5 1In Search of the Most Amazing Thing; or, Towards a Universal
Method to Defeat E7 Protection on the Apple || Platform

normal start

E7 E7
|1110@ 11|0|111®0|111|@O
XX EE | L—E7

E7 E7
LllF@FlJlll@OFlJ
L—Fc

delayed start
original stream

5.1 Introduction

In the early days, there was a protection technique
known as the “generic bit-slip protection.” In mod-
ern times, the cracker known as 4am has dubbed
it the “E7 bitstream,” because of the trigger values
that are used to locate it. It was a very popular
technique.

While many nibble-checks could be defeated sim-
ply by not allowing them to run at all, some protec-
tion routines required that the code be run to pro-
duce their side effects, such as to decrypt pages or
to emit certain values that are checked later. At a
high level, our goal is therefore to simulate the E7
bitstream entirely, allowing the protection routine
to run as usual. That is, using a data-only solution
to avoid making any changes to the code. Stated ex-
plicitly, our goal is to produce either disks that can
be copied by COPYA (which, during a copy operation,
converts nibble data to sector data and then back
again) or “.dsk™format disk images (which contain
only sector data). Therefore, we need sector data
that, when written to disk, produce nibble data that
pass the protection check. For that to be possible,
we must understand the protection itself and the
code that uses it.

A primer on the hardware in general and this
technique in particular was included in PoC||GTFO
10:7. The theory is that after issuing an access of
Q6H (8C08D+(slot*16)), the QA switch of the Data
Register will receive a copy of the status bits, where
it will remain accessible for four CPU cycles. After
four CPU cycles, the QA switch of the Data Register
will be zeroed. Meanwhile, assuming that the disk
is spinning at the time, the Logic State Sequencer

15

by Peter Ferrie (gkumba, san inc)
with thanks to 4am

normal start

E7 E7 E7 E7
|111@o 11|11100I111||1110®I111|11106|111|
XX FC FC FC

delayed start
stream copy

continues to shift in the new bits. When the QA
switch of the Data Register is zeroed, it discards
the bits that were already shifted in, and the hard-
ware will shift in bits as though nothing has been
read previously. The relevant code looks like this:

READNIB EQU $C@8C
RSTLATCH EQU $C@8D
LDY #0
— NIB1
LDA READNIB,X*
—~—BPL NIBI .
try 256 times:

DEY read nibble, compare with D5
< BEQ FAIL
" cMP #$D5

L<BNE WIBI
LDY #0
— NIB2
LDA READNIB,X
—<—BPL NIB2 . "
try 256 times: (*1)

DEY i i
<BEQ FALL read nibble, compare with E7
CoCMP #3ET

L<BNE NIBZ2
NIB3

LDA READNIB,X

BPL NIB3 read nibble, compare with E7

CMP #SET
—BNE FAIL
> NIB4

LDA READNIB,X]]

BPL NIB4 read nibble, compare with E7

CMP #$E7
—BNE FAIL
" LDA RSTLATCH,X | desynch

LDY #8107~ |

BIT 06 _. .o “ensure >4 cycles between reads

NIB5 :

LDA READNIB,X . N

BPL NIBS try 16 times: (*2)

DEY read nibble, compare with EE
< BEQ FAIL
© O CMP #S$EE

BNE NIB5 * X = BootSlot << 4

Interestingly, the bit $06 instruction is a misdi-
rection. It exists only for the purpose of consuming
some cycles. Any other instruction of equal duration
could have been used, and it might be considered a
watermark. While it is the value that exists most
commonly, some titles changed the value of the ad-
dress to 80 or FF, and these versions were spread,
too.

In the most common implementation of the
E7 protection, the stream on disk appears as
D5 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 E7 with
some harmless zero-bits in between. So from where
do the other values come? The magic is in the tim-
ing of the reads, and timing is everything, so we
must count the cycles!

LDA READNIB, X

BPL NIB4 2 cycles
CMP #SE7 2 cycles
BNE FAIL 2 cycles
LDA RSTLATCH,X 4 cycles
LDY #$10 2 cycles
BIT $06 3 cycles

15 cycles

One bit is shifted in every four CPU cycles, so
a delay of 15 CPU cycles is enough for three bits
to be shifted in. Those bits are discarded. How-
ever, since the CPU and the Disk |[system are not
synchronized, then depending on exactly when the
initial read began, there can be up to two additional
cycles in the total count. That puts us in the 16 cy-
cle range, which is sufficient for a fourth bit to be
shifted in and then discarded. In any case, the hard-
ware sees it like this, due to a slip of three (or four)
bits:

D5 E7 E7 E7 [slip] EE E7 FC EE E7 FC EE
EE FC

In binary, the stream looks like this, with the
seemingly redundant zero-bits in bold.

11010101 11100111 11100111 11100111
D5 E7 E7 E7

11100111 0 11100111 00 11100111 11100111 O 11100111 OO
E7 E7 E7 E7 E7

11100111 11100111 O 11100111 O 11100111 11100111
E7 E7 E7 E7 E7

However, by skipping the first three or four bits,
the stream looks quite different.

16

s skipped

11100 11101110 0 11100111 OO0 11111100 11101110
EE E7 FC EE
0 11100111 00 11111100 11101110 O 11101110 O 11111100 111...
E7 FC EE EE FC

The old zero-bits are still in bold, and the newly
exposed zero-bits are in italics. We can see that
the old zero-bits form part of the new stream. This
decodes to EE E7 FC EE E7 FC EE EE FC, and we
have our magic values. The fourth bit must be a
zero-bit in the original stream in case only three bits
are slipped. Having the fifth bit be a zero-bit in the
original stream makes a nice pattern of repeating
values, if for no other reason.

5.2 Well-Groomed Data

In order to defeat this at all, we need to produce
a regular 6-and-2 encoded sector which can be read
by real hardware and copied by regular DOS.

We start by exploiting the point marked by (*1).
There’s a search for E7 after the D5. This allows us
to introduce a full data prologue without breaking
the check. So now we have this:

D5 AA AD E7 E7 E7 E7 E7 E7 E7 E7 E7 E7
E7 E7 ...

We can even conclude it with a regular epilogue
so that there are no read errors. So now we have
this:

D5 AA AD E7 E7 E7 E7 E7 E7 E7 E7 E7 E7
E7 E7 ... DE AA

It looks like a regular sector. The next step is to
fill the stream with the appropriate values, including
simulating the presence of the timing bits.

5.3 The Hard Stuff

WRIT R

We will use Bank Street Writer 111 for our first
attempt, since it is the simplest example. Bank
Street Writer I1I requires only one nibble from the
pattern to be valid as an 8-bit decryption key for one
page of memory. That nibble appears at a position
four nibbles after the EE, and its value must be E7,
so our pattern looks like this:

EE 7?7 7?7 7?7 E7 ...

Since we can’t rely on timing bits in our stream
(because we need sector data that produces nibble

data that this code interprets as valid), we can’t
place the EE inside a pair of E7s because after the bit-
slip the wrong value will be read. Instead, we have
to encode the value EE directly after discarding the
first three bits, and placing a zero-bit in the fourth
bit for compatibility purposes. In binary, that looks
like this:
11100111 e

After the bit-slip (and our extra zero-bit), the
hardware sees:

PP?P?????

???? [11100111]

We must make those last four bits “disappear,” in
order to align our E7 value correctly and allow it to
be seen. If we turn those four bits into zeroes and
distribute them within the stream, while adhering
to the rule of not more than two consecutive zeroes,
and replace the rest with ones, we get this:

..11101110 11111111 00 11111111 OO0
11111111 [11100111]

The hardware reads this as EE FF FF FF E7.
Then we prepend one-bits and a zero-bit to the first
(partial) nibble, like this:

[1110]11101110 11111111 00 11111111 00
11111111 [11100111]

After realigning the stream, we have this:

11101110 11101111 11110011 11111100
11111111 [11100111]

On disk, it appears as EE EF F3 FC FF E7.

The final step is to pad the data to a multiple of
the sector size, so that we have a complete sector.
‘We must also include the calculate the proper check-
sum. The remaining contents of the sector at this
point are entirely arbitrary. We could place a text
message or draw a picture, if we chose. Perhaps the
most aesthetic version is to include a nibble which
will zero the running value, and then fill the rest of
the sector with 96s, since 96 is the nibble value for
zero. This will yield a sector which is devoid of all
content other than the needed values. If that version
is chosen, then a quick lookup in the nibble transla-
tion table shows us that the nibble value which will
zero the running value is F3, so our whole stream

appears as:
D5 AA AD E7 E7 E7 EE EF F3 FC FF E7 F3
96 96 ... DE AA

Great, it runs on hardware.

5.4 Apple for the Win, or Not.

17

ple lle

‘ p EMULATOR FOR WINDOWS

Then we try AppleWin (as at 1.25.0.4). It
doesn’t work. Why not? Because instead of shifting
bits into the data latch one at a time until the top
bit is set, AppleWin shifts in an entire nibble im-
mediately. It means that AppleWin does not (and
cannot!) support bit-slip at all. Hmm, can we sup-
port both at the same time? Let’s see about that.

We need to encode the first nibble as an EE, while
also allowing a bit-slipping hardware to decode it as
an EE. Well, we have that already, so we're halfway
there! That just leaves the value four nibbles af-
ter the EE, which is currently the arbitrary value of
FF. We change that FF to E7, so our stream on disk
appears as:

EE EF F3 FC E7 E7

The final step is to pad the sector as we did pre-
viously. Using the aesthetic choice again, we zero
the running value and then fill the rest of the sector
with 96s. A quick lookup in the nibble translation
table shows us that the needed value is D6, so our
whole stream appears as:

D5 AA AD E7 E7 E7 EE EF F3 FC E7 E7 D6
96 96 ... DE AA

We have a regular sector that works on hardware
and AppleWin at the same time.

5.5 Totally Rad

JRAD |} JARIRIOIR

Next up is Rad Warrior. It requires four nibbles
from the pattern to be valid (as a 32-bit decryp-
tion key for four pages of memory), starting with
the fourth nibble. It means that our Bank Street
Writer III technique won’t work because the pat-
tern will be read differently between the bit-slip and
the non-bitslip version, after the fourth nibble.

We have to come up with another technique.
We do this by exploiting the point marked by (*2).
There’s a search for the EE. It means that we can
insert nibbles after the point of the bit-slip, which
will re-sync the stream to the non-slip form. At that
point, we can insert any pattern that we need. We
start with an arbitrary compatible sequence:

EF FF FF FF

In binary, it’s:

111011171 11111117 111211111 11111111

After the bit-slip (and our extra zero-bit), the
hardware sees:

SLo11111111 1211421111 11111111 1111

As above, we must make those last four bits dis-
appear, in order to align our pattern later. As above,
we turn the four bits into zeroes and distribute them
within the stream, while adhering to the rule of not
more than two consecutive zeroes. Let’s try this:

..0 11111111 00 11111111 O 11111111

The hardware reads this as FF FF FF. Then we
prepend one-bits and a zero-bit to the first (partial)
nibble again, like this:

[1110]011111111 00 11111111 O 11111111

After realigning the stream, we have this:

11100111 11111001 11111110 11111111

On disk, it appears as:

E7 F9 FE FF

That final FF is redundant, so we remove it.
Then we append our complete pattern without any
consideration for bit-slip. Our stream looks like this:

E7 F9 FE EE E7 FC EE E7 FC EE EE FC

The final step is to pad the sector as we did pre-
viously. Using the aesthetic choice again, we zero
the running value and then fill the rest of the sector
with 96s. A quick lookup in the nibble translation
table shows us that the needed value is FB, so our
whole stream appears as:

D5 AA AD E7 E7 E7 E7 F9 FE EE E7 FC EE
E7 FC EE EE FC FB 96 96 ... DE AA

We have a regular sector that works on hardware
and AppleWin at the same time.

RINCESPERSY

It also immediately supports Batman and Prince
of Persia, both of which require the entire pattern
(as a 64-bit decryption key for five pages of mem-
ory in Batman, and as a seed for several check-bytes
during gameplay in Prince of Persia). Superb!

BATIMAN

18

5.6 A Small Bump in the Road

Then we try it all in MAME (as of 0.169), because
MAME is supposed to behave like the hardware. . .
But. It. Does. Not. Work. Well, shit. And why
not? Because while MAME does support bit-slip, it
always consumes four bits for the code above, but
most critically, it treats the bit in the fifth position
as though it were always a one-bit.

It means that these four sequences are all de-
coded as 11111111 00 11111111 00 after the bit-
slip. (Ounly one of which is correct.)

11111111 11110011
11101111 11110011
11110111 11110011
11100111 11110011

11111100
11111100
11111100
11111100

11110011 11110011 11111100 is decoded as
10111111 00 11111111 00 after the bit-slip, which
is not correct, either.

Despite the time that I've spent poring over the
source code, I have not yet determined the cause, so
we're left to work around it. Can we add support for
MAME, while keeping the existing support? With-
out duplicating everything? Let’s see about that.

We need to move a zero-bit beyond the slipped
region so that the hardware will read the same bits
that MAME does.

[1110]0 11111111 00 11111111 Ox ...
Ve

After moving the =zero bit, we have
[1110]11111111 00 11111111 00 Realign-
ing that stream, we get 11101111 11110011
11111100 ..., which looks good. On disk, it ap-
pears as EF F3 FC.

Then we append our complete pattern without
any consideration for bit-slip. This stream is EF F3
FC EE E7 FC EE E7 FC EE EE FC.

The final step is to pad the sector as we
did previously. Using the aesthetic choice again,
we zero the running value and then fill the rest
of the sector with 96s. A quick lookup in
the nibble translation table shows us that the
needed value is EA, so our whole stream ap-
pears as D6 AA AD E7 E7 E7 EF F3 FC EE E7 FC
EE E7 FC EE EE FC EA 96 96 ... DE AA.

10

12

14

16

5.7 Success!

We have a truly universal nib sequence, which works
on hardware, which works on AppleWin, which
works on MAME (and which will still work when
the bug is fixed), and which defeats the E7 protec-
tion.

Here is
disk sector:

our universal sequence in the form of a

03
00
00
00
00
00

00
00
00
00
00
00
00
00
00
00
00
02
00
00
00
00

03
00
00
00
00
00
00
00
00
00
00
01
00
00
00
00

02
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

02 03 01 02 02 00

00
00

00
00
00
01
00
00
00
00
00

00
00
00
01
00
00
00
00
00

00
00
00
03
00
00
00
00
00
01
00
00

00
00

00
00

00
03
00
00
00
00
03
00
00

02
00
00
00
00
01

02
00
00
00
00
02

00
00

00
00

00
00

00
00

00 00 00 00 00 00

/ /

This can be applied wherever the E7 se-
quence is the regular pattern. For other pat-
terns, such as those used by Thunder Mountain’s
“Dig Dug” (E7 EE EE EE E7 E7 EE E7 EE EE EE
E7 EE E7 EE EE), Sunburst’s “1-2-3 Sequence Me”
(BB F9 Fx), and MCE’s “The 4th R - Reason-
ing” (EB B6 EF 9A DB B7 ED F9 D7 BF BD A7 B3
FF B3 BA), just place the proper pattern after the
“EF F3 FC” sequence, pad the sector as you like,

and then fix the sector checksum.
[N

For the record, the E7 stream is used in many
other titles (games or educational software), such
as Commando, Deathsword, Ikari Warriors, Impos-
sible Mission II, Karate Champ, Paperboy, Rambo

19

First Blood Part II (a pure text adventure!), Sum-
mer/Winter/World Games, The Ancient Art of War
[at Sea], Tetris, and Xeviouse

As far as we know, this technique first appeared
in 1983. It was used to protect the title Locksmith,
ironically a product for defeating copy-protection.

(\
n ITH®

None of the disk copiers of the day could copy
E7 disks without a parameter unique to the target,
so duplicating these disks always required a bit of
expertise.

5.8 Final Words

Here is an interesting question: What if you don’t
have an entire sector available on the track that you
need?

Fortunately, this would be a concern only for a
protection which used the rest of the sector (and the
rest of the track) for meaningful data, which I have
not seen so far. In any case, the solution would be to
insert only the nibble sequence “EF F3 FC ... EE
EE FC” and to not pad the sector. This would yield
a freely-copyable disk in its original form. However,
we must discourage that idea with these words from
4am:

n €VER patch an origInal disk.
Oon't reduce the numser of oriGgINaL d1sks In the WORLO.

They aren't making any more of them. am

