensions

85: not an argument

86: null dimension in array

87. invalid character constant

88: not a structure

89: invalid use of register storage class

90: symbol redeclared

- err.S -

Compiler Error Messages Aztec C

: illegal use of floating point type

: illegal type conversion

: illegal expression type for switch

: invalid identifier in macro definition
: macro needs argument list

missing argument to macro

: obsolete
: not enough arguments in macro reference

internal

: internal

: missing close parenthesis on macro reference
: macro arguments too long

. #else with no #if

. #endif with no #if

: #endasm with no #asm

. #asm within #asm block

: missing #endif

: missing #endasm

. #if value must be integer constant
: invalid use of : operator

: invalid use of void expression

: invalid use function pointer

: duplicate case in switch

: macro redefined

: keyword redefined

field width must be > 0

: invalid 0 length field

. field is too wide

. field not allowed here

: invalid type for field

: ptr to int conversion

: ptr & int not same size

. function ptr & ptr not same size
: invalid ptr/ptr assignment

125:

too many subscripts or indirection on integer

Error codes between 116 and 125 will not occur on Aztec C
compilers whose version number is less than 3.

Error codes greater than 200 will occur only if there’s something
wrong with the compiler. If you get such an error, please send us the
program that generated the error.

- err.6 -

Aztec C Compiler Error Messages

2. Explanations

1: bad digit in octal constant

The only numerals permitted in the base 8 (octal) counting system
are zero through seven. In order to distinguish between octal,
hexadecimal, and decimal constants, octal constants are preceded by a
zero. Any number beginning with a zero must not contain a digit
greater than seven. Octal constants look like this: 01, 027, 003.
Hexadecimal constants begin with 0x (e.g., 0x1, 0xAAO, OxFFF).

2: string space exhausted

The compiler maintains an internal table of the strings appearing in
the source code. Since this table has a finite size, it may overflow
during compilation and cause this error code. The table default size is
about one or two thousand characters depending on the operating
system. The size can be changed using the compiler option -Z.
Through simple guesswork, it is possible to arrive at a table size
sufficient for compiling your program.

3: unterminated string

All strings must begin and end with double quotes ("). This message
indicates that a double quote has remained unpaired.

4: internal error

This error message should not occur. It is a check on the internal
workings of the compiler and is not known to be caused by any
particular piece of code. However, if this error code appears, please
bring it to the attention of MANX. It could be a bug in the compiler.
The release documentation enclosed with the product contains further
information.

5: illegal type for function

The type of a function refers to the type of the value which it
returns. Functions return an int by default unless they are declared
otherwise. However, functions are not allowed to return aggregates
(arrays or structures). An attempt to write a function such as struct sam
func() will generate this error code. The legal function types are char,
int, float, double, unsigned, long, void and a pointer to any type
(including structures).

6: error in argument declaration

The declaration list for the formal parameters of a function stands
immediately before the left brace of the function body, as shown
below. Undeclared arguments default to int, though it is usually better
practice to declare everything Naturally, this declaration list may be
empty, whether or not the function takes any arguments at all.

- err.7 -

Compiler Error Messages Aztec C

No other inappropriate symbols should appear before the left
(open) brace.

badfunction(argl, arg2)

shrt arg 1; /* misspelled or invalid keyword */
double arg 2;

{ /* function body */

y '

goodfunction(argl,arg2)

float argl;

int arg2; /* this line is not required */
{ /* function body */

}

7: bad declaration syntax

A common cause of this error is the absence of a semicolon at the
end of a declaration. The compiler expects a semicolon to follow a
variable declaration unless commas appear between variable names
in multiple declarations.

int i, j; /¥ correct */

charc d; /* error 7 ¥/

char *sl, *s2

float k; /¥ error 7 detected here */

Sometimes the compiler may not detect the error until the next
program line. A missing semicolon at the end of a #include’d file will
be detected back in the file being compiled or in another #include file.
This is a good example of why it is important to examine the context
of the error rather than to rely solely on the information provided by
the compiler error message(s).

8: syntax error in type cast

The syntax of the cast operator must be carefully observed. A
common error is to omit a parenthesis:

i= 3 * (int number); /* incorrect usage */
i= 3 * ((int)number); /* correct usage */
9: array dimension must be constant
The dimension given an array must be a constant of type char, int,

or unsigned. This value is specified in the declaration of the array. See
error 10.

10: array size must be positive integer

The dimension of an array is required to be greater than zero. A
dimension less than or equal to zero becomes 1 by default. As can be
seen from the following example, specifying a dimension of zero is not
the same as leaving the brackets empty.

-err.8 -

Aztec C Compiler Error Messages

char badarray[0]; /* meaningless */
extern char goodarray[]; /* good */

Empty brackets are used when declaring an array that has been
defined (given a size and storage in memory) somewhere else (that is,
outside the current function or file). In the above example, goodarray
is external. Function arguments should be declared with a null
dimension:

func(sl,s2)
char sl[], s2[];
(

}
11: data type too complex

This message is best explained by example:
Char *******foo.

The form of this declaration implies six pointers-to-pointers. The
seventh asterisk indicates a pointer to a char. The compiler is unable to
keep track of so many "levels". Removing just one of the asterisks will
cure the error; all that is being declared in any case is a single two-byte
pointer. However it is to be hoped that such a construct will never be
needed.

12: illegal pointer reference

The type of a pointer must be either int or unsigned. This is why
you might get away with not declaring pointer arguments in functions
like fopen which return a pointer; they default to int. When this error
is generated, an expression used as a pointer is of an invalid type:

char c;

int var; /* any variable */

int varaddress;

varaddress = &var; /* valid since addresses */

(varaddress) = °c’; / can fit in an int */

(expression) = 10; / in general, expression
must be an int or unsigned */

c="¢; / error 12 */

13: internal [see error 4]
14: internal [see error 4]
15: storage dass conflict

Only automatic variables and function parameters can be specified
as register.

This error can be caused by declaring a static register variable. While
structure members cannot be given a storage class at all, function

-err.9 -

Compiler Error Messages Aztec C

arguments can be specified only as register.

A register int i declaration is not allowed outside a function--it will
generate error 89 (see below).

16: data type conflict

The basic data types are not numerous, and there are not many
ways to use them in declarations. The possibilities are listed below.

This error code indicates that two incompatible data types were
used in conjunction with one another. For example, while it is valid to
say long int i, and unsigned int j, it is meaningless to use double int k or
float char c. In this respect, the compiler checks to make sure that int,
char, float and double are used correctly.

data type interpretation size(bytes)
char character |
int integer 2
unsigned/unsigned int | unsigned integer 2
short integer 2
long/long integer long integer 4
float floating point number 4
long float/double double precision float 8

17: Unsupported data type

This message occurs only when data types are used which are
supported by the extended C language, such as the enum data type.

18: data type conflict

This message indicates an error in the use of the long or unsigned
data type. long can be applied as a qualifier to int and float. unsigned
can be used with char, int and long.

long i; /* a long int */
long float d; /* a double */
unsigned u; /* an unsigned int */

unsigned char c;
unsigned long I;
unsigned float f; /* error 18 */

19: obsolete

Error codes interpreted as obsolete do not occur in the current
version of the compiler. Some simply no longer apply due to the
increased adaptability of the compiler. Other error codes have been
translated into full messages sent directly to the screen. If you are
using an older version of the product and have need of these codes,
please contact Manx for information.

- err.10 -

Aztec C Compiler Error Messages

20: structure redeclaration

The compiler is able to tell you if a structure has already been
defined. This message informs you that you have tried to redefine a
structure,

21: missing }

The compiler expects to find a comma after each member in the
list of fields for a structure initialization. After the last field, it expects
a right (close) brace.

For example, the following program fragment will generate error
21, since the initialization of the structure named harry’ doesn’t have
a closing brace:

struct sam {

int bone;

char license[10];
} harry = {

"33-4-1984"
22; syntax error in structure declaration

The compiler was unable to find the left (open) brace which follows
the tag in a structure declaration. In the example for error 21, "sam" is
the structure tag. A left brace must follow the keyword struct if no
structure tag is specified.

23: incorrect type for library function (Apprentice C only)

For Apprentice C, this error means that your program has either
explicitly or implicitly incorrectly declared the type of a function
that’s in the run-time system. For example, you will get this error if
you call the run-time system function sgrt without declaring that it
returns a double.

23: obsolete (Other Aztec C Compilers)

For Compilers other than Apprentice C, this error should not
occur.

24: need right parenthesis or comma

The right parenthesis is missing from a function call. Every
function call must have an argument list enclosed by parentheses even
if the list is empty. A right parenthesis is required to terminate the
argument list.

In the following example, the parentheses indicate that getchar is a
function rather than a variable.

getchar();

-err.11 -

Compiler Error Messages Aztec C

This is the equivalent of
CALL getchar

which might be found in a more explicit programming language. In
general, a function is recognized as a name followed by a left
parenthesis.

With the exception of reserved words, any name can be made a
function by the addition of parentheses. However, if a previously
defined variable is used as a function name, a compilation error will
result.

Moreover, a comma must separate each argument in the list. For
example, error 24 will also result from this statement;

funccall(argl, arg2 arg3);
25: structure member name expected here

The symbol name following the dot operator or the arrow must be
valid. A valid name is a string of alphanumerics and underscores. It
must begin with an alphabetic (a letter of the alphabet or an
underscore). In the last line of the following example, "(salary)" is not
valid because ’(’ is not an alphanumeric.

empptr = &anderson;

empptr->salary = 12000; /¥ these three lines */
(*empptr).salary = 12000; /* are */
anderson.salary = 12000; /* equivalent */
empptr = &anderson.; /¥ error 25 */
empptr-> = 12000; /* error 25 */

anderson.(salary) = 12000; /* error 25 */
26: must be structure/union member

The defined structure or union has no member with the name
specified. If the -S option was specified, no previously defined
structure or union has such a member either.

Structure members cannot be created at will during a program. Like
other variables, they must be fully defined in the appropriate
- declaration list. Unions provide for variably typed fields, but the full
range of desired types must be anticipated in the union declaration.

27: illegal type cast

It is not possible to cast an expression to a function, a structure, or
an array. This message may also appear if a syntax error occurs in the
expression to be cast.

structure sam { ... } thom;
thom = (struct sam)(expression); /* error 27 */

-err.12 -

Aztec C Compiler Error Messages

28: incompatible structures

C permits the assignment of one structure to another. The compiler
will ensure that the two structures are identical. Both structures must
have the same structure tag. For example;

struct sam harry;

struct sam thom,;

harry = thom,;
29: illegal use of structure

Not all operators can accept a structure as an operand. Also,
structures cannot be passed as arguments. However, it is possible to
take the address of a structure using the ampersand (&), to assign
structures, and to reference a member of a structure using the dot
operator.

30: missing: in ? conditional expression
The standard syntax for this operator is:
expression ? statementl : statement2

It is not desirable to use ?: for extremely complicated expressions; its
purpose lies in brevity and clarity.

31: call of non-function
The following represents a function call:
symbol(argl, arg2, ..., argn);

where "symbol" is not a reserved word and the expression stands in the
body of a function. Error 31, in reference to the expression above,
indicates that "symbol" has been previously declared as something
other than a function.

A missing operator may also cause this error:

a(b + ¢); /* error 31 */
a*(b+c) /* intended */

The missing ** makes the compiler view "a()" as a function call.
32: illegal pointer calculation

Pointers may be involved in three calculations. An integral value
can be added to or subtracted from a pointer. Pointers to objects of the
same type can be subtracted from one another and compared to one
another. (For a formal definition, see Kernighan and Ritchie pp. 188-
189.) Since the comparison and subtraction of two pointers is
dependent upon pointer size, both operands must be the same size.

- err.13 -

Compiler Error Messages Aztec C

33: illegal type

The unary minus (-) and bit complement (~) operators cannot be
applied to structures, pointers, arrays and functions. There is no
reasonable interpretation for the following:

int function();

char array[12];

struct sam { ... } harry;

a = -array; [¥7%/
b = -harry;

¢ = ~function & WRONG;

34: undefined symbol

The compiler will recognize only reserved words and names which
have been previously defined. This error is often the result of a
typographical error or due to an omitted declaration.

35: typedef not allowed here

Symbols which have been defined as types are not allowed within
expressions. The exception to this rule is the use of sizeof(expression)
and the cast operator. Compare the accompanying examples:

struct sam {
int i;
} harry;
typedef double bigfloat;
typedef struct sam foo;

j= 4 * bigfloat f} /* error 35 */
k = &foo; /* error 35 */
x = sizeof(bigfloat);

y = sizeof(foo); /* good */

The compiler will detect two errors in this code. In the first
assignment, a typecast was probably intended; compare error 8. The
second assignment makes reference to the address of a structure type.
However, the structure type is just a template for instances of the
structure (such as "harry"). It is no more meaningful to take the
address of a structure type than any other data type, as in &int.

36: no more expression space

This message indicates that the expression table is not large enough
for the compiler to process the source code. It is necessary to
recompile the file using the -E option to increase the number of
available entries in the expression table. See the description of the
compiler in the manual.

-err.14 -

Aztec C Compiler Error Messages

37: invalid expression

This error occurs in the evaluation of an expression containing a
unary operator. The operand either is not given or is itself an invalid
expression.

Unary operators take just one operand; they work on just one
variable or expression. If the operand is not simply missing, as in the
example below, it fails to evaluate to anything its operator can accept.
The unary operators are logical not (1), bit complement (~), increment
(++), decrement (--), unary minus (-), typecast, pointer-to (*),
address-of (&), and sizeof.

it ()
38: no auto. aggregate initialization

It is not permitted to initialize automatic arrays and structures.
Static and external aggregates may be initialized, but by default their
members are set to zero.

char array[5] = (’a’, b, ’c’,’d’ };
function()
{
static struct sam {
int bone;
char license[10];
} harry = {
1

"123-4-1984"
%
char autoarray[2] = {’f,’g’ }; /* no good */
extern char array[];

}

There are three variables in the above example, only two of which
are correctly initialized. The variable “"array" may be initialized
because it is external. Its first four members will be given the
characters as shown. The fifth member will be set to zero.

The structure "harry" is static and may be initialized. Notice that
"license" cannot be initialized without first giving a value to "bone".
There are no provisions in C for setting a value in the middle of an
aggregate.

The variable "autoarray" is an automatic array. That is, it is local to
a function and it is not declared to be static. Automatic variables
reappear automatically every time a function is called, and they are
guaranteed to contain garbage. Automatic aggregates cannot be
initialized.

- err.15 -

Compiler Error Messages Aztec C

39: obsolete [see error 19]
40: internal [see error 4]
41: initializer not a constant

In certain initializations, the expression to the right of the equals
sign (=) must be a constant. Indeed, only automatic and register
variables may be initialized to an expression. Such initializations are
meant as a convenient shorthand to eliminate assignment statements.
The initialization of statics and globals actually occurs at link-time, and
not at run-time,

..
inti=3;
static int j = (2 + i); /* illegal */

42: too many initializers

There were more values found in an initialization than array or
structure members exist to hold them. Either too many values were
specified or there should have been more members declared in the
aggregate definition.

In the initialization of a complex data structure, it is possible to
enclose the initializer in a single set of braces and simply list the
members, separated by commas. If more than one set of braces is used,
as in the case of a structure within a structure, the initializer must be
entirely braced.

struct {
struct {
char arrayl];
} substruct;
} superstruct =

version 1:
"abcdefghij"
5
version 2;
{
{ ’a’,9b7,’c9,".,’i’,9j’}
}
I

In version 1, the initializers are copied byte-for-byte onto the
structure, superstruct. '

-err.16 -

Aztec C Compiler Error Messages

Another likely source of this error is in the initialization of arrays
with strings, as in:

char array[10] = "abcdefghij";

This will generate error 42 because the string constant on the right
is null-terminated. The null terminator (* > or 0x00) brings the size of
the initializer to 11 bytes, which overflows the ten-byte array.

43: undefined structure initialization

An attempt has been made to assign values to a structure which has
not yet been defined.

struct sam {...};
struct dog sam = { 1, 2, 3}; /* error 43 ¥/

44: obsolete [see error 19]
45: bad declaration syntax

This error code is an all purpose means for catching errors in
declaration statements. It indicates that the compiler is unable to
interpret a word in an external declaration list.

46: missing closing brace

All the braces did not pair up at the end of compilation. If all the
preceding code is correct, this message indicates that the final closing
brace to a function is missing. However, it can also result from a brace
missing from an inner block.

Keep in mind that the compiler accepts or rejects code on the basis
of syntax, so that an error is detected only when the rules of grammar
are violated. This can be misleading. For example, the program below
will generate error 46 at the end even though the human error
probably occurred in the while loop several lines earlier.

As the code appears here, every statement after the left brace in
line 6 belongs to the body of the while loop. The compilation error
vanishes when a right brace is appended to the end of the program, but
the results during run time will be indecipherable because the brace
should be placed at the end of the loop.

It is usually best to match braces visually before running the
compiler. A C-oriented text editor makes this task easier.

-err.17 -

Compiler Error Messages Aztec C

main()’
e .
nt1i, j;
char array[80];
gets(array);
1=U;
while (array[i]) {
putchar(array[i]);
i++;
for (i=0; array[i];i++) {
for (j=i + 1; array[j]; j++) {
printf("elements %d and %d are ", i, j);
if (array[i] == array[j])
printf("the same\n");
else
printf("different\n");

putchar(’\n’);

}
47: open failure on indude file

When a file is #included, the compiler will look for it in a default
area (see the manual description of the compiler). This message will be
generated if the file could not be opened. An open failure usually
occurs when the included file does not exist where the compiler is
searching for it. Note that a drive specification is allowed in an
include statement, but this diminishes flexibility somewhat.

48: illegal symbol name

This message is produced by the preprocessor, which is that part of
the compiler which handles lines which begin with a pound sign (#).
The source for the error is on such a line. A legal name is a string
whose first character is an alphabetic (a letter of the alphabet or an
underscore). The succeeding characters may be any combination of
alphanumerics (alphabetics and numerals). The following symbols will
produce this error code:

2nd__time,
dont__do__this!

49: multiply defined symbol

This message warns that a symbol has already been declared and
that it is illegal to redeclare it. The following is a representative
example:

inti,j, ki /* illegal */

-err.18 -

Aztec C Compiler Error Messages

50: missing bracket

This error code is used to indicate the need for a parenthesis,
bracket or brace in a variety of circumstances.

51: lvalue required

Only kvalues are are allowed to stand on the left-hand side of an
assignment. For example:

int num;
num = 7,

They are distinguished from rvalues, which can never stand on the
left of an assignment, by the fact that they refer to a unique location
in memory where a value can be stored. An lvalue may be thought of
as a bucket into which an rvalue can be dropped. Just as the contents
of one bucket can be passed to another, so can an lvalue y be assigned
to another lvalue, x:

#define NUMBER 512

X=Y,
1024 = z; /* wrong; 1/rvalues are reversed */
NUMBER = x; /* wrong; NUMBER is still an rvalue */

Some operators which require Ivalues as operands are increment
(++), decrement (--), and address-of (&). It is not possible to take the
address of a register variable as was attempted in the following
example:

register int i, j;

i=3;
i=&i
52: obsolete [see error 19]

53: multiply defined label

On occasions when the goto statement is used, it is important that
the specified label be unique. There is no criterion by which the
computer can choose between identical labels. If you have trouble
finding the duplicate label, use your text editor to search for all
occurrences of the string.

54: too many labels

The compiler maintains an internal table of labels which will
support up to several dozen labels. Although this table is fixed in size,
it should satisfy the requirements of any reasonable C program. C was
structured to discourage extravagance in the use of goto’s. Strictly
speaking, goto statements are not required by any procedure in C; they
are primarily recommended as a quick and simple means of exiting
from a nested structure.

-err.19 -

Compiler Error Messages Aztec C

This error indicates that you should significantly reduce the
number of goto’s in your program.

55: missing quote

The compiler found a mismatched double quote (") in a #define
preprocessor command. Unlike brackets, quotes are not paired
innermost to outermost, but sequentially. So the first quote 1is
associated with the second, the third with the fourth, and so on. Single
quotes (°) and double quotes (") are entirely different characters and
should not be confused. The latter are used to delimit string constants.
A double quote can be included in a string by use of a backslash, as in
this example:

"this is a string"
“this is a string with an embedded quote: \". "

56: missing apostrophe

The compiler found a mismatched single quote or apostrophe () in
a #de fine preprocessor command. Single quotes are paired sequentially
(see error 55). Although quotes can not be nested, a quote can be
represented in a character constant with a backslash: -
char ¢ ="\"; /* ¢ is initialized to
single quote */
57: line too long

Lines are restricted in length by the size of the buffer used to hold
them. This restriction varies from system to system. However, logical
lines can be infinitely long by continuing a line with a backslash-
newline sequence. These characters will be ignored.

58: illegal # encountered

The pound sign (#) begins each command for the preprocessor:
#include, #define, #if, #ifdef, #ifndef, #else, #endif, #asm, #endasm,
#line and #undef. These symbols are strictly defined. The pound sign
(#) must be in column one and lower case letters are required.

59: macro too long

Macros can be defined with a preprocessor command of the
following form:

#define [identifier] [substitution text]

The compiler then proceeds to replace all instances of "identifier"
with the substitution text that was specified by the #define.

This error code refers to the substitution text of a macro. Whereas
ideally a macro definition may be extended for an arbitrary number of
lines by ending each line with a backslash (), for practical purposes the
size of a macro has been limited to 255 characters.

- err.20 -

Aztec C Compiler Error Messages

60: obsolete [see error 19]
61: reference of member of undefined structure

Occurs only under compilation without the -S option. Consider the
following example:

int bone;
struct cat {
int toy;
} manx;
struct dog *samptr;
manx.toy = 1;
bone = samptr->toy; /* error 61 */

This error code appears most often in conjunction with this kind of
mistake. It is possible to define a pointer to a structure without having
already defined the structure itself. In the example, samptr is a
structure pointer, but what form that structure ("dog") may take is still
unknown. So when reference is made to a member of the structure to
which samptr points, the compiler replies that it does not even known
what the structure looks like.

The -S compiler option is provided to duplicate the manner in
which earlier versions of UNIX treated structures. Given the example
above, it would make the compiler search all previously defined
structures for the member in question. In particular, the value of the
member "toy" found in the structure "manx" would be assigned to the
variable "bone". The -S option is not recommended as a short cut for
defining structures.

62: function body must be compound statement

The body of a function must be enclosed by braces, even though it
may consist of only one statement:

function()

return I;

}

This error can also be caused by an error inside a function
declaration list, as in:

func(a, b)
int a; chr b;
{

63: undefined label

A goto statement is meaningless if the corresponding label does
not appear somewhere in the code. The compiler disallows this since it
must be able to specify a destination to the computer.

- err.21 -

Compiler Error Messages Aztec C

It is not possible to goto a label outside the present function (labels
are local to the function in which they appear). Thus, if a label does
not exist in the sanie procedure as its corresponding goto, this message
will be generated.

64: inappropriate arguments

When a function is declared (as opposed to defined), it is poor
syntax to specify an argument list:

function(string)
char *string;
char *funcl(); /* correct */

double func2(x,y); /* wrong */

}

In this example, function() is being defined, but funcl() and
func2() are being declared.

65: illegal or missing argument name

The compiler has found an illegal name in a function argument list.
An argument name must conform to the same rules as variable names,
beginning with an alphabetic (letter or underscore) and continuing
with any sequence of alphanumerics and underscores. Names must not
coincide with reserved words.

66: expected comma
In an argument list, arguments must be separated by commas.
67: invalid else

An else was found which is not associated with an if statement. else
is bound to the nearest if at its own level of nesting. So if-else pairings
are determined by their relative placement in the code and their
grouping by braces.

if(..) {
if () (
} else if (...)
} else {
-

The indentation of the source text should indicate the intended
structure of the code. Note that the indentation of the if and else-if
means only that the programmer wanted both conditionals to be nested
at the same level, in particular one step down from the presiding if

- err.22 -

Aztec C Compiler Error Messages

statement, But it is the placement of braces that determines this for the
compiler. The example above is correct, but probably does not
conform to the expectations revealed by the indentation of the else
statement. As shown here, the else is paired with the first if, not the
second.

68: syntax error

The keywords used in declaring a variable, which specify storage
class and data type, must not appear in an executable statement. In
particular, all local declarations must appear at the beginning of a
block, that is, directly following the left brace which delimits the body
of a loop, conditional or function. Once the compiler has reached a
non-declaration, a keyword such as char or int must not lead a
statement; compare the use of the casting operator:

func()
{

int i;

char array[12];

float k = 2.03;

i=0;

int m; /* error 68 */
j=i+5;

i= (int) k; /* correct ¥/
if (1) {

inti=3;
i=i
printf("%d",i);
}
printf("%d%d\n",i,j);
}

This trivial function prints the values 3, 2 and 3. The variable i
which is declared in the body of the conditional (if) lives only until
the next right brace; then it dies, and the original i regains its identity.

69: missing semicolon

A semicolon is missing from the end of an executable statement.
This error code is subject to the same vagaries as its cousin, error 7. It
will remain undetected until the following line and is often spuriously
caused by a previous error.

70: bad goto syntax

Compare your use of goto with an example. This message says that
you did not specify where you wanted to goto with a label

- err.23 -

Compiler Error Messages Aztec C
goto label;
lab;i:

It is not possible to goto just any identifier in the source code;
labels are special because they are followed by a colon.

71: statement syntax error in do-while

The body of a do-while may consist of one statement or several
statements enclosed in braces. A while conditional is required after the
body of the loop. This is true even if the loop is infinite, as it is
required by the rules of syntax. After typing in a long body, don’t
forget the while conditional.

72: ’for’ syntax error: missing first semicolon

This error focuses on another control flow statement, the for. The
keyword, for, must be followed by parentheses. In the parentheses
belong three expressions, any or all of which may be null. For the sake
of clarity, C requires that the two semicolons which separate the
expressions be retained, even if all three expressions are empty.

for (; /* an infinite loop which does */
; /* absolutely nothing */

Error 72 signifies that the compiler didn’t find the first semicolon
within the parentheses.

73: ’for’ syntax error: missing second semicolon

This error is similar to error 72; it means that the compiler didn’t
find the second semicolon within the parenthesized expression
following the ’for’.

74: case value must be integer constant

Strictly speaking, each value in a case statement must be a constant
of one of three types: char, int or unsigned. This is similar to the rule
for a switched variable. In the following example, a float must be cast
to an int in order to be switched; however, notice that the programmer
did not check his case statements. The second case value is invalid, and
the code will not compile.

-err.24 -

Aztec C Compiler Error Messages

float k = 5.0;

switch((int)k) {

case 4
printf("good case value\n");
break;

case 5.0
printf("bad case value\n");
break;

}

The programmer must replace "case 5.0:" with "case 5".

75: missing colon on case

This should be straightforward. If the compiler accepts a case value,
a colon should follow it. A semi-colon must not be accidently entered
in its place.

76: too many cases in switch

The compiler reserves a limited number of spaces in an internal
table for case statements. If a program requires more cases than the
table initially allows, it becomes necessary to tell the compiler what the
table value should be changed to. It is not necessary to know exactly
how many are needed; an approximation is sufficient, depending on
the requirements of the situation.

77: case outside of switch

The keyword, case, belongs to just one syntactic structure, the
switch. If "case" appears outside the braces which contain a switch
statement, this error is generated. Remember that all keywords are
reserved, so that they cannot be used as variable names.

78: missing colon

This message indicates that a colon is missing after the keyword,
default. Compare error 75.

79: duplicate default

The compiler has found more than one default in a switch. Switch
will compare a variable to a given list of values. But it is not always
possible to anticipate the full range of values which the variable may
take. Nor is it feasible to specify a large number of cases in which the
program is not particularly interested.

So C provides for a default case. The default will handle all those
values not specified by a case statement. It is analogous to the else
companion to the conditional, if. Just as there is one else for every if,
only one default case is allowed in a switch statement. However, unlike
the else statement, the position of a default is not crucial; a default can
appear anywhere in a list of cases.

- err.25 -

Compiler Error Messages Aztec C

80: default outside of switch

The keyword, default, is used just like case. It must appear within
the brackets which delimit the switch statement.

81: break/continue error

Break and continue are used to skip the remainder of a loop in
order to exit or repeat the loop. Break will also end a switch statement.
But when the keywords, break or continue, are used outside of these
contexts, this message results.

82: illegal character

Some characters simply do not make sense in a C program, such as
’$’ and ’@’. Others, for instance the pound sign (#), may be valid only
in particular contexts.

83: too many nested includes

#includes can be nested, but this capacity is limited. The compiler
will balk if required to descend more than three levels into a nest. In
the example given, file D is not allowed to have a #include in the
compilation of file A.

file A file B file C file D
#include "B" #include "C" #include "D"

84: too many array dimensions

An array is declared with too many dimensions, This error should
appear in conjunction with error 11.

85: not an argument

The compiler has found a name in the declaration list that was not
in the argument list. Only the converse case is valid, i.c., an argument
can be passed and not subsequently declared.

86: null dimension in array

In certain cases, the compiler knows how to treat multidimensional
arrays whose left-most dimensions are not given in its declaration.
Specifically, this is true for an extern declaration and an array
initialization. The value of any dimension which is not the left-most
must be given.

extern char array[][12]; /* correct */
extern char badarray[5]{}; /* wrong */

87: invalid character constant

Character constants may consist of one or two characters enclosed
in single quotes, as ’a’ or ’ab’. There is no analog to a null string, so
(two single quotes with no intervening white space) is not allowed.
Recall that the special backslash characters (\b, \n, \t etc.) are singular,

- err.26 -

Aztec C Compiler Error Messages

so that the following are valid: *\n’, *\na’, ’a\n’; *aaa’ is invalid.
88: not a structure

Occurs only under compilation without the -S option. A name used
as a structure does not refer to a structure, but to some other data type.
int i;
imember = 3; /* error 88 */
89: invalid storage class

A globally defined variable cannot be specified as register. Register
variables are required to be local.

90: symbol redeclared
A function argument has been declared more than once.
91: illegal use of floating point type

Floating point numbers can be negated (unary minus), added,
subtracted, multiplied, divided and compared; any other operator will
produce this error message.

92: illegal type conversion

This error code indicates that a data type conversion, implicit in
the code, is not allowed, as in the following piece of code:
int i;
float j;
char *ptr;
i=j+ ptr;

The diagram shows how variables are converted to different types
in the evaluation of expressions. Initially, variables of type char and
short become int, and float becomes double. Then all variables are
promoted to the highest type present in the expression. The result of

the expression will have this type also. Thus, an expression containing
a float will evaluate to a double.

hierarchy of types:

double <-- float
long

unsigned

int <-- short, char

This error can also be caused by an attempt to return a structure,
since the structure is being cast to the type of the function, as in:

)

- err.27 -

Compiler El_'ror Messages Aztec C
int func()

struct tag sam,;
return sam;

}
93: illegal expression type for switch

Only a char, int or unsigned variable can be switched. See the
example for error 74.

94: bad argument to define

An illegal name was used for an argument in the definition of a
macro. For a description of legal names, see error 65.

95: no argument list

When a macro is defined with arguments, any invocation of that
macro is expected to have arguments of corresponding form. This
error code is generated when no parenthesized argument list was found
in a macro reference.

#define getchar() getc(stdin)

¢ = getchar; /¥ error 95 */
96: missing argument to macro

Not enough arguments were found in an invocation of a macro.
Specifically, a "double comma" will produce this error:

#define reverse(x,v,z) (z,y,x)
~ func(reverse(i,,k));
97: obsolete [see error 19]
98: not enough args in macro reference

The incorrect number of arguments was found in an invocation of
a previously defined macro. As the examples show, this error is not
identical to error 96.

#define exchange(x,y) (v,x)
func(exchange(i)); /* error 98 */
99: internal [see error 4]
100: internal [see error 4]
101: missing close parenthesis on macro reference

A right (closing) parenthesis is expected in a macro reference with
arguments. In a sense, this is the complement of error 95; a macro
argument list is checked for both a beginning and an ending,

- err.28 -

Aztec C Compiler Error Messages

102: macro arguments too long

The combined length of a macro’s arguments is limited. This error
can be resolved by simply shortening the arguments with which the
macro is invoked.

103: #else with no #if

Correspondence between #if and #else is analogous to that which
exists between the control flow statements, if and else. Obviously,
much depends upon the relative placement of the statements in the
code. However, #if blocks must always be terminated by #endif, and
the #else statement must be included in the block of the #if with
which it is associated. For example:

#if ERROR > 0

printf("there was an error\n");
#else

printf("no error this time\n");
#endif

#if statements can be nested, as below. The range of each #if is
determined by a #endif. This also excludes #else from #if blocks to
which it does not belong:

#ifdef JANI

printf("happy new year!\n");
#if sick

printf("i think ’l1l go home now\n");
#else

printf("i think ’1l have another\n");
#endif
#else

printf("i wonder what day it is\n");
#endif

If the first #endif was missing, error 103 would result. And without
the second #endif, the compiler would generate error 107.

104: #endif with no #if

#endif is paired with the nearest #if, #ifdef or #ifndef which
precedes it. (See error 103.)

105: #endasm with no #asm

#endasm must appear after an associated #asm. These compiler-
control lines are used to begin and end embedded assembly code. This
error code indicates that the compiler has reached a #endasm without
having found a previous #asm. If the #asm was simply missing, the
error list should begin with the assembly code (which are undefined
symbols to the compiler).

- err.29 -

Compiler Error Messages Aztec C

106: #asm within #asm block

There is no meaningful sense in which in-line assembly code can be
nested, so the #asm keyword must not appear between a paired
#asm/#endasm. When a piece of in-line assembly is augmented for
temporary purposes, the old #asm and #endasm can be enclosed in
comments as place-holders.

#asm
/* temporary asm code */

/* #asm old beginning */
/* more asm code */

#endasm

107: missing #endif

A #endif is rcquired for every #if, #ifdef and #ifndef, even if the
entire source file is subject to a smgle conditional compilation. Try to
assign pairs beginning with the first #endif. Backtrack to the previous
#if and form the pair. Assign the next #endif with the nearest
unpaired #if. When this process becomes greatly complicated, you
might consider rethinking the logic of your program.

108: missing #endasm

In-line assembly code must be terminated by a #endasm in all
cases. #asm must always be paired with a #endasm.

109: #if value must be integer constant

#if requires an integral constant expression. This allows both
integer and character constants, the arithmetic operators, bitwise
operators, the unary minus (-) and bit complement, and comparison
tests.

Assuming all the macro constants (in capitals) are integers,

#if DIFF >="A’-a
#if (WORD &= ~MASK) >> 8
#if MAR | APR |[MAY

are all legal expressions for use with #if.
110: invalid use of colon operator

The colon operator occurs in two places: 1. following a question
mark as part of a conditional, as in (flag ?- 1 : 0); 2. following a label
inserted by the programmer or following one of the reserved labels,
case and de fault.

111: illegal use of a void expression

This error can be caused by assigning a void expression to a
variable, as in this example:

-err.30 -

Aztec C Compiler Error Messages

void func();
int h;

h = func(arg);
112 illegal use of function pointer
For example,
int (*funcptr) ();

funcptr++;

funcptr is a pointer to a function which returns an integer.
Although it is like other pointers in that it contains the address of its
object, it is not suject to the rules of pointer arithmetic. Otherwise,
the offending statement in the example would be interpreted as adding
to the pointer the size of the function, which is not a defined value.

113: duplicate case in switch

This simply means that, in a switch statement, there are two case
values which are the same. Either the two cases must be combined into
one, or one of them must be discarded. For instance:

switch (¢) (
case NOOP:
return (0);
case MULT:
return (x * y);
case DIV:
return (x / y);
case ADD:
return (X + y);
case NOOP:
default:
return,
}

The case of NOOP is duplicated, and will generate an error.
114: macro redefined
For example,
#define islow(n) (n>=0&&n<5)

#d;i”mc islow(n) (n>=0&&n<=5)

The macro, islow, is being used to classify a numerical value. When
a second definition of it is found, the compiler will compare the new
substitution string with the previous one. If they are found to be
different, the second definition will become current, and this error
code will be produced.

-err.31 -

Compiler Error Messages Aztec C

In the example, the second definition differs from the first in a
single character, ’=’. The second definition is also different from this
one:

#define islow(n) n>=0&&n<=35
since the parentheses are missing.
The following lines will not generate this error:
#define NULL 0
#define NULL 0
But these are different from:
#define NULL’ °

In practice, this error message does not affect the compilation of
the source code. The most recent "revision" of the substitution string is
used for the macro. But relying upon this fact may not be a wise habit.

115: keyword redefined
Keywords cannot be defined as macros, as in:
#define int foo

If you have a variable which may be either, for instance, a short or
a long integer, there are alternative methods for switching between the
two. If you want to compile the variable as either type of integer,
consider the following:

#ifdef LONGINT
long i;

#else
short i;

#endif

Another possibility is through a typedef:

#ifdef LONGINT

typedef long VARTYPE;
#else

typedef short VARTYPE;
#endif

VARTYPE i;
116: field width must be > 0
A field in a bit field structure can’t have a negative number of bits.
117: invalid 0 length field
A field in a bit field structure can’t have zero bits.

-err.32 -

Aztec C Compiler Error Messages

118: field is too wide

A field in a bit field structure can’t have more than 16 bits.
119: field not allowed here

A bit field definition can only be contained in a structure.
120: invalid type for field

The type of a bit field can only be of type int of unsigned int.
121: ptr/int conversion

The compiler issues this warning message if it must implicitly
convert the type of an expression from pointer to int or long, or vice
versa.

If the program explicitly casts a pointer to an int this message won’t
be issued. However, in this case, error 122 may occur.

For example, the following will generate warning 121:
char *cp;
int i;
i = cp; /* implicit conversion of char * to int */

When the compiler issues warning 121, it will generate correct code
if the sizes of the two items are the same.

122: ptr & int not same size

If a program explicitly casts a pointer to an int, and the sizes of the
two items differ, the compiler will issue this warning message. The
code that’s generated when the converted pointer is used in an
expression will use only as much of the least significant part of the
pointer as will fit in an int.

123: function ptr & ptr not same size

If a program explicitly casts a pointer to a data item to be a pointer
to a function, or vice versa, and the sizes of the two pointers differ,
the compiler issues this warning message.

If the program doesn’t explicitly request the conversion, warning
124 will be issued instead of warning 123.

124: invalid ptr/ptr assignment

If a program attempts to assign one pointer to another without
explicitly casting the two pointers to be of the same type, and the types
of the two pointers are in fact different, the compiler will issue this
warning message.

The compiler will generate code for the assignment, and if the sizes
of the two pointers are the same, the code will be correct. But if the

- err.33 -

Compiler Error Messages Aztec C

sizes differ, the code may not be correct.
125: too many subscripts or indirection on integer

This warning message is issued if a program attempts to use an
integer as a pointer; that is, as the operand of a star operator.

If the sizes of a pointer and an int are the same, the generated code
will access the correct memory location, but if they don’t, it won’t.

For example,

char c;

long g;

0x5c=0; / warning 125, because 0x5¢ is an int */
[i]=0; /* warning 125, because c+i is an int */
g[i]=0; /* error 12, because g+i is a long */

-err.34 -

Aztec C Compiler Error Messages

3. Fatal Compiler Error Messages

If the compiler encouters a "fatal" error, one which makes further
operation impossible, it will send a message to the screen and end the
compilation immediately.

Out of disk space!

There is no room on the disk for the output file of the compiler.
Previous disk files will not be overwritten by the compiler’s assembly
language output. To make room on the disk, it is usually sufficient to
remove unneeded files from the disk.

unknown option:
The compiler has been invoked with an option letter which it does

not recognize. The manual explicitly states which options the compiler
will accept. The compiler will specify the invalid option letter.

duplicate output file

If an output file name has been specified with the -o option and
that file already exists on the disk, the compiler will not overwrite it.
-O must specify a new file.

too few arguments for -0 option

The compiler expected to find the output filename following the "-
0", but didn’t find it. The output file name must follow the option
letter and the name of the file to be compiled must occur last in the
command line.

Open failure on input

The input file specified in the command line does not exist on the
disk or cannot be opened. A path or drive specification can be
included with a filename according to the operating system in use.

No input!

While the compiler was able to open the input file given in the
command line, that file was found to be empty.

Open failure on output

The compiler was unable to create an output file. On some
systems, this error could occur if a disk’s directory is full

Local table full! (use -L)

The compiler maintains an internal table of the local variables in
the source code. If the number of local symbols in use exceeds the
available entries in the table at any time during compilation, the
compiler will print this message and quit. The default size of the local
symbol table (40 entries) can be changed with the -L option for the

- err.35 -

Compiler Error Messages Aztec C

compiler. Local variables are those defined within braces, ie., in a
function body or in a compound statement. The scope of a local
variable is the body in which it is defined, that is, it is defined until
the next right brace at its own nesting level

Out of memory!

Since the compiler must maintain various tables in memory as well
as manipulate source code, it may run out of memory during
operation. The more immediate solution is to vary the sizes of the
internal tables using the appropriate compiler options. Often, a
compilation will require fewer than the default number of entries in a
particular table. By reducing the size of that table, memory space is
freed up during compile time. The amount of memory used while
compiling does not affect the size or content of the assembly or object
file output. If this stategy fails to squeeze the compilation into the
available memory, the only solution is to divide the source file into
modules which can be compiled separately. These modules can then
be linked together to produce a single executable file.

-err.36 -

Aztec CG65S Cross Development System
Host: PCDOS/MSDOS Target: 65xx-based systems
Version 3.2

——__ Release Document — o

25 Aug 1986 -

This package contains the PCDOS/MSDOS-t0-65xx cross
development version of Aztec CG65, v3.2. This release document is
divided into the following scctions:

1. Product Overview

2. Packaging
3. Known Bugs
4. Technical Support RE—

If changes have been made to Aztec CG65 since this release
document was printed, information about the changes will be in a file
named read.me on the first distribution disk.

1. Product Overview

Aztec CG6S is a set of programs that translate C language programs
into code that can be executed by a 65xx microprocessor. Using the

Aztec hex65 utility, the generated code can optionally be burned into
ROM.

With this version of Aztec CG6S, you develop programs on a
PCDOS or MSDOS system.

The package contains the following:

* Disks in IBM PCDOS format, containing the Aztec CG65
software;

* A manual that describes the Aztec CG65 software;

* The commercial version of Aztec C86 for PCDOS, with
which you cah do native development on an IBM PC (ie.
develop and execute programs on an IBM PC).

2. Product Packaging
2.1 Executable programs

CG65.EXE 6502/65C02 compiler
ASG65.EXE 6502/65C02 assembler
CCLEXE Pseudo code compiler
ASLEXE Pseudo code assembler
LN65.EXE Linker

HEX65.EXE Intel hex code generater

-1-

25 Aug 86 ' Aztec CG65, v3.2, (PC-> 65xx)

OPTINTG65.EXE Pseudo code optimizer

LB65.EXE Object module librarian

CNM65.EXE Object module summarizer
_OBD6S.EXE Object module displayer

SQZ65.EXE Object module compresser

ORDG635.EXE Object module library utility

ARCVY.COM Dearchiver

MKARCV.COM Archiver

MAKE.EXE Program maintainance utility

HD.EXE File dumper

CRC.EXE File CRC generater

Note: the actual names of the object module utilities differ slightly
from their documented names; ie. from the names by which the
manual refers to them. The actual name of an object module utility is
derived from its documented name by appending "65". Thus, the
documented names of the object module utilities are b, cnm, obd, sqz,
and ord, while their actual names are 1665, cnmé6S, obd6Ss, 59z65, and
ord65.

2.2 Header files

Several *header files’ are provided, which have extension .4, and
which a C source program accesses using the #include statement.

2.3 Source Archives

Several files containing source archives are provided. Some are
used to make the object module libraries; others, which are not
absolutely necessary for the development of C programs, are provided
because you may find them useful The program arcv unpacks an
archive’s contents into separate files. For a description of arcv, see the
Utility Programs chapter.

The archives that are used to generate libraries are:

DEV.ARC Device driver functions
FLT.ARC Floating point functions
LIBMAKE ARC Files used to generate libraries
MCH65.ARC - Low-level, 65xx-specific functions
MISC.ARC : Miscellaneous C-language functions
OVLY.ARC _Dverlay functions
PRODOS.ARC Apple // ProDOS functions
ROM.ARC ROM support functions, and hex65 source
STDIO.ARC Standard 1/0 functions
TIME.ARC Time functions

The other source archives are:
CONFIG.ARC Device configuration program, config
TTY.ARC Terminal emulator that runs on an Apple //
XFER.ARC File transfer program, xfer

-2

Aztec CG65, v3.2, (PC-> 65xx) 25 Aug 86

Documentation for config, tty, and xfer are in their source archives.
2.4 Sample programs
The file exmpl.c contains a sample C program

3.7 VYU JR—

3. Known bugs
3.1 sqz65

59265, the program that compresses an object module, should only
be used on modules that are going to be put in a library.

3.2 optint65

Don’t use optint65 on cci-compiled modules that contain Sloat
variables - for such programs it generates incorrect code. You can use
it on modules that contain double variables.

The-library routines don’t contain float variables, so optint65 can be
used to generate the cci-compiled libraries ci.lib and mi.lib.

4. Technical support information

While we do our best to ship problem free software, sometimes the
unknown does happen and problems occur. Manx has a technical
support staff ready to help you out if you should encounter problems
while using our software. At the very end of this document is a
discussion of how to make the most out of the technical support that
Manx offers. In addition, we have added problem report forms for the
reporting of any problems you may encounter with our software.

Using MANX Technical Support

We have put together a set of guidelines to help you take the most
advantage of the technical support service offered by MANX. We ask
that you read and follow these guidelines to enable us to continug to
give you quality technical support.

Have everything with you.

Try to be organized. When using our phone support, have
cverything you need with you at the time you call. Our goal is to get
you the help you need without keeping you on the phone too long.
This can save you a lot of time, and if we can keep the calls as short
as possible we can take more calls in the day. This can be to your
advantage on days when we are busy and it's hard to get through.
Also, have the following information ready when you call technical
support. We will ask you for this information first.

* Your name. This is necessary in case we need to get back to you
with additional information.

* Phone number. In case we have additional information we will be
able to contact you. This will never be given to anyone, so you
need not worry.

* The product you are using, and the serial number. If you have a
cross compiler please tell us both host and target, even if the
problem is with just one side of the system.

* The revision of the product you are using. This should include a
letter after the number: ie. 3.20d or 1.06d. THIS IS VERY
IMPORTANT. The full version number may be found on your
distribution disks or when you run the COMPILER.

* The operating system you are using, and also the version.
* The type of machine you are using.

* Anything interesting about your machine configuration. ie. ram
disk, hard disk, disk cache software etc.

Know what questions you wish to ask.

If you call with a usage question please try to have your questions
narrowed down as much as possible. It is easier and quicker for all to
answer a specific question than general ones.

Isolate the code that caused the problem.

If you think you have found a bug in our software, try and crcate
a small program that reproduces the problem. If this program is small
cnough we will take it over the phonc, otherwise we would prefer
that you mail it to us, using the supplicd problem report, or leave it
“on one of our bbs systems. Once we receive a "bug report” we will
attempt to reproduce the problem and if successful we will try to have
it fixed in the next release. If we can not reproduce the problem we
will contact you for more information.

Use your C language book and technical manuals first.

We have no qualms about helping you with your general C
programming questions, but .please check with a C language
programming book first. This may answer your question quicker and
more thoroughly. Also, if you have questions about machine specific
code, i.e. interrupts or dos calls, check with that machine’s technical
reference manual and/or operating system manual. -

When to expect an answer.

A normal turn around time for a question is anywhere from 2
minutes to 24 hours, depending on the nature of the question. A few
questions like tracing compiler bugs may take a little longer. If you
can call us back the next day, or when the person you talk to in
technical support recommends, we will have an in-depth answer for
you. But normally we can answer your questions immediately.

Ultilize our mail-in service.

It is always easier for us to answer your question if you mail us a
letter (We have included copies of our problem report form for your
use). This is especially true if you've found a bug with our compiler
or other software in our package. If you do mail your question in, try
to include all of the above information, and/or a disk with the
problem. Again, please write small test programs to reproduce
possible bugs. The address for mail-in reports is P.O. Box 55,
Shrewsbury, N.J. 07701. If you have questions/problems concerning
C Prime or Apprentice C,-mail them to P.O. Box 8, Shrewsbury, N.J.
07701. '

Updates, Availability, Prices.

If you have any questions about updates, availability of software,
or prices, please call our order desk. They can help you better and
faster. You can reach them at...

Outside N.J. --> 1-800-221-0440
Inside N.J. --> 1-201-542-2121 (also for outside the U.S.A.)

Bulletin board system.

For users of Aztec C wc have a bulletin board system available.
The number is ... !

1-(201)-542-2793 This is at 300/1200 bps. (all products)

Answer the questions that will be asked after you are connected.
When this is done you will bc on the system with limited access. To
gain a higher access level send mail to SYSOP. Include in this
information your serial nurnber and what product you have. Within
approximately 24 hours you should have a higher access level,
provided the serial number is valid. This will allow you to look at the
various information files and upload/download files.

To use the bulletin board best, please do not put large (> 8 lines)
source files onto the news system, which we use for an open forum
question/answer area. Instead, upload the files to the appropriate area,
and post a news item explaining the problem you are having. Also,
the smaller the test program, the quicker and easier it is for us to look
into the problem, not to mention the savings of phone time.

When you do post a news item, please date it and sign it. This will be
very helpful in keeping track of questions. Try to do the same with
uploaded source files.

Phone support, number and hours.

Technical support for Aztec C is available between 9:00 am and
6:00 pm eastern standard time at 1-(201)-542-1795. Phone support is
available to registered users of Aztec C with the exception of the
Apprentice C and C Prime products. For those products, please use

the mail-in support service and send questions/problems to P.O. Box
8, Shrewsbury, N.J. 07701.

These guidelines will aid us in helping you quickly through any
roadblocks you may find in your development Thanks for your
cooperation.

MANX Problem Report

G U PO ——

Date: / /o

Name:

Phone #:1-()- -

Company :

Address :

Product : ¢c86-PC c86-CPM86 c68k
c68k-Am cllI c80
¢65-ProDos ¢65-Dos3.3
Cross:

VERSION #: Serial #:

Op. - sys.: Machine Config.:

Send this form to :

(C Prime/Apprentice C only):

Manx Software Systems
P.O. Box 55
Shrewsbury, N.J. 07701

MANX Software Systems
P.O. Box 8
Shrewsbury, N.J. 07701

or call tech support at 1-201-542-1795 between 9am - 6pm EST.
(Sorry, phone support not available for the C Prime/Apprentice C

product.)

Description of problem --

(include what has already been attempted to fix it)
(use the reverse side of this sheet if needed.)

MANX Problem Report

Date: / / _7_7____

Name:

Phone #:1-()- -

Company :

Address :

Product : ¢c86-PC c86-CPM86 c68k
c68k-Am cll c80
¢65-ProDos c65-Dos3.3
Cross:

VERSION #: Serial #:

Op. - sys.: Machine Config.:

Send this form to :
(C Prime/Apprentice C only):

Manx Software Systems MANX Software Systems
P.O. Box 55 P.O. Box 8
Shrewsbury, N.J. 07701 Shrewsbury, N.J. 07701

or call tech support at 1-201-542-1795 between 9am - 6pm EST.
(Sorry, phone support not available for the C Prime/Apprentice C
product.) '

Description of problem --
(include what has already been attempted to fix it)
(use the reverse side of this sheet if needed.)

MANNX

software systems

End User License Agreement

September 1982

Use and possession of this software package is governed by the following terms:

DEFINITIONS — these definitions shall govern:

A. Supplier means MANX SOFTWARE SYSTEMS, PO. Box 55,
Shrewsbury, NJ 07701, the author and owner of all rights to this
SOFTWARE.

8. “Customer’ means the individuat purchaser, its agents and employees,
and the company CUSTOMER works forandits agents and employees,
it the company paid for this software.

C. "Computer” is the single computer on which customer uses this pro-
gram. Muitiple CPU systems requires supplementary licenses.

D. "Sotftware” is the set of computer programs in this package, regardiess
of the form in which Customer may subsequently use it, which Cus-
tomer may make toit.

E. “License” meansthis agreement and the rights and obligations which it
creates under the United States Copyright Law and New Jersey laws.

F. “Runtime Library” is the set of copyrighted Manx Software Systems
language subroutines, provided with eachlanguage compiler,a portion
of which must be linked to and become part of a Customer program for
that program to run on the Computer.

The Supplier grants Customer the right to use this serialized copy of the
Software so long as customer complies with the terms of the license. Read
the licensing agreement carefully. If you do not agree to the terms con-
tained in this license, return the diskette package UNOPENED to the
Seller from whom you purchased it. who will refund your money subject to
the conditions of this Agreement.

ifthe unopened diskette package is not returned to the Seller within four-
teen (14) days of delivery the Customer will be deemed to have accepted
all terms of the license agreement and will be bound thereby. Return of a
diskette package that has been opened.damaged or otherwise tampered
with shall also operate as an acceptance of the license terms by the Cus-
tomer and no money will be refunded. Seller may also deduct the price of
the manual. shipping and handling expenses, and other such expenses
that may be incurred in processing returned Software.

When you open the package. you need to sign and return the Registration
Cardinordertobecome aregistered user,and thereaftertoreceive anum-
ber of substantial benefits, including support and notice of updated mate-
riats. Supplier does not support unregistered users.

CONDITIONS OF LICENSE
The Supplier agrees to grant. and the Customer agrees to accept. on the
following terms and conditions, anon-exclusive licenseto use the software
programs herein delivered with this agreement.

All updates of MANX SOFTWARE received by Customer trom Supptier. or
from any other source, are subject to the terms and conditions of this
license agreement and Customer hereby agrees to be bound thereby.

DURATION:

This agreement is eftective from the date of receipt of the Software and
shallremaininforce uniess terminated by the Supplier or by the Customer
as provided below.

LICENSE:

Each program license granted under this Agreement authorizes the Cus-
tomer to use the Licensed Software in any machine readable form on the
Computer designated in the agreement. A separate licensesrequired for
each Computer on which the licensed Software will be used.

The Customer has no right to transter, assign, or sublicense the licenses,
Software, materials, or this Agreement without prior wirtten consent from
the Supplier. No right to print, copy. reproduce or in any other manner
duplicate, in whole or in part, the Licensed Software or documentation is
grantedto Customer except as is hereinafter expressly provided. Additional
copies of printed materials may be acquired from the Supplier.

Customer understands that unauthorized reproduction of copies of the
Software and/orunauthorized transter of any copy may be aserious crime,
as well as subjecting Customer to damages and attorney fees. Customer
may not transfer any copy of the Software to another person unless Cus-
tomer transters all copies, including the original, and advises Supplier of
the name and address of that person, who must sign a copy of the registra-
tion card card, pay the then current transfer fee. and agree to the terms of
this License in order to use the Software. Supplier will provide additional
copies of the card and License upon request. Supplier has the right to ter-
minate the License, to trace serial numbers, and to take !egal action if
these conditions are violated. Supplier has the right deny permission to
transfer the Software.

The Customer agrees not to provide or disclose the Licensed Software
including, but not limited to. program listings, object code, and source
code, in any form, to any person other than Customer, the Supplier or the

Suppliers agents and employees except for the purposes specifically
related to the Customer's use of the Licensed Software on the licensed
computer.

Under no circumstances shall the Customer provide public access to the
Licensed Software in whole or in part, transformed or untransformed;
including, but not limited to, computer time sharing networks, periodicals,
newspapers, or any other accessable or distributed media.

The Customer agreestotake alireasonable stepstoinsure thatthe license
terms and conditions will be made known to anyone who uses in whole or
in part the Licensed Software.

The Customer agrees toinsure that all materials that could lead to the use
of the licensed Software in a manner that violates this Agreement will be
erased or destroyed when they are no longer needed.

PERMISSION TO COPY OR MODIFY
LICENSED SOFTWARE

The Customer is permitted to copy and modify the programs licensed
hereunder provided such modification is required for use of the Licensed
Software in the Customer's environment on the licensed computer. All
moditications or copies of the Licensed Software, regardless of how or by
whom they were made shallbe the property of the Supplier. Supplier's pro-
prietary interest shail not include the media on which the changes to the
Licensed Software are recorded. All copies or modifications of the
Licensed Software are restricted to the licensed Computer and are bound
by the same terms and conditions of this Agreement as the original
Licensed Software delivered hereunder.

The Customer agrees (o reproduce and inctude the copyright notices on
all copies. in whole or in part, in any form. including partial copies in mod-
ifications of Licensed Software hereunder.

The Customer agrees to record and retain records of any and ail copies or
modifications made to the Licensed Software untilithey are destroyed. The
Customer agrees toprovide these records to the Suppiier within 30 days of
written request for same.

As an exception to the preceding, Customer is granted the right to include
portions of the Suppliers Runtime Library in Customer developed pro-
grams, called Composite Programs, and to use. distribute and license such
Composite Pragrams. As an express condition to the use of the Runtime
Library. customer agrees to indemnify and hold Supplier harmless from all
claims by Customer and third parties arnsing out of the use of Composite
Programs.

PERMISSION TO USE LICENSED SOFTWARE ON ALTERNATE
COMPUTER(S)

Use of the Licensed Software is by the express terms of this Agreement
restricted to the single computer designated in the registration card. The
customer may obtain separate license(s) to use the Licensed Software on
additional Computers under the control and operation of Customer by
completing a registration card for each computer and returning same to
Supplier with the prevailing multipie license fee. The terms of this License
Agreement will be thereby transferred to the newly registered Computer
{s) and the parties shall be bound thereby.

DISCONTINUANCE:

within 30 days of the date of discontinuance of any license under this
Agreement. the Customer will furmsh the Supplier with a certificate certify-
ing that all of the Licensed Programs, inctuding modifications, copies. the
onginal supptied with this Agreement, and any and all deriviatives have
been destroyed.

DISCLAIMER OF WARRANTY AND LIMITATION OF LIABILITY:

The Supplier makes no warranties with respect to the Licensed Pro-
gram(s), EXPRESSED OR IMPLIED, INCLUDING, BUTNOT LIMITED TO.
THE IMPLIED WARRANTIES ORMERCHANTABILITY AND FITNESSFOR A
PARTICULAR PURPOSE. IN NO EVENTWILL THE SUPPLIERBE LIABLE
FOR CONSEQUENTIAL DAMAGES EVEN IF THE SUPPLIER HAS BEEN
ADV!ISED OF THE POSSIBILITY OF SUCH DAMAGES. INNO EVENTWILL
SUPPLIER LIABILITY EXCEED THE ORIGINAL PURCHASE PRICE OF
THE LICENSED PROGRAM.

GENERAL:

It any of the provisions, or portions thereotf. of this Agreement are inval
under any applicabie stature or rule of law, they are to that axtent to
deemed omitted and the baiance of this agreement shali remain in full for
and effect.

This 18 the complete and exclusive agreement between the Supplier and
Customaer and supersedes all proposals, orai or written. and all other com-
munications between the parties relating to the subject matter of the
Agreement. This AQreement may not be modified orally.

This Agreement will be governad by the 1aws of the State of New Jersey.

NO POSTAGE
NECESSARY

IF MAILED
IN THE
UNITED STATES
S
S
——
BUSINESS REPLY MAIL —
FIRST CLASS PERMIT NO. 67 RED BANK, N.J. =
]
POSTAGE WILL BE PAID BY e
MANNX —
. ' (W)]

software systems

Box 55, Shrewsbury, N.J. 07701

Registration Card C' ; (2 8 C?

| have read the Software Licensing Agreement for the AZTEC C
Compiler and the other Licensed Programs supplied with the Agreement
and agree to abide by the terms contained in it:

Company Date
Phone
Name No.
Address
City State Zip
Country Product _C_JQgﬁ Version ;_QQ_C

Please fill out the registration information before opening the diskette
package. Upon receipt of this registration by MANX Software Systems
you will become a registered AZTEC C user.

Signature

O Initial Registration

Aztec CG65 Index

INDEX

Order of chapters in manual

System Dependent Chapters

title code
OVEIVIEW ..uvrierreiiiecnsaessssessesessossssessissossasassssssssssssersssssestsss sveserssassssnssssessasans ov
Tutorial INTrOQUCLIONc.ecieeiierieiecireererecnrsesnssessesesessessessssessorcossssessesesnes tut
The COMPIIETSceeverreeriererrerereereresreseeessesssseneseressessssesesssssessesssenssnsssenssesens cc
The ASSEMDBIETS ...t ere e aessesseessesesssessesanesssssessossassesnes as
THE LINKET ...ocvcieeiererireicrenrientesesssssnssssessessesonsensesessessesssssssassossssasseseasemmensensn In
ULHEY PIOZIAMSooreveveeirtenmsenerne e saesnensseesssssssssessssssssensssesesnssssesns util
Library Generationcuccinnenceneenresssesesmsesssenssessesssensssssssressseses libgen
Technical INfOrmMationoceveeveninreeceserisrenscsrerissesisiesesseeresessseressons tech
System Independent Chapters
Overview of Library FUNCHIONScoceeviieireiceseercenrtireeererssessesesesvseens libov
System-Independent FUNCLIONS ...oocovveveeeveeneiesen eereeneenerneeeesesressesesenseneennen lib
] 572 L= ST style
Compiler Error MESSABES ...c.vvvvieeeerereneeees erereseeemssssesesssssessosnsssosssossssssssanns err
Index
INACX ettt verrectesree e s cans s n et esesssseass e srsssr e e sssesaestestesnneneoas index

- index.1 -

Index Aztec CG65

- index.2 -

Aztec CG65

6502 stack tech.14,15

65xx link options In.9,15

65xx compiler options
cc.7,11

__main function libgen.3,4

A
absolute value lib.16
accessing devices libov.8
acos 1ib.59-60
adding modules to a library
util. 18-20
agetc libgen.3,5;1ib.25-26
aputc libgen.3,5;1ib.41-42
arcv & mkarcv - source
dearchiver & archiver util4
arguments as.6
arithmetic operators as.6
array subscripting style. 18
asin 1ib.59-60
assembler operating
instructions as.3
assembler options as.5
-c as.b
-i as.4,5,9
-1 as.d4,5
-0 asd,5
-zap as.5
assign buffer to a stream
1ib.56
atan 1ib.59-60
atan2 1ib.59-60
atof lib.8
atoi 1ib.8
atol 1ib.8
automatic variables c¢c.7,13

B
base address 1n.9,12-14
boolean expressions
style. 16-17
buffered binary input
1ib.20-21
buffered output 1ib.20-21
buffering libov.10-11
build and unbuild real numbers

Index

lib.22
building the libraries
libgen.5

C
¢ source file cc.3-5,20
calloc 1ib.31-32
case table ¢c¢.7,10,11
cbreak libov.21
ceil lib.16
ceiling 1ib.16
change current position
within a file 1ib.29-30
char cc.17
character classification
funtions lib.11
character-oriented input
libov.18
clearerr 1ib.15
close 1ib.9
close a device or a file
1ib.9
closing streams
1ib.14;libov.9
cnm - display object
file info util5-8
code area tech.4
code section tech.20,27
command line arguments
libov.4-6
comments style. 17
common problems style.15-19
compiler error checking
cc.23
compiler operating instructions
instructions cc.3
compiler options cc.3,7
+b c¢c.7,12,13
+¢ c¢c.7,12
+g ¢¢.7,12;libgen.6
+1 c¢c.7,13
-a c¢c.5,7
-b ¢c.7,23
-d cc.7,8;tech.8,13
- ¢c.7,10
-i cc.6-8
-1 ¢¢c.7,9,10

- index.3 -

Index

-0 cc.4,5,7
-s ¢c.7,8
-t cc.5,7
-y ¢¢.7,10,11
-z c¢c7,11
console i/o libov.17-21
constants as.”7
convert ascii to numbers
1ib.8
convert floating point to
ascii lib.8
cos 1ib.59-60
cosh lib.61
cotan lib.59-60
crc - utility for generating
the crc for files util9
creat 1lib.10
create a new file lib.10
creating an object code
file cc.4

D
data formats cc.17
default mode libov.7,17,20
defensive programming
style.10
deleting modules util. 19
device i/o libov.7
device i/o utilities
1lib.28
directives as.5-9
bss as.8;util.7
cseg as.7
dseg as.7
end as.7
entry as.8,9;In.12,13
equ as.6,8;util.6
fcb as.9
fcc as.9
fdb as.9
global as.8;In.11,13;
tech.20;util.8
instxt as.4,5,9
public as.8;In.11,13;
tech.14,20;util.6
rmb as.9
directories as.4,5,9

Aztec CG65

double cc.17
dynamic buffer allocation
libov.11,22

E
echo mode libov.21
error messages from ovloader
tech.12
error processing libov.23-24
exp lib.12-13
exponential lib.12-13
expression table ¢c.7,10
extracting modules
from a library util23

F

fabs 1lib.16

fclose lib.14

fdopen 1ib.17-19

feof 1ib.15

ferror lib.15

fflush lib.14

fgets 1ib.27

file i/0 1ibov.6,9-13,15

fileno 1lib.15

float cc.17-19

floating point exceptions
cc.18

floor lib.16

fiterr c¢c.18,19

flush a stream 1ib.15

fopen 1ib.17-19

format 1ib.37-40

formatted input conversion
1ib.49-55

formatted output conversion
functions 1ib.37-40

fprintf 1lib.37-40

fputs 1ib.43

fread 1ib.20-21

free 1ib.31-32

freopen lib.17-19

frexp lib.22

fscanf 1ib.49-55

fseek 1ib.23-24

ftell 1ib.23-24

- index.4 -

Aztec CG65

ftoa 1ib.8
functions calls style.13-14
fwrite 1ib.20-21

G

get a string from
astream lib.27

getc 1ib.25-26

getchar 1ib.25-26

gets 1ib.27

getw 1ib.25-26

global variables c¢c.16,17

H
hd - hex dump utility
util. 10
header section tech.18
heap tech.5,6,12
help util.14,24
hex65 - intel hex generator
util. 11-13;libgen.4;tech.5
hyperbolic functions 1ib.61

I

in-line assembly language
code c¢c.20

incl65 environment variable
as.5,9;cc.6

index lib.62-63

initialized data area
tech.4,5

inquiries lib.15

ioctl 1ib.28

isalnum lib.1!

isalpha lib.11

isascii lib.11

isatty 1ib.28

iscntrl lib.11

isdigit 1lib.11

islower lib.11

isprint lib.11

ispunct lib.11

Index

L
labels as.6
Ib - object file librarian

util. 14-24;libgen.5-7
Idexp 1ib.22
learning ¢ idioms style. 3
libraries 1n.4-8,10
line continuation cc.14
line-oriented input

libov.17-18
linker options In.9

+c In9,15;

tech.5,9,10,12
+d 1n9,15;
tech.5,9,10,12

+h In9,15

-b In9,13,14

-¢ In9,12-14

-d 1In9,12-14

-f In9-11

-1 In8-10

-m In9,11

-n I1n.9,12

-0 In.7-10,14

-t In.9,14,15;tech.9-11

-t In9,11

-t In9,12

-v 1n9,12
linking process In.4
literal table cc.7,11
local symbol table ¢c.9-10
log lib.12-13
logarithm 1lib.12-13
long cc.17
longjmp 1ib.57-58
loader items tech.21-27
Iseek 1ib.29-30

M
machine-independent
options cc.7,8
macro/global
symbol table c¢c.11
macros util. 31-34,39,40
make - program maintenance

utility util.25-42;libgen.3,5-7
makefile util.25-42;libgen.3-5

isspace lib.11
isupper lib.11

- index.5 -

Index

makefile syntax util36
malloc 1ib.31-32
memory allocation 1ib.31-32
memory organization tech.4
missing semicolon style. 15
modf 1lib.22
modularity style. 7
moving modules within

a library util.18
movmem lib.33
mpuw... symbols c¢c.22

N
nesting errors style. 17
nodelay libov.17

non-local gotto 1ib.57-58

(0]
object library format
tech.27
opcodes as.6
open a stream lib.17-19
open 1ib.34-36
opening files and devices
libov.2,6,9
operating instructions as.3
optint65 - pseudo-code optimizer
util.44
options for segment
address specification 1n.9,12
order in a library util.17
order of evaluation style. 16
order of library modules In.5
overlays tech.5,7-12
ovloader tech.8,10-13

P

passing data to functions
style. 18

pointer ¢c.14,15,17,19
pow lib.12-13

power lib.12-13
pre-opened devices libov.4
printf 1ib.37-40

Aztec CG65

~ program organization

tech.6
pseudo stack
libgen.4;tech.4,5,14,15
push a character back
into input stream 1ib.65
put a character string
to a stream 1ib.43
putc 1ib.41-42
putchar lib.41-42
puterr lib.41-42
puts lib.43
putw lib.41-42

Q
gsort 1ib.44-45

R

ran lib.46

random i/o libov.6,10

random number generator
1ib.46

raw mode libov.20-21

read lib.47

readable code style. 5

realloc 1ib.31-32

rebuilding a library
util.23

register variables
cc. 12,20

rename a disk file
lib.48

replacing modules util.20

reposition a stream
lib.23-24

reserved words cc.16

rewriting the functions
libgen.3

rindex 1ib.62-63

rules
util25,28-30,32-34,36,39,40

run-time errors style. 12

S

- index.6 -

Aztec CG65

scanf 1ib.49-55
sequential i/o libov.6,10
setbuf 1ib.56

setimp 1ib.57-58
setmem 1ib.33

sgtty fields libov.19

shared data style. 19

sin 1ib.59-60

sinh 1ib.61

sort an array lib.44-45

special symbols cc.15

sprintf 1ib.37-40

sqrt lib.12-13

square root lib.12-13
$qz - squeeze an object
library util46

sscanf 1ib.49-55

standard i/o libov.9-13
standard i/o functions
libgen.4,5;libov.12-13
start-up function libgen.3
startup routine In.12,13

strcat 1ib.62-63

strcmp 1ib.62-63

strcpy 1ib.62-63

stream status lib.15
string merging cc.15
string operations 1ib.62-63
string table cc.11

strlen 1ib.62-63

strncat 1ib.62-63
strncmp 1ib.62-63
strncpy 1ib.62-63
structure assignment cc.14
structured programming
style. 7

supported language features
cc. 14

swapmem 1ib.33
symbol names cc.16
symbol table In.9,11,14,15
symbol tables tech.19
syntax as.5,6

system-independent programs

libov.18

Index

tan 1ib.59-60

tanh lib.61

tolower 1lib.64
top-down programming
style. 8-9

toupper lib.64
trigonometric functions:
1ib.59-60

U

unbuffered i/o libov.14-16

unbuffered i/0 functions
libgen.3-5

unbuffered and standard
i/o0 calls libov.7

ungetc 1ib.65

uninitialized data area
libgen.4;tech.5

uninitialized variables
style.15

unlink lib.66

using the linker In.7

utility programs util.3

A\
void data type cc.14

W
write 1ib.67

Z
Zero page usage
cc.12;libgen.6

- index.7 -

