Pidgin—A Systems
Programming Language

DDJ is pleased to present the first of two articles by Dr.
William Gale (the second article will appear next month). In
these articles Dr. Gale describes three unusual pieces of soft-
ware: Tincmp, a clever macro processor; Pidgin, a systems
programming language; and Meta4, a compiler-compiler.

Dr. Gale calls Pidgin a “low-level language.” This is only
justified by its small number of data types (bytes, words, and
vectors of bytes or words). Pidgin’s assortment of control
statements is as good as that of many high-level languages.
Despite this, Pidgin is simple enough that it can be fully imple-
mented as a set of Tincmp macros.

Tincmp, the macro processor, is the key to the series. Dr.
Gale illustrates its power by using it as a translator from Pidgin
source code to 6502 machine language. We're sure that isn’t
the end of its uses. Tincmp is given here as a program written
in Pidgin. The bootstrap procedure is to paraphrase that listing
in BASIC or Pascal, feed the Pidgin macros and the Tincmp
source program to that program, and receive a machine-
language version of Tincmp as output.

Next month DDI will publish Dr. Gale’s description of
Metad, a compiler-compiler (a program that takes a formal
language definition as input and delivers a compiler for that
language as output). Metad is a development of Meta II, de-
scribed in DDJ #44. The source for Meta4 will be given in Pid-
gin. Those readers who’ve brought up Tincmp by then will be
able to implement Meta4 at once.

We hope DDJ’s readers will be as excited by Tincmp,
Pidgin, and Metad as we are. DDJ welcomes contributions
based on Dr. Gale’s articles. Some possibilities: a listing of
Tincmp in BASIC or Pascal, or Tincmp macros to translate
Pidgin to another machine language or to another program-
ming language, or reports of your application of any of the
three programs to other problems.

language. Because it is easily compiled, it is suitable for

systems programming applications where portability is
the foremost requirement. The original design purpose was
cross-time portability, so work done on my current machine
could be cumulative for my next machine. But it should also
be suitable for describing to a Z80 what I've done on my
6502, People with a homebrew system that nobody else writes
software for may be particularly interested in a pool of ma-
chine-independent software.

Pidgin can be compiled by a macro processor that recog-
nizes nine paramenters each of length one. Such a macro pro-
cessor is easy to write, the more difficult part being to write
the macros for the 80 statements of Pidgin. A macro processor
written in Pidgin is included with this article. It takes 500 lines
with 8000 characters including comments, and compiles into
3.5 kilobytes (with another 5 kilobytes for macro storage).

Next month another Pidgin program will be described, the
Meta4 compiler generator. A compiler generator is a program
that makes it easier to write a compiler. Meta4 will thus allow
defining more powerful languages than Pidgin, with a machine-
independent compiler. It is my hope in presenting Pidgin and

© 1981 by William A. Gale. All rights reserved.

P idgin is a low-level, machine-independent programming

by William A. Gale

these programs that some of you Z80 and 6800 users will
write and publish Pidgin programs that I can use on my 6502.
Microcomputers are software limited, and the bigger the pool
of users and writers, the bigger our pool of software will be,

Brief Description of Pidgin

The 80 statements of Pidgin can be seen from the tem-
plates in either the first or second macro sets included. The
discussion of Tincmp, later in this article, will clarify how
these macros are to be read. The templates start with six dec-
laration statements. The declarations set aside storage loca-
tions for each of the two data types and the four combinations
of vector types. For the vectors, the declarations give the
length of storage to reserve. Indexing is from zero, so the max-
imum index is one less than the reserved spaces. BYTE varia-
bles allow indexing BYTE vectors from 0 to 255, or INT vec-
tors from O to 127. INT variables allow indexing at least from
0 to 32000.

The macros continue with fifteen data transfer state-
ments. The transfer statements give the means for storing and
retrieving in each of the four vector types. They also give the
means for translating from BYTE to INT and vice versa. The
BYTE translation of an INT is the low order bits of the INT.
The transfer statements also include statements for setting
BYTE and INT variables to a constant number, and for setting
a BYTE variable to a character constant. (The statement XX=
‘2’ will set XX to the constant 50 if ASCII is used internally.)
Two other transfers got added late, and are at the end of the
macros. PACK and UNPACK are abbreviations that are rather
ugly, but I finally decided I didn’t want to be without them
when they are so easy to do for a micro. UNPACK moves the
lowest byte in the named INT to the third argument, and the
second lowest byte to the second argument. PACK copies the
third argument into the lowest byte of the named INT and the
second argument into the next lowest byte. If the INT is larger
than 2 bytes, the remainder is zero filled.

Following the bulk of the transfer statements are the
eleven arithmetic statements. The arithmetic statements in-
clude the usual four binary operations for integer variables,
and addition and subtraction for BYTE variables. They also
include increment and decrement operations for both types.
Addition and subtraction are modulo some constant, so that
(0-1)+ 1=0.

There follow eleven statements to generate and manipu-
late logical values for byte variables. The logical statements
include eight comparisons and three Boolean algebra state-
ments. The eight comparisons each set a BYTE variable after
comparing two variables of the same type for equality (==),
inequality (!=), strictly less (<!), and less or equal (<=). The
BYTE variable is set to zero if the relation is false. If it is true,
the byte will be set with at least one particular bit non-zero.
(This allows the boolean operations to be done on bytes
defined by comparisons.) The three Boolean operations form
the Boolean and (&), or (?), and not (!) for BYTE variables.
For INT variables 0—1 <0, while for BYTE variables 0 < 0
— 1. That is, under comparison, INT acts as if it holds posi-
tive and negative numbers for some range, while BYTE acts as
if it holds only positive numbers.

The following 25 statements are control statements of
various types. I will discuss them in groups that are not in the
same order as the macros.

10
282

Dr. Dobb’s Journal, Number 57, July 1981

The assembler control statements will be highly machine
dependent, and should occur first in the program. Then they
can be changed easily for a different machine. They allow defi-
nition of where to assemble the program (LOMEM), and
where to keep the variables (REGISTER and HIMEM). If you
need something more here, don’t hesitate to add it. TOP can
also be used to set up assembler conditions.

The program control statements are the most varied. The
main program is marked off by BEGINMAIN and ENDMAIN.
Subroutines are marked by SUB $$ and ENDSUB. On encoun-
tering a GOSUB $3% statement, control passes to the statement
following the corresponding SUB $$ statement. Here the two
characters can be any two alphanumeric symbols. On finding
a RETURN or ENDSUB, control passes to the statement fol-
lowing the calling GOSUB $$ statement. When a GOTO $$ is
encountered, control passes to the corresponding LOC $§
statement. Only decimal digits are legal for the parameters in
LOC and GOTO pairs. This restriction to 100 labels is not a
problem because of the remaining control statements.

The IF $$ statement specifies a BYTE variable with the
two parameter characters. If the named BYTE variable is non-
zero, control continues with the next following statement.
Otherwise control passes to the statement beyond the next
unmatched ELSE or ENDIF. Unmatched means that, for in-
stance, between an IF and ELSE, you can put other complete
sets of IF— (ELSE) —ENDIF statements.

The ON $$ statement also specifies a BYTE variable. If
the named variable is nonzero, execution continues with the
following statement. Otherwise, control passes to the state-
ment beyond the next unmatched ENDWHILE statement.
When an ENDWHILE is encountered, control passes to the
first previous unmatched WHILE. So WHILE-ON-ENDWHILE
is the form for all loops in Pidgin.

The CHOOSE ON sequence is a choice among variables,
not among constants. The CHOOSE ON $$ statement speci-
fies a BYTE variable, as does the CASE $$ statement. When a
CHOOSE ON statement is encountered, control passes to the
next CASE statement for which the two variables are equal, or
else to the DEFAULT if there is one, or the statement follow-
ing the ENDCHOOSE if there is no DEFAULT. After match-
ing a CASE variable, when a CASE, DEFAULT, or END-
CHOOSE statement is encountered, control passes to the state-
ment following the next ENDCHOOSE. (In the above specifi-
cation, words specifying the nesting of CHOOSE’s are omitted.
I think that makes the explanation clearer. But the CHOOSE,
like IF and WHILE can be nested.)

STOP § terminates execution of the program, and makes
the digit specified available to any supervisory program. A
zero is interpreted as a normal end, any other digit is an error
condition.

Two specific control statements are designed to let Pidgin
programs speak to another one. BEGINMAIN specifies a
BYTE variable AC and a BYTE indexed INT vector, IAV. AC
(Argument Count) can be used to give the number of entries
to be found in IAV. The key point is that these are special lo-
cations, known to all Pidgin programs. They are particularly
useful for passing file references, or program addresses be-
tween programs. CALL I$$ is a kluge that will be recognized
by BASIC users. It will make a subroutine call to the absolute
location stored in the INT variable named.

The final group of statements has the input-output state-

ments. Pidgin is designed so that input and output is usually
character by character. WRITE $$ will output the named byte
to the terminal. READ $$ will get one character from the ter-
minal and set the named BYTE variable equal to it. The com-
mon exception to single-character input and output is MS,
which will output the nine specified characters to the terminal.
The single quote character (’) should not occur among the pa-
rameters of MS. The remaining input-output statements deal
with files.

The first statement to use is OPEN §$ FOR $$ AT I8.
The first two parameters specify an INT indexed BYTE vector
to be used for a buffer. The third and fourth parameters spe-
cify a BYTE variable that contains either ‘R’, for read, or ‘W’
for write. The fifth and sixth parameters name an INT variable
that gives a “block number”. The specification of a buffer, and
allocation of space means that any number of files can be
open, so long as one buffer per file is allocated. The compiler
only uses two buffers. The operations recognized by Pidgin are
limited to read and write, but there are useful extensions (ap-
pend, read or write). The block number is the key to a rudi-
mentary file system as described in DDJ #56. This simple file
system will allow programs to be written in Pidgin that give
named files and other nice features. In this way a rather ma-
chine-independent operating system is possible. The block
number is 2 number from one through some maximum that
specifies a unique external place to put the data contents of
one buffer. This avoids dependence on a particular machine
by pushing the translation from block number to drive, track,
sector, or what have you, down to assembly-language support
programs. The translation is responsible for setting a reasona-
ble sequence for speed of access. But all that is required is a
unique map between disk sectors (or whatever) and block
number.

The file input-output statements all return an error code
in the specially designated BYTE variable ER. Error code
zero indicates all normal; one indicates end of file or end of
medium; two indicates illegal operation; and three indicates all
other problems.

OPEN returns error code two if the buffer was already
open, zero otherwise. This indicates that the “buffer” will
contain at least some information beyond the file contents.
(The Apple requires a 17-byte table to control disk input-
output, which is included in the space allocated for the buffer,
for instance.) For this reason, the declared lengths of the buf-
fers will be machine dependent.

CLOSE $8 specifies a buffer. It returns ER=2 if the buffer
was already closed. It marks the buffer closed. If the buffer
was open to write, then CLOSE will flush the buffer, writing
the last block of data, and making any closed file marks.

READ $$ FROM $$ specifies a BYTE variable with the
first two parameters and a buffer with the last two. This state-
ment reads one character from the specified buffer until it
has read all of the characters in the buffer. Then it refills the
buffer by getting the next sequential block number of data
from the external medium. When end of file is reached, it
returns both ER=1 and the character 0—1.

WRITE 3 INTO $$ is the converse. It will write one spe-
cified character into the specified buffer until the buffer is
full. It then writes the buffer onto the external medium and
prepares to receive more data from the program. It keeps
track of the block number to write on next, writing on se-

Dr. Dobb’s Journal, Number 57, July 1981

11
283

quentially incremented blocks. It returns ER=1 if the block
number is greater than the maximum allowed, or zero.

READBUF $$ and WRITEBUF $$ give an access to the
low-level programs that read and write one buffer of data from
the external medium. They will be useful for programs that
implement directory files or random-access files, but they
are not used in the compiler. Programming the subroutines
to support these file input-output statements took a substan-
tial fraction of the time to make the compiler, perhaps a third.

The last “statement” in the macros is the null macro. It
allows any line started with the end-line symbol to be ignored;
that is, it allows line-long comments.

Implementing Tincmp, a compiler for Pidgin

In hopes of getting back a return of portable programs, I
offer a compiler to translate Pidgin to 6502. The compiler is
in two parts, a macro processor (Tincmp) written in Pidgin,
and two sets of macros. I term these tools a compiler because
they can generate machine code from Pidgin language. Others
might feel that with no more error checking than it has, it
couldn’t be so dignified.

The value of the Pidgin listing of the Tincmp macro pro-
cessor when you don’t yet have a Pidgin compiler is this: you
can easily translate Pidgin to your local Basic. If you translate
Tincmp to Basic, then you can use the macros provided to
form a compiler from Pidgin to 6502 in Basic. Feed that com-
piler the Pidgin code for Tincmp and you will have a compiler
from Pidgin to 6502 in 6502. It runs much faster. This is
a reasonable way to get started because the macros are the
hard part, and can be used with two versions of the macro
processor. I have written several versions of Tincmp, and
find it takes a few days to get the macro processor working.
The macros on the other hand took several weekends, When I
add macros, I find I can add about 20 in a weekend.

So to implement this Pidgin compiler you need to trans-
late Tincmp to some language you now have. To help in that
let me first explain what Tincmp does, then how it does it.

Tincmp has two inputs — a set of macros, and an input
text. Each macro consists of a template and a replacement.
Templates start with a special begin-template character and
end with the special end-line character. Between these two
characters there can be up to nine parameter flags and any
number of other characters besides these three or newline.
The end-line character can be followed by any characters at
all, then a newline. All the characters after the end-line are
ignored, so they can and should be used for comments.

To summarize, a template consists of
1. begin-template character
2. zero or more ordinary characters or zero through nine pa-
rameter flags in any order

3. end-line character
4. zero or more comment characters
S. newline
If the end-line character is omitted, it will be assumed at the
first newline. The macros attached show many examples
using ‘:’ as the begin-template character, ‘; as the end-line
character and ‘$’ as the parameter flag.

The replacement consists of zero or more lines. Each re-
placement line may have
1. zero or more ordinary characters or “operation codes”

2. an optional end-line character followed by zero or more
comment characters
3. newline

The power of Tincmp lies in its operation codes. It can be
thought of an as interpreter for a very simple machine lan-
guage. The simplicity is that there are no branching or repe-
tition codes. The operation codes basically move data be-
tween ten registers, a stack, and the output.

The first line of the macros gives copies of the changeable
special characters. If the first character is “X’, no newlines will
be put into the output. This is required to generate code at
times, and text at other times. The second character is a copy
of the begin-template character. The third character is a copy
of the end-line character. The fourth character is a copy of the
parameter flag. The fifth is a copy of the operation code char-
acter. The sixth is an “ignore” character (set to tab, but invisi-
ble in the listings). The ignore character is ignored wherever it
occurs in the macros. Its purpose is to help make the macros
more readable. The first line must consist of exactly six char-
acters and a newline. Otherwise an error is noted, and proces-
sing stops. With all these special characters, a way around them
when necessary is available. The character ‘@ is a (fixed) es-
cape character. Any one character (including newline and @)
following the @ will be accepted as part of the macros. You
will see it used heavily in the second macro set, because the
definitions of the labels created might be special characters,
just by chance.

An important link between the template and the operation
codes takes place while Tincmp is matching the templates

Table 1
Fetch Operations

P Parameter Fetch the value of the parameter specified by

the index code.

V conVert Fetch the value of the parameter specified by
the index code. Subtract the character code for
zero. If the result is not between zero and nine,
set it to zero.

L Literal Fetch the index code as a character.

N Number Fetch the index code converted as a digit.

! pop Fetch the top of the stack, decrementing the
stack pointer.

S Stack Fetch the top of the stack.

U Unique Fetch a unique number. The numbers start at
100, and increase sequentially. (Default).

H Hex Fetch the index code and the dispose code,
interpreted as hexadecimal digits. Set the dis-
pose code to ‘C’.

T Trace Set the trace mode on for the remainder of the

macro. Skip the dispose section.

12
284

Dr. Dobb’s Journal, Number 57, July 1981

against input text. A line of input text matches a template if it
is the same length as the template and if each ordinary charac-
ter in the template is matched exactly. Any single character
matches a parameter flag AND the character matched by the
n’th parameter flag is placed in the n’th register, n=1, .. .,9.
Thus the operation codes can manipulate the parameters
found.

When a template has been matched, ordinary characters in
the replacement are output without change. The end-line sym-
bol causes the output of a newline. Any comments and the
newline are ignored. Each operation code consists of four
characters, the operation code flag, the fetch code, the index
code, and the dispose code. Table 1 gives the fetch codes and
Table 2 gives the dispose codes. The index code may modify
the fetch code or the dispose code (or both). Let me comment
on them briefly.

The value placed in the register is the internal machine
representation of the character matched. The P fetch gets this
value. If some other number has been stored in a register since
the matching, of course P will now get that number. The regis-
ters hold integer numbers. If the parameter should be a digit,
the V fetch gets a number from zero through nine. Notice that
any non-digit is coerced to zero. The register is selected for
these two fetches by the index code, and register zero can be
selected. Since it cannot be disturbed by parameters, it can be
used for a counter. The L and N fetches get data from the
index code. L gets the internal machine representation of any
character while N coerces it to a digit. The number on top of
the stack can be fetched either with (!) or without (S) popping
the stack. The fetch code H interprets both the index code and
the dispose code and the hexadecimal representation of a byte
and outputs it. The fetch code U allows generating ten sym-
bols unique to a given macro. Tincmp keeps a symbol counter
which starts at 100. During a macro, the U fetch adds the in-
dex code to the current symbol counter to return a symbol.
Only at the end of the macro is the symbol counter increased,

and then by the maximum index used during the macro,
plus one. This means that references to symbol ‘0’ during one
macro will return the same number, It is intended to be used
for generating labels.

Tincmp requires three parameters to be provided in 1AV,
the global vector mentioned above in describing BEGINMAIN.
These give the starting blocks for the files to hold (1) the mac-
ros, (2) the input text, (3) the output text.

That’s what Tincmp does. This is how it does it: the sub-
routine IN reads the flag line and initializes constants and vari-
ables. The subroutine RM reads the macro file, loading an ar-
ray with information. The information is stored as shown in
Table 3. After reading the macros, the input is read. Each line
is compared to each template in turn until a match is found, or
until all templates have been checked. If no match is found,
the line is written out unchanged. If a match is found, then the
subroutine DM interprets the replacement text. When an oper-
ation code is found, the next three characters are picked up. A
branch on the first character does the fetch and a branch on
the third does the dispose.

Tincmp can be used in two functionally different ways to
compile Pidgin. One way is to use it as a preprocessor to gener-
ate code for an assembler. The other way is to run it three
times and let it do its own assembly. The first way may have
the advantage that an assembler will check the code for mis-
sing variables, twice-defined labels, etc. It also leads to simpler
macros. However, I found when I tried it with the SCII assem-
bler I use, that it was slow to transfer the output file from
Tincmp into the assembler. Also, even as small a program as
Tincmp expanded into 23K bytes of standard assembler code.

Table 3

Storage of Macros

storage of
:T1;, COMMENTS
Table 2 R1; ALL
:T2$; ARE
Dispose Codes R2 PIC; IGNORED
P Parameter Set the value of the parameter specified by the index ILP index LS
index code to the fetched. 0 0 0 T
1 6 1 1
S Stack Increment the stack pointer and store the 2 17 2 ;
fetched on the stack. 3 R
4 1
C Character Write the low byte of the fetched. S ;
6 T
H High Write the high byte of the fetched. 7 2
8 3
N Number Write the fetched in decimal characters without 9 ;
leading zeros. (Default.) 10
11 2
+ add Add the fetched to the top of the stack. 12
13 P
— subtract Subtract the fetched from the top of the stack. 14 1
15 C
* multiply Multiply the top of the stack by ten, then add 16 ;
the fetched.
Dr. Dobb’s Journal, Number 57, July 1981 13

285

The assembler swallowed this (slowly), but a slightly larger
file would have to be cut into chunks, which would be quite
cumbersome. This was too bad, because once inside, it assem-
bled in about ten seconds.

The other way requires macros that are difficult to under-
stand, but it gets the job done faster for me. The first set of
macros produces an intermediate file in which all 6502 instruc-
tions have been coded, but with all operands left on single
lines following the instruction codes. The first set of macros is
thus rather like machine code. The second set of macros pro-
duces a file which is a third set of macros. This set of macros is
simpler than the first, because its most frequent task is just to
count the program bytes. The third set of macros contains the
definitions for all labels and variables. When the third set of
macros is used on the intermediate file, the completed 6502
code is output. I have included macros for this method since I
have found it more useful.

Using the macros and Tincmp shown here, Tincmp com-
piles itself in 2 minutes 10 seconds on my Apple IL. This is 50,

35, and 45 seconds for the three passes. The disk is continu-
ously on during this time, so I believe the processing time
roughly balances the input/output time. When compiled, the
code occupies 3.5K bytes. It uses 4.7K bytes to store the first
and larger macro set, and another thousand or so bytes for
buffers, variables, etc.

In making these macros I originally tried a method I've
since abandoned, and about which you might profit by a warn-
ing. One of the problems with having two sets of macros is
to keep the same targets in each, with compatible definitions.
I thought it might be a good idea to start from a single file and
produce these two sets of macros from it by using two other
sets of macros. It worked, but had two problems worse than
the one it solved. First, it was confusing keeping several dif-
ferent sets of special characters in mind. Second, I kept having
to change two sets of macros anyhow, because another macro
would usually bring in a new concept and therefore a new
command. The macros shown here evolved from such a pro-
cess, however, and have some traces of that mechanical pro-
duction remaining,.

In my view macros should use every byte-saving or micro-
second-saving trick known to programmers. When faced with
a choice of time or space, I’ve usually chosen the faster, more
space-consuming macro. If you can code any of the Pidgin
statements with a saving in either space or time and not wor-
sen the other, I would be glad to hear about it.

Genealogy

Tincmp’s immediate parent is SIMCMP, described by W.
Waite in Implementing Software for Non-Numeric Applica-
tions. SIMCMP is even simpler than Tincmp, having in essence
exactly three kind of operation codes (UnN, PnC, VnN).
With these much simpler codes, Waite defines the First Lan-
guage Under Bootstrap (FLUB), a simpler language than Pid-
gin, having about 30 statements. I liked the approach of
SIMCMP very much, but FLUB was very hard to write, and it
seemed that I would need to write a variety of programs in the
first language before I could move on to the second. (Like an
editor, and some kind of executive.) Pidgin has proved conven-
ient enough that I haven’t yet felt like I had to get a better lan-
guage going, but maybe soon.

Availability in Machine-Readable Form

The program and macros published here and last month
give you a long start in implementing Pidgin on your system.
If you want to save yourself some typing, and can transfer
files from an Apple near you, you may be interested in the
following offer. An experimental operating system written in
Pidgin is available from the author for software ex perimenters.
It includes Pidgin and 6502 versions of Tincmp, an editor, a
tiny executive, some utilities, and Pidgin test programs. It can
now be run on Apple, and can be configured for 1 through 4
floppy disk drives, using 13- or 16-sector disks. It requires
a 16K memory board or an Apple II (not plus). Two disks
and documentation are available for $20. A third disk with
Meta4, the compiler generator to be described next month,
is available for an additional $10. If you are reading this after
1981, better write to check availability. You can write me at
439 S. Orange Ave., S. Orange, NJ 07079, ae

LISTING ON PAGE 24

14
286

Dr. Dobb’s Journal, Number 57, July 1981

‘

oypd_ otd. 11

l6EH,
‘16H,
TPVH,
‘ppH,
‘ZYH,
18$1=i851=6$"

{024,014,
‘YgH,
{d4H,
fZYH,
{ZUH,
‘P6H,

ovd_Dg€4d,
{GDH,

094,084,
{GVH,
‘YBH,
{ZYH,

158=>8%=6$"

o~

S
C
[
a

old,
‘9gH,
‘poH,
‘ZYH,
lZon,
‘Y6H,
09d.0S4d,
{SOH,
1opa . DEd,
!SYH,
{ddH,
{ZYH,
188i>35=65"

-~

[&)
(3]
o

.ota.
‘ygH,
{pBH,
{ZVH,
{ZOH,
{pdH,
094,064,
fGOH,
ovd.0fd,
‘GVH,
f3dH,
{ZYH,

1$8==55=68"

.~

-

27d 014,
fy8H,
! ddH,
‘ZYH,
{¢PH,
ELW
09d_06d,
!GDH,
‘{opd 0Ed,
‘SYH,

024 014 IH
‘G8H,
094 064 1H
‘QYH,
{O¥d_0€d_ 1IH
‘avH,
£02d,01d, 11
‘U8H,
£09d_06d_ 11
f{ayH,
{8TH,
$opd . Ded 11
‘QvYH,

'SSI+551=561¢

$Dzd,.01d,1H
‘UsH,
10pd 0€d IH
‘ddH,
fQ0H,
‘6YH,
$0zd. 014,11
‘asH,
$opd.0€d. 11
fQdH,
{8EH,
{PUH,
{6VYH,

f$61-=531:

f0¢d 014,11
{30H,
1DZd4.0T4d_1H
{30H,
‘EQH,
‘gUH,
102d.014d.11
{ADH,
fpBH,
‘6VH,

{024,014 1H
! 3dH,
‘EQH,
{QUH,
$024,014d.11
{39H,

‘0zd o014,
{YOH,

074 014,
‘YUH,

1024.014,
!S8H,
£0yd_0S4,
{GUH,

f--$s1:

fH45518

i--g6:

e

’

024,014, 1
‘16H,
$094,06d_ 1IH
{dv¥H,

{8DH,

£0¢d 0141
f16H,

0v9d 064 11
{avH,

‘8VH,

‘YPH,
{ovd_o€d,
!SYH,

1s51=(s$) $S1:

1ozd 014,
‘16H,
104d 064,
{GYH,

A

155=(55) 58+

Dpi.-8N_SAN,
{pdH,

{88H,
£024.014.11
{66H,

fasvel

{1€H,
f{10H,
{QVH,
4SVHH
{GgH,
‘Opd_D€d 1h
{69H,

{86H.
‘asvel
!G8H,

{opd_ 0£d 11
{69H,

{8TH,

{V8H,

‘gYH,

{9ZH,
£094.06d_IH
{QVH,

{YYH,

{Y@PH,
£09d4,06d.11
‘QvhH,

S

£($$1)851=581"

£0zd 014,
!G8H,

{9YPH,

fova oed]
‘6HH,
£59a.064.11

{GYH,
$5=83:

024,014 IH

‘Q8H,

‘HOI .

‘6VYH,

024,014,111

‘UgH,

POUS s LA S9N xSA_VA_SEA,

{6YH,
165885+ =551¢
!ozd. 0ld,
{G8H,
10Pi xSA s PA_SEA,
{6YH,
1585+=55:
tozd D1d,
{G8H,
togd,
{6YH,
u.m.nmmn
dei.
“Pi +OS LA ¥YA_SSA_sVA_SEA,
S6d,
t{$$55%6) $S1 INI:
déi.
“OT e LA 29N ¥SA s VA _SEA,
S6d,
‘($5558) $$ ILAY:
dpi_+IN_S@d,
£0pd_S8H,

{H6d,

{6YH,
J+IN_SBA,
{08d_G8H,

106d,

{6YH,

dei.
-1 _+0S_¥SA_sVA_SEA,
S6d,

f($$$)$ST INI:
dyi_+IN_S@d,
f0¥d_S8H,

‘H6d,

‘6VH,
J+IN_SBd,
{00d_S8H,

1064,

f6VH,
dé6i . -0i »SA_«VA_SEA_S6d,

t(s$8)ss dlAg:
d6i.-ZN_.S6d,

de

do

£$81 LNI1:
dei_+IN_S@4d,

{$$ 4lAy:

.sf:n

195 0108} Isi14

(#1-01 sd8ed uo 3xa]) :—mu—a

Dr. Dobb’s Journal, Number 57, July 1981

24
296

(38pd 1xau uo panupjuo?))

‘pUH,
{ZVYH,
‘20U,
{P6H,
{9yDa_ 064 11
{dDH.
{0pd. 0td 11
f{AvH,
!80H,
!PEH,
!VYQH,
9TH,
£09d_06d 1H
{AvH,
{UYH,
pTH,
‘6UH,
{9dH,
$10yd D64 1H
‘UpH,

10yd _06d IH
fdDH,
{0pd_Dtd 1H
{AVH,

{448,

{ZYH,

‘ssli
1024 . 01d,
fy8H,

10D -0i wEN_STN_SBN,
{pTH,

‘88H,

{PUH,

{ZYH,

1201,

‘paH,
$09d,06d, 11
{6UH,
!0kd.0€4. 11
‘689H,

{10H,

{QVH,

!ddH,

{ZVH,

{$81=
0z4,014d,

‘YgH,

1001 -0i _vEN_STN_SON,
{PTH,

{88H,

{daH,

{ZVH,

{ZOH,

{9dH,

£0Yd_064,.11

{6QH,

>$51=88*

=$51=86°

(# uwinjod ‘tz a8vd uo panu1juo))

‘poH.
fZNH,
188=i55=55"
tdTd 014,
‘G8H,
‘adH,
‘6VH,
f0¥d 0td.
{SVH,

$02d, 014,
‘SgH,
£0vyd, 084,
{SPH,

10pd, 0td,
{GVH,
1$5¢85=55"
£02d. 014,
{GgH,
£094.064d.
{GZH,
topd_0ed,
{GV¥H,
166856=58"
$0Zd 014, 1H
{08H,
£52d.014.11
{Q8H.,

£094,064d,11
10pd 0£d. 11
{AIQT
‘YTH,
f881/651=8513
024,014 1H
{D8H,
104,014,111
{agH,
£09d.06d.11
!obd 0£d 11

1wl

‘QZH,

1651.851=551¢
$0zd D14 1H

{QgH,
£04d4_06d_IH

{Q3x,
{DObd DEd 1H

‘UvYH,
£0z4.014,.11

{agH,
£09d,06d, 11

!QdH,

!8EH,
0bd 0gd, 11

{avH,

£$61-551=8$1*

(€ uvwnjoo ‘pz 98vd uo panuijuo))

‘8EH,
10vd_ otd,
{GVH,
18$-95=5¢"
£ozd vl4d,
‘G8H,
109d,06d,
{Q9H,
‘8TH,
{dvd otd,
{GYH,
f85+65=85"
100 _-8N_SON,
‘PdH,

{88H,
‘asvel
{16H,
294,064,117
{6€H,

{18H,

PNH,

{dsval

G8H,

107d 014, IH

‘69U,

86H,

{asval

{G8H,

024,014,111

‘69H,

!8TH,

{9YgH,

{g¥H,

A4 W

!oyd.DEa IH

{QVH,

{NYH,

!YPH,

obd_0Ed 11

{dVH,
'$s1=(8$1)$51¢

!NY@H,

£02d.01d.1

{66H,

£0yd 0G4,

{GYH,

{0bd 0€d 11

{OVH,

INgN.T

{agH,

{0vd 0Ed IH

f{U9H,

!gTH,

£0Zd OT4d H

{6VH,
166=(881) s

(7 uwnyoo ‘gz a8nd 1o panuuo))

S OVH,
{NB0LT
{Q8H,
094,064 1H
{QYH,

{8TH,
{OVd_DEQH
{6VH,

£($51) $$=88*

$0za 014 IH
{GU8H,
topd 0gd. 1
‘{1dH,
{80H,
024 014,11
{QU8H,
opd_0ed. 1
{1€H,

{GVH,
2($5)$51=851"
10zd4.014d,
{G8H,
tovd 0Ed,
{1€H,
£0Yd_0Sd,
‘pvYH,
t(s8) $$=8%:
{024 D14, IH
{UgH,
$0pa 0Ed, IH
{AvH,
£0Zd, 014,11
{QgH,
10pd.0ed 11
{avH,
1881=881"
074,014,
‘S8H,
1opd 0€d, 11
tavh,
£851=$$"
024,014, 1IH
{agH,
{pQH,
{6VH,
£02d4,014.11
fUsH,
1ovd 0Ed,
{GVH,
1$$=8$81:
10zd, 014,
{G8H,
fopd, 0ed,

25
297

Dr. Dobb’s Journal, Number 57, July 1981

+IN,
+6N,
+6N,
ig$1=
+IN,
+6N,
+6 N,
1$51=
+IN,
+9N_

‘ss
+V N,
+8N,

‘s$$
+9N,
+9N,

‘ss
+P N,
+8N,

]
+IN,

+IN,
‘s
+9N,
s

+i N,
+6N,
851/
+P N,
+6N,_
'S5 1s
+6N.
+6N,
+IN,
1651~
+6N,
+6N,
+IN,

{SSI+5$1=551:

+8N,
+6N,

‘s
+UN,
+6N,

+8N,

+TN,

+HLN,
s
+LN,
‘s

=$$1=88*

is51=55"
=>$5=55"
i>$$=8$"
==5$=5§¢

=i$6=5$"
f$5i=53"
$¢$5=58 "¢
95=5$¢

$$1=881"

$61=881°

$$1=$51+

$1-=881°

t--$51:

L4581

fo—gs:
14485t
$-$56=8$"
S+358=88*

dei,
-0 +BS ¥ LA xYA 2 SA X VA_SEA,
$6d,

f($$$59)$S1 LNI:

‘H6d_ 80
£)0Zd. 014 H(
064,99
£)0zd. 014, 1¢
d6i.
Vi xLAs9A_SA_xTA_SEA,
s6d,
f{$38$8) ¢S5 alxa:

dBi_ +IN_SBd,
+UN,
dpi +IN_S@d,
+UN,
d6i .,
-Pi tO0S xSA_xVPA_SEA,
s6d,
106d. ve
1)0zd 014 1¢
f($55) $$1 LNL:

dei +IN_S@d,
+PN,
dpi_ +IN_SBd,
+IN,
d6i_ -0i sSA_xVA_SEA,
Sé6d.
‘oud. v
£)02d4,0T14d_¢
‘($$%8) s alLxg:

‘HO{.B820S . 8B+IN_S6d,
£)DZa 014 1H(
‘H6d.8006d,.v0
£)0zd.01d,11(

d6i_-ZN_S6d,

. 881 LNI:
dPi +IN_SOd,
‘00d. 99
*)ogd.otd (

's$ ALAY:

.80

319G 0.9e}\ Puodag

{074,014, IH
{dgH,

fovpd DEd,
‘GVYH,

{024 014 H ‘014,
{YVH, f6VH,
£Hzd, 014, ‘6 dols:
‘BYH, tss D0T:
‘8 Adavdy: £0zd_ 014.n
taqum {OVH,
‘pzh, {$$ 0L09D:
faydag {PYH,
fPCH, fUNSUNT ¢
.Uma(wmmmm {P9H,
: . ‘NUALYY
“uNm(me(q ‘Y6 H_ SYH_WUTH,
‘6YH, ‘gsvan
¢SS Jd9UlLIdm: ' ‘S8H,
fL1dM {024 014 IH
{PZH, . unﬂm(
fozd D14, ‘asvel
v)
.mdm(.) , ..mw=<
'SS AlIum: 024,014,111
‘HOLd ‘QvH,
Y4 1881 T11¥D:
{0zd._ 014,58
’
t0za 014, ‘och.
Tovh. ‘ss ansoo:
fopd.DEd H ‘Ss dns:
{@YH,
fofd_ oga.1 {024,014,
‘6YH, ‘Y8H,
{SS OLNI $$ 3lIdMm: HEELS
f06d,.08d.0Ld, {ZYH,
d_.06d 0bd., ‘Z@H,
d.02d 014, ‘Y6H,
womrw 10pa_.0gd 11
‘gZH, {AOH.
“_mmmmwmwmm. Sh $09d4,064d,11
Mmu< f{AvYH,
[‘gOH,
,“mmoomUQZm“ ‘UEH,
sgn, {NYPH,
INgS D ‘PTH.
{OvH, ‘Oypd Dtd IH
dpi. {QvH,
f1Invdaq: {QQH,
‘YTH,
INKS D mwmuu
{OVH, f{0pd_0td,1H,
,sen, ‘ayH,
UL !Opd 0Ed 1H
.@m:(dDhH,
~mem 109d_.044d,1H
!5zd.014d.
{GYH, {QYH,
INBS.D {PYH.
‘OVH, {ZYH,
agi. f581=>551=5%"
156 HSYD: £0¢d. 01d.
INDS D ‘Y8H,

($1-01 s3ed uo 1x33 ‘panunyuod Juisry) :—mv—m

Dr. Dobb’s Journal, Number 57, July 1981

26

298

(a8vd 1xau uo panunuo))

{HYS .9
f)ocd

‘HUS .9
t)ozd

) OSWI(
{GPH 8O

£)100¢(
{€PH_ 90

f)ovd(
‘HUOH_ 99

PR R
VL)
) ASVEH(
{3YH_ 99
yasval(
‘Q@H_ 98

Hyams(
fXXs) (X

tdoL:
+LN,
ts dols:
9005 .89
.ota.n(
tg$ 001:
+EN,
1¢$ 0L0D:
+IN,
£ GNSANE

INUNLEY
+UN,
+6N,

1651 TIVO:?
+EN,

{$$ anso9:

+TN

9005 .99
.o1d.s(
148 WNS:
+LN,
+6N,
+6N,
+6N,
1$81=>$51=5S$"
+LN,
+6N,
+6N,
+6N,
$$$1i>$51=8s5+

(¥ uwunjoz ‘97 28vd uo panupuo))

+G N,

+6 N,

+8N,

+6N,
$$1=($$1)sS1¢
{Hpi . 89800S 89 -TN_SOS.,
LyNon, ¢
+8 N,
+6N,
{s8=
+8N,
+LN,
igs1=
+9N.
t8s=(58)8s¢

+9N,

+6N,

+LN,

(ss1)$s+

(s$)s$1s

+6N,
f($51)$51=581:
+ZN,
{HPi.9D0BS . BB-TIN_SUS,
LINgN, T
+9N,
+6N,
f(ss1)88=8s:
+9N,

+6N,
t($8)$51=5s1*
+9N,
£{$s) $5=5s"
+EN,
+6N,
1$$1=851°
+GN,
£$51=83"
+EN,
+LN,
fss=5s1°
+UN,
f88=85:
+EN,
+LN,
1$6565+=5$1¢
+yN,
f965+=55"
+V N,
u.w.ummu

‘H6d. 08
£)024.0Td, IH(
£06d .99
£)0¢d. 014, 171(

(£ uwnjoo ‘9z a8nd uo panuiuo))

£3Zd.014d. 11

‘agH,
10yd _06d.,

{GYH,
£($$’68°s51)Movd:
£0yd 064,

{48H,

£0za.01d.11

{AvYH,

!opd otad,

{G8H,

£0Zd. D14 1H

!QvH,

£($$’$$$S1)MOVANN
501D

{PTH,

£0Zd . DTAH

{QVH,

$02d 0141

{6YH,

{$$ 3s010%

{N3dO
{@CH,
‘opa ogd,
{GVH,
fauag
‘OCTH,
$0Zd D14 H
{PYH,
£0za . 01d.1
{6VH,
fsyuas
‘PTH.
094,064, 11
‘avH,
£09d_ 0Sd_IH
!OVH,

551 LV $$ ¥O4 $$ NAdO:
£0zd.014d,
{G8H,
‘ayay
‘OTH,

6% dUvay:
foza. o014,
‘G8H,
{HOLD
PZH,
Obd UEAH
{YVH,
10%d.0Ed. 1
6VH,

5§ WOHd $$ avau:

(z uwinjod ‘9z 28pd uo panuyuo))

{OFH,
stn,
sen,
{LMS

{G8H,

074 014,

{GYH,

6% NO
api.
INGS M

{OVH,

agi.
{4TIHMANY
INGS .M
{ObH,
sen,
{€OH,
‘pqQH,
Hzd 014,
{GYH,

dS00HD:

sen,

INgS.I
‘OVH,

sen,
dagi.
13574
dei.
‘310N
INBS. 1
ol 2:
sen.,
{¢QH,
YU,
024,014,
‘GVYH,
‘gs 4l
{P9H,
INIVWANE:
{ASdS
{38H,
{VHH,
¢ (AVI‘OV) NIVWN1D3E:
¢ddH,
! WOLLOE:
dpi €A TASTA,
1$$5=43L5193Y:
166$$$=WIW0T ¢
361 ¥xSA xVA¥EA ¥TASTA,

1$565S=WdWIH?
£doL:

{PYH,

{Y6H,

{ASdS

{3VH,

27
299

Dr. Dobb’s Journal, Number 57, July 1981

SHMNTVA HILIWVHVL® (BT0)H¥d1

SOYOVW JO HIGWNN!WNI

NOISNVAX3d ONIH¥NG YALNIOd OUOVW!dWI
SOMOVW Ol SHALNIOd! (490T18)d11

T NI ONIYOLS ¥04 LIWIT WAWIXVW!WII
300D OSNIAVIY T OL HALNIOG !rrI
ONIQVIY 3TIHM T OL d3aLNIOd ‘III
SNOILINIJId JO ONF Ol SILNIOd!QuI
HOLYW 3TIHM YILNIOd NOILINIJAA!{ddl
dIEWNN L3anonalodl
d9VHOLS ONINYOM ‘gdl
NHOMIYY]
Y1 LNVLSNOD!9TI
BT LNVLSNOD!QTI
6 LNVYLSNOD!601
T LNVLSNOD!IPI
2 LNVYLSNOD!Y¥oa1
OM3Z YILOVHVWHD!YZ
NO SI 3d0W 3FOVdl 3Dovdl dasniln
X, SI dw SSITINN 3NYL --SNOILVHAdO ISn?on
LNd1NO NO SEANITMIN ONISSIUAANS LON HOA D¥Id --X LON!NN

X, SI 90 SSITINN INYL ‘IUONOI dsSnion
dOVHL OL 41 dN¥Lidl

YALNIOd XADVWLS‘dS

o¥1d (4ILIWYHVYd) NOILNLILSans!ds
OV¥1d 3ANIT-AN3 (LNIWwOD) ‘DY

OV¥1d NOILINIJ3A NIDIgfgd

¥d1 OLNI Y¥3LNIOd{dd

NO NNl 9v1d 3DVil‘lO

dS0dSIA ¥O HOL3d XOVWLS ,S,?{s0O
3sodsia (LOVY¥LENs) 3dNa3dd ,-, ‘do
d50dSIA 40 HOLId ¥Y3ILIWWHVYL ,d,!dO

HOL3d IVH3ALIT DIHIWAN N, {NO
4S0dSIA ATdILINW s#: WO

HOL3Id TVHILIT ,1.¢10

HOL3d NOISHIANOD X3H ,H, ‘HO
HALOYUVYHD JHONDIL!O0

HALOYHVYHD 3dVDSaldo

HOL34 NOISYIANOD LIDIA ,A,*QO
3S0dS1d HALOVYUVYHD (2. !00
HOLYY¥AdO NOVLS dOd .i.’€0
HOLYY¥Ad0O adv ,+. {v0

4000 Is0dsIaleo

300D XHAN1?ZO

300D HOLAJ'TO

ANITMANSIN

LNdIN0O HIEWNN 04 dS €8NS NI gdsSN -SLIOIA 40 HIAWINIAN

NET OHOVYW WNWINIW?!WW

HLONYT OUDOVW!IW

oy1d ¥3d0 LNAWIOVIdAY OHOVW!JW
SNOILINIJAd OHOVW J0 LSIT!(B¥@60)S1
LSIT JO aN3‘ a1

TR

LNI
LNI
LNI
INI

dLAg
JLAd
3LAd
3lA8
JLAd
dLAg

sgurisry 19§ oxoep pug

+GN,
+GN,
$($8785'8s1)M0vd:
+GN,
+SN,
1($5°$8$S1)%0O¥dNN:
+LN,
1§s 450710
+6N,
+6N,
+EN,
‘$$1 Lv $$ 04 $$ NILO:
+GN,
$$ Qvay:
+6N,
‘66 wOdd $$ avay:
+SN,
+SN,
19 Jaavad:
+SN,
+GN,
{g$ dQaliym:
+GN,

195 ALIUM:
+6N,
S$ OLN1 $S Fllum:
+6N,
+EN,
155558558 S: SKW:
S$8d._.d6i.d8i.
{HOS 98005 .99
56d_)NOS O(d6i.,
S8d._d6i.dEi,
{3S00HDUNG
S8d._s¥N_dsi.

‘HAS.9808S .83
L)N6d O

+EN,

S8d_d6i. d8i.

{11nvdaq:

+EN,

s8d. spn_dsi.
+YN,
‘HES . 0wI0S .89
YIN6d U

+EN,

Sg8d_d6i d8i.,
HcEbich
S8d_d6i . dsi.,
‘HOPS . 98005 .0
1564) NBS_1(d6i,
‘AIGNA:
+EN,
S8d_S@11.48i .,
+UN,
ts$ 41:
+IN,
INIVWANG S
+UN,
‘H6d_90906d 08
$)Asds(
d6i -TN_S6d,
‘{60H_ B9
) ARI(
Rl) T
£)ov(
f(AY1’OV) NIVRNIDES:
! WOLLlog:

dOi »EA_SCA_STA,
1$$$=HALSIDAY

*SA 2 VA #EA _ZA_STA,
{$$555=WANOT:

d6i #SA s VA XEA STA_STA,

{6$6SS=WaWIH:

‘Y6H_ POVAH 8D
!) L1dM(
‘P6H_DOLAUH_ 9D
fyavdu(
‘Y6H_POPUH_ BB
) HOLA(
‘06H B9 TUH, B9
f)aauMm(
{Y6H_ PO3DH @0
{)HOLO(
‘P6H_v»BEOH vO
fydaqu(
‘Y6H.PI8OH 8D
£)s010(
‘06H_BOSOH B9
{)N3dO|(
‘06H_ 98T DH_ 9d
f)duad (
‘Y6H_BOdEH 0@
f)syras (
‘G6H.DBVYZH_ BB
J)ALUI(
‘P6H_BBSSH, B9
f)Inwl(
‘06H_ 980V H_BD

(#1-01 sd3ed uo 1xa} ‘panunuod Junsry) :—mv—m

Dr. Dobb’s Journal, Number 57, July 1981

28
300

{28pd 1xau uo panutjuo))

BOI=CC1
©¥O=dd
PP 1=ddI
JdIANT
T P+=TH
3574
LT 0LOD
P00+="IW
HOLVW Ol LY¥OHS OL‘¥VY JdI
Wik=>d d=v¥
de=31
IN=(d€)ddg
++dg
Jy=(dd) a4
dANIT LOANI DNOT ¥ SONIdWNA 3¥V IM JUIH!ITIHMUNG
Td wOdd DD avdad

¥¥ NO
IN=1D2D=YV
dTIHM
ATIHMANY

++dd

NOSIHVAWOD 31dILlINW ¥OJ HAJAng ¥ N1 LI Lnd NIHL!DD=(dd)dd
ANITMEN LON GNV dVHD ©#8 NYHL SS31 ITIHM!VV NO

geg3vV=vv
80=idg=dd
TIN=1D0=VVY
Td Woud DD (vad
dTIHM
20=(9¥0)ds
MALNIOd dn8f10=d8
4I0N3
dTIHMANY
1d wodd DD Qgvdd
SHALOVHVYHD FUONDI SNIAV¥AT FHONDI!WY NO
90==D20=V¥
dT1IHM
on 41
LOdNI NO d3HOV3d SI 403 TILNN ‘ST LVYHL!YY NO
@O==dd=¥V

Td WOY¥d OO dvad
3TIHM
NOISNVdX3fge D071
476VL OLNI SO¥OYW avIu‘wd €@nsod
4NIT 9¥1d avdy¥ TONI JZITVILINIYNI 8€0SO09D

IN 31IdmM

1 3TYO°Y°M 4, SW

1861 (D) 4 SW

+» LHOIYAdOD, SW

LNZAN3dad ANIHOVWI 1 iTiiiiiiiiifIpT+="IN
(AVI‘OV) NIVWNIODIH

MHOM!XAI INI

HYOMIXXI LNI

(anOINN) HOLVYHINED TOAWAS!NNI LNI

4SN 0L HILIWYHVYd 40 ANTIVAINLI LINI
MOVYLS NIVW-SY3dWnN dT0H Ol LNI ‘(8v@)SSI INI

{8z 28vd fo doj uo panupiuo))}

WYy fYH dLAd

LNIAN3d3d INIHOVW J¥Y SAZIS ¥3ddndgd LNdinof(SLzee)cd 3JLAE
¥3ddne LNdNI?(5.780)1d dLA8

dvHO 3114 d0 AN3!dd dLA8

ds d9ns ¥od MOVLS LIDIAQ‘(@TQ)Sd dlAs

NOILINIJAA INAWLVIHL dALIWYEVd WOHd LIDIC!Dd 3lAd
N3L LNYLSNOOD!XD 3lAg

HALOVEVHD LAANL DD dlAd

ININ idALOVHYHD {60 3LAd

ALHOI3 INVLSNOD{gD dlLX8

pb LSNOD!pD dlig

€ ILNVYLSNOD{€D dLlA8

OML LNVLSNOD!ZD 3lA8

ANO INWLSNOD!1D 3lX€

o¥dZ LNYLSNOD!#D ILAY

dg OLNI ¥3LNIOd‘dde dLlAdg

MNV1€!718 3LA8

H3ddnd NOISNvdXx3f{(y8p)dd IlAd

Adomiag Ilig

AdoMivy ALA€

98P=UILSIOIY
PYA6S ‘¥YBYE=WIWIH
BOOYS {Y8EYT=WIWOT

FIYD°V M 1861 (D) LHOIUYAJOD dWONIL!{HOL

Bunsiq dwouy)

(z uwnjod ‘gz 28vd uo panujuo))

Sgd_d6i dgi,
f$$ dSVO:
+EN,
S6d. 51N, d6i,
S8d_ 50N _dyi,
+UN,
{$$ NO 3ISOOHD:
$8d.d6i.dyi,
{HPS 9800S 9
f)N6d M (
+EN,
$8d_d6i.d&i.
{WTIHMONY :
+EN,
Sgd. s¢N. d8i.,
+ON,
uwm NO ¢
‘HPS 90085 90
864,) NUS M(d6i.
S8d.S¥N_dEi.,

{HYS 99005 .88
{YN6d 1

+EN,

$8d 5PN d8i,

29
301

Dr. Dobb’s Journal, Number 57, July 1981

€@P+=€D
CPD+=CO
180+=12
200+=80
60000+=601
618p0+=011
10000+=T01
BPR0O+=001

88- ST 40 NOISNIWIA‘YZ68U+=W1I
JzITVILININI €nsS
4nsSaNad
00=V¥V¥Y
4I0Nd
NYNLdd
XO+YY=vV¥
YH-¥V=YVY
dq dl1
20%4d49=d4d
dH=>¥¥=00D
V¥=>VYH=d4
JdIQN3
NYNL4d
¥Z-VYVY=VVY
dd dI
J0%349d=d4d
60=>¥¥=0D
¥¥=>dZ=d4

dAILNDISNOD F¥VY 4-V LVHL SIWNSSV!?
LI9IA X3IH SY V¥V LY3IANOD'HO €ns

ansanNd
0=V
JdIANd
N3nLIY
HZ-¥V¥=VVY
dd 41
J20%3dd=44
60=>¥¥=DD
¥Vy=>4d7=4dd
LI9IQ I¥YWIDAd S¥Y ¥V LHIANOD!QD ens
ansand
168 dLIdMm
ATIHMANT
V¥V dLIdMm
(aN) sa=vv
-=UN
¥¥ NO

VVY1i>@01=vV

410N3

20 ALIYM
JLI¥M O0STV NIHL!IW 41
¥¥ NO
IN=IY¥=VYV
(10)d8=VV
104d8=10
(dd)d8=22
JTIHM
pO=dd
LT D201
HOLVW ON!
dTIHMUNT
-~ dai=rri
(WNI)dT1I=ddl
++WNI
90=dd
91 D01
I TIHMANG
++0C1
++dd
18 001
4 IANd
410N3
d1dNd
VVI=(dd) ¥dI
¥VY=VYVI
(dg) 38=vv
++dd

YILIWVEYd ¥ SI SIHL!ISTd
QIHOLYWSIW!YT 0LOD

WY dI
OVId HALIWYHVYd ALVIdWIL ¥ LON’JS=ig8=V¥
as1a
ONIHOLVW! T4 0109
¥v 4l
di==VYV¥=VYV
(cri1) si=88
(dd) ag=vv
3s1a
99 040D
NOISNVYdXd OHOVW 0G’Wd 9nS09
¥V dI

UEHOLVYW 3AVH 3M NIHL ‘INIT 40 ANI ILVIdWIL?

SAVH LIDYVIL JHL ANV ¥344nd IHL HLO0€E J1{€0BVV=VVY

JY==¢£ 0=¢£0
(dg)d8=€£0
JY==V¥V¥=V¥
(£L1) S1=VY
¥¥ NO
dT1=>d 4=VV¥
dTIHM
9 O=dd
¥¥ NO
SNOILINIJA3d 40 ANd > ¥l1d 43a‘ddli>ddi=vv
JTIHM
B O=WNI

($1-01 sa8ed uo 31x33 ‘panupyuod Surysiy) :-OU_ m

Dr. Dobb’s Journal, Number 57, July 1981

30
302

(28pd 1xau uo panuijuo))

1 X =YY

dALOVHVHD FYOND1!Td wodd 50 dviy

agyv dN¥ ASYE X8 MOVLS ATdILINW {,x.=WO
MOVYLS Wodd (3onadd) Lovyldns?, -,=H0
NOILVUYNDIS3U ¥DOVWLS Ol adv?!,+,=v0
NOILVNDISId LNO HALOVHVHO!,D.=00
HOLId 3LAd TV¥3ILIT!,1,=10

HOLId OI¥dawAN TVYIALIT?!,N,=NO

INdLNO FLAE HOIH dOd 0SIV?

4LI¥M GNV HOLId LNVISNOD X3H?,H,=HO

ION3NOIS NOILVYAdO NI HOLUNDISIA XDOVLS!,S,=SO
dONIN0ES NOILVHAAO NI YOLYNDISHA HOVLS dOdf,i,=d€0
dONEN0ES NOILOV NI LIOIC Ol H3ILIWVHYd LHIANOD!,A,=dO
HILOVYVHD HAdV¥DSH‘¢,d,=30

JONUN0ES NOILVYAJO NI HOLVNOISAAd HALIWYHYd?!,d,=d0

JI1daNd

T10=0N
as1d

©¥Oo=0n
¥v¥ 41
ge==dWN=YV
« Xo=44
9Y¥1d NOILVH3dO NOISNVAX3‘Td WOHd dW Avay
oy1d HILAWYHVd FLVIdWIL!Td WOHI J4S Avay
oy1d INIT A0 AN ANV LNIWWOD!Td WOHd DY avad
ov¥1d NJ3d 40 ONINNIDIE!Td wOHd Q¥ AviIy
$83¥ddNS L,NOG 0S ‘X LON SYM dVHD FHL SAVS NN‘d8=iv¥=NN
+X,=4d8
gpR+=Ln
1Ly =10

LNdLNO ANIT M3AN S3ISSIUAdNS X{Td wodd Vv avay
O€1 LV dl d0d ¢4 N3dO

¢d 3s010

My =UL

(€2)A¥1=D481

odl LV dl ¥04 Td N34O

T4 3S0712

s 4 =L

(12)AvI=D8l

SOV1d MALOVHVYHD dviy!

B18+=XD
«V¥,=VH
+vd.=dH

MNVIE?, =18
10,=HZ
16,=6D

¥Rv+=dS
91000+=9T11

P8Y+=80

pro+=¢0

dYHOD 37114 40 ANI!SGZ+=43

(o€ 23pd fo doj uo panuyuo))

AN=VVI
dTIHM
SLI9Id 3HL ¥OVLS‘dS 4nsoo
TVYNIWHEL JHL NO Y3IgWNN dHL ILIMM!NA €NS

anNSANd

dTIHMANE
¢3 OLNI ¥V 3JLIYM
(QN) sa=vv
-=UN

¥¥ NO

YYli>gd1l=YV
AN=YVI
LSv1 OL LS¥Id SLIDIA IHL INO ILIYM MON’ITIHM
SLIDIA 3IHI MOVLS‘dS 4nsoo
¢d OLNI dIdwWNN V¥V ALIYM’NM ans

8NSANd
ATINO DIN ¥OJd MONI 3I1f€8+dN=AN
¥0=(aN) sa
JdIAN3
ATIHMANS
++dN
¥v=(dN) sd
HZ+VYV=VYVY
XX1=¥V¥
AAI=NLI
¥YV1-NLI=XXI
AAI¥QTI=VVI
9T11/NLI=AAI
¥¥ NO
NLIi>P0 1=VV
dTIHM
¥ O=AaN
ds1d
¥zZ=(90) sa
10=04N
¥V 4l
PO I==0LI=V¥VY
AIAN3
g9P+=8d
as13
ALI-=0NLI
190+=949
¥y dI

BRII>NLI=NV

avdl LNOHLIM HIEWAN ¥V Ol «3SNOL. SLYIANOD €NS SIHL!AS €nS

NIVWANG
Zd 3s010
Td 3S01D
3TIHMING
d1IdN3
Zd4 OLNI TIN J3LIHM
ONISS3IdddNS LON 41 AINO‘NN dI
AIdNT
IN JLIdM
TW dl1
JTIHMANA
++dd
¢4 OLNI DD JLI¥dM

31

Dr. Dobb’s Journal, Number 57, July 1981

303

Nd 9NS0O

ALI=III

LN da1

ASOOHDANT
++0011
nani=nLI

d3gwnN 3N0OINN ¥ HOLIJ!LlInvdaa
T¥0+=Ln

dgow FOVHI NO NiNL{LO 3S¥D
Y¥=0ALI
ad> 8nsod
¢0=vVY

HOL3d 1I9Id TVHALITINO 3SWD
20=NL1

HOL3d 3LA8 TVH3ILIT!I0 dASVD

20=¢£0
g4I+¥VY1=NLI
Yv=4d4dI
HD 8NnS09
€0=VV
YT 1aVVI=VVI
VYVY=VVI
HO 8NS09
Z0=VV
dLAE LNVLSNOD X3H JLIMM ANV HOLIJ‘HO 3SVD
(dS) SSI=NLI1
dod LNOHLIM MOVLS WO¥d HOL3Jd!S0 dSVD

{--ds
JIAN3
10=dS
IN JLIYM
JHANDVLS Si SW
vV dI
@0=>dS=VYV¥Y

(ds) ss1=NL1

XOVLS d0df€0 ISV
¥y=NLI
NOISHIANOD LIDIGIAD ENS0D
YYI=vV
¢ (9u) ¥d1=vvI

1191d OL HVHD WOdd LYIANOD!QO 3SVD
! (95a) ¥d1=nLI

HILIWVHYd HOL3Id!dO 3SYD

10 NO ISOOHD

JIQNd
€0 dLIdM
¢0 JLIHUM
10 3LIdm
in a1
YOLYDIANI NOILYNILS3A ¢ (dWl)ST=£0
++d Wl
¥v¥=0Q
NOISHHANOD 11IDIA ¥OJ4'dD €NS0D
¥v¥=20
(dWI1)s1=vv
++dWI

LL 201
{11nvdada
JIaNa
LL 010D
gs1d
on a1
JUONDI ‘JYONOI ONISN 41490 ISYD
3TIHMANI
¥Y¥ NO
IN=iD0=VYY
14 wodd DD avay
ATIHM
JIANT
TW=WW
L3X LSILYOHS 3ANIT SIHL!vVY dI
WW i > T=VY
++111
od=(111)8s1

GNJ 3ANIT JHL HYYW ONY SLNIWWOD ONIMOTI0d JHONDI!OH 3SWD
FYOND1I{IN ISVD

0B0+="IW

++hN1

I11=(WN1)d1I
NOILINIJJ3d ¥V NIDIEe‘dd 3ISVD

LL 010D

Td WO¥d DD Qvay
ATIVYOILIMONN HILOVHVHD IXAN IHL Ld3JOV:30 3ISWD
30 NO 3JSOOHD

¥VY NO

P O=="dd=VYV¥Y

Td wWOdd DD avid
3TIHM
LTT+=HW
PO=NNI1
@0I=111

SOHOVW AV3U’‘WH €ns

NI‘€nsand
goTBY+=nNI
4d10Nd

1 d0dls

+3N1T OV¥V1d, SW
¥v¥ 4l

ANITM3N SI IN{DO=iTIN=VV
INITMIN!Td WOHd DO AVIY

d1AN3

1090+=00
as13

#99+=00
gad JI
O0==VV=88

($1-01 so8ed uo)xa3 ‘panunuod Jumnsry) :-mu—m

Dr. Dobb’s Journal, Number 57, July 1981

32

304

pud

WOLL10g
Wa!ansand
OYOVW 40 GN3 LV 30vdl 440 NiunLiggg+=Ln
YTIHMANY
++dWI
JIANZ
dIaN3
Zd OLNI TIN 3LId¥M
3513
¢4 OLNI VY dLI¥M
dd JI
JIAaNd
10=49
3514
Dd=ivv=9gdg
NN 41
(dWI) ST1=V¥
NOILD3S NOILOV 40 aNZfdS1d
ISO0HDANA

NM €NS09

dI3EWNN TYWID3Id ¥ SV INO JLIYM!LINVIIU
Zd OLNI ¥V JLI¥M
(86 ‘¥YV¥’NLI)XDVANN

JLA9 HOIH 1LNdLlNO ‘HO 3SVD
¥YV¥1I=(dS)ssI
NLI+¥VI=VVI
U1 1e¥YVI=VVI
(ds) SS1=VVI

aav gNv dsvd A8 X1dILInW ‘WO 3SvD
¥v¥1=(ds)sSsSI
AL1-¥VI=V¥VI
(dS) SSI1=VVI

MOVLS WOHd LOVHLENS!HO dASYD
¥yI=(ds)ssI
NLI+VYVYI=VVI
(dS) SS1=VVI

MDWLS Ol adv¥ivo dsvd
NLI=(50)ydd1

0071 ¥YILAWYHYd OLNI 1Ad!d0 3SVD
NLI=(ds)SsI

AIANY
¥ 0=dS
IN 3LIYM
+MTAHIAC S SW
v dI
dS=>p 0=V
++dS

MOVLS 3HL NO LNd{SO ISVD
¢4 OLNI V¥ JLIUM
NLIi=vvY
LNdLNO YIALOYMWHO!DO dSV¥D
€0 NO d500HD
JdIaNd
TN dLIdM
IT1=NLI
Nd 9NS0D
ds=nLr
Nd 94Nns095
(ds) ss1=0NLI

({z€ 28vd fo doj uo panunuo))

MOLVYOIANI wWOodd?! (dWI)S1=10

++dWI
3002 NOILVY3dO‘vvy dI
JIANY

B O=YVY
as1d
dAW==Y Y=YV Y

on a1
(dwWl) S1=v¥

'‘NOILINIAAA ONOVW LXEN 3HL OL 40N dvi¥ 3AVH dM TILNN ‘VY NO

ddli>dwI=vv¥

dTIHM
(WN1)d11=dQ1
++WNI
TRI+CLI=dNWI

NOISNVAXJ 0dYOVYW 0d‘Wd 8nS

WY? ansgNa

IN ALIMM

NdT NIW , SW
Nd €NS09
WW=0L1

+* "SOYDOVUW®, SW

Nd €NS09

WNI=NLI

II11=(WNI}dTI

IN FLIdM

+SIUNIJEQ ¥, SW

yOd S3LAE”, SW

Nd €0S09

111=nL1

1 °°°dddvo1, Sk

SNOILINIJAd 40 QN3*I11=0dI
081 LV ¥l ¥04 Td Nado

1=l
(Z0) AVI=Dd1
T4 35012
dIdR3
¢ d0LS
JaAVdY NJIA, SW
¥Y JdI
dd=100=VV
37T IHMANG
dSO0HOANd
++TW
31aNd
S dOLs
T4 3s01D
TN JLIYM
yLSXWIWOVYIW, SHW
¥y dl
I1I1i>W1I=VY
++I11I
00=(I11)31

33
305

Dr. Dobb’s Journal, Number 57, July 1981

