
ProOOS Technical Notes

Rev 1sed May 08, 1984

For further information contact:

PCS Developer Technical Support

HIS 22-W. Phone (408) 996-1010

Disclaimer Of All Warranties and Liabilities

,Apple computer, INC. Makes NO warranties, either express or implied, with
respect to these teChnical notes or dth respect to the softUJare described in
these tect'lnical notes, their quality,. performance, lMrct1antaoility, or fitness
for any particular purpose. Apple COlJl)Uter Software 1s licensed "as is". The
entire risK as to its quality and performance 1s \111th the developer. Should the
program prove defective following its use, the user (and not Apple COmputer,
INC., their distributors, or their retailers) assumes the entire cost Of all
necessary servicing, repair or correction and any incidental or consequential
damages. In no event will Apple Corrputer, INC. be liable for. dlrect, indirect,
incidental or consequential damages resulting from any defect in tile software,
even 1f they have been adViSed Of the posslbil1ty of SUCl'1 damages. Sorre states dO
not allow the exculsion or limitation of implied ~t1es or liability for
incidental or consequential damages, so the above 11mitation or exclusion may
not apply to you.

This software and dOCUlref1tatlon 1s copyrighted. All rights are reserved. These
technical notes may not, in wnole or part, be copied, photocopied, reprodUCed,
translated or reauced to any electronic rreaium or machine readable form wi thout
prior tatritten consent from Apple COlllluter, INC.

Copyright 1984 by Apple Computer, .Inc.
2OS2S Mariani Avenue

Cupertino, CA 95014

(408) 996-1010

ncrDlI]CO~ ID'llceIlTIIlcrJ)Q -TID
Main Me"mary Auxiliary Memory

(lie or 12eK lie only)

ROM

\ $C11l1

\ This Ron area
)n lIe and lIe only!

Language Card Area

!:!!!... :i!!.:!!ii! mr

11::II~i:lij!1
.•..:...:.:....:...:...:..:....:•..:•..•..:.....::...:...•:.:..:.:..:.::..~:.:.:.:-:-:.:.:.:.:-:.:.:.:.
::::::::::::::::::::::::::::

··.8uic·· .
I'A_-.l·

. InterJ).: "

.......

$nil

~
SUrF1

$D1l1l1
$Ullll8

SIfff
$1m

USed by PrOOOS

I I
~by

BASIC. SYSWt

::;:::::::::::<::::::;:::::.... , .
:::;:;:;:::;:;:;:::;::::::::

~«y>«? S2QU

~ used or
r~rved areas

Fr~ Space"

28 June 1984

ProDOS TECHNICAL NOTE #1

The GETLN Input Buffer and the ThunderClock

(14 July 1983)

The ThunderClock is automatically supported by ProDOS when ever it is
identified as installed in the system. When programming under ProDOS,
always consider the ThunderClock's impact on the GETLN input buffer
($200 - $2FF). ProDOS can support other clocks which may also use
this space.

When ever the ThunderClock receives a call from ProDOS, it deposits
an ASCII string in the GETLN input buffer of the form:

07,04,14,22,46,57

which translates as:

07 = The month, JULY (01=JAN, ••• ,12=DEC)
04 = The day-of-the-week, THURSDAY (00=SUN, ••• ,06=SAT)
14 = The date, 14th (00 to 31)
22 = The hour, 10PM (00 to 23)
46 = The minute (00 to 59)
57 = The second (00 to 59)

ProDOS calls the ThunderClock as part of many of its routines.
Anything in the first 17 bytes of the GETLN input buffer is subject to
loss if a ThunderClock is installed and gets called.

It has been the practice of programmers, in general, to use the GETLN
input buffer for every conceivable purpose. Therefore, an application
should never store anything there. If your application has future
need to know about the contents of the $200-$2FF space, it should be
transferred to some other location to guarantee it will remain intact,
particularly under ProDOS where a ThunderClock may regularly be
overwriting the first 17 bytes.

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, Mis 22-W

Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

ProDOS TECHNICAL NOTE #2

Notes on Transporting DOS Assembly Language Programs to ProDOS
(Passing Disk Commands Under BASIC. SYSTEM to ProDOS from Machine Code.)

(Revised August 7, 1984)

Under DOS, commands were executed by a direct call to the proper
address in DOS or by sending a str~ng to COUT ($FDED) consisting of
[CTRL-D] <command> [RETURN].

The practice that became very common under DOS of making direct calls
to the desired routines within DOS cannot be carried over to ProDOS.
Apple Computer will not support any entries into the BASIC Command
Interpreter or the ProDOS kernel that ar~ not published by Apple. If
you use any undocumented entries, your application will almost
certainly not operate under future releases of PRODOS and
BASIC. SYSTEM.

Passing disk commands as ASCII strings to COUT is not supported under
ProDOS.

If you wish to issue a ProDOS command from a machine language module
operating with Applesoft or if your application can permit the. ProDOS
BASIGCommand Interpreter (BASIC.SYSTEM) to be cC>'-resident in memory,
,you can still use an ASGII string.' All that is necessary is to move
the'string, ending.with a RETURN ($8D) toEhe GETLN9yff~r ($200) and
execute a.JSR DOSGMD ($BE03) to execute the instruction at $200.

It is necessary that the JSR OOSGMD' be performed. in deferred mode
(inside a program) and not in immediate mode. This also applies to
the monitor program; while in the monitor you cannot do a $xxxxG to
execute the code that contains the JSR DOSGMD. The reason for this
is that BASIC"SYSTEM checks certain state flags. These flags are
set correctly for the DOSGMD routine only while in deferred mode.
DOSGMD was intended only to be used via a CALL inside a BASIC
program.

There are certain commands that will NOT work correctly or as
expected when initiated via DOSCMD. The following table lists
those commands which work properly and those that do not.

PLEASE NOTE that some of the commands listed as not working properly
may work well enough to suit you~ individual purposes. Also some
commands will function (albeit precariously) in immediate mode.
IF YOU DECIDE TO USE THE COMMANDS IN THIS MANNER YOU ARE ON YOUR OWN.

Attached is an example BASIC program that will BLOAD an assembly
routine that 'will exercise the DOSCMD routine. The BASIC program
is first LISTed and then RUN. A listing of the assembly routine
follows. Please review it before writing your own routine.

DOSCMD is merely a means of performing some BASIC.SYSTFM commands
from assembly language and is not a substitute for performing the
commands in BASIC. Keep in mind all the conseqences of the command
you are executing; EG. When doing a BRUN or BLOAD make sure the
code is loaded at suitable addresses.

Error Handling

Right after you cal~ DOSCMD the carr,y bit will tell you whether
or not an error had occurred. The carr,y will be set if an error
had occurred. The accumulator will always have the error number.

DOSCMD error handling can be handled in one of three ways:

1. Do a JSR ERROUT ($BE09). This will return control to your
BASIC ONERR routine where Y0l.l can .then handle the error.

2. Do a~SJ.t P~INTERR ($BEOC) •. This will print- out the .error
and will .~et~~ control to the poipt after'the JSR (as l.lsual).

3. You can hapdle the error yOl.lrself completely. If .• choose to
go this route make sure you clear the carry (CLC) before you
retl.lrn control back to BASIC.SYSTEM. Ifyol.l don't it will
be assumed some error has occurred and will do awful and
~ppredictable things to you.

Chain

- (Dash)
Run
Load

Works Incorrectly
and/or does not Return Control

to Calling Routine

/pn

Save

Catalog; Cat
Prefix, Prefix
Create
Rename
Delete
Lock
Unlock

Works Correctly
and Returns Control
to Calling Routine

Filing Commands:

Programming Commands:

Program Commands:

I
I
I

I
I
I

I
I

I
I

I
I

I

I

I
Store
Restore
Prtl
IntI
Fre

Text File Commands:

Open
Close

Read
Write
Append

Flush
Position

EXEC Command:

Exec

Binary Commands:

Brun
Bload
Bsave

19 REM YOU MUST CALL THE ROUTINE FROM INSIDE A BASIC PROGRAM! !
REM

1:2 REM
28 PRINT CHRS (4)UBLOAD/P/PROGRAMs/CHD.8"
38 CALL 4996
49 PRINT MBACK TO THE WONDERFUL WORLD OF BASIC!"
59 END

JRUN

ENTER BAS I C•SYSTEM Ct:Mo1AND -'":" > PREF IX

/P/

ENTER BASIC. SYSTEM COMMAND --> PREFIx/P/BUGS

ENTER BASI C. SYSTEM COMMAND --> PREFIX

/P/BUGs/

ENTER BASI C. SYSTEM Cctfo1AND --> CATALOG

BUGS

NAME TYPE BLOCKS MODIFIED CREATED ENDFILE SUBTYPE

*SEGTEST DIR 1 23-APR-84 16: 12 23-APR-84 16: 12
WRITEFIELDS BAS 1 27-MAR-84 1:5:ge 23-APR-84 16:13
R BAS 1 27-t1AR-84 1:5:29 23-APR-84 16: 13
READFIELDS BAs . 1 27-MAR-84 1:5:17 23-APR...84 16:13
DUMPFILE BAS 1 27-MAR-84 11 : e1 23-APR-84 16: 13
POSTEST BAS 1 27-HAR-84 16: :59 23-APR-84 16: 13
HAKEJLNK BAS 1 29-MAR-84 14: 1e 23-APR-84 16: 14
'P1 BAS 1 3-AUG-84 17:53 23-APR-84 16: 15

BLOCKS FREE: 621:5 BLOCKS USED: 3513 TOTAL BLOCKS: 9728

ENTER BAS I C. SYSTEM CCM'o1AND --> DO DA, DO DA

SYNTAX ERROR
BACK TO THE WONDERFUL WORLD OF BASIC!

512
182
193
18:5
191
174
82

416

I
I~ TO BASIC

j PRINT 'ERR'

.,
j LOOP LNTIL NlU TmiINATOR IS HIT •••

j toW ACCE'T US£R~ FRa1 KB
j ANO EXECUTE THE~
j ct..f.AA STROBE SO KEY WtN'T ~ AROtN> ••
j~ IF ERROR DEJECIED
j ~ISE RESTART ••••

j DIS?tAY PRfJ1PT •••
j

j BRANCH IF END OF STRING

j HCNITORS I~ ROUTINE
j !!ASIC.SYSTEMS GlBL PS DOS 01D ENTRY
j ~ITORS ~ our ROUTINE
j PRINT THE ERROR

I OUTPUT A~ FI RST
BASI C. SYST81 rot1ANO -) ,

CN

~

'ENTER
8

L1

DB
ASC
DB

JSR
ClC
RTS

LOX
LM
BEQ
JSR
INX
ENE

JSR
JSR
BIT
BCS
sec

1998 1 ORO $1898
FOcSf' 2 ~1 EOU $fI)6F
BEDS 3 OOS01O EQU $BED3
FOED 4 COOT EGO $FDED
BEDC ~ PRERR EOU $8E8C

o f

7 I

8 I

9 START
18L1
11
12
13,

1882 14
15 *
16 rorr
17
18
19
28
21 *
22*
23 • NOTE: AFTER ~N6 YOUR ERROR YOU HUSt ClEAR THE CARRY
24 * BEFORE RETUfiHNG TO eASIC OR B.S£ BASIC WIll. DO
2:l * 5'l'RtH3E THIt-liS TO YOU.

'20.
27 ERROR
2S
29
38 *
31
32*
33 PRa1PT
34
35

iOUkl..t: FILE !tel::)/?IPROGiWiSlO1O
- NEXT OBJECT FILE~ IS IP/PROOR#tSI01O.8
~999:

1998:
1988 :
1888:
l888:
1888 :
l888:
18'88 :
[8U:A2 88
1882:BI> 1F 10
lB85:F8 86 1980
t887:2! ED FO
l8BAlE8
1888:08 ~
.880:
:980:28 6F FO
.818:28 8~ BE
813:2C 18 CJ
810:S1 82 lSlA
818:98 E6 18S1
91A:

~
81A:
81A:
91A:
81A:28 8e BE
910:18
91E:68
91F:
81F:
91F:
91F:BO
829:C5 CE D4 C5
83F:88

1B80 Ct:Nf FDED COOT BE93 DOSQ11)

FD6F 6ETlNt 1882 L1 SEBC PRfRR
1 START

H ::sUCCESSfUL ASS81BlY :- NO ERRORS
lit Assemt..ER CREATED CN 1:5-JA'r84 21 :28
H TOTAL LlNES ASS81SlED ~

lit FREE SPACE PAGE cotNf 89

utA ERROR
181F PRCtlPT

ProDOS TECHNICAL NOTE #3

ProDOS Device Search and Identification Procedure
Disk Driver Conventions

(Revised 20 December 1983)

During boot-up, ProDOS does a device search looking for block storage
devices. As described in the ProDOS Technical Reference Manual, all
disk drives must "look and act just like one of our drives".

ProDOS looks for the following:

$CnOl = $20 $Cn03=$00 $Cn05=$03

where n = the slot number. Having found these three bytes in the ROM
of a particular slot, ProDOS assumes it has found a disk drive.

If $CnFF=$OO ProDOS assumes it has found a Disk J[with 16-sector ROMs
and marks the device driver table in the ProDOS global page with the
address of the Disk J[driver routines. The Disk J[driver routines
will support any drive that "looks and acts like a Disk 1[" (280
blocks, single volume, etc.).

If $CnFF=$FF, ProDOS assumes it has found a Disk 1[with 13-sector
ROMs and makes no attempt to support the device 13-sector ROMs since
it may not operate properly under ProDOS.

If ProDOS finds a value other than $00 or $FF at $CnFF, it assumes it
has found an "intelligent" disk controller. If the STATUS BYTE at
$CnFE indicates that the device supports READ and STATUS requests,
ProDDS marks the global page with a device driver address whose
high-byte is equal to $Cn and whose low-byte is equal to the value
found at $CnFF. Intelligent controller cards CANNOT be auto-bootable
due to a conflict with Pascal which believes all auto-boot devices are
Disk 1[floppy drives. (Therefore, the byte at $Cn07 must not' be
$3C.)

The only calls to the disk driver are STA,TUS, READ, WRITE, and FORMAT.
The STATUS call should perform a check to verify that the device is
ready for a READ or WRITE. If it is not, the carry should be set and
the appropriate error code returned in the accumulator. If the device
is ready for a READ or WRITE, then the driver should clear the carry,
place a zero in the accumulator, and return the number of blocks on
the device in the X-register (lo-byte) and Y-register (hi-byte).

If you wish to interface a disk controller card with more than two
drives (or a device with more than two volumes), additional device
driver vectors for disk controllers plugged into slot 5 or 6 may be
installed in slot 1 or 2 locations. There will be no conflict with
character devices physically present in these slots. Device numbers
for four drives in slot five or slot six are listed below.

Physical
Slot
Five

S5,Dl $50
S5,D2 = $DO
Sl,Dl = $10
Sl,D2 = $90

Physical
Slot
Six

S6,Dl =
S6,D2 =
S2,Dl =
S2 ,D2. =

$60
$EO
$20
SAO

The special locations in the ROM code are:

$CnFC-$CnFD = The total number of blocks on the device. Used for
writing the disk's bit-map and directory header after
formatting. (If this location is $0000, it indicates
that the number of blocks must be obtained by making a
STATUS request.)

$CnFE = The status byte (bit 0 and 1 must be set for ProDOS to
install the driver vector!)

Bit 7 - Medium is removable
Bit 6 - Device is interruptable
Bit 5-4 - Number of volumes on the device (0-3)
Bit 3 - The device supports formatting
Bit 2 - The device can be written to
Bit 1 - The device can be read from (Must be on)
Bit 0 - The device's status can be read (Must be on)

SCnFF = The lo-byte of entry to the driver routines ••• ProDOS
will place $Cn + this byte in the global page.

The locations where the call parameters are passed to the driver are:

$42 - COMMAND: o = STATUS request
2 = WRITF request

1 = READ reques t
3 = FORMAT request

NOTE: The FORMAT code in the driver need only lay down
address marks if required ••• the calling routine
should write the "virgin directory and bit-map".

$43 - UNIT NUMBER: 7 654 3 2 1 0
+---+---+---+---+---+-~-+---+---+

I ,DR I ,SLOT I not used I
+---+---+---+---+---+---+---+--~

$44-$45

NOTE: The UNIT NUMBER that appears in the device list
(DEVLST)-in the system globals will include the
hi-nybble of the status byte ($CnFE) as an I.D.
in it's lo-nybble.

- BUFFER POINTER: Indicates the start of a 512-byte
memory buffer for data transfer.

$46-$47 - BLOCK NUMBER: Indicates the block on the disk for
data transfer.

The device driver should report errors by setting the carry flag and
loading the error code into the accumulator. The error codes that
should be implemented are:

$27 - I/O error $28 - No device connected $2B - Write Protected

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, M/S 22-W

Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

ProDOS TECHNICAL NOTE #4

Notes on Transporting DOS Assembly Language Programs to ProDOS
(Redirecting I/O and converting "JSR S3EA")

(26 July 1983)

When programming under DOS 3.3, if you wished to change the I/O hooks,
all that was necessary was to install your I/O routine addresses in
the character-out vector ($36-$37) and/or key-in vector ($38-$39) and
notify DOS (JSR $3EA) to take your addresses and swap it's intercept
routine addresses in.

Under ProDOS, there is no instruction installed at $3EA at all. So
wha t do you do?

Just leave the ProDOS Basic Command Interpreter's intercept addresses
installed in $36-$39 and install your I/O addresses in the global page
at $BE30-$BE33. $BE30-$BE31 should contain the output address
(normally $FDFO, the monitor COUT1 routine), and $BE32-$BE33 should
contain the input address (normally $FD1B, the monitor KRYIN routine).

By keeping these vectors in a global page, a special routine for
moving the vectors is no longer needed, thus, no $3EA instruction.
Just install the addresses at their destination yourself.

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani.Avenue, M/S 22-W

Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

ProDOS TECHNICAL NOTE U5

ProDOS Disk Formatting Routines

(11 January 1984)

The ProDOS Disk] [FORMATTER and ProDOS BUILDDISK Routines are supplied as
text files of source code. They can be assembled with the ProDOS version
of EDASM, Apple's editor/assembler.

The source code for the FORMATTER was prepared with no labels so that you
can "INCLUDE" it with your applica tion at assembly time. Since disk I/O
core routines MUST include cri tical, time. dependent code, the FORMATTER
source file MUST be assembled with the "ORC" on a page boundary. (Many
instruction times change when page boundaries are crossed.)

The formatter routine uses zero page locations $DO thru $DD. If your
application also uses these locations, you must save the contents prior to
calling the formatter and restore them upon return.

When the routine is called, the ProDOS device number (DEVNUM) must be in
the accumulator. DEVNUM in this case is defined as containing zeros in
the low nibble, the slot number in bits 4, 5, 6, and the hi-bit set to
zero for drive 1 or set to 1 for drive 2. Upon exit, if the carry flag is
clear, no error has been detected and the accumulator will be zeroed.

If an error has been detected, the routine will exit with the carry flag
set and the accumulator will hold the error code. Error codes that may be
returned are: $27-unable to format, $28-write protected, $33-drive too
slow, $34-drive too fast.

The FORMATTER routine ONLY writes zeros to each sector on a Disk] [
floppy. To install boot code, a directory and bit map, on any previously
formatted stora~e device, you need the BUILDDISK routine.

Upon entry to the BUILDDISK routines the accumulator must contain the
DEVNUM, X and Y must have the address of a 512 byte buffer (X-lo, Y-hi),
and DUMMYNAM and DUMSIZE must be filled in with the desired volume name
and name length if a name other than nFFAULT.NA~ is desired.

BUILDDISK treats all devices the same, with two exceptions. These
excepti6ns are identified by examining the low nibble of the DEVNUM.
(Remember, the low· nibble of the DEVWJM is derived from the high nibble of
the device status byte at $CnFE in the ROM code.)

If all four bits of the i.d. nibble are set, BUILDDISK will assume that
the device has unusual characteristics and that the driver has taken care
of the bit map, directory and boot code during the format request. If all
four bits are clear, BUILDDISK will recognize the device as a Disk][or
Disk][emulator and assume the device has 280 blocks.

BUILDDISK leaves zero-page intact, with the exception of the bytes from
$42 thru $47 which are defined for use when making requests to device
drivers and standard ProDOS error codes will be returned.

APPLF COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, M/S 22-W

Cupertino, CA 95014
Phone (408) 554-5213 or (40R) 996-1010

ProDOS TECHNICAL NOTE #6

Attaching External Commands to BASIC.SYSTEM

(Revised 19 September 19R3)

Whenever BASIC.SYSTEM receives a command, it first checks it's command
list, then sends it out to any external command handler and finally
passes it on to Applesoft. If you find regular need for an additional
command, you can write your own command handler and attach it to
BASIC. SYSTEM through the EXTRNCMD jump vector. Just install the
address of your routine in EXTRNCMDtl and +2 (lo-byte first) and
you're linked in. There are essentially three functions that your
routine must perform. .

(1) It must check for the presence of your command(s).

(2) If it is your command, it must let BASIC.SYSTEM know.

(3) It must execute the desired instructions expected of the command.

The first step (1) is quite straight forward, just inspect the GETLN
input buffer. If it is not your command, a simple SF.C and a RTS will
return control to BASIC. SYSTEM to continue the search.

The second step (2) is more involved. It is your command, so you must
zero XCNUM ($BES3) to indicate an external command and set XLEN
($BES2) equal to the length of your command string minus one.

If there are no associated parameters (such as slot, drive,A$, etc.)
to parse, you must set all 16 parameter bits in PBlTS ($BES4,$BES5) to
zero. And, if. you're going to handle everything yourself before
returning control to BASIC. SYSTEM you must point XTRNADDR ($BE50,
$BES1) at an RTS instruction••• XRETURN ($BE9E) is a good location.
Now just "fall through" to your execution routines (3).

If there are parameters to parse, it is easiest to let BASIC. SYSTEM
parse them for you (unless you want to use some undefined parameters).
By setting up the bits in PBITS ($BE54,$BE55), and setting XTRNADDR
($BE50,$BE51) equal to the location where execut·ion of your command
begins, you can return control to BASIC. SYSTEM, with an RTS, and let
it parse and verify the parameters and return them to you in the
global page.

The final step (3) is up to you and should RTS with the carry cleared.

Attached are two example routines, BEEP and BEEPSLOT. BEEP handles
everything itself and BEEPSLOT will let you pass a slot & drive
parameter (,S#,D#), where the drive is ignored.

APPLF COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, Mis 22-W

Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

BRUN BEEP.O to install the routine's address in EXTRNCMD. Then type BEEP as
immediate command or use PRINT CHR$(4)j"BEEP" in a program.

0336

030D

02
03

0343

0300
0200
FCA8
FF3A
BE06
BE50
BE52
BE53
BE54
BE9E

jlnstall the address of our
command handler in the
external command JMP
vector

jOur cmd! Put cmd length
j -1 in CI global XLEN
jPoint XTRNADDR to a known

RTS since we'll handle
at the time we inter­

j cept our command
jMark the cmd numbe r as
j zero (external)
jAnd indica te no pa rame t

to be parsed

jCheck for our command
jGet first char
jDoes it match?
jNope, back to CI
jNext character
JAIl characters yet?
jNo, read next one

jNotify BASIC.SYSTFM it
it wasn't our command

jOur command
jOur Command length

jGETLN input buffer
jMonitor wait routine
jMonitor bell routine
jExternal cmd JMP vector
jEx cmd implementation addr
jLength of command string-l
j CI cmd no. (ex cmd = 0)
jCommand parameter bits
jKnown RTS instruction
jSet hi-bit on ASCII

; Numbe r of des ired beeps
jElse, beep once
jSet-up the delay
; and wait
jDecrement index and
j repeat til X = 0
JAIl done successfully

II) BEEP
EXTRNCMD+l
II<BEEP
EXTRNCMD+2

NXTBEEP

IICMDLEN
NXTCHR

$300
$200
$FCA8
$FF3A
$BE06
$BE50
$BE52
$BE53
$BE54
$BE9E
ON

"BEEP"
*-CMD

IICMDLEN-l
XLEN
II)XRETURN
XTRNADDR
II<XRETURN
XTRNADDR+l
110
XCNUM
PBITS
PBITS+l

110
INBUF,X
CMD,X
RETURN

115
BELL
11$80
WAIT

LDX
LDA
CMP
BNE
INX
CPX
BNE

ASC
EQU

LDA
STA
LDA
STA
RTS

ORG
EQU
EQU
EQU
EQU
EOU
EQU
EQU
EQU
EQU
MSB

SEC
RTS

LDA
STA
LDA
STA
LDA
STA
LDA
STA
STA
STA

LDX
JSR
LDA
JSR
DEX
BNE
CLC
RTS

BEEP
NXTCHR

NXTBEEP

INBUF
WAIT
BELL
EXTRNCMD
XTRNADDR
XLEN
XCNOM
PBITS
XRETURN

RETURN

,
CMD
CMDLEN

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:A9 OB
0302:8D 07 BE
0305 :A9 03
0307:8D 08 BE
030A:60
030B:
030B:A2 00
030D:BD 00
0310:DD 43
0313: DO 2E
0315:E8
0316 :EO 04
0318:DO F3
031A:
031A:A9 03
031C:8D 52 BE
031F:A9 9E
0321:8D 50 BE
0324:A9 BE
0326:8D 51 BE
0329:A9 00
032B:8D 53 BE
032E:8D 54 BE
0331 :8D 55 BE
0334 :
0334:A2 05
0336 :20 3A FF
0339:A980
033B:20 A8 FC
033E:CA
033F: DO F5
0341: 18
0342:60
0343:
0343:38
0344:60
0345:
0345:C2 C5 C5 DO
0349: 0004

BRUN BEEPSLOT.O to install the routine's address in EXTRNCMD. Then enter
BEEPSLOT,S(n),D(n). Only a legal slot and drive numbers are acceptable. If no
slot number, it will use the default slot number. Any drive number is simply
ignored. The command may also be used in a program PRINT CHR$(4) statement.

033F

030D

0300
0200
FCA8
FF3A
BE06
BE50
BE52
BE53
BE54
BE61

0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:A9 OB
0302:8D 07 BE
0305:A9 03
0307:8D 08 BE
030A:60
030B:
030B:A2 00
030D:BD 00 02
0310:DD 4B 03
0313:DO 36 034B
0315:E8
0316 :EO 08
0318:00 F3
031A:
031A:A9 07
031C:8D 52 BE
031F: A9 38
0321:8D 50 BE
0324:A9 03
0326:8D 51 BE
0329:A9 00
032B:8D 53 BE
032E:8D 54 BE
0331 :A9 04
0333:8D 54 BE
0336:18
0337:60
0338 :
0338:AD 61 BE
033B:29 OF
033D:AA
033E:20 3A FF
0341: A9 80
0343:20 A8 FC
0346:CA
0347:DO F5
0349:18
034A:60
034B:
034B:38
034A:60
034B:
034B:C2 C5 C5 DO
0353: 0008

1 ORC
2 INBUF EOU
3 WAIT EQU
4 BELL EQU
5 EXTRNCMD EQU
6 XTRNADDR EQU
7 XLEN EQU
8 XCNUM EQU
9 PBITS EQU

10 VSLOT EQU
11 MSB
12
13 LDA
14 STA
15 LDA
16 STA
17 RTS
18
19 BEEPSLOT LDX
20 NXTCHR LDA
21 CMP
22 BNE
23 INX
24 CPX
25 BNE
26
27 LDA
28 STA
29 LDA
30 STA
31 LDA
32 STA
33 LDA
34 STA
35 STA
36 LDA
37 STA
38 CLC
39 RTS
40
41 EXECUTE LDA
42 AND
43 TAX
44 NXTBEEP JSR
45 LDA
46 JSR
47 DEX
48 BNE
49 CLC
50 RTS
51
52 RETURN SEC
53 RTS
54
55 CMD ASC
56 CMDLEN EOD

$300
$200
$FCA8
$FF3A
$BE06
$BE50
$BE52
$BE53
$BE54
$BE61
ON

II)BEEPSLOT
EXTRNCMD+l
II<BEEPSLOT
EXTRNCMD+2

110
INBUF,X
CMD,X
RETURN

IICMDLEN
NXTCHR

IICMDLEN-l
XLEN
II) EXECUTF
XTRNADDR
II<EXECUTE
XTRNADDR+1
110
XCNUM
PBITS
11%00000100
PBITS

VSLOT
11%00001111

BELL
11$80
WAIT

NXTBEEP

"BE EP SLOT"
*-CMD

jGETLN input buffer
jMonitor wait routine
;Monitor bell routine
;External cmd JMP vector
;Ex cmd implementation addr
;Length of command string-l
; CI cmd no. (ex cmd = 0)
;Command parameter bits
;Verified slot parameter
;Set hi-bit on ASCII

;Install the address of our
command handler in the
external command JMP
vector

jCheck for our command
jGet firs t char
jDoes it match?
jNope, back to CI
jNext character
JAIl characters yet?
jNo, read next one

jOur cmd' Put cmd length
j -1 in CI global XLEN
jPoint XTRNADDR to our

command exe~ution

routine

jMark the crod number as
j zero (external)
jAnd indicate that slot and

drive parameter may be
j accepted
jEverything if OK
jReturn to BASIC. SYSTEM

jGet slot parameter
jZero the hi-bits
jTransfer to index reg.
jElse, beep once
jSet-up the delay
j and wait
jDecrement index and
j repeat til X = 0
JAIl done successfully

jNotify BASIC. SYSTEM, it
wasn't our command

jOur comma nd
jOur Command length

ProDOS TECHNICAL NOTE #7

Starting and Quitting
Interpreter Conventions

(revised 09 March 1984)

It is absolutely essential that all interpreters (system
programs) use a standard way of starting and quitting.

In order to provide a uniform method for starting and
quitting, the following procedures are established and
SUPERCEDE section 5.1.5 of the ProDDS Technical Reference
Manual:

Starting:

System Programs are started by one of two ways:

1. The disk containing the ProDOS operating system
and the system program is booted; ProDDS loads
and runs the firs~ xxx. SYSTEM file of type
SYS($FF). The order of search is determined by
the file entries in the boot volume directory.

2. The program is loaded by another program (like the
ProDOS filer or the Basic Comma ..d Interpreter), or
a program dispatcher (like the one that is part of
ProDOS or a more sophisticated program selector).

The system program is loaded and jumped to at $2000. The
complete or partial pathname of the system program is stored
at $280 starting with a length byte. The string is a full
pathname if it starts with a slash (/); it is a partial
pathname if it starts with a letter.

The purpose of this pathname is to allow a system program
to determine the directory where other needed files may
reside. The program should NEVER assume that the files
are in a specific directory or subdirectory.

Additionally, we establish a mechanism to pass a second
pathname to interpreters which like to run STARTUP programs.
An example of this is a language interpreter. The ProDOS
dispatcher does not support this mechanism but other more
sophisticated program selectors may.

The mechanism requires that the interpreter start a certain
. way:

o $2000 is a jump instruction.
o $2003 and $2004 are $EE.

If the interpreter starts this way, byte $2005 is assumed to
be an indicator of the length of a buffer which starts at
$2006 and holds the pathname (starting with a length byte)
of the startup file.

Interpreters which support this mechanism should supply
their own default string which should be a standard choice
for a startup program or a flag not to run a startup
program.

Once gaining control, the system program sets the reset
vector and fixes the power-up byte. Never assume the state
of the machine to be anything that is not clearly documented.

Note: If your interpreter makes use of the dispatcher/
selector area (addresses $DI00-$D3FF in the second
4K-byte bank of RAM), be sure that this area is initially
saved and then restored on exit.

Quitting:

1. Do normal housekeeping ••• close files, reinstall/RAM if
you have had it disconnected, etc.

2. Trash the power-up byte at $3F4. The simplest way to do
this is either to increment or decrement it, which will
always make it an invalid check of tile $3F2 vector.

3. Execute a ProDOS system call number $65 as follows:

EXIT JSR PRODOS Call the MLI ($BFOO)
DFB $65 CALL TIPE = QUIT
DW PARMTABLE Pointer to parameter table

PARMTABLE DFB 4 Number of parameters is 4
DFB a o is the only quit type
DW 0000 Pointer reserved for

future use
DFB 0 Byte reserved for future

use
DW 0000 Pointer reserved for

future use.

It is most important to note that even though most of the
parameter table is reserved for future use, it must all be
present! It must consist of seven bytes ••• a $04 followed
by six nulls (SaO).

For more information on Dispatcher/Selector Conventions
please see ProDDS Technical Note #14.

APPLE COMPUTER INC., PCS Developer Technical Support
20525 Mariani Avenue, M/S 22-W

Cupertino, CA 95014
Phone: (408) 990-1010

ProDOS Technical Note #8

August 13, 1984

This technical note explains:
1. How to protect auxiliary bank graphics pages from /RAM,
2. How to disconnect and reinstall/RAM (or some other device)

For further information contact:
PCS Developer Technical Support
M/S 22-W. Phone (408) 996-1010

Disclaimer of All Warranties and Liabilities
\ .

Apple Computer, Inc. makes no warranties, either express or implied, with­
respect to this documentation or with respect to the software described in
this documentation, its qualitY$ performance, merchantability, or fitness for
any· particular purpose. Apple Computer, Inc. software is sold or licensed
"as is". The entire risk as to its quality and performance is with the
vendor. Should the programs prove defective folowing their purchase, the
vendor (and not Apple Computer, Inc., its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or correction and
any incidental or consequential damages. In no event will Apple Computer,
Inc. be liable for direct, indirect, incidental, or consequential damages
resulting from any defect in the software, even 1£ Apple Computer., Inc. has
been advised of the 'possibility of such damages. Some states do not allow th~

exclusion or limitation of implied warrant ies or Habili ty for incidental or
consequential damages, so the above limitation may not apply to you.

This documenta tion is copyrighted. All rights are reserved.
may not, in whole or part, be copied, photocopied, reproduced,
reduced to any electronic medium or machine readable form
consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010

Notice

This document
transla ted or

wi thout prior

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

ProDOS TECHNICAL NOTE #8

- Protecting Auxiliary Bank Hi-Res Graphics Pages -
- Disconnecting and Re-installing IRAM -

- Convention on How to Treat Ram Disk's with >64K -

(Revised August 13, 1984)

When ProDOS is booted a check is made of the environment. If a 128K
Apple II system is found, the auxiliary 64K bank of memory is
configured as a ram disk named IRAM that will appear as slot 3 drive 2
(since it is memory On the 80 column card which appears in slot 3).
IRAM's unit number as entered in the ProDOS global page's device list
will be $BF.

If you are going to use the auxiliary memory for any other purpose,
you must protect yourself from IRAM.

If your use involves hi-res graphics, you may protect those areas of
auxilia;ry memory. If you will save a "dummy" 8K file as the first
entry in/RAM it will always be saved at $2000 to $3FFF. If you then
immediately save a second "dummy" 8K file to IRAM it will be saved at
$4000 to $5FFF. This technique provides a mechanism for protecting
the hi-res pages in auxiliary memory while still maintaining IRAM as
an online storage device.

There is no formula for determining where the blocks of IRAM
physically reside in memory. Further, the logical blocks are not
physically contiguous. There is no guaranteed ·way to protect any
other fixed portions of auxiliary memory by the "dummy" file method.

If you wish to protect all of the auxiliary memory that has not "been
reserved for use by Apple, you must disconnect IRAM. To do this there
are three areas of the system global page of interest:

$BFI0-$BF2F contains the disk device driver addresses.

$BF31 contains ·the number of devices minus one.

$BF32-$BF3F contains the list of disk device numbers.

Here are the steps to be followed to disconnect IRAM:

0.) Suggested - Read block two on IRAM and take a peek at
the file count field in the directory. If
there are any files on IRAM, prompt the user
to continue with the disconnect or abort the
process.

1.) Check the MACHID byte at $BF96 to see if you are operating in a
128K environment. If not, there will be no IRAM to disconnect.

2.) The slot 0, drive 1 disk driver vector ($BFIO) will point to
the "No Device Connected" routine. The slot zero vectors $BFIO
and $BF20 ARE RESERVED FOR OUR OWN ,USE. YOU CANNOT THEREFORE
USE THESE VECTORS IF THIS CONVENTION IS TO WORK! If the slot 3
drive 2 vector also points to the same address, then IRAM is
already disconnected.

3.) If we have determined that IRAM is on line, we are ready to
remove it.

NOTE: If ProDOS has just been booted, IRAM is the last "disk"
device installed. However, if the user has "manually" installed
another device(s) the device number for IRAM will not be the las t
entry in the device list (DEVLST).

Also note that the following steps can be generically
followed if you wish to disconnect ANY device.

a.) Retrieve the slot 3, drive 2 device number you find in
DEVLST and save it.

b.) Move any remaining device numbers forward in the DEVLST.

c.) Retrieve the slot 3 drive 2 driver vector and save it for
later re-installation.

d.) Replicate the "No Device Connected" vector in slot 0 drive 1
into slot 3 ~rive 2.

e.) Decrement the device count (DEVCNT).

IRAM is now disconnected and you are free to use the unreserved areas
of auxiliary memory.

A convention has now been established for those ram disks with
a capacity greater than 64K and wish not to be disconnected by
programs that would not realize excess memory could still be utilized
by the ram disk driver.

Here is what the routine might look like:

~ E FILE ~91 =)/P/INSTALLRAH
----- NEXT OBJECT FILE NAME IS IP/INSTALLRAH.9
1ge9: 1999 1 ORG $1999
1999: BF31 2 DEVCNT EQU $BF31 j GLOBAL PAGE DEVICE COLNT
1999: BF32 3 DEVLST EQU $BF32 ; GLOBAL PAGE DEV ICE LI ST
19BB: BF9B 4 I'4ACHID EQU $BF9B ; GLOBAL PAGEI'4ACHINE 10 BYTE
IB99: BF26 5 !W'1SLOT EQU $BF26 ; SLOT 3, DRIVE 2 IS lRAH'S DRIVER VECTOR
1988: 6 If

1989: 7 * NODEV IS THE GLOBAL PAGE SLOT ZERO, DRIVE 1 DISK DRIVE VECTOR.
10eo: B* IT IS RESERVED FOR USE AS THE "NO DEVICE CONNECTED" VECTOR.
190B: 9 *
10e9: BF19 19 NODEV EQU $BFI9
1909: 11 *
1989: 12 * FIRST THING TO DO IS TO SEE IF THERE IS A1!W'1 TO DISCONNECT!
10e9: 13 *
IBOB:AD 98 BF 14 LOA I'4ACHID ; L~D THE I'4ACHINE IDBYTE
1003:29 3B 15 ~D 1t$39 ; TO CHECK FOR A 12BK SYST81
1995:C9 39 16 O1P "30 ; IS IT 128K?
1997:D9 4D 1056 17 ~E D(}lE ; IF NOT, THEN BRANCH SINCE NO 1!W'1!
1999: IB *
1B89:AD 26,..BF 19 LOA !W'1SLOT ; IT IS 12BK; IS A DEVICE THERE?
199C:CD IB BF 29 O1P NODEV ; CCtlPARE WITH LllJ BYTE OF NODEV
198F:DB B8 1919 21 ~E CeNT ; BRANCH IF NOT EQUAL, DEVICE IS CONNECTED
1011 :AD 27 SF 22 LOA !W'1SLOT+ 1 ; CHECK HI BYTE FOR ~TCH

IP, A I CD 11 BF 23 O1P NODEVtl ; ARE WE CONNECTED?
1 ,:9 3D 1956 24 BEQ D(}lE ; BRANCH, NO WORK TO DO; DEVICE NOT THERE!
1919 : 25 *
1919 : 26 * AT THI S POINT 1!W'1 (OR SCtlE OTHER DEVI CE) IS C~CTED IN
1919: 27 * THE SLOT 3, DRIVE 2 VECTOR. NllJ WE MUST GO THRU THE DEVICE
IB19: 2B * LIST ~D FIND THE SLOT 3, DRIVE 2 UNIT NUMBER OF 1!W'1 (~BF).

1919: 29 * THE ACTUAL UNIT NUMBERS, (THAT IS TO SAY 'DEVICES') THAT WILL
1919 : 39 * BE R810VED WILL BE ~BF, ~BB, $B7, $B3. lRAH'S DEVICE NUMBER
1919: 31 * IS $BF. THUS THIS C!NJENTI(}l WILL ALLllJ OTHER DEVICES THAT
1919 : 32 If DO NOT NECESSARILY RESEMBLE (OR IN FACT, ARE CCtlPLETELY DIFFERENT
1919: 33 * FRCtI) 1!W'1 TO R8'V\IN INTACT IN THE SYST81.
1819: 34 *.
1919: 35 *
1919:AC 31 BF 36 CeNT LOY DEVCNT ; GET THE NUMBER OF DEVICES (}lLINE
191C:B9 32 SF 37 LOOP LOA DEVLST,Y ; START LOOKING FOR lRAH OR FACSIMILE
191F:29 F3 38 /lNO "F3 ; LOOKING FOR ~8F, $8B, $87, $B3
1921:C9 B3 39 O1P "B3 ; IS DEVICE NUMBER IN ($BF,$BB,$B7,$B3)?
1923:FB 95 192A 49 BEQ FOUND ; BRANCH IF FOUND •.
1925:BB 41 DEY ; OTHERWI SE CHECK OUT THE NEXT UNIT ~.

1926:18 F4 191C 42 BPL LOOP ; BRANCH UNLESS YOU'VE RUN OUT OF UNITS.
192B:39 2C 1956 43 !J'1I D(}lE ; SINCE YOU HAVE RUN OUT OF UNITS TO
192A:B9 32 BF 44 FOlNO LOA OEVLST ,Y j GET THE ORI GINClL UNIT NUMBER BACK
1920:8D 59 19 45 STA !W'1UNITID ; ~O SAVE IT OFF FOR UtTER RESTORATI CN.
1839 : 46 *
1939 : 47 If NllJ WE MUST R810VE THE UNIT FRIl1 THE DEVI CE LI ST BY BUBBLING
19"~ . 48 * UP THE TRAILING UNITS.
1l 49 *
1939:89 33 BF S9 GETLOOP LOA DEVLSTt I,Y ; GET THE NEXT LNIT NUMBER
1933:99 32 BF 51 STA DEVLST ,Y ; ~D HOVE IT UP.

IB36:FB 93 1938 52 BEQ EXIT ; BfW.ICH WHEN DCNE(ZEROS TRAIL THE DEVLST)
1938:CB 53 INY ; CCNTINUE TO THE NEXT LNIT NLt18ER ..•
1939:09 F5 1939 54 ENE BETLOOP ; BfW.ICH AL~YS.

193B: 55 *
193B:AD 26 8F 56 EXIT LOA RPtlSLOT ; SAVE SLOT 3, DRIVE 2 DEVICE ADDRESS.
193E:8D 57 19 57 STA ADDRESS ; SAVE OFF LOW BYTE OF IRPtl DRIVER ADDRESS
1941 :AD 27 SF 58 LOA RPtlSLOT+ 1 ; SAVE OFF HI 8YTE
1944:8D 58 19 59 STA ADDRESS+l
1947: 68 *
1947:AD 18 8F 61 LOA NODEV ; FINALLY COpy THE 'NO DEVICE CONNEC1ED'
194A:8D 26 8F 62 STA RPtlSLOT ; INTO THE SLOT 3, DRIVE 2 VECTOR AND
194D:AD 11 BF 63 LOA NODEV+l
1958:8D 27 SF 64 STA RPtlSLOT+l ;
1953:CE 31 SF 65 DEC DEVOO ; DECREMENT THE DEVICE COLNT.
1956:69 66 DCNE RTS ; AND RETURN

.1957: 67 *
1957:99 99 68 ADDRESS IXrJ $9899 ; STORE THE DEVICE DRIVER ADDRESS HERE
1959:99 69 IW1LNITI DDFB $99 ; STORE THE DEVICE'S UNIT NLt18ER HERE
19~: 79 *

Part of your exit procedure should include code to re-install /RAM so
that it is available to the next application. Don't blindly reinstall
/RAM ••• be sure it is off-line first. Applications should not begin by
re-installing /RAM since this would preclude passing files from one
applica tion to the next in /RAM.

Here is the way to r~install /RAM (or any general device):

a.) Re-install the device driver address you retrieved and saved
as the slot 3 drive 2 vector.

b.) Increment the device count (DEVCNT).

c.) Re-install the device number in the device list (DEVLST).

NOTE: It may be best tore-install the device number as the first
entry in the list. If the user has "manually" installed a disk
driver, he may assume that. since .. it was the li'ist thing installed
that it is still the last one in the list. Therefore, we
recommend that you move all the entries in the list down one and
re-install the /RAM deviGe number as the first entry.

d.) Finally, set up the parameters for ~ format request and JSR
to the device driver addres s you have..xe-ins taIled. The
/RM!1driver will se fup a "virg:f,n" directory and bit map.

Here is what the reinstallation code might look like:

la~: 72 *
18~: 73 * THIS IS THE EXAMPLE /RAH INSTALL ROUTINE
195A: 74 *
19~A:AC 31 SF 75 LDY DEVCNT ; GET THE NUMBER OF DEVICES - I.
195D:B9 32 BF 76 LOOPI LOA DEVLST,Y ; LMD THE LNIT NUMBER
1960:29 BO 7? AND It$B9 i CHECK FOR SLOT 3, DRIVE 2 LNIT.
1962:C9 BO 78 O'1P 1t$88 i IS IT THE SLOT 3, DRIVE 2 LNIT?
1064:FO 49 18A6 79 8EQ DCNEI ; IF SO B~CH.

1966:88 80 DEY ; OTHERWISE SEARCH CN ••.
1867:18 F4 185D 81 BPL LooPI ; LOOP 001 L DEVLST SEARCH IS C01PLETED
1869:AD 57 18 82 LOA ADDRESS j RESTORE THE DEVICE DRIVER ADDRESS
186C:BD 26 BF 83 STA RA'1SLOT ; LCY BYTE ••
186F:AD 58 18 84 LOA ADDRESS+l r NCY THE
1872:BD 27 8F 85 STA fWfSLOT+I ; HI BYTE.
1875:EE 31 BF 86 INC DEVCNT ; AFTER INSTALliNG DEVI CE, INC DEVI CE COOO
187B:AC 31 BF 87 LOY DEVCNT i USE YFOR LOOP CoOOER ••
197B:B9 31 BF 8B LoOP2 LOA DEVLST-l,Y ; BUBBLE DOWN THE ENTRIES IN DEVICE LIST
187E:99 32 BF 89 STA DEVLSi ,Y j
18Bl:8B 98 DEY ; NEXT
1082:09 F7 1879 91 ENE LOOP2 ; LOOP OOIL ALL ENTRIES MOVED DOWN.
1884: 92 *
1884: 93 * NCY SET UP A/RAH FOfiW\T REQUEST
1884: 94 *
1884:A9 83 95 LOA H3 ; LMD Ace WITH FORMAT REQUEST NUMBER.
18B6:B5 42 96 STA $42 ; STORE REQUEST NUMBER IN PROPER PLACE.
1888: 97 *
1888:AD 59 19 98 LOA RA'1LNITID ; RESTORE'THE DEVICE
19BB:8D 32 BF 99 STA DEVLST ; .. LNITNl.t1BER IN THE DEVICE LIST
188E:29 F8 188 AND "F8 ; STRIP THE DEVICE 10 (ZERO LCY NIBBLE)
1890:85 43 181 STA $43 ; pt.ID STORE THE LNIT Nl.t1BER IN $43.
1892: 182 *
1892:A998 183 LOA "88 ; LMD LCY BYTE OF "BUFFER POINTER
1894:85 44 194 STA $44 ; ~D STORE IT.
1896:A9 29 185 LOA "2B ; LOAD HI BYTE OF BUFFER POINTER
1898:85 45 186 STA $45 ; AND STORE IT.
IB9A: 187 *
189A:AD BB C8 188 LOA $C88B ; READ &WRITE ENABLE
199D:AD BB C8 199 LOA $C888 ; THE lANGUAGE CARD WITH BANK I CN.
19A8 : 118 *
19M: 111 * NOTE HCY THE DRIVER IS CALLED. YOU JSR TO AN INDIRECT JHP SO
19A8: 112 * CONTROL IS RETURNED ~ THE DRIVER TO THE INSTRUCTICN AFTER THE JSR.
18A8 : 113 *
18A8:28 A,7 18 114 JSR DRIVER ; NCY LET DRIVER CARRY OUT CALL.
19A3 :AD 82 C9 lIS LOA $C8B2 ; NCY PUT R01 BACK CN LINE.
19A6 :69 116 DCNEI RTS ; n~T/S ALL.
18A7: 117 *
18A7:6C 26 BF 118 DRIVER JHP (IW1SLOT) ; CALL THE 1RA'1 DRIVER

The above routines address the specific case of fRAM. However, with a
little massaging, they can easily be adapted to install or remove any
disk driver routines.

The routines described in this document are examples only. No
guarantee is made regarding their performance or suitability for any
particular use.

ProDOS TECHNICAL NOTE #9

Buffer Management using BASIC. SYSTEM

(31 August 1983)

BASIC. SYSTEM provides buffer management for file I/O. Those
facilities can also be utilized from machine language modules
operating in the ProDOS/AppleSoft environment to provide protected
areas for code, data, etc.

BASIC. SYSTEM resides from $9AOO upward with a general purpose buffer
from $9600 (himem) to $99FF. When a file is opened, BASIC.SYSTEM does
garbage collection, if needed, moves the general purpose buffer down
to $9200 and installs a file I/O buffer at $9600. When a second file
is opened, the general purpose buffer is moved down to $8EOO and a
second file I/O buffer is installed at $9200. If an EXEC file is
opened, it is always installed as the highest file I/O buffer at
$9600, and all the other buffers are moved down. Additional regular
file I/O buffers are installed by moving the general purpose buffer
down and installing it below the lowest file I/O buffer. All file I/O
buffers, including the general purpose buffer, are 1K (1024 bytes) and
begin on a page boundary.

BASIC. SYSTEM may be called from machine language to allocate any
number of pages (256 bytes) as a buffer, locat~d above himem and
protected from AppleSoft Basic programs. The ProDOS bit-map is not
altered so that files may be BLOADed into the area without an error
from the ProDOS kernel. If you subsequently ~ter the bit-map to
protect the area, it is your responsibility to mark the area as free
when you are finished ••• BASIC.SYSTEM will not do it for you.

To allocate a buffer, simply place the number of desired pages in the
accumulator and JSR GETBUFR ($BEF5). If the carry flag returns cl~ar,

the allocation was successful and the accumulator will return the high
byte of the buffer address. If the carry flag returns set, an error
has occurred and the accumulator will return the error code. Note
that the X and Y registers are not preserved.

The first buffer is installed as the highest buffer, just below
BASIC.SYSTEM, from $99FF downward, regardless of the number and type
of file I/O buffers that are open. If a second allocation is
requested, it will be installed immediately below the first. Thus, it
is possible to assemble code to run at known addresses ••• relocatable
modules are not needed.

To deallocate the buffers created by the above call, it is only
necessary to JSR FREEBUFR ($BEF8) and all of the buffers will be
deallocated and the file buffers will be moved back up. It is
important to note that although more than one buffer may be allocated
by this call, they may not be selectively deallocated.

APPLE COMPUTER~ Inc~ PCS Developer Technical Support
20525 Mariani Avenue, M/S 22-W

Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

ProDOS TECHNICAL NOTE #10

Installing Clock Driver Routines in ProDOS

(Revised 8 November 1983)

In you wish ·to support clock cards other than the ThunderClock, there
are a number of possible places to locate your code. The "cleanes til
place is to replace the ThunderClock routines located in ProDOS with
you~ routines, if your code will fit.

When the PRODOS system file is executed, it installs the address of
the ThunderClock routines at $BF07,$BF08 whether a card is present or
not. The address is preceeded with a $4C (JM?) if a ThunderClock card
is found or a $60 (RTS) if it was not.

The ThunderClock card is identified by looking at the $CnOO ROM for:

$CnOO = $08 $Cn02 = $28 $Cn04 = $58 $Cn06 = $70

If you look at $BF07,$BF08 you will find the location to put your
code. There is room for 125 bytes.

To install your code, simply write enable the "language card" area,
and move your code. Don't forget that your relocation code must
justify the absolute addresses as part of the relocation procedure.
Finally. restore any soft-switches you have changed. (There is no
guarantee as to the absolute location of the clock driver code on
future revisions of ProDOS, only that it's location may be found by
examining the global page, as mentioned above.)

All that your code need do is get the time from the clock card,
convert it to the ProDOS format and store it in the date and time
locations in the global page.

Your installation routine can be called from an application or as
part of the STARTUP program.

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, Mis 22-W

Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

ProDOS TECHNICAL NOTE #11

The ProDOS Machine Identification Byte

* THIS NOTE SUPERCEDES THE INFORMATION *
* FOUND IN SECTIONS 5.2.3 & 5.3.1 OF THF. *
* ProDOS TECHNICAL REFERFNCE MANUAL *

(revised 08 May 1984)

The Machine Identification byte (MACHID) in the ProDOS system global
page has been redefined to permit identification of future products
from Apple Computer, Inc. that may use the ProDOS operating system.
The change does not impact any checking for existing systems that your
application may now be doing.

The definition of MACHIn at $BF98 is:

Bits 7-6 If bit 3 = 0 then If bi t 3 = 1 then
00 =][00 = reserved
01 = J[+ 01 = reserved
10 =' I I e 10 = lie
11 = III emulation 11 = reserved

Bits 5-4

Bit 3

Bit 2

Bit 1

Bit 0

00 = reserved, 01 = 48K, 10 = 64K, 11 = 128K

The value of bit 3 determines how bits 7-6 will
be interpreted. See Bits 7-6 definition.

Reserved for future definition

o = No 80-column card
1 = 80-column card installed

o = No ThunderClock or equivalent
1 = ThunderClock or equivalent installed

APPLE COMPUTER. Inc., pes Developer Technical Support
20525 Mariani Avenue, Mis 22-W

Cupertino, CA 95014
phone (408) 996-1010

ProDOS TECHNICAL NOTE #12

Interrupt Handling

(1 December 1983)

This technical note expands upon the information found in the ProDOS
Technical Reference Manual. It is assumed that the reader has already
read and understands the sections regarding interrupts.

This tech note includes a superior example of an interrupt handler for
use with ProDOS. The example in the book works properly, however, it
will always claim every interrupt whether it came from the clock or
not. Additionally, it does not conform to one protocol which will be
required in future revisions of ProDOS, nor does it incorporate some
common examples of good programming practice.

Vectors for interrupt handlers must be installed and removed with
ALLOC INTERRUPT and DEALLOC INTERRUPT calls to ProDOS. Even though
the vectors appear in the system global page, you must always use only
the systems calls ••• never change the global page entries yourself.

All interrupt routines must commence with a CLD instruction. Although
not checked in the initial release of ProDOS, this first byte will be
checked in future revisions to verify the validity of the interrupt
handler.

Good programming practice dictates that an interrupt handler should
preserve the status register (PHP) and mask interrupts (SEI). The
code should restore the status register (PLP) before exit, and before
setting or clearing the carry flag as required by ProDOS.

If your application includes an interrupt handler, before you exit:

(1) Turn off the interrupts ••• remember, an unclaimed interrupt will
cause system death.

(2) Make a DEALLOC INTERRUPT call before exiting from your application.
Don't leave a vector installed that will point to a routine that
is gone.

Within your interrupt handler routines, you MUST leave ALL memory
banks in the same configuration you found them. DON'T FORGET
ANYTHING •••main language card, main alternate SDOOO, main motherboard
ROM ••• and, on an Apple Ile •••auxiliary language card, auxiliary
alternate SDOOO, alternate zero page and stack, etc., etc ••• This is
important! The ProDOS interrupt receiver assumes the environment is
absolutely unaltered when your handler relinguishes control.

If your handler recognizes the interrupt and services it, the carry
should be cleared (CLC) immediately before returning (RTS). If it was
not your interrupt, the carry should be set (SFC) immediately before
returning (RTS). Do not use a return from interrupt (RTI) to
exit ••• the ProDOS interrupt receiver still has some housekeeping to
perform before it issues the RTI instruction.

Here is a sample routine which will turn on interrupts on a
ThunderClock card and print the date and time to the upper right
corner of the screen.

0330

031D

0304

0200

Install interrupt routIne
That's all forks

Restore the input buffer

Set up counter for next time

Save the input buffer
Since the clock writes over it
When it is called

Print time to screen
Chars 0-22 of input buffer

Entry point to the ProDOS MLI

Clock write entry point (Slot 2)
Clock read entry point (Slot 2)
Interrupt cont. register (Slot 2)
Mystery register (Slot 2)

Where the clock leaves the time

Disable Interrupts
For slot 2
Get Int~rrupt Control Reg value
Bit 5 indicates INT is clock

.; If bit 5 is off, not from clock
Clear mystery register
Clear interrupt on hardware
Only print time every second
Not time to print yet

The upper right of the screen
~ Leave interrupts on (Slot 2)

Leave interrupts on (Slot 2)

Set Applesoft-string input mode
and send it to the card

.; Read time into input buffer

GETNEXT

DOIN

$300
$C20B
$C208
$C080
$COB8

1139
IN,X
INBUF,X

1139
INBUF,X
IN,X

1121
I1\l.f-l ,X
UPRIGHT ,X

ORG
EOU
EQU
EOU
EQU

EOU $BFOO

EQU $200

EQU $412
EQU $47A
EQU $7FA

LDA 1164
STA COUNTER

EQU *
CLD
PHP
SEI
LDY 11$20
LDA TCICR.Y
AND 11$20
BEQ NOTCLl<
LDA TCMR.Y
LDA TCICR,Y
DEC COUNTER
BNE EXITCLK

LDX
LDA
STA
DEX
BPL

JSR ALLOC.INT
RTS

LDX
LDA
STA
DEX
BPL

LDX
LDA
STA
DFX

LDA II $A5
JSR wrTCP
JSR RDTCP

1
2 WTTCP
3 RDTCP
4 TCICR
5 TCMR
6 *
7 IN
8 *
9 UPRIGHT

10 INTON1
11 INTON2
12 *
13 ML1
14 *
15 * CALLING INTERRUPTS. CALLING INTERRUPTS
16 *
17
18
19 *
20 *
21 SHOWTIME
22
23
24
25
26
27
28
29
30
31
32
33 *
34
35 DOIN
36
37
38
39 *
40
41
42
43 *
44
45 GETNEXT
40
47
48
49 *
50 SETCNTR
51
52 *
53
54 DOIN2
55
56

BFOO

0300
C20B
C208
COBO
C088

0412
047A
07FA

27
00 02
56 03

15
01 02
12 04

27
56 03
00 02

20
80 CO
20
3C 034C
88 CO
80 CO
4F 03
2E 0349

0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300:
0300 :
030.0 :
0300:
0300:
0300:
0300:
0300: 20 7E 03
0303:60
0304:
0304:
0304:
0304:D8
0305:08
0306:78
0307:AO
0309:B9
030C:29
030E:FO
0310 :B9
0313:B9
0316: CE
0319:DO
031B:
031B:A2
031D:BD
0320:9D
0323:CA
0324: 10 F7
0326 :
0326:A9·A5
0328:20 OB C2
032B: 20 08 C2
032E:
032E:A2
0330:BD
0333:9D
0336: CA
0337: 10 F7
0339 :
0339:A9 40
033B:8D 4F 03
033E:
03JE:A2
0340:BD
0343:9D
0346:CA
(\ 1 J. i • 1 (\ Ti'i nDT nnT}.T'J

0349:
0349:28
034A:18
034B:60
034C: 28
034D:38
034E:60
034F:
034F: 0001
0350 :
0350:02 00
0352:04 03
0354:
0354:01 00
0356:
0356: 0028
037E:
037E:

037E:20 00 BF
0381:40
0382:50 03
0384:DO 19 039F
0386:
0386 :AO 20
0388:A9 AC
038A:20 OB C2
038D:A9 40
038F:8D 7A 04
0392:8D FA 07
0395:99 80 CO
0398 :A9 01
039A:8D 4F 03
039D:58
039E:60
039F: .
039F:00

58 *
59 EXITCLK PLP
60 CLC
61 RTS
62 NOTCLK PLP
63 SEC
64 RTS
65 *
66 COUNTER DS 1,0
67 *
68 AlP ARMS DFB 2,0
69 DW SHOWTlME
70 *
71 DIPARMS DFB 1,0
72 *
73 INBUF DS 40,0
74 *
75 * - - - - - - - -
76 ALLOC.INT JSR MLI
77 DFB $40
78 DW AlP ARMS
79 BNE OOPS
80 *
81 LDY It$20
82 LDA "'t$AC
83 JSR WTTCP
84 LDA It $40
85 STA INTON1
86 STA INTON2
87 STA TCICR,Y
88 LDA It 1
89 STA COUNTER
90 CLI
91 RTS
92*
93 OOPS BRK

Tell MLI we processed the INT

Tell MLI it iim' tours

Put allocate and deallocate
Interrupt parameters here

so both routines can use them

Save 40 bytes of IN here
for input buffer save/restore

Call the MLI
to allocate the interrupt

Break on error

Set 64hz interrupt rate
by writing a ',' to clock
Now enable the software
and tell it not to disable
interrupts after reads

Print time immediately
Once per second later
Allow the 6502 to see the
interrupts

Break on error
- - - - - - - - -
03AO:A9 00 94 DEALLOC.INT LDA #0
o3A2 : 8D 7A 04 95 STA INTON1
03A5 :8D FA 07 96 STA INTON2
03A8 :AO 20 97 LDY It$20
03AA:99 80 CO 98 STA TCICR, Y
03AD: 99 *
03AD:AD 51 03 100 LDA AIPARMS+l
03BO:8D 55 03 101 STA DIPARMS+1
03B3:20 00 BF 102 JSR MLI
03B6:41 103 DFB $41
03B7:54 03 104 DW DIPARMS
03B9:DO 01 03BC 105 BNE 00PS2
03BB:60 106 RTS
03BC: 107 *
03BC:00 108 00PS2 BRK

Disable interrupts
in the thunder clock

GET INT NUM
FOR DEALLOCATION
CALL THE MLI
TO DEALLOCATF. THE INTERRUPT
POINTER TO PARAMETF.R LIST
BREAK ON ERROR
DONE

BREAK ON ERROR

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, Mis 22-W

Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

ProDOS TECHNICAL NOTE #13

Double High Resolution Graphics Files

(6 January 1984)

The 128K Apple lIe supports a graphics mode known as Double Hi-Res
Graphics in which both main and auxiliary memory hi-res graphics pages
are used to produce pictures with twice as many dot positions
horizontally.

Apple III graphics has a similar mode and a FOTOFILE file type ($08)
has been defined under SOS to contain the screen image. All 16K
double hi-res files under ProDOS should be of this file type.

The format of the file is as shown at
the right. The "graphics mode" is
stored in the 121st byte of the file
(Location $78 in the file). The
modes for both 1st and 2nd page of
double hi-res are:

280 X 192
560 X 192
140 X 192

Pg 1
Limited Color = 1
Black and White = 2
Full Color = 3

. Pg 2
5
6
7

End-of-file
$3FFFI-------------------1

I Main Memory I
I portion of file I

$20001 I
$IFFFI I

I Auxiliary Memory I
I portion of file I

$00001-------------------1
Beginning of file

The normal Apple] [hi-res 280 X 192 screen may be BSAVEd as usual.
If you desire, for Apple III SOS compatibility, you may also save
these screens as an 8K type $08 FOTOFILE and mark the graphics mode as
zero (page 1) or four (page 2), (Apple III 280 X 192 Black and White
mode) •

APPLE COMPUTER, Inc., PCS Developer Technical Support
20525 Mariani Avenue, Mis 22-W

Cupertino, CA 95014
Phone (408) 554-5213 or (408) 996-1010

ProDOS TECHNICAL NOTE #14

Selector/Dispatcher Conventions

(revised 09 March 1984)

ProDOS MLI call $65, the QUIT call moves addresses $DI00 - $D3FF
from the second 4K-byte bank of RAM of the language card to $1000
and executes a JMP to $1000. What initially resides in that area
is OUR dispatcher code.

The dispatcher once executed does the following:

1. Interactively allows you to enter a prefix and file name of
the system program (interpreter) that you wish to execute.

2. Stores the system program name at $280 starting with a
length byte. This is done so once the system program
executes, it can find from where is was started and locate
any files it could need for processing.

3. Closes any open files.

4. Clears the bit map and protects the zero, stack, text and
ProDOS Global pages.

5. Reads in the system file at $2000 and executes a JMP to $2000.

If you wish, you can install your own QUIT code which may load in
your own full blown selector program. If you choose to do this,
you must at some point:

1. Follow steps 2 - 4 above.

2. THE $DI00 BYTE MUST BE A CLD ($D8) INSTRUCTION. This
convention is established so programs will be able to
tell whether it is selector code or the ProDOS dispatcher
code that is resident.

In addition to just leaving the pathname at $280 for the
interpreters own use, a method to enable a selector program to
specify an accomanying 'STARTUP' program has been defined.
Once active, an interpreter can immediately run that program.

The procedure will be to reserve an area in the system file which
will be overwritten by a selector program with the 'STARTUP'
programs name. The interpreter would then load and execute that
specified program.

The actual nuts and bolts of this procedure are as follows:

The selector program will look at the first
byte of the interpreter at $2000. If it is
a JMP ($4C) instruction, and bytes $2003 and
$2004 are both $EE's, then byte $2005 will
be interpreted as a buffer size indicator
with the buffer starting at $2006. The
string at $2006 would be the normal ProDOS
pathname or partial pathname starting with
a leng th byte.

I JMP CONT I
I $EE I $EE I
I $41 (eg.) I
1 $07 I

·1 STARTUP I
I I
ICONT: (eg.) I
1 1

$2000-$2002
$2003-$2004
$2005
$2006
$2007-$200D

$2047

The two $EE's serve as a marker to the selector program to let
it know that this particular interpreter can run a startup
program. The interpreters that will support this feature will
of course supply their own default string which may be a startup
program or a flag of your own choice.

For more information on Interpreter Conventions please see
ProDDS Technical Note #7.

APPLE COMPUTER INC., PCS Developer Technical Support
20525 Mariani Avenue, Mis 22-W

Cupertino, CA 95014
phone: (408) 996-1010

	partie04_01
	partie04_02
	partie04_03
	partie04_04
	partie04_05
	partie04_06
	partie04_07
	partie04_08
	partie04_09

