ProDOS Technical Notes

Revisea May 08, 1984

For further information contact:
PCS Developer Technical Support
M/S. 22-W. Phone (408) 996-1010

Disclaimer of All Warranties and Liabilities

.Apple Computer, INC. Makes NO warranties, either express or implied, with
respect to these technical notes or with respect to the software described in
these technical notes, their quality. performance, merchantability, or fitness
for any particular purpose. Apple Computer Softwarc is licensed "as is". The
entire risk as to its quality and performance is with the developer. Should the
program prove defective following its use, the user (and not Apple Computer,
INC., their aistributors, or their retailers) assumes the entire cost of all
necessary servicing, repair or correction and any incidental or conseguential
damages. In no event will Apple Computer, INC. be liable for.direct, indirect,
incidental or consequential damages resulting from any defect in the software,
even 1f they have been advised of the possibility of such damages. Some states do
not allow the exculsion or limitation of implied warranties or liapbility for
incigental or conseguential damages, SO the above limitation or exclusion may
not apply to you.

This software and documentation is copyrighted. All rights are reserved. These
technical notes may not, in whole or part, be copied, photocopied, reproduced,
translated or reguced to any electronic mediumor machine readaple formwithout
prior written consent fromApple Computer, INC.

~ Copyrignt 1984 by Apple Computer, Inc.
20525 HMarianl Avenue
Cupertino, CA 95014
(408) 996-1010

ProDOS Memory Map
Main Memory Auxiliary Memory

(//¢ or 128K //e only)
ROM Language Card Area

: §

sruse k\i\"n‘p\!}{s\n\{;\\:\ ::::_':::
=k MM

-

NN
N
?7&3\53\’3\\

RSN grrw % AR

........
.......

This ROM area |'.".-.".".".".

n //e and //¢ onlyt [l LEGEND |
. Basic. RTINS
- Imterp. ed by Pro0os
osmg Lo § useany

S

1 Other used or §

| reserved aress |

<
<

Free Space . §

.

o ’//{//
.
"

%

NN
NN _— $100 28 June 1984
—— Shared/safe ARCRIINN <. | | - une

%

AN

g8

ProDOS TECHNICAL NOTE #1
The GETLN Input Buffer and the ThunderClock
(14 July 1983)
The ThunderClock is automatically supported by ProDOS when ever it is
identified as installed in the system. When programming under ProDOS,
always consider the ThunderClock’s impact on the GETLN input buffer
(8200 - $2FF). ProDOS can support other clocks which may also use

this space.

When ever the ThunderClock receives a call from ProDOS, it deposits
an ASCII string in the GETLN input buffer of the form:

07,04,14,22,46,57

which translates as:

07 = The month, JULY (0l1=JAN,...,12=DEC)

-04 = The day-of-the-week, THURSDAY (00=SUN,...,06=SAT)
14 = The date, 14th (00 to 31)

22 = The hour, 10PM (00 to 23)

46 = The minute (00 to 59)

57 = The second (00 to 59)

ProDOS calls the ThunderClock as part of many of its routines.
Anything in the first 17 bytes of the GETLN input buffer 1s subject to
loss 1f a ThunderClock is installed and gets called.

It has been the practice of programmers, in general, to use the GETLN
input buffer for every conceivable purpose. Therefore, an application
should never store anything there. If your application has future
need to know about the contents of the $200~$2FF space, it should be
trangsferred to some other location to guarantee it will remain intact,
particularly under ProDOS where a ThunderClock may regularly be
overwriting the first 17 bytes.

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, M/S 22-W
Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

ProDOS TECHNICAL NOTE #2

Notes on Transporting DOS Assembly Language Programs to ProDOS
(Passing Disk Commands Under BASIC.SYSTEM to ProDOS from Machine Code.)

(Revised August 7, 1984)

Under DOS, commands were executed by a direct call to the proper

address in DOS or by sending a string to COUT ($FDED) consisting of
[CTRL-D]} <command> [RETURN].

The practice that became very common under DOS of making direct calls
to the desired routines within DOS cannot be carried over to ProDOS.
Apple Computer will not support any entries into the BASIC Command
Interpreter or the ProDOS kermel that are not published by Apple. If
you use any undocumented entries, your application will almost
certalnly not operate under future releases of PRODOS and
BASIC.SYSTEM.

Passing disk commands as ASCII strings to COUT is not supported under
ProDOS.

If you wish to 1ssue a ProDOS command from a machine language module

operating with Applesoft or if your application can permit the ProDOS
.BASIC Command Interpreter (BASIC.SYSTEM) to be co-resident in memory,
you can still use an ASCII string. All that is necessary is to move

the string, ending with a RETURN ($8D) to the GETLN buffer ($200) and
'execute a JSR DOSCMD ($BE03) to execute the instruction at $200.

%% It is necessary that the JSR DOSCMD be performed in deferred mode
(inside a program) and not in immediate mode. This also applies to
the monitor program; while in the monitor you cannot do a $xxxxG to
execute the code that contains the JSR DOSCMD. The reason for this
is that BASIC.SYSTEM checks certain state flags. These flags are
set correctly for the DOSCMD routine only while in deferred mode.
DOSCMD was intended only to be used via a CALL inside a BASIC
program.

Therg are certain commands that will NOT work correctly or as
expected when initiated via DOSCMD. The following table lists
those commands which work properly and those that do not.

PLEASE NOTE that some of the commands listed as not working properly
may work well enough to suit your individual purposes. Also some
commands will function (albeit precariously) in immediate mode.

IF YOU DECIDE TO USE THE COMMANDS IN THIS MANNER YOU ARE ON YOUR OWN.

Attached 1s an example BASIC program that will BLOAD an assembly

routine that will exercise the DOSCMD routine. The BASIC program
is first LISTed and then RUN. A listing of the assembly routine

follows. Please review it before writing your own routine.

DOSCMD 1s merely a means of performing some BASIC.SYSTFM commands
from assembly language and is not a substitute for performing the
commands in BASIC. Keep in mind all the conseqences of the command
you are executing; EG. When doing a BRUN or BLOAD make sure the
code is loaded at suitable addresses.

Error Handling

Right after you call DOSCMD the carry bit will tell you whether
or not an error had occurred. The carry will be set if an error
had occurred., The accumulator will always have the error number,

DOSCMD error handling can be handled in one of three ways:

l. Do a JSR ERROUT ($BE09). This will return control to your
BASIC ONERR routine where you can then handle the error.

2. Do a JSR PRINTERR ($BEOC). . This will print out the error
and will return control to the point after the JSR (as usual).

3. You can handle the error yourself completely. If choose to
go this route make sure you clear the carry (CLC) before you
return control back to BASIC.SYSTEM. If you don’t it will
be agsumed some error has occurred and will do awful and
unpredictable things to you.

Works Correctly
and Returns Control
to Calling Routine

Works Incorrectly
and/or does not Return Control
to Calling Routine

Filing Commands:

Catalog, Cat
Prefix, Prefix /pn
Create

Rename

Delete

Lock

Unlock

Program Commands:

Save
Programming Commands:
Store
Restore
Pri
In#
Fre
Text File Commands:

Open
Close

Flush
Position

EXEC Command :

Binary Commands:

Brun
Bload
Bsave

- (Dash)
Run
Load

Chain

Read
Write
Append

Exec

18 REM YOU MUST CALL THE ROUTINE FROM INSIDE A BASIC PROGRAM!!

REM
12 REM

28 PRINT CHRs
38 CALL 4094

(4> "“BLOAD/P/PROGRAMS/CMD .G "

48 PRINT "BACK TO THE WONDERFUL WORLD 0# BASIC!*®

38 END

IRUN

ENTER BASIC.SYSTEM COMMAND

/P/

ENTER BASIC.SYSTEM COMMAND

ENTER BASIC.SYSTEM COMMAND

/P/BUGS/

ENTER BASIC.SYSTEM COMMAND

BUGS
NAME
»SEQTEST

WRITEFIELDS

R

READFIELDS

DUMPFILE
POSTEST
MAKEJUNK
P

BLOCKS FREE:

TYPE

DIR
BAS
BAS
BAS
BAas
BAS
BAS
BAS

BLOCKS

USED:

-=> PREFIX

-=> PREFIX

-=> CATALOG

MODIFIED

23-APR-84
27-MAR-84
27-MAR-8+4
27-MAR~-84
27-MAR-84
27-MAR-84
29-+AR-84

3-AUG-84

3313

--> PREFIX/P/BUGS

16:12
15:09
13:29
15:17
11:81
146:30
14:10
17:33

TOTAL BLOCKS:

ENTER BASIC.SYSTEM COMMAND --> DO DA, DO DA

SYNTAX ERROR

BACK TO THE WONDERFUL WORLD OF BASIC!

CREATED

23-APR-84
23-APR-84
23-APR-84
23-APR-84
23-APR-84
23-APR-84
23-APR-84
23-APR-84

16:12
16113
16:13
14:13
16:13
16:13
16:14
16:15

?728

ENDFILE SUBTYPE

312
182
193
183
121
174

82
414

30UkLE

FILE #81 =)/P/PROGRAMS/CHMD

——— NEXT OBJECT FILE NAME [S /P/PROGRAMS/CMD.D

.888:

(888

{gaa:

(880

(ged:

{goa:

1888:

1888

1088:A2 886
(982:BD IF 18
{883:F8 86
1887:28 ED FD
{BBALEB
188B:D8 F3
.880:

.080:28 &F FD
.818:20 83 BE
813:2C 18 Cd
814:88 02
818:98 E$
81A:

X

81A:

81A:

B1A:

81A:28 8C BE
81D:18
81E:48

81F:

8iF:

#1F:

B1F:BD
820:C5 CE D4 C5
83F:08

10889
FD&F
BEB3
FDED
BE8C

188D

1882

181A
1808

RLBBaIYBYR

{ ORG
2 GETINt EQU
3 DOSOMD EQU
4 CouT EQU
J PRERR EQU
'8

7

8 *

9 START LOX
18 LI LDA
1 BEQ
12 JSR
13. INX
14 BNE
13 »

14 CONT JSR
17 JSR

I8 BIT

{9 BCS
28 BCC

21 #

22 %

41088
$FD4F i MONITORS INPUT ROUTINE
$BER3 ; BABIC.SYSTEMS GLBL PG DOS CMD ENTRY
$FDED ; MONITORS CHAR OUT ROUTINE
$BEAC { PRINT THE ERROR
#8 ; DISPLAY PROMPT...
PROMPT , X H
CONT ; BRANCH IF END OF STRING
cout ;
i
L1 ; LOOP UNTIL NULL TERMINATOR IS HIT...

GETLNI s NOW ACCEPT USER COMMSNO FROM kB
0OSOMD 1 AND EXECUTE THE COMMOND

10810 ; CLEAR STROBE SO KEY WON‘T HANG AROUND..
ERROR i BRANCH IF ERROR DETECTED

START ; OTHERWISE RESTART....

23 ® NOTE: AFTER HANOLING YOUR ERROR YOU MUST CLEAR THE CARRY

24 »

23 %

»
ERROR JSR
cLe
RTS

¥
M3B

*
PROMPT DB
ASC
08

BEFORE RETURNINS TO BASIC OR ELSE BASIC WILL DO
STRANGE THINSS TO YOU.

PRERR s PRINT /ERR’
; RETURN TO BASIC
N
480 s OUTPUT A RETURN FIRST
;ENTER BASIC.SYSTEM COMAND —) /

188D CONT FOED COUT BER3 DOSTMD
FD4F GETLN{ 1882 LI BEBC PRERR
{ START

SUCCESSFUL ASSEMBLY := NO ERRORS

** ASSEMBLER CREATED (N 13-JAN-84 21:28

#% TOTAL LINES ASSEMBLED 33

¥* FREE SPACE PAGE COUNT 89

181A ERROR
{81F PROMPT

ProDOS" TECHNICAL NOTE #3

ProbOS Device Search and Identification Procedure
Disk Driver Conventions

(Revised 20 December 1983)

During boot-up, ProDOS does a device search looking for block storage
devices. As described in the ProDOS Technical Reference Manual, all
disk drives must "look and act just like one of our drives'.

ProDOS looks for the following:
$Cn01 = $20 $Cn03=300 $Cn05=803

where n = the slot number, Having found these three bytes in the ROM
of a particular slot, ProDOS assumes it has found a disk drive.

If $CnFF=$00 ProDOS assumes it has found a Disk][with l6-sector ROMs
and marks the device driver table in the ProDOS global page with the
address of the Disk][driver routines. The Disk][driver routines
will support any drive that '"looks and acts like a Disk][" (280
blocks, single volume, etc.).

If $CnFF=$FF, ProDOS assumes it has found a Disk][with 13-sector
ROMs and makes no attempt to support the device 13-sector ROMs since
it may not operate properly under ProDO0S.

If ProDOS finds a value other than $00 or §FF at $CnFF, 1t assumes it
has found an "intelligent" disk controller., If the STATUS BYTE at
$CnFE indicates that the device supports READ and STATUS requests,
ProDOS marks the global page with a device driver address whose
high~byte 1s equal to $Cn and whose low-byte is equal to the value
found at $CnFF. Intelligent controller cards CANNOT be auto-bootable
due to a conflict with Pascal which believes all auto-boot devices are
Disk][floppy drives., (Therefore, the byte at $Cn07 must not be
$3C.) '

. The only calls to the disk driver are STATUS, READ, WRITE, and FORMAT.
The STATUS call should perform a check to verify that the device is
ready for a READ or WRITE. 1If it is not, the carry should be set and
the appropriate error code returned in the accumulator. If the device
1s ready for a READ or WRITE, then the driver should clear the carry,
place a zero in the accumulator, and return the number of blocks on
the device in the X~register (lo-byte) and Y-register (hi-byte).

If you wish to interface a disk controller card with more than two
drives (or a device with more than two volumes), additional device
driver vectors for disk controllers plugged into slot 5 or 6 may be
installed in slot 1 or 2 locations. There will be no conflict with
character devices physically present in these slots. Device numbers
for four drives 1n slot five or slot six are listed below.

Physical S5,D1 = §50 Physical S6,D1 = $60
Slot S5,D2 = $DO Slot S6,D2 = $EO
Five S1,Dl = $10 Six S2,D1 = 820

S1,D2

]

$90 _ S2,D2.

]

SAO

The special locations in the ROM code are:
$CnFC~$CnFD = The total number of blocks on the device. Used for
writing the disk’s bit-map and directory header after
formatting. (If this location is $0000, it indicates
that the number of blocks must be obtained by making a
STATUS request,)

$CnFE = The status byte (bit 0 and 1 must be set for ProDOS to
install the driver vector!)
Bit 7 ~ Medium 1is removable
Bit 6 - Device 1s interruptable
Bit 5-~4 = Number of volumes on the device (0-3)
Bit 3 - The device supports formatting
Bit 2 - The device can be written to
Bit 1 - The device can be read from (Must be on)
Bit O — The device’s status can be read (Must be on)
$CnFF = The lo-byte of entry to the driver routines...ProDOS

will place $Cn + this byte 1in the global page.
The locations where the call parameters are passed to the driver are:

$42 ~ COMMAND: 0
2

i
il

STATUS request 1
WRITF request 3

READ request
FORMAT request

[
[}

NOTE: The FORMAT code in the driver need only lay down
address marks if required...the calling routine
should write the '"virgin directory and bit-map'.

§43 - UNIT NUMBER: 7 6 5 4 3 2 1 -0

e e e e
| ,DR| ,SLOT | not used |
e e s e e B

NOTE: The UNIT NUMBER that appears in the device list
(DEVLST) in the system globals will include the
hi-nybble of the status byte ($CnFE) as an I.D.
in it’s lo-nybble,

$44-~845 ~ BUFFER POINTER: Indicates the start of a 512-byte
. -memory buffer for data transfer.
$46-547 - BLOCK NUMBER: Indicates the block on the disk for

data transfer,

The device driver should report errors by setting the carry flag and
loading the error code into the accumulator. The error codes that
should be implemented are:

$27 - I/0 error $28 - No device connected $2B - Write Protected

APPLE COMPUTFER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, M/S 22-W
Cupertino, CA 95014
Phone (408) 554~5213 or (408) 996-1010

Prob0S TECHNICAL NOTE #4

Notes on Transporting DOS Assembly Language Programs to ProDOS
(Redirecting I/0 and converting "JSR $3EA")

(26 July 1983)

When programming under DOS 3.3, if you wished to change the I/0 hooks,
all that was necessary was to install your I/0 routine addresses in
the character-out vector ($36-$37) and/or key-in vector ($38-$39) and
notify DOS (JSR $3FA) to take your addresses and swap it’s intercept
routine addresses 1in,

Under ProD0OS, there 1s no instruction installed at $3EA at all, So
what do you do?

Just leave the ProDOS Basic Command Interpreter’s intercept addresses
installed in $36-$39 and install your I/0 addresses in the global page
at SBE30-$BE33. §$BE30-$BE31 should contain the output address
(normally $FDF0O, the monitor COUT1 routine), and $BE32~$BE33 should
contain the input address (normally $FD1B, the monitor KEYIN routine).

By keeping these vectors in a global page, a special routine for
moving the vectors is no longer needed, thus, no $3EA instruction.
Just install the addresses at their destination yourself,

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani. Avenue, M/S 22-W
Cupertino, CA 95014
Phone (408) 554=5213 or (408) 996~1010

ProDOS TECHNICAL NOTE #5
ProD0S Disk Formatting Routines

(11 January 1984)

The ProDOS Disk][FORMATTER and ProDOS BUILDDISK Routines are supplied as
text files of source code. They can be assembled with the ProD0OS version
of EDASM, Apple’s editor/assembler.

The source code for the FORMATTER was prepared with no labels so that you
can "INCLUDE" it with your application at assembly time. Since disk I/O
core routines MUST include critical, time dependent code, the FORMATTER
source file MUST be assembled with the "ORG" on a page boundary. (Many
instruction times change when page boundaries are crossed.)

The formatter routine uses zero page locations $DO thru $DD. If your
application also uses these locations, you must save the contents prior to
calling the formatter and restore them upon return.,

When the routine is called, the ProDOS device number (DEVNUM) must be in
the accumulator. DEVNUM in this case is defined as containing zeros in
the low nibble, the slot number in bits 4, 5, 6, and the hi-bit set to
zero for drive]l or set to ! for drive 2. Upon exit, if the carry flag is
clear, no error has been detected and the accumulator will be zeroed.

If an error has been detected, the routine will exit with the carry flag
set and the accumulator will hold the error code. Error codes that may be
returned are: $27-unable to format, $28-write protected, $33-drive too
slow, $34~drive too fast,

The FORMATTER routine ONLY writes zeros to each sector on a Disk][
floppy. To 1install boot code, a directory and bit map, on any previously
formatted storage device, you need the BUILDDISK routine.

Upon entry to the BUILDDISK routines the accumulator must contain the
"DEVNUM, X and Y must have the address of a 512 byte buffer (X-lo, Y-hi),
and DUMMYNAM and DUMSIZE must be filled in with the desired volume name
and name length if a name other than DFFAULT.NAME is desired.

BUILDDISK treats all devices the same, with two exceptions. These

exceptions are identified by examining the low nibble of the DEVNUM,
(Remember, the low nibble of the DEVNUM is derived from the high nibble of
the device status byte at $CnFE in the ROM code.)

If all four bits of the i.d. nibble are set, BUILDDISK will assume that
the device has unusual characteristics and that the driver has taken care
of the bit map, directory and boot code during the format request. If all
four bits are clear, BUILDDISK will recognize the device as a Disk][or
Disk][emulator and assume the device has 280 blocks.

BUILDDISK leaves zero-page intact, with the exception of the bytes from
$42 thru $47 which are defined for use when making requests to device
drivers and standard ProDOS error codes will be returned.,

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, M/S 22-W
Cupertino, CA 95014
Phone (408) 554~5213 or (408) 996-1010

ProDOS TECHNICAL NOTE #6
Attaching External Commands to BASIC.SYSTEM
(Revised 19 September 1983)

Whenever BASIC.SYSTEM receives a command, it first checks it’s command
list, then sends it out to any external command handler and finally
passes 1t on to Applesoft. If you find regular need for an additional
command,. you can write your own command handler and attach it to
BASIC.SYSTEM through the EXTRNCMD jump vector. Just install the
address of your routine in EXTRNCMD+1 and +2 (lo-byte first) and
you’re linked in. There are essentially three functions that your
routine must perform. .

(1) It must check for the presence of your command(s).
(2) If it is your command, it must let BASIC.SYSTEM know.
(3) It must execute the desired instructions expected of the command.

The first step (1) is quite straight forward, just inspect the GETLN
input buffer. If it is not your command, a simple SFC and a RTS will
return control to BASIC.SYSTEM to continue the search.

The second step (2) 1s more involved. It is your command, so you must
zero XCNUM ($BE53) to indicate an external command and set XLEN
($BE52) equal to the length of your command string minus one.,

If there are no associated parameters (such as slot drive, A$, etc.)
to parse, you must set all 16 parameter bits in PBITS ($BE54,$BE55) to
zero. And, 1f you’re going to handle everything yourself before
returning control to BASIC.SYSTEM you must point XTRNADDR ($BESO,
$BE51) at an RTS instruction...XRETURN ($BEY9E) 1s a good location.

Now just "fall through" to your execution routines (3).

If there are parameters to parse, it is easiest to let BASIC.SYSTEM
parse them for you (unless you want to use some undefined parameters),
By setting up the bits in PBITS ($BE54,$BES55), and setting XTRNADDR
($BE50,$BE51) equal to the location where executlon of your command
begins, you can return control to BASIC.SYSTEM, with an RTS, and let
it parse and verify the parameters and return them to you in the
global page.

\

The final step (3) is up to you and should RTS with the carry cleared.

Attached are two example routines, BEEP and BEEPSLOT. BEEP handles
everything itself and BEEPSLOT will let you pass a slot & drive
parameter (,Si#,D#), where the drive is ignored.

APPLF COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, M/S 22-W
Cupertino, CA 95014
Phone (408) 554~5213 or (408) 996-1010

BRUN BEEP.0 to install the routine’s address in EXTRNCMD.
immediate command or use PRINT CHR$(4);"BEEP" in a program.

0300;
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:4A9
0302:8D
0305:A9
0307:8D
030A:60
030B:
030B: A2
030D:BD
0310:DD
0313:D0
0315:E8
0316:E0
0318:D0
031A:
031A:A9
031C:8D
O31F: A9
0321:8D
0324:A9
0326:8D
0329:49
032B:8D
032E:8D
0331:8D
0334:
0334:A2
0336:20
0339:49
033B:20
033E:CA
033F:D0
0341:18
0342:60
0343:
0343:38
0344:60
0345:
0345:C2
0349

OB
07
03
08

00
00
43
2E

04
F3

03
52
9E
50
BE
51
00
53
54
55

05
3A
80
A8

F5

C5

BE

BE

02
03

BE
BE
BE
BE
BE
BE

FF

FC

C5

0300
0200
FCA8
FF3A
BEO6
BE50
BES52
BES3
BE54
BESE

0343

030D

0336

DO
0004

W OO NNOYL PR

25

43

50
51

INBUF
WAIT
BELL
EXTRNCMD
XTRNADDR
XLEN
XCNUM
PBITS
XRETURN

we

»
BEEP
NXTCHR

ws

.
’

NXTBEEP

H
RETURN

3
CMD
CMDLEN

ORG
EOU
EQU
EQU
EQU
EOU
EQU
EQU
EQU
EQU
MSB

LDA
STA
LDA
STA
RTS

LDX
LDA
CMP
BNE
INX
CPX
BNE

LDA
STA
LDA
STA
LDA
STA
LDA
STA
STA
STA

LDX
JSR
LDA
JSR
DEX
BNE
CLC
RTS

SEC
RTS

ASC
EQU

$300
$200
$SFCA8
SFF3A
$BEO6
$BE50
$BE52
$BES3
$BES4
$BEOE
ON

##>BEEP
EXTRNCMD+1
#<BEEP
EXTRNCMD+2

#0
INBUF,X
CMD ,X
RETURN

CMDLEN
NXTCHR

#fCMDLEN-1
XLEN
{##>XRETURN
XTRNADDR
#<XRETURN
XTRNADDR+1
#0

XCNUM
PBITS
PBITS+1

#5

BELL
#580
WAIT

NXTBEEP

IIBEEPH
*—~CMD

Then type BEEP as

;GETLN input buffer
sMonltor wait routine
;Monitor bell routine
sExternal cmd JMP vector
sEx omd implementation addr
;Length of command string-1l
;CI cmd no. (ex cmd = 0)
;Command parameter bits
sKnown RTS instruction

;Set hi-bit on ASCII

;Install the address of our
; command handler in the

; external command JMP

; Vector

;Check for our command
;1Get first char

;Does it match?

;Nope, back to CI
;Next character

yAll characters yet?
;No, read next one

sOur cmd! - Put emd length
; =1 in CI global XLEN
;Point XTRNADDR to a known
; RTS since we’ll handle
; at the -time we inter-

; cept our command

sMark the cmd number as

;- zero- (external)

yAnd indicate no paramet

; to be parsed

;Number of desired beeps
1Else, beep once

;Set-up the delay

; and walt

;Decrement index and

; repeat til X =0

;All done successfully

;Notify BASIC.SYSTFM it
; 1t wasn’t our command

;Our command
;Our Command length

BRUN BEEPSLOT.0 to install the routine’s address in EXTRNCMD.
BEEPSLOT,S(n),D(n).

Only a legal slot and drive numbers are acceptable.

slot number, it will use the default slot number,

ignored.

0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300
0300:
0300:
0300:
0300:
0300:49
0302:8D
0305:4A9
0307:8D
0304:60
030B:
030B: A2
030D:BD
0310:DD
0313:D0
0315:E8
0316 :E0
0318:D0
031A:
031A:A9
031C:8D
031F: A9
0321:8D
0324:A9
0326:8D
0329:A9
032B:8D
032F:8D
0331:4A9
0333:8D
0336:18
0337:60
0338:
0338:AD
033B:29
033D:AA
033E:20
0341:A9
0343:20
0346:CA
0347 :D0
0349:18
034A:60
034B:
034B:38
034A:60
034B:
034B:C2
0353:

0B
07
03
08

00
00
4B
36

08
F3

07
52
38
50
03

51

00
53
54
04
54

61
OF

3A
80
A8

F5

C5

BE

BE

02
03

0300
0200
FCA8
FF3A
BEO6
BE50
BE52
BE53
BE54
BE61

034B

030D

BE

BE

BE

BE
BE

BE

BE

FF

FC

c5

033F

DO
0008

W oo & W

e el i ol o SR S S Sy
wLoNOTUEER~E LN E O

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

40

41
42
43
b4
45
46
47
48
49
50
51
52
53
54
55
56

INBUF
WAIT
BELL
EXTRNCMD
XTRNADDR
XLEN
XCNUM
PBITS
VSLOT

5
BEEPSLOT
NXTCHR

-e

3
FXECUTE

NXTBEEP

3
RETURN

H
CMD
CMDLEN

ORG
EQU
EQU
EQU
EQU
EQU
EQU
EQU
FQU
EQU
MSB

LDA
STA
LDA
STA
RTS

LDX
LDA
CMP
BNE
INX
CPX
BNE

LDA
STA
LDA
STA
LDA
STA
LDA
STA
STA
LDA
STA
CLC
RTS

LDA
AND
TAX
JSR
LDA
JSR
DEX
BNE
CLC
RTS

SEC
RTS

ASC
EQU

$300
$200
SFCAS
SFF3A
$BEO6
$BES0
$BE52
$BES3
$BES4
$BE61
ON

#>BEEPSLOT
EXTRNCMD+1
#<BEEPSLOT
EXTRNCMD+2

fo
INBUF,X
CMD,X
RETURN

#CMDLEN

NXTCHR

#fCMDLEN-1
XLEN
#>EXECUTF
XTRNADDR
#<EXECUTE
XTRNADDR+1
#0

XCNUM
PBITS
#%00000100
PBITS

VSLOT
#200001111

BELL
#580
WAIT

NXTBEEP

"BEEPSLOT"
*—CMD

Then enter
If no

Any drive number is simply
The command may also be used in a program PRINT CHR$(4) statement.

$GETLN input buffer
;Monitor wait routine
;Monitor bell routine
;External emd JMP vector
;Ex cmd implementation addr
;Length of command string-1
;CI cmd no. (ex cmd = 0)
;Command parameter bits
;Verified slot parameter
;Set hi-bit on ASCII

;Install the address of our
; command handler in the

; external command JMP

; Vvector

;Check for our command
;Get first char

;Does it match?

;Nope, back to CI
;Next character

3All characters yet?
s+No, read next one

;Our cmd! Put cmd length
; =1 in CI global XLEN
;Point XTRNADDR to our

; command execution

;5 routine

;Mark the cmd number as

s zero (external)

;And indicate that slot and
; drive parameter may be

; accepted

sEverything 1f OK

sReturn to BASIC.SYSTEM

;Get slot parameter
;Zero the hi-bits
;Transfer to index reg.
;Else, beep once
;Set—up the delay

; and wait

;Decrement index and

; Trepeat til X = 0
;All done successfully

sNotify BASIC.SYSTEM, it
; wasn’t our command

;Our command
;Our Command length

Prob0S TECHNICAL NOTE #7

Starting and Quitting
Interpreter Conventions

(revised 09 March 1984)
It is absolutely essential that all interpreters (system
programs) use a standard way of starting and quitting.
In order to provide a uniform method for starting and
quitting, the following procedures are established and

SUPERCEDE section 5.1.5 of the Prob0S Technical Reference
Manual: :

Starting:

- System Programs are started by one of two ways:

1. The disk containing the ProDOS operating system
and the system program is booted; ProDOS loads
and runs the first XXX.SYSTEM file of type
SYS($FF). The order of search 1s determined by
the file entries in the boot volume directory.

2. The program 1s loaded by another program (like the
ProDOS filer or the Basic Command Interpreter), or
a program dispatcher (like the one that is part of
ProDOS or a more sophisticated program selector).

The system program 1s loaded and jumped to at $2000. The
complete or partial pathname of the system program is stored
at $280 starting with a length byte. The string is a full
pathname 1f it starts with a slash (/); it is a partial
pathname 1f it starts with a letter.

The purpose of this pathname 1s to allow a system program
to determine the directory where other needed files may
reside. The program should NEVER assume that the files
are in a specific directory or subdirectory.

Additionally, we establish a mechanism to pass a second
pathname to interpreters which like to run STARTUP programs,
An example of this is a language interpreter., The ProDOS
dispatcher does not support this mechanism but other more
sophisticated program selectors may.

The mechanism requires that the interpreter start a certain

‘way:

o $2000 is a jump 1instruction,
0 $2003 and $2004 are SEE.

If the interpreter starts this way, byte $2005 is assumed to
be an indicator of the length of a buffer which starts at
$2006 and holds the pathname (Startlng with a length byte)
of the startup file.,

Interpreters which support this mechanism should supply
their own default string which should be a standard choice
for a startup program or a flag not to run a startup
program,

Once gaining control, the system program sets the reset
vector and fixes the power-up byte. Never assume the state
of the machine to be anything that is not clearly documented.

Note: If your interpreter makes use of the dispatcher/
selector area (addresses $D100-$D3FF in the second
4K-byte bank of RAM), be sure that this area is initially
saved and then restored on exit.,

Quitting:

l. Do normal housekeeping... close files, reinstall /RAM if
you have had it disconnected, etc.

2. Trash the power-up byte at $3F4., The simplest way to do
this is either to increment or decrement 1it, which will
always make it an invalid check of tle $3F2 vector.

3. Execute a ProDOS system call number $65 as follows:
Call the MLI ($BF00)

CALL TYPE = QUIT
Pointer to parameter table

EXIT JSR PRODOS
. DFB §$65
DW PARMTABLE

“e we we

PARMTABLE DFB 4 Number of parameters 1is 4
DFB 0 0 is the only quit type
DW 0000 Pointer reserved for

H future use

wo we wa

DFB O ; Byte reserved for future
H use

DW 0000 ; Pointer reserved for
H future use.

It is most important to note that even though most of the
parameter table 1s reserved for future use, it must all be
present! It must consist of seven bytes... a $04 followed
by six nulls ($00).

For more information on Dispatcher/Selector Conventlons
please see ProDOS Technical Note #14.

APPLE COMPUTER INC., PCS Developer Technical Support
20525 Mariani Avenue, M/S 22-W
Cupertino, CA 95014
Phone: (408) 996-1010

ProD0OS Technical Note #8

August 13, 1984

ThHis technical note explains:
1. How to protect auxiliary bank graphics pages from /RAM,
2. How to disconnect and reinstall /RAM (or some other device)

For further information contact:
PCS Developer Technical Support
M/S 22-W. Phone (408) 996-1010

Disclaimerlgi All Warranties and Liabilities

\
Apple Computer, Inc. makes no warranties, either express or implied, with™
respect to this documentation or with respect to the software described in
this documentation, its quality, performance, merchantability, or fitness for
any particular purpose. Apple Computer, Inc. software is sold or licensed
"as 1is". The entire risk as to its quality and performance is with the
vendor. Should the programs prove defective folowing their purchase, the
vendor (and not Apple Computer, Inc., 1its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or correction and
any incidental or consequential damages. In no event will Apple Computer,
Inc, be liable for direct, indirect, iIncidental, or consequential damages
resulting from any defect in the software, even if Apple Computer, Inc. has
been advised of the possibility of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This document
may not, in whole or part, be copled, photocopied, reproduced, translated or
reduced to any electronic medium or machine readable form without prior
consent, In writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

ProDOS TECHNICAL NOTE #8

~ Protecting Auxiliary Bank Hi-Res Graphics Pages -
- Disconnecting and Re~installing /RAM =
- Convention on How to Treat Ram Disk’s with >64K ~

(Revised August 13, 1984)

When ProDOS is booted a check is made of the enviromment, TIf a 128K
Apple // system 1s found, the auxiliary 64K bank of memory 1s
configured as a ram disk named /RAM that will appear as slot 3 drive 2
(since it 1s memory ‘on the 80 column card which appears in slot 3).
/RAM’s unit number as entered in the ProDOS global page’s device list
will be $BF. ‘ '

If you are golng to use the auxiliary memory for any other purpose,
you must protect yourself from /RAM.

If your use involves hi-res graphics, you may protect those areas of
auxiliary memory. If you will save a "dummy" 8K file as the first
entry in /RAM it will always be saved at $2000 to $3FFF. If you then
immediately save a second '"dummy'" 8K file to /RAM it will be saved at
$4000 to $5FFF. This technique provides a mechanism for protecting
the hi-res pages in auxiliary memory while still maintaining /RAM as
an online storage device.

There is no formula for determining where the blocks ‘of /RAM
physically reside in memory., Further, the logical blocks are not
physically contiguous. There is no guaranteed way to protect any
other fixed portions of auxiliary memory by the "dummy" file method.

If you wish to protect all of the auxiliary memory that has not "been
reserved for use by Apple, you must disconnect /RAM, To do this there
are three areas of the system global page of interest:

$BF10-$BF2F contains the disk device driver addresses.

$BF31 contains -the number of devices minus one.

$BF32-$BF3F contains the list of disk device numbers.

Here are the steps to be followed to disconnect /RAM:

0.) Suggested - Read block two on /RAM and take a peek at
the file count field in the directory. 1If
there are any files on /RAM, prompt the user
to continue with the discoénnect or abort the
process.

1.) Check the MACHID byte at $BF96 to see 1if you are operating in a
128K environment. If not, there will be no /RAM to disconnect.

24)

3')

The slot 0, drive 1 disk driver vector ($BF10) will point to
the "No Device Connected" routine, The slot zero vectors $BFI10
and $BF20 ARE RESERVED FOR OUR OWN USE. YOU CANNOT THEREFORE
USE. THESE VECTORS .IF THIS CONVENTION IS TO WORK! If the slot 3
drive 2 vector also points to the same address, then /RAM is
already disconnected.

If we have determined that /RAM is on line, we are ready to
remove it,

NOTE: If ProDOS has just been booted, /RAM is the last '"disk"
device installed. However, if the user has "manually" installed
another device(s) the device number for /RAM will not be the last
entry in the device list (DEVLST).

Also note thdt the following steps can be generically
followed if you wish to disconnect ANY device.

a.) Retrieve the slot 3, drive 2 device number you find in
DEVLST and save 1it.

b.) Move any remaining device numbers forward in the DEVLST.

c.) Retrieve the slot 3 drive 2 driver vector and save it for
later re~installation.

d.) Replicate the "No Device Connected" vector in slot O drive 1
into. slot. 3.drive 2,

e.) Decrement the device count (DEVCNT).

/RAM 1s now disconnected and you are free to use the unreserved areas
of auxiliary memory.

A convention has now been established for those ram disks with

a capacity greater than 64K and wish not to be disconnected by
programs that would not realize excess memory could still be utilized
by the ram disk driver,

Here is what the routine might look like:

£ E

18089
1868
1689:
1688:
1808:
18886
1068:
1608:
16e8:
ICLER
1868
1608
1608:
1880:AD
1803:29
1083:C%
1887:08
1889
1889:AD
186C:CD
188F:D8
1811:AD
18*4:CD
| -8
1819:
1819
{819
1019:
1019
1819:
1819
181%:
1819:
1019
1619
1819:AC
181C:B9
181F:29
1821:C9
1823:F8
1825:88
1824:18
1028:30
1824189
182D:80
1839
1830
18~
I
1838:89
1833:99

FILE #81 =)/P/INSTALLRAM
----- NEXT OBJECT FILE NAME IS /P/INSTALLRAM.S

1889
BF31
BF32
BF?8
BF24

BF18

78 BF

38

30

40 1854

26-BF
18 BF
88 1819
27 BF
11 BF
30 1836

3t BF

32 BF

F3

B3

85 182A

F4 181C
2C 1834
32 BF
59 18

33 BF
32 BF

1

Lo NN e SN & - N % B N]

?
18
{1
12
13
14
15
1é
17
18
184
20
2!
22
23
24
25
26
27
28

29

38
31
32
33
34
35
36
37
38
39
40
41
42
43
44
43
44
47
48
49
o8

3t

ORG
DEVCNT EQU
DEVLST EQU
MACHID EQU

RAMSLOT EQU
*

$1008
$BF 31
$BF32
$BF98
$BF24

- e we e

* NODEV 15 THE GLOBAL PAGE SLOT
* IT IS RESERVED FOR USE AS THE

*

NODEV EQuU
¥

$BF18

GLOBAL PAGE DEVICE COLNT

GLOBAL PAGE DEVICE LIST

GLOBAL PAGE MACHINE 1D BYTE

SLOT 3, DRIVE 2 IS /RAM‘S DRIVER VECTOR

ZERO, DRIVE | DISK ORIVE VECTOR.
*NO DEVICE CONNECTED" VECTOR.

* FIRST THING TO DO IS TO SEE IF THERE IS A /RAM TO DISCONNECT!

*
LbA
AND
by 1
BNE

LDA
CMP
BNE
LDA
P

BER
]

MACHID
638
30
DONE

RAMSLOT
NODEV
CONT
RAMSLOT+1
NODEV+1
DONE

- - we e

.
1
.
1
.
]
.
H
.
]
»
s

LOAD THE MACHINE 1D BYTE

TO CHECK FOR A 12BK SYSTEM

18 1T 128K?

IF NOT, THEN BRANCH SINCE NO /RAM!

IT 15 128K; IS A DEVICE THERE?

COMPARE WITH LOW BYTE OF NODEV

BRANCH IF NOT EQUAL, DEVICE IS CONNECTED
CHECK HI BYTE FOR MATCH

ARE WE CONNECTED?

BRANCH, NO WORK TO DO; DEVICE NOT THERE!

* AT THIS POINT /RAM (DR SOME OTHER DEVICE) IS CONNECTED IN

NOW WE MUST GO THRU THE DEVICE

* LIST AND FIND THE SLOT 3, DRIVE 2 UNIT NUMBER OF /RAM ($BF).

* THE ACTUAL UNIT NUMBERS, (THAT IS TD SAY ‘DEVICES’) THAT WILL

* BE REMOVED WILL BE $BF, $BB, $B7, $B3. /RAM’S DEVICE NUMBER

* [5 $BF. THUS THIS CONVENTION WILL ALLOW OTHER DEVICES THAT

* DO NOT NECESSARILY RESEMBLE (OR IN FACT, ARE COMPLETELY DIFFERENT
* FROM) /RAM TO REMAIN INTACT IN THE SYSTEM.

* THE SLOT 3, ORIVE 2 VECTOR.

*.
* .
CONT LDY
Loop LDA
AND
MpP
BEQ
DEY
BPL
Bl
FOUND LDA
STA
*

DEVCNT
DEVLST,Y
H$F3
#$83
FOUND

LOOP
DONE
DEVLST,Y
RAMUNITID

.
1
.
H
.
)
[l
1
.
!

.
1
.
'
.
]
.
1

GET THE NUMBER OF DEVICES ONLINE
START LOOKING FOR /RAM OR FACSIMILE
LOOKING FOR $B8F, $BB, $B87, 483

IS DEVICE NUMBER IN ($BF,$BB,$B7,$83)?
BRANCH IF FOUND..

i OTHERWISE CHECK OUT THE NEXT UNIT #.
BRANCH LNLESS YOU“VE RN OUT OF INITS,
SINCE YOU HAVE RUN OUT OF INITS TO
GET THE ORIGINAL UNIT NUMBER BACK

AND SAVE IT OFF FOR LATER RESTORATION.

* NOW WE MUST REMOVE THE UNIT FROM THE DEVICE LIST BY BUBBLING
* UP THE TRAILING WNITS.

*

GETLOOP LDA
STA

DEVLST+!,Y

DEVLST,Y

.
]
il
!

GET THE NEXT UNIT NUMBER
AND MOVE IT UP.

1836:F08 03
1038:C8
1839:08 FS
163B:
183B:AD 26
183E:8D 57
1841:AD 27
1844:80 58
1047
1047:4D 18
{84A:8D 24
184D:AD 11
1858:80 27
1853:CE 31
18564:48
1857
1657:88 88
1659880
1854

BF
{8
BF
18

BF
BF
BF
BF
BF

32

33

34

35 *

36 &IT
37

o8

5%

48 *

é1

82

63

44

83

66 DONE
67 *
68 ADDRESS

BEQ
INY
ENE

LDA
5TA
LDA
5TA

LDA
5TA

- LDA

5TA
DEC
RTS

W

69 RAMINITID OFB

78 *

&XIT
GETLOOP

RAMSLOT
ADDRESS
RAMSLOT +1
ADDRESS+1

NODEV
RAMSLOT
NODEV+1
RAMSLOT+!
DEVONT

$8608
$08

.
}

L

- am wE e

—-e

- .

BRANCH WHEN DOINE(ZEROS TRAIL THE DEVLST)
i CONTINUE TO THE NEXT UNIT NUMBER...
BRANCH ALWAYS.

SAVE SLOT 3, DRIVE 2 DEVICE ADDRESS.
SAVE OFF LOW BYTE OF /RAM DRIVER ADDRESS
SAVE OFF HI BYTE

FINALLY COPY THE ‘NO DEVICE CONNECTED’
INTO THE SLOT 3, DRIVE 2 VECTOR AND

OECREMENT THE DEVICE COUNT.
; AND RETURN

STORE THE DEVICE DRIVER ADDRESS HERE
STORE THE DEVICE’S UNIT NUMBER HERE

Part of your exit procedure should include code to re-install /RAM so
that it {s availlable to the next application. Don’t blindly reinstall
/RAM...be sure it 1s off-line first. Applications should not begin by
re~installing /RAM since this would preclude passing files from one
application to the next in /RAM.

Here 1s the way to reinstall /RAM (or any general device):

a.) Re-install the device driver address you retrieved and saved
as the slot 3 drive 2 vector. '

b.) Increment the device count (DEVCNT).
c.) Re-install the device number in the device list (DEVLST).

NOTE: It may be best to re-install the device number as the first
entry in the list. If the user has "manually" installed a disk
driver, he may assume that since it was the last thing installed
that it is still the last one in the list., Therefore, we
recommend that you move all the entries in the list down one and
re-install the /RAM device number as the first entry.

d.) Finally, set up the parameters for a format request and JSR
to the device driver address you have re-installed. The
/RAM driver will set up a "virgin" directory and bit map.

Here is what the reinstallation code might look like:

1854:

[85A:

1834

185A:AC
183D:B?
1048329
1842:L9
1864:F8
1844:88
1847:18
1849:AD
{04C:8D
104F:AD
1872:80
{875:EE
1878:AC
1878:B9
187E:99
1881:88
1682:08
1884:

1884:

1884:

1884:A9
1886:85
1888;

1888:AD
1888:80
{88E:29
1898:85
1892

1892:A9
19894:85
1094:A%
1898:85
18%A:

18%94:AD
189D:AD
18A8:

1848

18A8:

18A8:

18A8:28
18A3:AD
18A4:48
18A7:

{BA7:4C

31 BF
32 BF
B8
B
40

Fd

37 18
26 BF
38 18
27 BF
31 BF
31 BF
31 BF
32 BF

F?

83
42

59 18
32 BF
F8
43

88
44
28
435

88 C8
8B C#

A7 18
82 C8

26 BF

18A4

183D

1878

* THIS 1S THE EXAMPLE /RAM INSTALL ROUTINE

72 %
73
74 *
73 LDY
746 LDOPY LDA
7? AND
78 P
79 BEQ
88 DEY
81 BPL
82 LDA
83 STA
84 LDa
85 STA
84 INC
87 LDY
88 LOOR2 LDA
89 STA
79 DEY
?1 BNE
92 *
93 &
94 »
95 LDA
98.)
97
98 LDA
99 STA
189 AND
181 STA
182 »
183 LDA
184 STA
185 LDA
184 STA
187 »
108 LDA
189 LDA
118 #
111 »
112 »
{13
{14 JSR
115 LDA
114 DONE! RTS
117 »
118 DRIVER JMP

DEVCNT
DEVLST,Y
#$88
#4848
DONE!

LOOPL
ADDRESS
RAMSLOT
ADDRESS+1
RAMSLOT+1
DEVENT
DEVCNT
DEVLET-1,Y
DEVLST,Y

Loop2

#3
$42

RAMINITID
DEVLST
K$FO

$43

Hs08
$44
H$28
$45

$C888
$C888

DRIVER
$C882

(RAMSLOT)

e s mm GE ~am

. B e Wa me WE me wB e

—-e we

—-e e

.
L
.
1

.
H

GET THE NUMBER OF DEVICES - 1.
LDAD THE UNIT NUMBER
CHECK FOR SLOT 3, DRIVE 2 WNIT.
IS IT THE SLOT 3, DRIVE 2 INIT?
IF SO BRANCH.
i OTHERWISE SEARCH ON...
LOOP LNTIL DEVLST SEARCH IS COMPLETED
RESTORE THE DEVICE DRIVER ADDRESS
LOW BYTE..
“NOW THE
HI BYTE.
AFTER INSTALLING DEVICE,INC DEVICE COUNT
USE Y FOR LOOP COLNTER..
BUBBLE DOWN THE ENTRIES IN DEVICE LIST

s NEXT
LOOP INTIL ALL ENTRIES MOVED DOWN.

NOW SET UP A /RAM FORMAT REQUEST

L0AD ACC WITH FORMAT REQUEST NUMBER.
STORE REQUEST NUMBER IN PROPER PLACE.

RESTORE' THE DEVICE

UINIT NUMBER IN THE DEVICE LIST

STRIP THE DEVICE ID (ZERQ LOW NIBBLE)
AND STORE THE UNIT NUMBER IN $43.

LOAD LOW BYTE OF BUFFER POINTER
AND STORE IT.

L0AD HI BYTE OF BUFFER POINTER
AND STORE IT.

READ & WRITE ENABLE
THE LANGUAGE CARD WITH BANK 1 (N.

NOTE HOW THE DRIVER IS CALLED. YOU JSR TO AN INDIRECT JMP SO
CONTROL IS RETURNED BY THE DRIVER TO THE INSTRUCTION AFTER THE JSR.

NOW LET DRIVER CARRY OUT CALL.
NOW PUT ROM BACK ON LINE.
+ THAT’S ALL.

CALL THE /RAM DRIVER

The above routines address the specific case of /RAM. However, with a
little massaging, they can easily be adapted to install or remove any
disk driver routines.

The routines described in this document are examples only. No

guarantee 1s made regarding their performance or suitability for any
particular use.

ProD0OS TECHNICAL NOTE #9
Buffer Management using BASIC.SYSTEM
(31 August 1983)

BASIC.SYSTEM provides buffer management for file I/O. Thoée
facilities can also be utilized from machine language modules

operating in the ProDOS/AppleSoft environment to provide protected
areas for code, data, etc.

BASIC.SYSTEM resides from $9A00 upward with a general purpose buffer
from $9600 (himem) to $99FF. When a file is opened, BASIC.SYSTEM does
garbage collection, if needed, moves the genéral purpose buffer down
to $9200 and installs a file I/0 buffer at $9600. When a second file
is opened, the general purpose buffer is moved down to $8F00 and a
second file I/0 buffer is installed at $9200. If an EXEC file is
opened, 1t is always installed as the highest file I/O buffer at
$9600, and all the other buffers are moved down. Additional regular
file I/0 buffers are installed by moving the general purpose buffer
down and installing it below the lowest file I/0 buffer. All file 1/0
buffers, including the general purpose buffer, are 1K (1024 bytes) and
begin on a page boundary.

BASIC,SYSTEM may be called from machine language to allocate any
number of pages (256 bytes) as a buffer, locatzd above himem and
protected from AppleSoft Basic programs, The ProDOS bit-map 1s not
altered so that files may be BLOADed into the area without an error
from the ProDOS kernel. If you subsequently alter the bit-map to
protect the area, 1t i1s your responsibility to mark the area as free
when you are finished...BASIC.SYSTEM will not do it for you,

To allocate a buffer, simply place the number of desired pages in the
accumulator and JSR GETBUFR ($BEF5). If the carry flag returns clear,
the allocation was successful and the accumulator will return the high
byte of the buffer address. 1If the carry flag returns set, an error
has occurred and the accumulator will return the error code. Note
that the X and Y registers are not preserved.

The first buffer is installed as the highest buffer, just below
BASIC.SYSTEM, from $99FF downward, regardless of the number and type
of file I/0 buffers that are open. If a second allocation is
requested, it will be installed immediately below the first. Thus, it
is possible to assemble code to run at known addresses...relocatable
modules are not needed.

To deallocate the buffers created by the above call, it is only
necessary to JSR FREEBUFR ($BEF8) and all of the buffers will be
deallocated and the file buffers will be moved back up. It is
important to note that although more than one buffer may be allocated
by this call, they may not be selectively deallocated.

APPLE COMPUTER, Inc. PCS Developer Technical Support
20525 Mariani Avenue, M/S 22-W
Cupertino, CA 95014
Phone (408) 554~5213 or (408) 996-1010

ProDOS TECHNICAL NOTE #10
Installing Clock Driver Routines in ProDOS

(Revised 8 November 1983)

In you wish .to support clock cards other than the ThunderClock, there
are a number of possible places to locate your code. The 'cleanest"
place i1s to replace the ThunderClock routines located in ProDOS with
your. routines, if your code will fit,

When the PRODOS system file 1s executed, it installs the address of
the ThunderClock routines at $BF07,$BF08 whether a card 1s present or
not. The address is preceeded with a $4C (JMP) if a ThunderClock card
is found or a $60 (RTS) if it was not.

The ThunderClock card is identified by looking at the $Cn0O0 ROM for:
$Cn00 = $08 $Cn02 = $28 $Cn04 = $58 $Cn06 = 8§70

If you look at $BF07,$BF08 you will find the location to put your
code. There is room for 125 bytes.

To install your code, simply write enable the "language card" area,
and move your code. Don’t forget that your relocation code must
justify the absolute addresses as part of the relocation procedure.
Finally, restore any soft-switches you have changed. (There is no
guarantee as to the absolute location of the clock driver code on
future revisions of ProDOS, only that it’s location may be found by
examining the global page, as mentioned above.)

All that your code need do is get the time from the clock card,
convert it to the ProD0OS format and store it in the date and time
locations in the global page.

Your installation routine can be called from an application or as
part of the STARTUP program.

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, M/S 22-W
Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

ProDOS TECHNICAL NOTE #11
The ProDOS Machine Identification Byte
* THIS NOTE SUPERCEDES THE INFORMATION #*
* FOUND IN SECTIONS 5.2.3 & 5.3.1 OF THE *
* ProDOS TECHNICAL REFERFNCE MANUAL *

(revised 08 May 1984)

The Machine Identification byte (MACHID) in the ProDOS system global
page has been redefined to permit identification of future products
from Apple Computer, Inc. that may use the ProDOS operating system.
The change does not impact any checking for existing systems that your
application may now be doing.

The ‘definition of MACHID at $BF98 1is:

0 then | If bit 3 = 1 then

Bits 7-6 If bit 3 =
00 =][00 = reserved
01 =][+ 0l = reserved
10 = //e l 10 = //c
11 = /// emulation | 11 = reserved

Bits 5-4 00 = reserved, 01 = 48K, 10 = 64K, 11 = 128K

Bit 3 The value of bit 3 determines how bits 7-6 will
be interpreted., See Bits 7-6 definition.

Bit 2 Reserved for future definition

(]

No 80-column card

Bit 1 0
) = 80~column card installed

[
|

No ThunderClock or equivaleﬁt
= ThunderClock or equivalent 1installed

Bit O 0

I

—
|

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Marianl Avenue, M/S 22-W
Cupertino, CA 95014
Phone (408) 996~1010

ProDOS TECHNICAL NOTE #12
Interrupt Handling
(1 December 1983)

This technical note expands upon the information found 1in the ProDOS
Technical Reference Manual, It is assumed that the reader has already
read and understands the sections regarding interrupts.

This tech note includes a superior example of an interrupt handler for
use with ProDOS. The example in the book works properly, however, it
will always claim every interrupt whether it came from the clock or
not. Additionally, it does not conform to one protocol which will be
required in future revisions of ProDOS, nor does it incorporate some
common examples of good programmihg practice.

Vectors for interrupt handlers must be installed and removed with
ALLOC INTERRUPT and DEALLOC INTERRUPT calls to ProDOS. Even though
the vectors appear in the system global page, you must always use only
the systems calls...never change the global page entries yourself,

All interrupt routines must commence with a CLD instruction. Although
not checked in the initial release of ProDOS, this first byte will be
checked in future revisions to verify the validity of the interrupt
handler.

Good programming practice dictates that an interrupt handler should
preserve the status register (PHP) and mask interrupts (SEI). The
code should restore the status register (PLP) before exit, and before
setting or clearing the carry flag as required by ProDOS.

If your application includes an interrupt handler, before you exit:

(1) Turn off the interrupts...remember, an unclaimed interrupt will
cause system death. :

(2) Make a DEALLOC INTERRUPT call before exiting from your application.
Don’t leave a vector installed that will point to a routine that
1s gone.

Within your interrupt handler routines, you MUST leave ALL memory
banks in the same configuration you found them. DON’T FORGET
ANYTHING...main language card, main alternate $D000, main motherboard
ROM...and, on an Apple //e...auxiliary language card, auxiliary
alternate $D000, alternate zero page and stack, etc., etc... This is
important! The ProDOS interrupt receiver assumes the environment is
absolutely unaltered when your handler relinguishes control.

If your handler recognizes the interrupt and services it, the carry
should be cleared (CLC) immediately before returning (RTS). If it was
not your interrupt, the carry should be set (SFC) immediately before
returning (RTS). Do not use a return from interrupt (RTI) to
exit...the ProDOS interrupt receiver still has some housekeeping to
perform before it issues the RTI instruction.

Here 1s a sample routine which will turn on interrupts on a
ThunderClock card and print the date and time to the upper right
corner of the screen,

0300: 0300 1 ORG $300

0300: C20B 2 WTTCP EQU $C20B ; Clock write entry point (Slot 2)
0300: C208 3 RDTCP EQU $C208 ; Clock read entry point (Slot 2)
0300: C080 4 TCICR EQU $C080 ; Interrupt cont, register (Slot 2)
0300: €088 5 TCMR EQU $C088 ; Mystery register (Slot 2)

0300: 6 *

0300: 0200 7 IN EQU $200 ; Where the clock leaves the time
0300: 8 *

0300: 0412 9 UPRIGHT EQU $412 ; The upper right of the screen
0300: 047A 10 INTON1 EQU $474 ; Leave interrupts on (Slot 2)
0300: 07FA 11 INTON2 EQU $7FA ; Leave interrupts on (Slot 2)
0300: 12 *

0300: BFOO 13 MLI EQU $BFOO ; Entry point to the ProDOS MLI
0300: 14 *

0300: 15 * CALLING INTERRUPTS, CALLING INTERRUPTS

0300: 16 *

0300:20 7E 03 17 JSR ALLOC.INT ; Install interrupt routine
0303:60 18 RTS ; That’s all forks

0304: 19 *

0304: 20 *

0304: 0304 21 SHOWTIME EQU *

0304:D8 22 CLD

0305:08 23 PHP

0306:78 24 SFEI ; Disable Interrupts

0307:A0 20 25 LDY #$20 ; For slot 2

0309:B9 80 CO 26 . LDA TCICR,Y ; Get Interrupt Control Reg value
030C:29 20 27 AND #3$20 ; Bit 5 indicates INT is clock
030E:F0 3C 034C 28 BEQ NOTCLK 3 If bit 5 is off, not from clock
0310:B9 88 CO 29 LDA TCMR,Y s Clear mystery register

0313:B9 80 CO 30 LDA TCICR,Y 3 Clear interrupt on hardware
0316:CE 4F 03 31 DEC COUNTER ; Only print time every second
0319:D0 2E 0349 32 BNE EXITCLK 3 Not time to print yet

031B: 33 *

031B:A2 27 34 LDX #39 ; Save the input buffer

031D:BD 00 02 35 DOIN LDA IN,X 3 Since the clock writes over it
0320:9D 56 03 36 STA INBUF,X ; When it 1s called

0323:CA 37 DEX

0324:10 F7 031D 38 BPL DOIN

0326: 39 *

0326 :A9- AS 40 LDA #$A5 ; Set Applesoft-string input mode
0328:20 0B C2 41 JSR WTITCP ; and send it to the card
032B:20 08 C2 42 JSR RDTCP .3 Read time into input buffer
032E: 43 *

032E:42 15 b4 LDX #21

0330:BD 01 02 45 GETNEXT LDA IN+1,X ; Print time to screen

0333:9D 12 04 46 STA UPRIGHT,X ; Chars 0-22 of input buffer
0336 :CA 47 DEX

0337:10 F7 0330 48 BPL GETNEXT

0339: 49 *

0339:A9 40 50 SETCNTR LDA #64 ; Set up counter for next time
033B:8D 4F 03 51 STA COUNTER

033E: 52 * ‘

033E:A2 27 53 LDX #39 ; Restore the 1input buffer
0340:BD 56 03 54 DOIN2 LDA INBUF,X

0343:9D 00 02 55 STA 1IN,X

0346:CA 56 DFX

NWTeIN W7 NN g7 RDT NNTANI

0349: 58 *

0349:28 - 59 EXITCLK PLP ; Tell MLI we processed the INT
034A:18 60 CLC

034B:60 61 RTS

034C:28 ‘ 62 NOTCLK PLP

034D:38 63 SEC ; Tell MLI it isr’'t ours
034E:60 64 RTS

034F: 65 *

034F: 0001 66 COUNTER DS 1,0

0350: 67 *

0350:02 00 68 AIPARMS DFB 2,0 ; Put allocate and deallocate
0352:04 03 69 DW SHOWTIME ; Interrupt parameters here
0354: 70 *

0354:01 00 71 DIPARMS - DFB 1,0 ; so both routines can use them
0356: 72 * '

0356: 0028 73 INBUF DS 40,0 s Save 40 bytes of IN here
037E: 74 * ; for input buffer save/restore
037E: 75 *

037E:20 00 BF 76 ALLOC.INT JSR MLI ; Call the MLI

0381:40 77 DFB $40 ; to allocate the interrupt
0382:50 03 78 DW AIPARMS

0384:D0 19 039F 79 BNE OOPS ; Break on error

0386: 80 *

0386:40 20 .81 LDY #$20

0388:49 AC 82 LDA '#$AC ; Set 64hz interrupt rate
038A:20 0B C2 83 JSR WITCP ; by writing a ‘,’ to clock
038D:4A9 40 84 LDA #$40 ; Now enable the software
038F:8D 7A 04 85 STA INTONI1 ; and tell it not to disable
0392:8D FA 07 86 STA INTON2 ; Interrupts after reads
0395:99 80 CO 87 STA TCICR,Y

0398:49 01 88 LDA #1 ; Print time immediately
039A:8D 4F 03 89 STA COUNTER ; Once per second later
039D:58 90 CLI s Allow the 6502 to see the
039E:60 91 RTS ; interrupts

039F: 92 *

039F:00 93 00PS BRK ; Break on error

03A0:49 00 94 DEALLOC.INT LDA #0 ; Disable interrupts

03A2:8D 7A 04 95 STA INTONI ; in the thunder clock
03A5:8D FA 07 96 STA INTON2

03A8:A0 20 97 LDY #$20

03AA:99 80 CO 98 STA TCICR,Y

03AD: 99 *

03AD:AD 51 03 100 LDA AIPARMS+]1 ; GET INT NUM

03B0:8D 55 03 101 STA DIPARMS+1 ; FOR DEALLOCATION

03B3:20 00 BF 102 JSR MLI ; CALL THE MLI

03B6:41 103 DFB 841 ; TO DEALLOCATF THE INTERRUPT
03B7:54 03 104 DW DIPARMS 3 POINTER TO PARAMETFR LIST
03B9:D0 01 03BC 105 BNE 0O0PS2 ; BREAK ON ERROR

03BB:60 106 RTS ; DONE

03BC: 107 *

03BC:00 108 00PS2 BRK ; BREAK ON ERROR

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, M/S 22-W
Cupertino, CA 95014
Phone (408) 554~5213 or (408) 996-1010

ProDOS TECHNICAL NOTE #13
Double High Resolution Graphics Files

(6 January 1984)

The 128K Apple //e supports a graphics mode known as Double Hi-Res
Graphics in which both main and auxiliary memory hi-res graphics pages

are used to produce plctures with twice as many dot positions
horizontally.

Apple /// graphics has a similar mode and a FOTOFILE file type ($08)
has been defined under S0S to contain the screen image. All 16K
double hi-res files under ProDOS should be of this file type.

The format of the file is as shown at End-of-file
the right., The '"graphics mode" is $3FFF| - -—=]
stored in the 121st byte of the file Main Memory |
(Location $78 in the file). The portion of file |
modes for both lst and 2nd page of $2000 l
double hi-res are: S1FFF |
Pg 1 "Pg 2 Auxiliary Memory |
280 X 192 Limited Color = 1 5 portion of file |
560 X 192 Black and White = 2 6 $0000 -]
140 X 192 Full Color = 3 7 Beginning of file

The normal Apple][hi-res 280 X 192 screen may be RSAVEd as usual.
If you desire, for Apple /// SOS compatibility, you may also save
these screens as an 8K type $08 FOTOFILE and mark the graphics mode as

zero (page 1) or four (page 2), (Apple /// 280 X 192 Black and White
mode),

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, M/S 22-W
Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

ProD0OS TECHNICAL NOTE #14
Selector/Dispatcher Conventions

(revised 09 March 1984)

ProDOS MLI call $65, the QUIT call moves addresses $D100 - $D3FF
from the second 4K-byte bank of RAM of the language card to $1000
and executes a JMP to $1000., What initially resides in that area
1s OUR dispatcher code.

The dispatcher once executed does the following:

l. Interactively allows you to enter a prefix and file name of
the system program (interpreter) that you wish to execute,

2. Stores the system program name at $280 starting with a
length byte. This 1s done so once the system program
executes, it can find from where is was started and locate
any files it could need for processing.

3. Closes any open files,

4+ Clears the bit map and protects the zero, stack, text and
ProDOS Global pages.

5. Reads 1in the system file at $2000 and executes a JMP to $2000.

If you wish, you can install your own QUIT code which may load in
your own full blown selector program. If you choose to do this,
you must at some polnt:

1. Follow steps 2 = 4 above,

2. THF $D100 BYTE MUST BE A CLD ($D8) INSTRUCTION. This
convention is established so programs will be able to
tell whether 1t is selector code or the ProDOS dispatcher
code that 1s resident,

In addition to just leaving the pathname at $280 for the
interpreters own use, a method to enable a selector program to
specify an accomanying ‘STARTUP’ program has been defined.
Once active, an interpreter can immediately run that program.

The procedure will be to reserve an area in the system file which
will be overwritten by a selector program with the ’STARTUP’

programs name. The Interpreter would then load and execute that
specified program. '

The actual nuts and bolts of this procedure are as follows:
The selector program will look at the first

byte of the interpreter at $2000. If 1t is JMP CONT $2000-$2002
a JMP ($4C) instruction, and bytes $2003 and | $EE | $EE | $2003~$2004

$2004 are both $EF’s, then byte $2005 will $41 (eg.)| $2005
be interpreted as a buffer size indicator $07 $2006
with the buffer starting at $2006. The , STARTUP $2007-$200D

string at $2006 would be the normal ProDOS : :
pathname or partial pathname starting with CONT: (eg.)| $2047
a length byte.

The two $EE’s serve as a marker to the selector program to let
it know that this particular interpreter can run a startup
program. The interpreters that will support this feature will
of course supply their own default string which may be a startup
program or a flag of your own choice,

For more information on Interpreter Conventions please see
ProDOS Technical Note #7.

APPLE COMPUTER INC., PCS Developer Technical Support
20525 Mariani Avenue, M/S 22-W
Cupertino, CA 95014
Phone: (408) 996-1010

	partie04_01
	partie04_02
	partie04_03
	partie04_04
	partie04_05
	partie04_06
	partie04_07
	partie04_08
	partie04_09

