

Marinetti

Version 3.0

Technical Update

 “For the Apple IIGS

®

, the world just got a whole lot closer!”

Designed and written by Richard Bennett-Forrest
© 1997-2008 Richard Bennett-Forrest

This revision: 9th June 2008

Marinetti 3.0 Technical Update Page 2

Contents

Acknowledgements 3

Introduction 4

Event triggers 5

User event triggers 6
trgUDPIn 6

System event triggers 6
strgNetworkDown 6

TCPIPGetUserEventTrigger 7
TCPIPSetUserEventTrigger 8
TCPIPGetSysEventTrigger 9
TCPIPSetSysEventTrigger 10

New DNR features 11

TCPIPGetDNRTimeouts 11
TCPIPSetDNRTimeouts 13

Link layer modules 14

LinkConfigFileName 15

Debugging and testing 16

Nifty List updates 16

New constants and equates 17

Tool error codes 17
User event trigger codes 17
System event trigger codes 17

New features and bug fixes 18

New features and enhancements 18
Bug fixes 18

Marinetti 3.0 Technical Update Page 3

Acknowledgements

Sections of this document may be based on or lifted from discussions with programmers and developers
who assisted in testing Marinetti during its initial and on-going development cycles, and as such, some of
their copyrighted material may have accidentally been included in this document. Any use of individually
copyrighted text was unintentional and purely in the spirit of making Marinetti a reality. Concerned
copyright owners should contact the author to immediately resolve any conflicts.

Development phase testers

Tony DiazAndrew Roughan
Eric Shepherd
Kelvin Sherlock
Ryan Suenaga
Geoff Weiss
Ewen Wannop

Contributors to Marinetti

Open Source Project

Richard Bennett-Forrest
Tony Diaz
Glenn Jones
Andrew Roughan
Kelvin Sherlock
Michael Stephens
Ryan Suenaga
Ewen Wannop
Geoff Weiss

Marinetti 3.0 Technical Update Page 4

Introduction

Marinetti is a TCP/IP protocol suite for the Apple IIGS. It allows applications on an Apple IIGS with
System 6.0.1 to connect to and interact with an internet.

The Marinetti software is free of charge, and is available from various locations, including the
Marinetti Home Page:

http://www.apple2.org/marinetti/

Updates to Marinetti and this document are products of the Marinetti Open Source Project.

http://sourceforge.net/projects/marinetti/

This document describes the changes between version 2.0.1 and 3.0 of Marinetti, which are directly
related to developers.

The Marinetti 2.0.1 Programmers’ Guide is a prerequisite to using this document. Using both of these
documents in conjunction with the Apple IIGS Toolbox Reference Manuals and widely available protocol
RFCs, you should be able to add TCP/IP support to your Apple IIGS application.

Revisions since the last release of this document are highlighted with revision bars on the right hand side
of the page, like this.

This documentation refers to and assumes a prior knowledge of the Apple IIGS toolbox. Apple IIGS
toolbox reference manuals are available from:

Syndicomm Online Store
http://store.syndicomm.com

Marinetti 3.0 Technical Update Page 5

Event triggers

Marinetti version 3.0 introduces event triggers, which allow programs to receive synchronous signalling

from the TCP/IP stack for specific system and ipid events.

Event triggers may be installed for system events, or for each individual ipid. When the trigger “fires”, it

calls a routine in your program to indicate that the event occurred, passing several parameters on the stack.
The routine is called with the accumulator and index registers long, the direct page register pointing to the
Marinetti direct page, and the data bank register undefined. Upon return, the direct page and data bank
registers must be preserved.

Before the call, the stack will look like this:

Previous contents

Space Word — Space for result

triggerNumber Word — The number of the trigger which fired

ipid Word — ipid or $0000 for system

— triggerParm — Long — Parameter depending upon the trigger

 <— SP

Before returning, the stack should look like this:

Previous contents

actionCode Word — Parameter depending upon the trigger

 <— SP

triggerNumber The number of the trigger which fired.

ipid The ipid of the trigger which fired. If this is a system event trigger, then this

value is $0000.

triggerParm A longword dependant upon the trigger which fired. See the trigger descriptions

below for more details.

actionCode An optional parameter word returned to Marinetti indicating what it should do

upon return from the trigger routine. In most cases, this parameter is unused and
should be left on the stack unchanged.

Marinetti is not fully re–entrant, hence trigger routines must not call any additional Marinetti routines. In
most cases, the trigger routine shall simply set a flag and return, with the main application logic detecting
the flag being set and taking appropriate action within the main event loop.

Marinetti 3.0 Technical Update Page 6

Additionally, most triggers will fire within critical code within Marinetti, and the less instruction cycles
used in your routine, the better.

Triggers are automatically removed from the system when the ipid is logged out.

User event triggers

Trigger: $0001

Trigger name: trgUDPIn
triggerParm: Handle to the UDP datagram.
actionCode: $0000 = Take no further action. Default.
 $0001 = Application now owns the handle.

A UDP datagram was received. If actionCode is set to $0001 upon return, then Marinetti assumes that the
application now owns the handle, and will not add it to the incoming UDP queue. Applications wishing to
keep the datagram must immediately set the handle’s userid field to their own.

System event triggers

Multiple applications may attempt to set a system trigger at the same time. To avoid this, applications

should first check to see if a trigger is already installed, using TCPIPGetSysEventTrigger, before
installing their own.

Trigger: $0001

Trigger name: strgNetworkDown
Description: Marinetti has just disconnected from the network, or has just detected that the network is

already down.
triggerParm: undefined.
actionCode: undefined.

Marinetti 3.0 Technical Update Page 7

TCPIPGetUserEventTrigger $6336

Returns the requested user event trigger.

Parameters

Stack before call

Previous contents

— Space — Long — Space for result

triggerNumber Word — Trigger to return

ipid Word — Connection to use

 <— SP

Stack after call

Previous contents

— triggerProcPtr — Long — Pointer to the trigger routine

 <— SP

Errors terrBADIPID This ipid has not yet been logged in

 terrBADTRIGGERNUM Invalid trigger number

BASIC FUNCTION TCPIPGetUserEventTrigger (%, %) as
triggerProcPtr

C extern pascal triggerProcPtr TCPIPGetUserEventTrigger
(Word, Word);

Pascal function TCPIPGetUserEventTrigger (triggerNumber, ipid:
integer): triggerProcPtr;

triggerProcPtr This is the address of the routine that will be called by Marinetti when the trigger
is fired.

Marinetti 3.0 Technical Update Page 8

TCPIPSetUserEventTrigger $6436

Sets the requested user event trigger. To remove the trigger, set it to zero, or logout the ipid.

Parameters

Stack before call

Previous contents

triggerNumber Word — Trigger to get

ipid Word — Connection to use

— triggerProcPtr — Long — Pointer to the trigger routine

 <— SP

Stack after call

Previous contents

 <— SP

Errors terrBADIPID This ipid has not yet been logged in

 terrBADTRIGGERNUM Invalid trigger number

BASIC SUB TCPIPSetUserEventTrigger (%, %, triggerProcPtr)

C extern pascal void TCPIPSetUserEventTrigger (Word,
Word, triggerProcPtr);

Pascal procedure TCPIPSetUserEventTrigger (triggerNumber,
ipid: integer; tPtr:
triggerProcPtr);

triggerProcPtr Address of the routine to be called by Marinetti when the trigger is fired.

The routine is called in full native, with 16 bit accumulator and index registers.
The direct page register points to the Marinetti direct page, and the data bank
register is undefined. Upon return, the direct page and data bank registers must be
preserved.

Marinetti 3.0 Technical Update Page 9

TCPIPGetSysEventTrigger $6536

Returns the requested system event trigger.

Parameters

Stack before call

Previous contents

— Space — Long — Space for result

triggerNumber Word — Trigger to return

 <— SP

Stack after call

Previous contents

— triggerProcPtr — Long — Pointer to the trigger routine

 <— SP

Errors terrBADTRIGGERNUM Invalid trigger number

BASIC FUNCTION TCPIPGetSysEventTrigger (%) as triggerProcPtr

C extern pascal triggerProcPtr TCPIPGetSysEventTrigger
(Word);

Pascal function TCPIPGetSysEventTrigger (triggerNumber:
integer): triggerProcPtr;

triggerProcPtr This is the address of the routine that will be called by Marinetti when the trigger
is fired.

Marinetti 3.0 Technical Update Page 10

TCPIPSetSysEventTrigger $6636

Sets the requested system event trigger. To remove the trigger, set it to zero, or logout the ipid.

Parameters

Stack before call

Previous contents

triggerNumber Word — Trigger to get

— triggerProcPtr — Long — Pointer to the trigger routine

 <— SP

Stack after call

Previous contents

 <— SP

Errors terrBADTRIGGERNUM Invalid trigger number

BASIC SUB TCPIPSetSysEventTrigger (%, triggerProcPtr)

C extern pascal void TCPIPSetSysEventTrigger (Word,
triggerProcPtr);

Pascal procedure TCPIPSetSysEventTrigger (triggerNumber:
integer; tPtr: triggerProcPtr);

triggerProcPtr Address of the routine to be called by Marinetti when the trigger is fired.

The routine is called in full native, with 16 bit accumulator and index registers.
The direct page register points to the Marinetti direct page, and the data bank
register is undefined. Upon return, the direct page and data bank registers must be
preserved.

Marinetti 3.0 Technical Update Page 11

New DNR features

Marinetti 3.0 introduces tuning of DNR performance, via the TCPIPGetDNRTimeouts and

TCPIPSetDNRTimeouts calls.

TCPIPGetDNRTimeouts $6736

Returns the current DNR timeout values.

Parameters

Stack before call

Previous contents

— dnrTimeoutsBuffPtr — Long — Pointer to 4 byte buffer for response

 <— SP

Stack after call

Previous contents

 <— SP

Errors None.

BASIC SUB TCPIPGetDNRTimeouts (dnrTimeoutsBuffPtr)

type dnrTimeoutsRecord
 dnrRETRIES as integer
 dnrTIMER as integer
end type
type dnrTimeoutsBuffPtr as pointer to dnrTimeoutsRecord

C extern pascal void TCPIPGetDNRTimeouts
(dnrTimeoutsBuffPtr);

typedef struct {
 Word dnrRETRIES;
 Word dnrTIMER;
} dnrTimeoutsStruct, *dnrTimeoutsBuffPtr;

Pascal procedure TCPIPGetDNRTimeouts (dtPtr:
dnrTimeoutsBuffPtr);

Marinetti 3.0 Technical Update Page 12

dnrTimeoutsRecord = record
 dnrRETRIES: integer;
 dnrTIMER: integer;
end;
dnrTimeoutsBuffPtr = ^dnrtimeoutsRecord;

dnrTimeoutsBuffPtr Points to a 4 byte buffer for the response.

The currently defined offsets are:

dnrRETRIES +0000 How many times the DNR module retries both domain name

servers. The default is 5.

dnrTIMER +0002 The number of ticks before a retry times out. The default is
120 ticks (2 seconds).

Marinetti 3.0 Technical Update Page 13

TCPIPSetDNRTimeouts $6836

Sets new DNR timeout values.

Parameters

Stack before call

Previous contents

— dnrTimeoutsBuffPtr — Long — Pointer to new timeout values

 <— SP

Stack after call

Previous contents

 <— SP

Errors None.

BASIC SUB TCPIPSetDNRTimeouts (dnrTimeoutsBuffPtr)

C extern pascal void TCPIPSetDNRTimeouts
(dnrTimeoutsBuffPtr);

Pascal procedure TCPIPSetDNRTimeouts (dtPtr:
dnrTimeoutsBuffPtr);

dnrTimeoutsBuffPtr Points to new DNR timeout values, which Marinetti will copy into its
internal DNR configuration.

See TCPIPGetDNRTimeouts for the definition of the buffer.

Marinetti 3.0 Technical Update Page 14

Link layer modules

Marinetti 3.0 supports several new link layer module calls, collectively known as link layer module
version 2. To indicate support for these new calls, the link layer module should return the value $0002

from the LinkInterfaceV call.

Marinetti 3.0 ships with version 2 interface versions of all its link layer modules, and supports third party
modules at both version 1 and 2.

Marinetti 3.0 Technical Update Page 15

LinkConfigFileName $0018

The configuration data for link layer modules is stored in the resource fork of a single configuration file
inside the TCPIP folder. While Marinetti starts and shuts down the Resource Manager as required, this
could cause excessive CPU overhead as well as data corruption due to bugs in the Resource Manager.

In future Marinetti will store configuration data in a file for each link layer module.

This call returns the filename of the configuration file as defined by the link layer module.

Parameters

Stack before call

Previous contents

— configNamePtr — Long — Pointer to response buffer

 <— SP

Stack after call

Previous contents

 <— SP

configNamePtr Pointer to a 16 byte buffer into which the ProDOS filename will be returned as a

pString.

Marinetti 3.0 Technical Update Page 16

Debugging and testing

Nifty List updates

Marinetti 3.0 contains additional tool calls and error codes, which should be applied to the NList.Data
file, following the definitions for Marinetti 2.0.1 that are documented in the Marinetti 2.0.1 Programmers
Guide.

The new tool call definitions are as follows:

6336 TCPIPGetUserEventTrigger(triggerNumber,ipid):triggerProcPtr/4
6436 TCPIPSetUserEventTrigger(triggerNumber,ipid,@triggerProcPtr)
6536 TCPIPGetSysEventTrigger(triggerNumber):triggerProcPtr/4
6636 TCPIPSetSysEventTrigger(triggerNumber,@triggerProcPtr)
6736 TCPIPGetDNRTimeouts(@dnrTimeoutsBuffPtr)
6836 TCPIPSetDNRTimeouts(@dnrTimeoutsBuffPtr)

The extra error codes are:

3621 terrBADTRIGGERNUM

Once the changes have been made, save them back to disk and reboot. You should now be able to issue
Nifty List commands against the Marinetti tool calls and error codes. If issuing calls outside of your

application, you will most likely need to use Nifty List to issue the _LoadOneTool(36,300) call first.

A file containing the above Nifty List configuration for Marinetti can be found in the Marinetti Open
Source Project CVS Repository:

http://marinetti.cvs.sourceforge.net/marinetti/MOSP/
Tools/NiftyList/nl.marinetti

GSBug

GSBug has the ability to view data structures in memory by using templates. A template file for Marinetti
can be found in the Marinetti Open Source Project CVS Repository:

http://marinetti.cvs.sourceforge.net/marinetti/MOSP/
Tools/GSBug/tcpip.template

For ease of access, you may wish to copy the template file to your *:System:System.Setup
directory.

Refer to the GSBug documentation for more information on how to use this file.

Marinetti 3.0 Technical Update Page 17

New constants and equates

New tool error codes

terrBADTRIGGERNUM $3621 Invalid trigger number

User event trigger codes

trgUDPIn $0001 UDP datagram received

System event trigger codes

strgNetworkDown $0001 The network has gone down

Marinetti 3.0 Technical Update Page 18

New Features and bug fixes

New features and enhancements

Marinetti 3.0 includes the following new features and enhancements.

• Link layer module configuration data is now stored in the *:System:TCPIP: folder with a name

specified by the link layer module.

• New link layer version (2) to support new configuration data files.

• PPP link layers now support the CHAP Authentication Protocol.

• PPP link layers now support the MS-CHAPv1 Authentication Protocol.

• MacIP link layer is now included.

• Uthernet link layer is now included.

Bug fixes

Marinetti 3.0 includes fixes for the following bugs in Marinetti 2.0.1.

• There was a stack imbalance sending ICMP packets. Intermittent results.

• There was a stack imbalance when querying the status of UDP packets.

• There was a stack imbalance in incoming SYN error handler. TCPLogin would fail intermittently.

• There was a memory overrun in the TCPRead call when specifying a buffer length to be used and the
available data exceeded this length when the socket was closed.

• There was a logic problem with processing TCP packets that arrived out of sequence. Marinetti ignored
any incoming data if the socket was closed by the host before all packets had been processed.

• There was incorrect handling of escaped characters in the PPP link layers. Packets containing escaped
characters failed the CRC check and the packet would be dropped. This would result in hangs, and loss
of data when using the PPP link layers.

• LCPTerminateRequest was not supported by the PPP link layers. This would result in SysFail errors
during negotiation of connections with some hosts.

• There was a pointer arithmetic bug in the TCP TimerData routine. This would result in SysFail errors
within the PtrToPtr routine.

