
APPLE COMPUTER, INC.
20525 Mariani Avenue
Cupertino, CA 95014

PASCAl.. TECRNICAL NOTE fIla

Confi~ration and Use of The
ApPle !l Pascal 1. 2 Runti~Sv;tems

(December 1983)

For further information contact:
pes Developer Technical Support
M./ S 22-W, Phone (408)" 996,::,,1010

Disclaimer .2! ill Warranties .!.!!.!! Liabilities

Apple Computer, Inc. lIiakes no warranties. either eJt?ress or iml)lied, with
res?ect to this documentation or with res?ect to the soft:ware described in
this documentation. its quality, performance, merchantability, or fitness for
any particular pur-pose. Apple Comlluter, Inc. software is sold or licensed
"as is". The entire risk as to its quality and performance is with the
vendor. Should the programs prove defective folowing their purchase, the
vendor (and not Apllle Co~uter, Inc., its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or correction and
any incidental or consequential damages. In no event will Apple Computer,
Inc. be liable for direc t, indirect, incidental, or consequential damages
resulting from any defect in the software, even if Apple Co~uter, Inc.' has
been advised of the possibility of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the. above limitation may ~ot apply to you.

This documentation is copyrighted. All rights are reserved.
may not, in whole or part, be co?ied, photocopied, reproduced,
reduced to any electronic medium or machine reada~le form
consent, in writing, from Apple Computer. Inc. -

Copyright 1983 by Apple Com?uter, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010

Notice

This document
translated or

wi thout prior

Apple Computer. Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

APPLE COMPUTER, INC.
20525 Mariani Avenue
Cupertino, CA 95014

PASCAL TECRN!CAL NOTE lilO

Configuration~ Use E.i~
Annle 11 Pascal .!..:.l. Runtime Systems

(December 1983)

For further information contact:
PCS Developer Technical Support
Mis 22-W, Phone (408) 996-1010

I. IN'!RODUC'tION

The Apple II Pascal 1.2 Runtime Systems permit the "turnkey" execution of
application. softwa.re that has. been developed using Apple Pascal. This Technical
Note is intended to aid .Vendors and applications developers who are familiar
with the Apple II Pascal 1.2 Development System. Those who are not should read
carefully the following documents:

* AnnIe Pascal Operating System Reference Manual (with addendum)
* Annle Pascal Language Reference Manual (with addendum)
* Apnle.ll PascalI •• 2. Update Manual

II.. SYSTEM dvERV!EW·

The Runtime Systems support only the execution of a.n application package.
Unlike the Pascal Development System, the Runtime Systems do not contain the
Assembler. Cdurpiler,. Ed.! t.or, .Filer or Linker, nor even·. an eftor reporting
mechanism at the systl!1.U lev.el. System operations such as ttansfen.-ing files.
disk. compacting ("Krunching"). and the reporting of and recovery from errors,
.are all left to .. theapplica.tion program.' Clearly, it is the software
developer's responsibility to design and implement "friendly," entirely
self-contained pack.ages.for use with the Runtime Systems. The safest assutlTption
to make when developing such packages is that the end-user is not only
unfamiliar with the facilities of the Pascal Development System, but may also be
ignorant of computer operation and use in general.

The three· runtime systems currently a.vailable are :

* The 48K Runtime System (standard and stripped versions)
* The 64K Runtime System (standard version only)
* The 128K Runtime System (standard version only)

The name of each runtime system indicates the minimum amount of RAM
necessary for proper operation. Any additional RAM available above the minimum
will not be used by the Runtime Systems.

Tech Note #10 Apple II Pascal 1.2 Runtime Systems Page 3

There are two versions of the 48K'Runtime System available. one of whicl
provides more free memory for the application package's programs and data than
does the other. Except as noted later. the "standard" configuration of the
Runtime System supports all features of the Pascal Development System that are
relevant to turnkey execution of appliC'ations software. The "strip-ped"
configuration lacks set operations and floating-point arithmetic.

III. CONTENTS OF APPLE n PASCAL 1.2 RUNTIME DISKE'l"l"ES

The follOWing files are contained on "'R.T48:". the Apple II Pascal 1.2
48K Runtime System diskette~

* RTSTND.APPLE (29 blocks) -- 48K Runtime "standard" P-machine.
* RTST'RP.APP'LE (24 blocks) - 48K Runtime "stripped" P-machine.
* SYSTEM. PASCAL (28 blocks) -- 48K Runtime operating system.
* SYSTEM.LIBRARY (39 blocks) -- Contains the same Intrinsic Units as

described in the Apple Pascal Language Reference Manual. However.
these Units are for. use only with the Ruhtime System. and will not
p.xecute properly in the development environment. Conversely. only,
Units in this librat"y, NOT those on the 1.2 Development System
diskettes, should be used when executing programs in the Runtime
environment. Note that the developer ls. however, free to add his own
Intrinsic Units to the Runtime SYSTEM. LIBRARY.

* SYSTEM.AT'l'ACR. (9 blocks) - A runtimeve.rsion of the dynamiC driver­
atE~c:hment programdf!scribed in the App.1.e II. Pascal Attach Tools
lII.anual. This version lII.ay only be used with the Runtime Systems.

* RTSETMODE.CODE (4 blocks) -- Utility pro~ram that permits Vendor to arm
or disarm any or all of four configuration~Ptions: ."'Filehandler
Overlay". "Single Drive System". "Ignore External Terminal" and
"Get/Put and Filehandler Overlay".

* RTBOO.'l'L0AD .CODE (4 blocks) - Utility program to load 48K Runtime
boC)tstra'P.code onto blocks ° and 1 ofVeTIdor Product Diskette.

* R'l135TN1L BOOT (4 blocks} Contains bootstr~p code. for RTSTND .APPLE.
* RTBSTRP.BOOT (4 blocks) -- Contains bootstrap code for RTSTRP.APPLE.
* II40.MISCIN'Fg. (l block) -- Miscinfo file. op.~omi.zed for a 40-column

Apple II or AppLe<II Plus. Identical to that supplied Iori th the
Development System.

* !I80 .MISCINFO(1< block) -- M,1sclnfo fileoptOl1lfzed for an RO-column Aoo,
n or. I\pple II Plus. Ider.:.ical to that supp tied wi th the Op.ve lC'-pment
Syst.am•

* IIE40.MISCINFO (1 block) -- M,1scil'1foHleol'tomized fot" a 40-column Apple
lip.. Identical to that supplied with the~p~v~~opment System.

* SYSTEM.MISCIN'FO (1 block) -- Miscinfo file optomized for an 80-column
Apple lie. Identical'to that supplied with the Qevelopment Svstem.

* SYSTEM.CHARSET (2 blocks) -- Identical to that supplied with the
Development System. it is included here Onlv fot" redundancy's sake.
SYSTEM.CHARSET is needed on the Vend6t Product Diskette only if
TURTLEGRAPHICS is used.

.l.ecn Noce VJ.U Appla II Pascal 1.2 Runtime Systems Page 4

The following files are contained on "RT64: ", the Apple II Pascal 1.2
64K Runtime System diskette:

'It SYSTEM.APPLE (32 blocks) -- 64K Runtime "standard" P-machine.
* SYSTEM.PASCAL (29 blocks) -- 64K Runtime operating system.

* SYSTEM. LIBRARY
'It SYSTEM.ATTACH
'It RTSETMODE.CODE
* II40.MISCINFO
'It II80.MISCIN1l'O
'It IIE40.MISCINFO
'It SYSTEM.MISCINFO
'It SYSTEM.CRAR.SET I

----> same files as 48K Runtime System

The following files are contained on "RT128:", the Apple II Pascal 1.2
128K Runtime System diskette:

'It SYsn:M.A.PPLE (32 blocks) -- 128K Runtime "standard" P-machine.
'It SYSTEM. PASCAL (29 blocks) -- 128K Runtime operating system.

'It SYSTEM. LIBRARY
'II SYSTEM. ATTACH
'It RTSETMODE.CODE
'II SYSTEM.M!SCINFO
'It SYsn:M.CRAR.SET I

----> same files as 48K Runtime System

Of thes~f.iles, .the final Vendor· Prodtil:t Diskette should contain only
the Runtime P-machine (RTSnID.A.PP1.E, RTS~.A.PP!.E, .0J:' SYSTEM'APPLE),
SYSTEM.PAS~, SYSTEM. LIBRARY ,theappropriate adsciI1fo fil.e.renamed to
SYSTE~'MISCINFO, and, optionally, SYS.TEM. CHARS~T.. Informa.tion on the
different ad~cinfo files i. is contained in the Apple II Pascal L 2 Uodate Hanual.
SYSTEM. ATTACH , with its <a.ttendant data files as described. in the Apple II Pascal
Atta~h Tools manual, should be included on the Vendor Product Diskette if and
only if special device drivers, W1:'itten..in ma~hine-code, must be bound into the
systens f05iuse. by the. Applications •.. Pack.age. All other files on the Runtime
System diskettes are used in creating and configuring the Vendor Product
Diskette.

IV. OPERATION

The term "Vendor Product Diskette," as used throughout this Technical Note,
refers to the primary (boot) diskette in a turnkey application package, which is
assumed to contain the fo11oring softvare: the Runtime P-machine , the Runtime
Operating system. a SYSTEM.LIBRARY file, a SYSTEM.MISCINFO file, and the files
co~rising the applications package's programs (and any necessary data). In
most instances, the Vendor Product Diskette will be the only softvare diskette
in the package. Larger systems, however, may also include other diskettes that
contain additional sofeware and data which will not fit on the bootstrap
diskette.

Tech Note /110' Apple II Pascal 1.2 Runtime Systems Page 5

Note that the main application program must be named SYSTEM. STARTUP , so
that the Runtime System can find it at bootstrap-~oad time.

A ewo-stage boot process can be us~d with the 64K and l28K Runtime Systems
if the necessary boot files listed above cannot fit on a single diskette. In
this case, the primary boot diskette would contain only the Runtime P~chine.

A second-stage boot diskette would contain the remainder of the files. A
two-stage boot process cannot be used with the 48K Runtime System.

A. !h! Bootstrapping Process

In a machine equipped with an auto-start ROM, the bootstrap loading
process occurs automatically, as soon as the Apple's main power switch is
turned "ON." As a result, the end-user is greeted by the applications
package. In.a machine that lacks an auto-start ROM, theend-user first
encounters the Apple MONITOR, or BASIC, and must initiate the bootst~apping

process by issuing a 6-cTRL-P command (in the case of the MONITOR) or a
PRU6 command (for BASIC).

The bootstrap loader checks for the P-machine file and loads it into
RAM. The P-machine, in turn, brings in and initializes the Runtime
operating system. (In the case of a two-stage boot, the messag'e "Insert
boot diskette with SYSTEM. PASCAL on it, then press RETURN." appears after
the P-machine has been loaded. The end-user should then insert the
second-stage boot diskette and pre58 RETURN whichr~sults in the Runtime
operating system being loaded and initialized.) The first noteworthy
action taken by the operating system is to execute SYS~..• ATTACH, if that
utility program is available on the Vendor. Produc.t:Diskette.Re~mber that
SYSTEM.ATTACH ~st not be present: on the V:t1dorProduct pi.skette unless
special, 10w-1f!'!Te1 yo d~vers .. must. be boundint~ ...the.. systetll~ •.. ~<erplained
more fully in. •.the Apple .. II Pascal Att:achTools. ~n\1al' .SYSn.:M.ATTACH uses
two special data files., ~d will fail. if these files are.not prf!sent on the
bootstrap diskette". ~. vendor who puts SYSTEM.ATTACII on his Yendorp~oduct

Diskette without also providing the data files required by that program
insures consistent fail\Jre of the system bootstrap process. The vendor may
include the SYSTEM.ATl'ACR soft:w'a.re>on the Vendor Product Diskette, while:
defeating the automatic execution of that utility at bootstrap load t:ime,
by changing its name in the diskette directory.

the bootstrap
SYSTEM. STARTUP , is
process is fatal.
lDessage

process culminates when the main applications program.
loaded and executed. Any failure during the boot:strap
Whenever possible, a failure will leave displayed the

SYSTEM FAILURE NUMEER nn. PLEASE REFER 1'0 PRODUC'l' MANUAL.

Here, "nn" refer! to the actual number reported when the failure
occurs. This number will correspond to one of the following failures:

Tech Note 910 Apple II Pascal 1;2 Runtime Systems Page 6

01 Unable to load specified p~ogram

02 Specified p~ogram file not available
03 Specified p~ogram file is not code file
04 Unable to ~ead block zero of specified file
05 Specified code file is un-linked
06 Conflict be~een user and intrinsic segments
07 UNASSIGNED EllOR CODE
08 Required intrinsics not available
09 System internal inconsistency
10 Can't load required intrinsics/Can't open library file
11 Specified code file must be run under the 128K system
12 Original disk not in boot drive

Clearly, these messages are useful as debugging tools as well as in
mechanisms for field failure-reporting. The "PRODUCT MANUAL" mentioned in
the bootstrap failure message is, of course, the vendor's own product
manual. It is the responsibility of the vendor to ennumerate and explain
for the end-user the situations in which bootstrap failures may occur, as
well as suggest remedies for these failures.

B. Gene~al Considerations

Once the program is loaded and running, operation proceeds normally,
and may even include removal of the system disk. (It is, however, the
responsibility of the application package to protect itself against the
possibility that the system disk will not b£ on-line when a segment must be
overlaid, or a specific subprogram must be chained to. At such times, the
application software should first determiIle.whether or not the required
disk is on-line, and, if not, suspend operation, after giving a suitable
prompt, until the user has inserted the disk. in the appropriate drive.)
Any en-ors that occur during executioLl .of t~e applications package cause
the system to transfer program.coLltrol tel a specific procedure in the
cun-ently-executing application program, where code. intended to respond to
errors is assumed to exist. If any program in the applications system
terminates without chaining to another one, the Runtime system re-boots
into SYSTEM.STARTUP.

VI. SPECIFICATIONS

A. Available Confi~rat10ns

The memory requirements of different applications impose the need for
different Runtime System3. The applications developer should choose one of
the systems as thetargetenviron'll1l!~t, a.I1d ke.f!P .its limitations and
capabilities. in mind during design and implementation of the applications
package. Apple currently supports the follOwing Runtime Systems:

• 48K Runtime System (standard and stripped versions)
* 64K Runtime System (standard version only)
* 128K Runtime System (standard version only)

The difference be~een the standard and stripped versions of the ~8K

Tech Note #10 Apple II Pascal 1.2 Runtime Systems Page 7

Runtime System is that the stripped version does not support set operatior~

or floating point arithmetic thereby making more memory available for thl
appli cation.

The chart below summarizes the amount of free memory that is available
under the different Runtime Systems for use by the application package.
Note that when swapping is set to level 1 the amount of memory available to
the application package is increased by 3668 bytes.

FREE MEMORY IN APPLE II PASCAL 1.2 RUNTIME SYSn::MS

I
NO SWAPPING SWAPPING ON

LEVEL 1

48K S'l'ANDARD 23372 bytes 27040 bytes

48K S'l'RIPnD 25676 bytes 29344 bytes
I

64K I 40322 bytes 43990 bytes

128K (CODE) 41227 bytes 44879 bytes

128K (DATA) 44502 bytes \ . 44526 bytes
I I I

NOTE - theal'l1ount of free memory available with the 64K Runtime System
is reduced by 1024 bytes if it is operating 1n 40-column mode.

There 1s another level of swapping (level 2) which provides an
additional 822 bytes of usable memory, however, application writers should
not depend on the extra memory being available 1n the future. Certain
planned enhancements to the. Pascal system will reduce .the· tIletnOry available
to applications by approximately 1000 bytes. Swapping level 2 will help.
programs currently running at the limit of available memory to run under
the enhanced system.

NOTE - using GET or PU'l' to disk will be slow~if swapping level 2 is
selected since these routines will have to be loaded repeatedly. READ and
WRITE to disk will also be slow since they use GE'l' and PUT. BLOCKREAD,
BLOCKWRITE, lJN1TRE.AD, and IJNITWRIT'E will be unaffected.

Swapping can be set to the desired level by using R'l'SETI10DE (described
later) or by calling a.procedure in CRAINS'!UFFbefore chaining to another
subprogram. See the Apple 11 Pascal ~ Update Manual for further
information on swapping.

B. Use Environment

The hardware environment must include the follOWing:

Tech Nota #10 Apple II Pascal 1.2 Runtime Systems Page 8

48K Runtime System

64K Runtime System

128K Runtime System

All Runtime Systems

All Runtime Systelll.8

- An Apple II or II Plus with 48~ of RAM
(minimum), or an Apple //e

- An Apple II or II Plus with 48K of RAM and an
Apple Language Card, or an Apple I/e

- An Apple /Ie with an Extended aO-column Text
Card

- At least one disk drive, set up for 16-sector
operation.

- Video screen or external terminal (video screen
preferred) •

Note that the Runtime Systems support all Apple peripheral cards.
Other'cards may not operate properly, especially if they include fi~are

that depends upon specific internal. characteristics of the P-machine
interpreter or operating system. SYSTEM.ATTACH must be used by those
Vendors who wish to reconfigUre the BIOS (Basic I/O Subsystem) to support
rion-standard peripheral devices. Through the ATtACH facility, It is
possible to assign new physical devices to any of the existing logical IIO
units in the Pascal syste~, as well as retain the standard device
assignments while adding new devices to the system. Drivers prepared for
use with SYSTEM.ATTACH are bound into the system dynamically, at each and
every boostrap load •. Note that the addition of special I/O drivers to the
system will further restrict the amount of free memory available for use by
the applications code, since drivers are loaded on the Pascal system heap.
For more. information" see the Apple II Pascal Attach .Tools ll1Ilnual.

C. Restrictions and Considerations

1. SYS'I'EM.ATTACH and theCIiA.INS'I:Ul''F,LONGDmO. and PASCALIO units
in SYS'l'EM.LIBRARY.ll1ilk.e.. as sUIlrptions about. the. internal structure of
the Pascaloperati l1g system. .Because the internals of the Runtime
operating systems are different from. those in the Development.
System, only the versions. of CHAINSTUFE.LONGINTIO, PASCALIO and
SYSTEM.ATTACH that are supplied on the. Runtime System diskettes
should be used io.· the Runtime e.xecution environmente/ .
(Furthermore, these special versions should never be us'ed in the
Development environment!)

2. the units TRANSCEND and 'l'UR'l'LEGRAPHICS eU11>loy floating-point
operations, so software intertdedto be executed under the 48K
Stripped Runtime System should not use theme For software that
employs the TURTLEGRAPHICS procedure TURNTO, note that turns
through right-angles and null-angles are treated as special cases,
and the 'l'URTLEGRAPHICS unit uses only integer arithmetic in
calculating the trigonometrfc< values needed toexecuee them. So,
TURTLEGRAPHICS may be used under the 48K.Str1pped Runtime System
if and only if the turtle is allowed to make only right-angle
turns (as in the HILBERT demonstration program On APPLE3:, for
exam?le). Attempts to draw arbitrary curves, as demonstrated in
the GRAFDEMO program on APPLE3:, will produce execution errors in
the 48K Stripped Runtime environment.

Tech Note 1110 .Apple II Pascal 1.2 Runtime Systems Page 9

3. Pascal's special function keys retain their meanings in the
Runtime Systems. The following keys have special meaning:

* Freeze (Stop) screen display - CTRL-S
* Flush screen display - CTRL-F
* Switch to alternate half of screen - CTRL-A
* Toggle display to switch screen halves to follow cursor - CTRL-Z
* Laft square bracket - CTRL-K
.• Right square. bracket - SlIIFT-M
* Break - CTRL- @
.Opper/lower case activation toggles - CTRL-W, CTRL-g

NOT! - Some of these special function' keys are ignored by Pascal
if it is running on a lIe. See the Apple Jl Pascal~ Update
Manual for more information. It is possible to disable some of
these special key functions. See the Apple 11 Pascal Attach
Tools mattual for complete details.

4. The Runtime System will operate correctly only with programs that
have been prepared, using Apple's Pascal compiler andlor
Pascal-sylltem assembler on either an Apple II or an Apple I I I, fo;
execution in the Apple II Pascal environment.

5. The Runtime System is optimized for operation with the Apple's
built-in Video output screen. There is no easy way for a turnkey
package to reconfigure its host Runtime Sys.tem to use the
random-cursor facilities of any arbitrary external terminal.
Therefore, it. is expected that users of the syst~~ will be
operating with the standard Apple video screen, and not an
extern~l .termina.l. .•• An..!. program .. that makes USe of screen con tro1,
such·· at! cleat'~c.reen t.rand0tll cursor addressing, or backspacing, is
not likely •• to work properly on. an extl!rnal terminal. To avoid
this problem,the Runtime System contains a switch which can be
set through the RTSETMODE program (explained below). When set,
this switch causes the system to ignore an external eerminal, if
one is connected. Simple programs that do not make use of any
screen control may leave the external terminal switched in wHhout
any adverse consequenc:es.

D. Runtime System Configuration Utilities
.

1. RTSETMODE (provided With.all Runtime Systems)

Flags 'IIhich tlotl! the state.of four system options are contained
within aspec:ial part of the directory oiany R~I1time System bootstrap
diskette. (These flags will not not"ll1ally be present on diskettes
prepared for or used with the Pascal Development System.) When a flag
is set (TRUE), the corresponding system option is enabled. The option
is disabled when the corresponding flag is reset (FALSE). At
bootstrap time, the option-flags are retrieved and are used during a
dynamic configuration process which occurs before ehe applications
sofeware is executed.

Tech Note 110 Apple II Pascal 1.2 Runtime Systems Page 10

~e RTSETMODE utility is used by the applications developer to
set or reset the option-flags, according to the requirements of the
applications package. In operating RTSETMODE, the developer first
selects the Pascal volume to be affected, then answers four yes-or-no
questions by pressing the "Y" or "N" keys, respectively. Responding
to any prompt for input by pressing only the RETURN key causes
immediate termination of the program.

Answering "Y" to any of the following questions ARMS the
indicated option (setting the corresponding flag), while answering "~"

DISARMS the option (and resets the corresponding flag).

• ~ Filehandler Overlay Option? - Arming this option sets
swapping to Levell. System primitives related to disk file
opening ~d closing are overlaid as needed by the
application software, thus freeing 3668 bytes of RAM for
use by the application.

* ARM Sin~le-Drive Svstem Ontion? - With this option armed, once
-the initial bootstrap process is finished at the beginning

of any turnkey software run, the system itself will not
assume the availability of any disk drives other than the
bootstrap device. Specifically, "volume searches" will be
lim! ted to the single drive. 'The application may still use
Apple Pascal's UN1TREAD and UN!TWRITE procedures to access
any other drives which may be connected to the system.

• ~ I~ore External Terminal Option? - Arming this option
insures that the system CONSOLE: device will always be the
Apple's built-tn video screen, whether or not an external
terminal interface or 80-columncard is available in slot 3.

* ARM ~t/Put ~nd Filehandler OverlavOption? - Arming this
-optio1'1. sets. swapping to level 2. System primitives related

to disk. file opening and closing, as well as GET and PUT to
dislc. are. ov:rlaid as needed. (See section A for more
information on swapping level 2.)

After the four-811estion sequence, RTSETMODE asks the user to
confirm that all information input to that point is correct and should
be used toupd~tetheVendorProduct Diskette. If so, an attem?t is
made to update the diskette's directory with the new set of option
flags, and RTSETMODE finishes by reporting the success or failure of
the update 6pirati6n.

Developers should note that only exact copies of a Runtime
bootstrap diskette will retain its option-flags. Transferring the
Runtime System and applications software from diskette to diskette on
a file-by-file basis will not also transfer the option-flags between
the diskettes. For this reason, it is recommended that RTSETXODE be
applied to the product master of any Runtime-based package immediately
prior to releasing that master to production, in order to insure the
correct status of the option-flags.

Tach Note #10 Apple II Pascal 1.2 Runtilllll! Systems Page 11

If a two-stage boot ~ll be used for a runtime application,
R!SETMODE must be run on both boot diskettes since some of the flags
are checked by the P-machine while others are checked by the operating

~) system.

2. R.'!EOOnOAD (48K Runtime System only)

'l'his program is used to transfer to the Vendor Product Diskette
the proper bootstrap code for the ehosen 48K Runtime con1iguration
(STND or STRP). Responding to· any prompt for input by pressing only
the RETURN key results in immediate termination of the program.
RTBOOTLOAD first as~s for the name of the file which contains the
appropriate bootstrap code (either RTBSTND.BOOT or RTBSTRP.BOOT). The
file name must be entered exactly as it appears in the directory
(including a volume prefix if the file is not on the default volume),
or the program ~ll nOt be able to find the file" and ~ll repeat its
request for a file name. Once it has fetched the bootstrap code,
RTBOOnOAD asks tor the volume name of the· Vendor Product Diskette,
then waits for the user to press the SPACE-BAR. (thus providing the
user with an opportunity to mount the selected volume, if necessary)
before attempting to transfer the bootstrap information. The success
or failure of the transfer is reported before RnOOTLOAD terminates.
This program is only supplied on the 48K Runtime System diskette and
should never be used to transfer bootstrap information to a diskette
which contains the 64K or 128K Runtime Systems, as doing so will
prevent the systems from booting correctly.

E. Error aandling

If an error in executio~,0t' ,VO o.ccurs during program operation, the
Runtime Systell1 attempts to> let the, application package itself acknowledge,
and it possible, recover from the error condi.tion. Just as he may in the
Pascal Development envirOnment, ,the. application developer is free to use
the $1-. and$R- compiler o'Ptio~stoassume localized, programmatic control
of the correspondingerTor situations.

When the Runtime System detects an error, it stores the error number
in IORESULT and calls "PR.bctb-mte NtTMnSltnmu of ,the cUrTently-executing
program. This is the procedure .tnsegm.ent number 1 that has been given the
pro'cedure number 2 by ,the compiler. ,In o.ther words, it is the first one
declared after the program headln~ that isn()titself a unit or segment
procedure, or within a unit or segment procedure. In a compiler listing,
"PROCZDtnU:: NUMl3ER TWO" may be identified as those lines whose "s" (segment)
number is 1, and whose "P" (procedure) number is 2.

"PROCEDURE NUMBER TWO" may be declared as a forward procedure since
the procedure number 1s assigned at the forward declaration.

From now on, "PROCEDURE NUMBER NO" will usually be called the "'Error
Randler," since it must always be reserved by the applications programmer
for the sole purpose of handling errors. The Error Handler may not have
any parameters, and must always be declared as a PROCEDURE, never as a

Tech Note #10

FUNC'rION.

Apple II Pascal 1.2 Runtime Systems Page 12

100 Unknown Runtime error
101 Value range e~or

102 No procedure in segment table (*)
103 Exit from uncalled procedure (*)
104 Stack overflow (*)
105 Integer overflow
106 Divide by zero
107 Nil pointl!r reference
108 program interrupted by user
109 SystemIIO error
110 User I/O error
111 Unimplemented instruction
112 Floating point error
113 String overflow
114 Programmed BALT
115 Programmed breakpoint
116 Codespace overflow

The Error Handler can determine what kind of error has occurred by
checking the value of the IORESULT function. In the Development System,
this function is restricted to containing the codes for any I/O errors that
might occur during execution. In the Runtime Systems, IORESULT has been
extended to report all system errors, as wel1'as the usual I/O errors.

Here are all the values IORESULT can assume during Runtime execution:

00 No error
01 Bad block, parity error
02 Bad I/O unit number
03 Illegal I/O request
04 Data-com timeout
as Volume went off-line
06 File 10Bt in directory
07 Bad file nama
08 No room on volume
09 Volume not found
10 File not found
11 Duplicate directory entry
12 File already open
13 File not open
14 Bad input format
16 Disk is write-protected
17 Illegal block number
18 Illegal buffer address
19 Must read a multiple of 512 bytes
20 UnknoWn ProFile error
64 Device error (bad disk format)

", • fatal error

It is recommended that a program's Error Handler should simply report
"system error" for all cases except those which are relevant to the
program. Global state variables in the program may be used to help
determine the nature of the problem and report it to the user. Note that a
system re-boot occurs if an attempt is made to exit the program (Without
chaining to another).

After the Error Handler finishes its operation, control returns to the
caller of the procedure where the error occurred (unless the error was
fatal). In this way, program operation may be continued. cleanly and
simply. after an error is handled. The caller of a failure~prone procedure
can set and test status flags to determine whether or not the called
procedure completed its operation, and either repeat the procedure call, or
perform an alternative action.

In developing particularly large systems where program chaining is
used. the applications programmer should remember that each chained program
must reserve "PROCZDURE NUMBER 'NO" as an Error RandIer.

Following are tyO programming examples. The first shows a typical

Tech Note 110 Apple II Pascal 1.2 Runtime Systems Page 13

E~or Handler routine, and the second is a.program fragment that
demonstrates an e~or recovery technique.

(* EXAMPLE til - ERROR HANDLER *)

(* TIIE FOLLOWlNG PROCEDURE IS ONLY *)
(* CALLED BY 'l'BE OPERATING SYSTEM *)

PROCEDURE ErrorRandler;

PROCEDURE Message(Space: Boolean; S: String);
VAB. en : Char;
BEGIN (* Message *)

WriteLn;
WriteLn('*** ',5);
IF Space 'l'HEN

BEGIN
Write('*** Press SPACE-BAR to continue');
REPEAT

Read (Keyboard , Ch)
1JN'l'!1. « Ch • ' ') AND (NOT EoLn»;

END;
END (* Message *);

BEGIN (* E~orHandler *)
U' (IOResult • 14) 't'HEN

Message(True,'That is not a legal integer!')
ElSE IF (IOResult • 106) 'l'HEN

Message(True,'Division by zero is im?ossible! ')
ELSE BEGIN

Message(False, 'System error. Please reboot.'):
WRI1.E True DO (* Hang *);

END;
END (* E~orHandler *);

(* END OF EXAM:PLE III *)

(* EXAMP'LE #2 - ERROR RECOVERY USING ERROR HANDLER OF EXAMPLE III *)

PROCEDURE Calculator;
(*. Features recovery from input or arithmetic error. *)
TYPE Order • (First, Second);
VAR A,B : Integer;

Flag : Boolean:

PROCEDURE GetNumber(Which: Order; VAR Number: Integer):
BEGIN

Write('Input the');
IF (Which • First) THEN

Write(' first')
ELSE Write(' second');
Write(' number: '):

Tech Note #10 Apple II Pascal 1.2 Runtime Systems Page 14

Read(Number); ReadLn:
Flag :- True:

END (* GetNumber ill);

PROCEDURE Answer:
VA!!.. R : Real;
BEGIN

R :- A / B; (ill Bomba if B-D *)
WtiteLn;
WriteLn(A,' divided by ~,3,' is ',R);

END (* Answer *);

BEGIN (ill Cal~lator *)
REnA'!

Flag :- False;
WriteLn;
WriteLn;
REPEAT

~tNumber(First,A)

UN'1'IL Flag;
Flag :- False;
W't'iteLn;
REPEAT

GetNumber(Second,B)
UN'!'n Flag;
Answer;

UN'l'IL Eo f ;
END (* Calculator *);

To illustrate the effect of the Runtime System's error handling
mechanism, here is the interaction between user and machine during a
tyPical run of the above "Calculator" program. User-input is terminated by
a. press of the ..<R:E'!'U'RN). key in all cases except the first and last. In the
first case, the Er!'or Handler is invoked during the erroneous numeric
input. In the last case, the system accepts and acts upon a <CONTROL-C>
signal before the user has a chance to press any other keys.

Input the first number: N

*"'''' That is not a legal integer!

Input the first number: 16

Input the second number: 0

*** Division by zero is illl?08siblel

Input the first number: 16

Input the second number: 2

Tech Note 110 Apple II Pascal 1.2 Runtime Srstems Page 15

16 divided by 2 is 8

Input·the first number: <CONTROL-C>

As soon as the user presses <CONTROL-e>, the- Runtime system detects
the end of the standard input file (EOF), and re-boots (right back into
"Calculator") •

V. DIFYERENCZS BET'WE.EN THE PASCAL DEVELOPMENT SYSTEM AND THE RDm'lME SYSTEMS

Although the Runtime Systems will run ~t Pascal code files exactly as
does the Pascal Development Srstem, the applications system developer must be
aware of important differences between the two environments. As mentioned

- above, there is no "system-level" handling of any type of error that may occur,
including stack overflow, arithmeti~ errors, or bad diSK reads. It is left to
the application pacKage to respond to all error conditions. The typical user
will not have access to (nor knowledge of).the Pascal FO~tter or Filer. -

Many programs which fit comfortably in the 64K Development Srstem
environment may fail to execute at all under the 48K Runt:i~ Srstem due to the
difference in available user memory. Similarly, programs developed with the
128K Development System may fail to execute under the 64K Runtime Srstem for the
same reason. While large systems can be made to fit within the confines of a
particular Runtime environment, this is possible only through use of Apple
Pascal's program segmentation (overlay) and chaining facilities. It is
suggested, however, that much thought and care be taken when using chaining and
segmentation in software design, since these facilities, by their very nature,
involve time-consuming disk accesses. Application soft~ar~ that abuses chaining
and/or segmentation, or employs them in a careless fashion, may easily waste a
large amount of time in "disk thrashing," especially if swapping is being used.
Fin.aJ.ly, an applications p.ackage runs the risk of lII4ssivefa.i1ure >unless calls
to program overlays and chaining are preceded by checks that the eX'p.ected
diskette is in the appropriate drive. This is espectally important when the
target machine includes only one disk drive (as is frequently the case).

The following items are never present in the Runtime Systems:

* System HOMECURSOR, CLEARSCREEN, and CLEARLINE functions
* Srstem prompt function
* Compiler, Assembler, Linker, Editor, Filer
* IDSEARCB and TREESEARCB procedures (which exist in the Development System

only to benefit the Compiler).

Programs that maKe use of information stored in specific memory locations
within the 1.2 Development Srstem P-machine, or that make assumptions about
static or dynamic memory allocation at the operating system level (e.g., for the
purpose of accessing system data structures) are likely to function incorrectly
when executed in the Runtime environment. This is due to the code
reorganization, compaction, and optimization that was necessary to produce t~e

Runtime Systems.

Tech Note #10 Apple II Pascal 1.2 Runtime Systems Page 16

VII. CREATION OF VENDOR PRODUCT DISKETTE

The following steps can be used as a guid~ for creating a Vendor Product
Diskette:

1 - Format a diskette using the Pascal Development System formatter.

2 - Transfer the files SYSTEM.APPLE (or RTSTND.APPLE or RTSTRP.APPLZ),
SYSTEM. PASCAL , SYSTEM.LIBRARY. SYS'l'EM.MISCINFO, and SYSTEM.CRARSET
needed) from the Runtime System diskette to the Vendor Product
disketta.

3 - Transfer the code file(s) for the application to the Vendor Product
diskette. The main code file for the application must be named
SYSTEM. STARTUP.

4 - Run the Pascal Develop~nt System library program to add any needed
library units to SYSTEM.LIBRARY on the Vendor Product diskette.

5 - Run RTBOOTLOAD to load the appropriate bootstrap code from RT48: onto
the Vendor Product diskette. (48K RUNTIME SYSTEMS ONLY)

6 - Run RTSETMODE if you wish to ARM the "Fllehandler Overlay" option, the
"Single-Drive System" option, the "Ignore External Terminal" option
and/or the "Get/Put and Fllehandler Overlay" option.

Vendor Product Diskettes, or other diskettes which contain 48K Runtime
System software should be copied using ouly "whole volume" transfer mechanisms,
such as that provided by the Pascal system Filer. A succession of "individual
file" transfers, or a ''Wildcard'' transfer (such as transferring "#5 :-" to
"#5:$"). will only copy files from one disk to another. They will not copy the
crucial 48K Runtime boostrap code' between disks. Only "whole volume" transfers
(such as "#4:" to "115:", or "SOUP:" to "NUTS:") will result in complete
copies, containing the proper bootstrap information.

Vendor Product Diskettes. or other diskettes which contain 64K or 128K
Runtime System software can be copied using either whole volume or individual
file transfers since they do not contain special boots~rap information.

VIII. APPLE FORTRAN AND '!'HE RUNTIME SYSTEMS

Apple FORTRAN programs will execute correctly under the Apple II Pascal 1.2
Runtime Systems (48K and 64K ouly) , so long as no execution errors or untrapped
I/O errors occur. Using only FORTRAN, it is impossible to produce object code
that contains the specially-placed error-handling procedure to which control is
transferred in the event of an untrapped error during Runtime execution.
Furthermore, the FORTRAN Run Time Support Library includes system-level code for
handling FORTRAN I/O errors independently of the Apple Pascal system's own
error-handling facilities. Execution of this special code will always lead to a
system re-boot in the Runtime environment.

Tech Nota #10 Apple II Pascal 1.2 Runtime Systems Page 17

Users who wish to provide turnkey packages based on FORTRAN object-code ar~

advised to link the FORTRAN object-code to a Pascal host, as e~lained in the
Apple FOR.1'RAN Language Reference Manual. The only "live code" which the Pascal
host must contain is the error-handling procedure that the Runtime Systems
require for robust execution of turnkey sofeware.

APPLE COMPUTER, INC.
20525 Mariani Avenue
Cupertino, CA 95014

PASCAL TECHNICAL NOTE #11

Apple Pascal ~
BIOS Reconfi~ration Using ATTACH

(02 April 1981)

For further information contact:
PCS Developer Technical Support
MiS 22-W, Phone (408) 996-1010

Disclaimer of All Warranties and Liabilities---
Apple Computer, Inc. makes no warranties, either express or implied, wi th
respect to this documentation or with respect to the software described in
this documentation, its quality, performance, mer~hantability, or fitness for
any particular purpose. Appl-e Computer, Inc. software is sold or licensed
"as is". The entire risk as to its quality and performance is with the
vendor. Should the programs prove defective folowing their purchase, the
vendor (and not Apple Computer, Inc., its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or correction and
any incidental or consequential damages. In no event will Apple Computer,
Inc. be liable for direct, indirect. incidental, or consequential damages
resulting from any defect in the software, even if Apple Computer, Inc. has
been advised of the possibility of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
~onsequential damages, so the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved.
may not, in whole or pgrt, be copied, photocopied, reproduced,
reduced to any electronic medium or machine readable form
consent, in writing, from Apple Computer, Inc.

Copyright 1981 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino. CA 95014

(408) 996-1010

Notice

This document
translated or

without priur

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

ATTACH-BIOS document for Apple II Pascal 1.1

By Ba rry Haynes

Jan 12 J 1980

This document is intended for Apple II Pascal internal applications
writers, Vendors and Users who need to attach their own drivers to the
system or who need more detailed information about the 1.1 BIOS. It is
divided into two sections, one explaining how to use the ATTACH utility
available tnrough technical support and the other giving general
information about the BIOS. It is a good idea to read this whole
document before assuming something is missing or hasn't been completely
explained. This document is intended for more advanced users who
already know a fair amount about I/O devices and how to write device
drivers. It is not intended to be a simple step by step description of
how to write your first device driver, nor does it claim to. be a
cc:mplete description of all there is to know about the Pascal BIOS.

The Appl e Pascal UCSDsystem has vari.ous level s of I/O that are each
responsible for different types of actions. It ..was divided at UCSD
into these levels to make it easy to bring up the system on various
processors and also various configurations of ~he same processor and
yet have things look the same to the P~scal level regardless of what
was below that level. The level s are:

LEVEL TYP ES OF 10 ACT! ONS
-----------_._-----

Pascal READ & loI'RITE
BLOCKREAO·& BLOCKWRITE
UNITREAO& UNITWRITE
UNITCLEAR
UNITSTATUS

RSP (Runtime Support Package) This is<part Of the interpreter and
is the middle man between the above
types of I/O and thebeTbw types of
I/O. All the above types are
trans1 atedbythecompiler and
operating system .into UNITREAD.
UNlTWRITE. UNITCLEAR and UNITSTATUS if
they are not already in that form in
the Pascal program. The RSPchecks
the.1ega1ity Of the parameters passed
and reformats these ca 11 s into ca 11 s to
the BIOS routines below. The RSP also
expands OLE (blank suppression)
characters, adds line feeds to
carriage returns, checks for end of
file (CTRL C fran CONSOLE:). monitors
UNITRW control word commands, makes

Paop 1

BIOS (Basic I/O Subsystem)

calls to attached devices if present,
echoes to the CONSOLE:.

This is the lowest level device
driver routines. This is the level
at which you can attach new drivers
to replace or work with the regular
system drivers and also attach drivers
for devices that will be completely
defi ned by you.

I.RECONFIGURING THE BIOS TO ADD YOUR OWN DRIVERS USING THE ATTACH UTILITY.

INTRODUCTION

With the Apple Pascal 1.1 System (both regular and runtime 1.1).
there is an automatic method for you.to configuer your own drivers
into the system. This method requires you to write thedri vers
following certain rules and to use the programs ATTACHUD.CODE and
SYSTEM.ATTACH provided through Appl e Techni cal Support. At boot
time, the initialization part of SYSTEM.PASCAL looks for the program
SYSTEM.ATTACH on the boot drive. If it finds SYSTEM.ATTACH, it
Xecutes it before Xecuting SYSTEM.STARTUP. SYSTEM.ATTACH will use
the files ATTACH.DATA and ATTACH.DRIVERS which must also be on the
boot disk. ATTACH.DATA is a file thedevelc~er will make using the
program ATTACHUD. It tells SYSTEM.ATTACH the needed information
about the drivers it will be attaching. ATTACH.DRIVERS is a file
containing all the drivers to be attached and is constructed by the
developer using the standard ·LIBRARY program. The drivers are put on
the Pascal Heap below the point that a regular program can access it.
They do take away Stack..Heap (. to the si ze of the dri vers attac hed)
space from th.i!t available to' Pascal code files but this should not be
a problem unless. the dri.vers are very large or the code files very
hungry in their use of memory. Since these drivers are configured
into the system after the operating system starts to run, this method
will not work for configuring drivers for devices that the system
mu.st co1d boot. frcm. Some of Suppo rt i ng code in the RSP. boot and
Bios. may make the task of bringing up boot drivers easier though.
The advantages to this kind. of setup are: "-

1. Software Vendors can use the ATTACHUD program to put
their own drivers into the systen at boot time. This will
be invisible to the user.

Z. There can be no problems losing drivers due to improper heap
management since the drivers are put on the heap by the
operating system and before any user program can allocate heap
space.

3. This method does not freeze parts of the system to special
memory locations since it enforces the clean methodology of
using relocatable drivers.

Page 2

USING AnACHUD

AnACHUD.CODE will ask you questions about the drivers you want to
attach to the system. It makes a file called ATTACH.DATA which tells
SYSTEM.AnACH which drivers to attach to the system, what unit
numbers to attach them to and other i-nfonnat ion. The opt ions cove red
by ATTACHUD are:

1. A driver can be attached to one of the system devices, then
all I/O to this device -(PRINTER: for example) will go to
this new driver. In the case of a new driver for a disk
device the user will have to specify which of the 6 standard
disk units will go to this new driver. This will allow
replacement of standard drivers with custom ones without
having to restrict the I/O interface to UNITREAD and
UNITWRITE as is the case with option 2.

2. A driver can be attached to one of 16 userdevices. I/O to
these will be done with UNITREAO and UNITWRITE to device
numbers 128-143.

3. A method will be included to allow the attached driver to
start on an N byte boundry. The driver writer will be
responsible for aligning his code from that point.

4. More than one unit can be attached to the same dri ver. Thi s
way only One copy of the driver reside~ in memory and I/O to
all the attached units goes to this one driver. It is up to
the driver to decide which unit's I/O it is doing. How this
is done is explained below.

5. The initialize routine for any attached driver can be called by
SYSTEM.ATTACH after it has attached the driver and before any
programs can brXecuted.

6• In case any of your programs use the Hires pages, you can spec ify
in AnACHUD that drivers must not be put on the heap over these
areas. Your drivers would have to be quite large before they could
possibly overlap the Hires pages.

Foll ow through thi s exampl e of a sessi on wi th ATTACHUD where the
options available are completely described. First XecuteATTACHUD:

You will. begi ven the prompt:

Apple Pascal Attachud [1.1]

Enter name of attach data file:

This is asking for what you want the output file from this session
with ATTACHUD to be call ed. You could call it ATTACH.-DATA or some other
name and then rename it to ATTACH.DATA when you put it on the boot disk
with SYSTEM.ATTACH.

If you ever get a message of the fonn:

ERROR -> some error
Try again (RETURN to exit program):

then just retype what was requested on the previous prompt after
deciding wnat mistake you made while typing it the first time.

The next prompt is:

These next questions will detennine if
attached drivers can reside in the hires
pages. It wi 11 be assumed they can for the
page in question if you answer no to the
prcmpt for that page.
Will you ever use the (2000.3FFF hex)
hires page?

Followed by:

Will you ever use the (4000.SFFF hex)
hires page?

You should answer yes to the question for a particular Hires page if
you will ever be running a program that uses that Hires page while the
drivers are Attached. You don't want the possibility of your driver
residing in the Hires page if that page will be clobbered by one of
your programs. After answering the Hlres questions you wi 11 be asked
the following questions once for each driver you will be attaching:

What is the name of this driver? This
must be the .PROC name in its assembly
source (RETURN to exit program):

This must be the name of one of the drivers n the ATTACH.DRIVERS that
will be used with this ATTACH.DATA. The length of this name must not be
more than 8 characters. After entering the name you will be asked:

Whieh unit numbers should refer to this
device driver?

Unit number (RETURN to abort program):

You must enter a unitl'1tJT1ber in the range 1.2.4 •• 12.128 •• 143 or will
be given an error message. You cannot .attach a character uni t (CONSOLE:.
PRINTER: or REMOTE:) to the same driver as a block structured unit and if
you try you will be given the message:

You can' 't attach ~ character unit and
a block unit to the same driver. I
will remove the last unit~ you entered.
Type RETURN to continue:

If you don't get the above error. you, will be asked:

Do you want this unit to be
initialized at boot time?

A yes response will put the unit number just entered on a list of
units that SYSTEM.ATTACH will call UNITCLEAR on after attaching all

n", __ A

the drivers. This gives you a way to have the system make an initialize
call on your attached unit at boot time. A no response will mean
that no boot time init call will be made on this unit to the driver
you just attached.

You wi 11 be eventua lly asked:

Do you want another unit number to refer
to this device driver?:

A yes response wil 1 get you to the Unit number prompt again and a no
response will get you to the prompt:

Do you want this driver to start on a
certain byte boundary?

A yes here wi 11 gi ve you more prompts:

The boundry can be between 0 and 256.
O=>oriver can start anywhere.(default)

. 8=>Driver starts on 8 byte boundary.
N=>Driver starts on N byte boundary.

2.56=>D.river starts on 256 byte PAGE boundary.
Enter boundary (RETURN to exi t program):

And the lastlinepf the prompt will repeat until you enter a
boundary in the correct range. The boundary refers to the memory
location where the first byte of the driver is loaded. If your
driver needs to be aligned on some N byte boundary you can assure it
will be using this mechanism.• if you know how the driver's origin is
aligned. You can align internal parts of your driver however you
want. Finally you will get to the prompt:

Do you want to attach another driver?

And if you answer Yes to thi syou .wi.ll return to the 'What is the name
of thi s dri verI prompt. and answeri ng No wi 11 end the program. savi.ng
the data file you have made.

THE DRIVER

Drivers must be written in assembly using the Pascoal Assembler.
They must not use the .ABSOLUTE option. so the drivers can be
relocated as they are brought in by the system. Each driver must be
assembled separat~lyw.ith no externalr.eferences. When all drivers
are assembled. use the LIBRARY program (in the same way you \It()uld use
it to put units into a library) to put all the drivers in one file.
Name this file SYSTEM.DRIVERS. See further explanation of making
SYSTEM.DRIVERS below.

Considerations for all drivers:

1. Study the examples below as certain information is only
documented there.

2. Refer to the Apple II Pascal memory map below and you will see

that parts of the interpreter and BIOS reside in the same address
range and are bank-switched. The system automatically folds in
the BIOS·for drivers added using ATTACH. Most of these drivers
will have to make calls to CONCK if they want type ahead to
continue to work properly. CONCK is the BIOS routine that
monitors the keyboard. See the example drivers below to be sure
you are doing this correctly. You cannot call CONCK through the
CONCK vector at BFOA (see BIOS part of this document) because
this call~uld go through the same mechanism used to get to your
driver and the return address to Pascal would be lost.

3. All attached drivers must be written with one common entry point
for read, write, init and status. The driver will use the Xreg
contents to decide which type of I/O call this is and jump to the
appropriate place within it's code. The Xreg is decoded as
foll ows:

o -->read (no bits set)
1 -->write (bit a set)
2 -->init (bit 1 set) § The Pascal statement

UNITCLEAR(UNITNUMBER); makes an init call for
unit UNITNUMBER t

4 -->status (bit 2 set)

4. The dri vers must a1so pop a ret urn address off the stack, save
it and later push.;t to do aRTS l'lt1en the driver is finished. All
other parameters must be removed from the stack by the driver.
For all calls, the return address will be the top word on the
stacl<.

5. SYSTEM.ATIACH will make a copy of the normal system jump vector
(the vector after the fold) and put this on the heap. There will
be a poi nter toth.is vector at OE.2. Your drivers can use thi s .
vector to get to the normal system drivers for device numbers 1•• 12.
See example below.

6. All drivers must pass back a completion code. in the X register
corresponding to the table on page 28.D.of the 1.1 "Apple !I Apple
Pascal Operating System Reference Manual".

7. In references below to parameters passed on the staCk, all
parameters are one word parameters so they require two bytes to
be popped from the stack by the driver.

8. Control \'lOrd format for Unitl"'ead & Urlitwrite

bits 15 •• 13
user
defined
functions

12 ••5
reserved
for future
expansion

543
type B type A nocrl f nospec
chars chars

1. .0
reserved
for future
expansion

type B -a ··>System will check for CTRL S &F from CONSOLE:
during the time of this Unitio call.

-1 ··>System will not check for CTRL S &F during t~is

Un it i o.
type A -0 -->If using Apple Keyboard, system will check for

CTRL A.Z.K.W &E from CONSOLE: during the period
of th; s Un it i 0 •

Page 6

-I -->System wi 11 not check for the chars duri ng
this Unitio.

nocrlf .0 .->line feeds are added to carriage returns by the
Interpreter.

"'I "'>no 1ine feeds are added •••
nospec ·0 "'->DLE's (blank suppression code) are expanded on

output and the EOF character is detected on input
-I u>nothing special is done to DLE's on output and

EOF on input.

default setting for all control word bits = O.

9. Control word format for UNITSTATUS

bits 15 •• 13 12 •• 2 1 0
user reserved for direction
defined for future purpose

direction =0 u>Status of output channel is requested
"'I ·.>Status of input ...

purpose ·0 :s=>Call is for un i t status
-I ::s>Call is for unit control

10. These are the new vectors and routines added to the BIOS to make
attach work. The RSP, bootstrap, and readseg were also modified
to allow for attaches.

jUni t 128
jUni t 129

UDJMPVEC jJump vector for user devices, offset=O => unattached device.
iThe correct addresses are initialized by SYSTEM.ATTACH
iSee locations section of BIOS part below for pointers to
ithis vector.
JMP 0
JMP 0

.
JMP o ,Unit 143

(ATTACH would modify the words
for units 4,5,9 .. 12 if a
different disk driver were
attached to any of them)

;Unit it
jUnit #2
iUnit n
;Uni t ~4

jUnit #5
jUnit 116

iIf hi gh byte=FF then
i device is not a disk drive
ielse

if high byte=O then
device is a regular disk drive and low byte=drive #

else
dri ver for thi s di sk drive has beenattached by SYSTEM.ATTACH
and the driver address is stored in this word.
(Driver address has to be theaddr.es.s-l for RTS in PSUBOR
to work correctly , remember thi s for ATTACH. PSUBDR is
listed below.)

,See locations section of BIOS part below for poi nters to
jthi s vector.
.WORD OFFFF
.WORD OFFFF
.WORD OFFFF
.WORD a
.WORD 1
.WORD OFFFF

DISKNUM

""--- .,

.WORD OFFFF ;Unit 17

.WORD OFFFF ;Unit IS

.WORD 4 ;Uni t 19

.WORD 5 ;Uni t 110

.WORD 2 ;Unit III

.WORD 3 ;Unit 112

;JVECTRS is a word pointing to the base
;of UDJMPVEC.

;Now we have (Areg*3).
;Add in low byte of base of table having
;no carry problem with only 16 UD's.

;Clear top bit of unit#
;Make address in UOJMPVEC table
;Addressa Areg*3 + base of table

TIZ
IJVECTRS
TI2
#0
JVECTRS+1

;Routine to get to an attached driver through UOJMPVEC
;Assume unitl in Areg &operation to be performed in Xreg.
;See the jump vector in the BIOS sections to see how you
;get to this routine.
STA TIl
AND /17F
STA TIZ
ASL A
CLC
ADC
ADC
STA
LOA
ADC

UDRWIS

STA TI2+1
LOA TIl
JMP @TT2

assumes

to work

;Restore unit# to Areg.
;JlJTlP to substituted driver. This
;the driver address in DISKNUM '"
;(ADDRESS OF DRIVER)-l for the RTS

TIl

DISKNUM-2.Y ;Store LSB of driver address.

;Routine to get to an attached driver through OISKNUM
;We assume on entry, Areg=unit#, Yreg"'OISKNUM
;offset &Xregsthe command to be performed by the substituted
;dis~ driver.
;See the jump vector in the BIOS sections to see how you
;get to this routine.
STA TIl ,Save unitH.
LOA OISKNUM-1,Y ;Store MSB of driver address.
PHA
LOA
PHA
LOA
RTS

PSUBDR

Special considerations when attaching .drivers for the system
devices, unitnumbers 1•• 12.

A. Character Oriented Oevice.s (I'ass the charact~r to be read-written
1n the A-reg;ster and make Bios calls one character at a time
fT"t)1l1RSP 1.ev~L. On.entry, the unit.nUlTlber'l'till be in the Y
register in case you wanted to attach all character oriented
devices to the same driver). If you attach REMOTE: &or PRINTER:
to the same driver as CONSOLE:, all will have their jump vectors
pointing to the. start of the driver+3 bytes. See further
discussion on this below.

Units 1 &2 (CONSOLE: and SYSTERM:)
1. These must both go to the same driver.

l'\ • _ '"' f\

2. The system COt..CK routine will be patched to jump to the start of
the driver. The CONCK routine gets characters entered at the
keyboard and fills the type ahead buffer. See the example CONSOL~:
driver below.

3. Because of item 2, the entry point for normal calls (not CONCK
calls) to the attached driver will be 3 bytes beyond the start
of the driver.

4. The interpreter takes care of expanding blank suppression codes
(OLE's), echo to the screen, EOF (the end of file character), and
adding line feeds to every carriage return. Your driver doesn't
need to do this.

5. CONSOLE: read and write have only the return address on the stack.
The stack for CONSOLE: init looks like: .

POINTER TO BREAK VECTOR (This should be stored at
location BF16 •• BF17 by CONSOLE:
init.)

POINTER TO SYSCOM (This should be stored at
location F8 •• F9 by CONSOLE:
init.)

(AlSo at init time, the Flush
and Start/stop conditions
shoul d be set to normal and
the type-ahead queue should
be emptied.)

RETURN ADDRESS <--TOS (top of stack)
The stack for CONSOLE: status looks 1ike:

POINTER TO STATUS RECORD
CONTROL WORD
RETURN ADDRESS <--TOS .

6. A status request should return, in the first word of the status
record. the number of characters currently queued in the direction
asked for.Thi s is the number of characters in the type-ahead
buffer. If no type-ahead is being used then output status should
always return aOandinputstatus al if a char is waiting to be
read, otherwise aO.

7. Since we are using 7 bit ASCII codes,theCONSOLE: read routine
should zero the high order bit of all characters it reads from
the keyboard and passes back to Pascal (to the RSP). The
CONSOLE: write routine should transfer all 8 bits as received
from the RSP si nce many devices use 8 bit contro 1 codes.

8. The RSP will send both upper and lower ca se c:hars to the CONSOLE:
wri te rout i ne. The write rout i ne shoul d map the lower to upper
if the device cannot handle lowercase.

9. CONSOLE : Output Requirements:. '"
A. CR (00 hex) A carriage return shoul d move the cursor to the

beg inn ing of i the<current 1i ne.
B. LF (OA hex) A line feed should move the cursor to the next line

but not change the column position. If the cursor is on the
last line on the screen when a line feed is sent, the rest of
the. screen shoul d scro 11 up one li ne and the bottom 1i ne be
c.leared.

C. BELL (07 hex) A sound should be made if possible when the
CONSOLE: gets 07. If making a sound is not possible then
ignore the 07.

D. SP (20 hex) Place a space at the current cursor position
overwriting whatever is there. Move the cursor to the next
column. If the cursor is on the last column of a line, it is
best if the cursor stays where it is after the space fills that

Page 9

position. If the cursor is on the last column of the last line
on the screen, it is also best if the curSOr remains in that
position and the screen does not scroll. These are the
prefered actions of the cursor at end of line &end of screen;
in the strict sense, the actions of the cursor in these
circumstances are undefined.

E. NUL (00 hex) When a Null is sent to the CONSOLE: from the
RS?, the CONSOLE: should delay for the ~ount of time
required to write one character but the state of the screen
should not change.

F. All printable characters should be written to the screen and
the cursor should move in the same way it does for SP.

G. See the discussion on pages 199-215 in the 1.1 Operating
System Reference Manual for further requirements and
information.

10. CONSOLE: Input Requirements:
A. The RSP takes care of echoing characters to the screen typed

from the CONSOLE: keyboard.
(below items optional The Start/Stop, Flush &Break chars are

redefinable; see 9G above for more info.)
B. The start/Stop character is detected by CONCK and is used

to stop all processin9 until the character is received a
second time. When the character is received (see 9G above
for more info) one should loop in CONCK continuing to process
other characters until:

1. the SIS char is received .again
2. the Break char is received

In case 1, the suspended processing should continue as it
was. before the first SIS was typed. Action needed for the
Break char is described below. The SIS char is never returned
to the RSP and CONSOLE: type-ahead, if impl emented, shoul d
continue during the suspended state. Offset frcm SYSCOM to this
char is 85 decimal. (This and the next 2 chars are redefinable
by the Setup program and SYSCOM is the system area that keeps
track of this info. The pointer to the start of SYSCCM is
passed to the CONSOLE: init routine and is stored at
F8 •• F9 hex.)

C. The Flush character will stop all output and echoing to the
CONSOLE: until it's second occurEnce (see 9G above). CONCi<
detects this and must set a flag to tell the CONSOLE:
output rout.ine to ignore characters while the flag is set. If
the CONSOLE: is re-initialized ora Break-char is received, the
f1 ush state <shoul d be. turned off • Flush is never returned to
the RSP. Fl ushonl y sto psCONSOLE : out put, other proc ess; ng
continues. Offset fromSYSC()1 to this char is83 decimal.

O. The Break char should cause CONCK to jump to the location
stored at BFl6. This location is also passed to the CONSOLE:
init routine which stores it at BFl6. The break char is never
returned to the RSP and it should remove the system from
Stop or Flush mode if it is in either mode. Offset from
SYSCOM to this char is 84 decimal.

E. Type-ahead should be implemented in CONCK by storing
characters typed at the keyboard in a queue until they
are requested by a CONSOLE: read from Pascal. When the
queue fills, further characters should be ignored and
a bell sounded when they are typed. The length of the
queue should be at least 20 characters.

11. For more information on CONSOLE: requirements, see pages 199-

216 of the 1.1 Operating System Reference Manual.

Unit 6 (the PRINTER:)
1. The interpreter takes care of expanding blank suppression codes

(OLE's), EOF (the end of file character), and adding line feeds
to every carriage return.

2. PRINTER: read ,write and init have only the return address on the
stack. PRINTER: status has the same items on the'stack as CONSOLE:
status. PRINTER: init should cause the PRINTER: to do a carriage
return and a line feed and throwaway any characters buffered to
be printed. No form feed should be done.

3. For status, return in the first \IIOrd of the status record the
number of bytes buffered in the direction asked for; if this
cannot be determined by your PRINTER~, return a O.

4. The PRINTER: write routine must buffer a line and send it all at
once.. if your PRINTER: can only receive data that way.

s. Li ne Oelimi ter characters:
A. CR (hex 00) A carriage return should cause the PRINTER: to print

the current line and return the carriage to the first column.
An automatic line feed should not be done by the PRINTER:
driver when it reads a CR.

B. LF (hex OA) The RSP will send line feeds to the PRINTER: driver
after each carri age return. Thi s should cause the PR INTER: to
advance to the next 1ine. If the PRINTER: must a1 so do a
carriage return when it is given a line feed, then this is
O.K.

C. FF (hex OC) This should cause the PRINTER: to move the paper to
top of form and do a carri age return. I f top of form is not
possible on your PRINTER:, do a carriage return followed by a
line fe~d.

6. It is assumed that i.nput cannot be received from the PRINTER:.
See.the BIOSisectionfor a discussion of how to get input from
the PRINTER:. Nonnally, trying to get input from the PRINTER:
should return completion error code #3.

Units 7 (REMOTE: in) &.8 (REMOTE: out)
L These. must both go.to.the same driver~

2. The ihterpretertakes care. of expanding blank suppression codes
(DLE's),EOF and~8ding line feeds to every carriage return.

3. Same. stack set.upa~ the PRINTER:. =-
4. Status should return in first word of status vector the number of

bytes buffered for the direction specified in the control word,
o if you have no way to check.

5. This unit is supposed to be an RS-232 serial line for many
different appl ications so it is necessary that it transfer the
data without modifying it in any way. The transfer rate default
is9600. baud.

6. It would be ni.ce if the input to REMOTE: could be buffered in the
same way input to the CONSOLE: is but this is not an absolute
requirement.

7. REMOTE: init should set up the REMOTE: device so it is ready to
read and write.

B. Block Structured Devices

Units 4 (the boot unit).5.9.10.11,12.
1. These units are assumed to be blocx structured devices. the

drivers for these units must do their own Pascal Blocx to
Tracx-Sector conversions.
The UCSD system assumes the disx device is a O-based consecutive
array of 512 byte logical bloCKs. All UCSD Pascal disxs must
have this logical structure no matter what their actual physical
structure or size are. The physical allocation schemes for
information on different types of disks are arranged with sectors
that are of various sizes that depend on the hardware of the
particular disk device used. The drtver must convert the Pascal
block' to the appropriate tracx §or' of where that block
;sstored on it's disk device. This could be a floppy or hard
disk or some other type of device. It doesn't really matter, so
long as your driver maps the Pascal Block to the cOrrect place and
continues to do so for the length (byte count) required for the
UnitIO operation.
The Pascal system uses logical blocks a &1 for it's bootstrap
code. These logical blocks should not be used for anything
else and should therefore only be available to Pascal through
direct UNITREAD &UNITWRITE operations and not accessable by
the system throu9h any other means. This document will not
attempt to descrlbe the boot sequence &does not attempt to
give you enough information to attach another driver or device
to unit #4: so you can cold boot from that unit.
When a UNITWRITE is done to disk where the byte count MOO 512
is not equal to. a (this means the last block included in the
write would be partially written to according to the byte count),
it is undefined whether garbage is wr~tten into the remaining
part of this last block. So you may write a whole block anyhow
if that is more efficient and the Pascal system will not suffer
any bad consequences.
When a UNITREAD is done from a disk yquare not allowed to
overwri tei ntothe .. unused part. of the. last block (if there is
an unused part due to bytec~untMOO 512(>0). You must only
send the number of bytes asked .for because youcoul d clobber
memory hav ingsome other val id use if you wrote extra bytes.
You will have to buffer the last sector inside your disk
read routine then transfe.r exactly the number of bytes from
thi s· 1ast sector needed to add up to the tota1. bytes requested.

2. The unit number will always be in the A register.
3. The stack setup for read andwri te is:

CONTROL WORD (The MOpE parameter mentioned in the
1.1 Language Ref Manual on page 41)

DRIVE NUMBER
BUFFER ADDRESS
BYTE COUNT
BLOCK .•. NUMBER
RETURN ADDRESS <--TOS

For init there is only the return address on the stack and
for status the setup is the same as for th.e CONSOLE:.

4. Status requests should return the followtng in the status
record:

word1:Number of bytes buffered in the direction asked
for in the control word. Return 0 if you have no
way of checking.

word2:Number of bytes per sector.

P;lap 1?

word3:Number of sectors per track.
word4:Number of tracks per disk.

C. Other
Unit 3
1. This unit has no meaning for the Apple II system except that

UNITCLEAR on this unit sets text mode.

Considerations when attaching drivers for user defined devices
numbers 128-143.

These unit numbers are provided for you to do whatever you want
with them. you can define what they do except for the following
protocols.

1. Follow the considerations for all drivers listed above.
2. The unit number will always be in the A register.
3. The stack setup for read and write is:

CONTROL WORD
DRIVE NUMBER
BUFFER ADDRESS
BYTE COUNT
BLOCK NUMBER
RETURN ADDRESS <--TOS

FOr init there is only the return address on the stack and
for status the setup is the same as for the CONSOLE:.

This is a sample driver for a user defined device.

;Locations O••3Shexma'ybeuseda~pure temps. One should
;never assume these locations .WJn't be clobbered if you leave
;the environment of the driver itself. ("leaving" inclUdes
;calls to CONCK).

CONCKADR .EQU 02

;Only one .PROCmay occur in a driver. each driver to be
;AnACHEDl11ust be assembled separately-using the Past;al
; assemb 1er and can have no external references. .

.PROC U128DR

STA TEMPl ;Save Areg contents (unitN)
PLA
STA RETURN
PLA
STA RETURN+l
TXA ;Use the X reg to tell you what kind of

;call this is.
eMP HZ
BEQ INIT

READ

CMP 14
BEQ STATUS
CMP #0
BEQ PMS
CMP 11
BEQ PMS

;Could have error code here
JMP RET

PMS PLA ;Get the parameters
STA BLKNUM
PLA
STA BLKNUM+I
PLA
STA BYTECNT
PLA
STA BYTECNT+I
PLA
STA BUFADR
PLA
STA BUFADR+I
PLA
STA UNITNUM ;Also in TEMPI
PLA
STA UNITNUM+I ;Shoul d al ways be 0
PLA
STA COr-mOL
PLA
STA CONTROL+I
TXA
BNE WRITE

JSR GOTOCK
;Yourdri vel" I s cod.e for a read
(If more. than one .unit we.reattached to this
code could jump to various. places depending
of the Areg stor~ in TEMPI)

JMP RET

WRITE JSR GOTOCK
;Your driver's code for a write
JMP RET

driver, this
on the contents

; I f you wanted to ca11 CONCK. whenever your devi ce di daread
tor-write, you would use th.is routine:

CKR .WORD CONCKRTN-I
GOTOCK LOY 155. ;Offset to address of CONCK

LOA OOE2 t Y
STA CONCKAOR
IHY
LOA @OE2,Y
STA CONCKAOR+l
LOA CKR+I ;Set it up so you return to CONCKRTN after
PHA ;the CONCK call.
LOA CKR
PHA
JMP @CONCKADR ,Jump to CONCK

0,."", 1 <1

CONCKRTN RTS ;Return to caller.

INIT ;Your driver's code for in it
JMP RET

STATUS PLA
STA CONTROL
PLA
STA CONTROL+I
PLA
STA BUF AOR ;Address of status record.
PLA
STA aUF ADR+I
;Your driver's code for status

RET LOA RETURN+I
PHA
LOA RETURN
PHA
LOA TEMPI
RTS

RETURN .WORD 0 ;Can't use 0 page for these since we leave
TEMPI •WORD a tour environment when going to CONCK •
CONTROL .WORD 0
UNITNUM .WORD 0
BUFADR .WORD 0
BYTECNT .WORD 0
BLKNUM .WORD a

.END

This is a sample driver for a CONSOLE: driver replacement.

ROUT1NE .EQU 02
TEMPI .EQU 04

.PROC CXATCH

JMP CONCKHDL ;SYSTEM.ATTACH will patch the start of CONCK
ito jump here when you attach a driver to the
;CONSOLE:.

STA TEMP 1

STY TEMP1+l
TXA

;We are not popping the<return address from
;the stack cause.. we'll .return from the system
; rout i ne we ca 11 from th is dri ver.
;All the read,write,init and stat calls will
;jump here (the starting address of your
;CONSOLE: driver+3).

Paae 15

;This examRle shows you how to have your
town code for the CONSOLE: as well as using
;the system CONSOLE: routines. If you want
ito replace the system routines completely.
iYOU need to pull the return address here.

BEQ READ
eMP II
BEQ WRITE
CMP 12
BEQ INIT
eMP 14
BEQ STATUS

;Error code here

READ ,Your driver's code for a read

LOY 11

BNE GET

;offset to address of CONSOLE: read in
;the copy of the jmp vector made by
,SYSTEM.ATTACH. See the jump vectors in the
;BIOS section below to see how we get the
;offsets.

,You would have a JMP RET here (see example for user defined
,device) if you were not using the system CONSOLE: routines
;as well.

WRITE ,Your driver ' s code for a write
LOY #4
BNE GET

INIT ,Your driver's code for init
LOY #7
BNE GET

STATUS ,Your driver's code for status
LOY 143.

GET LOA @OE2,Y ,At E2 is a pointer to the copy of the
,jump vector made by SYSTEM.ATTACH before
,it was modified to att~ch your drivers.

STA ROUTINE
INY
LOA ~OE2.Y

STA ROUTINE+l
LOY TEMPl+l ,Restore registers
LOA TEMPI
JMP @ROUTINE ,Go to the original CONSOLE: driver for this

;1/0 ccmnand. You will return from there, the
,BIOS is already folde<j in due to the way your
,driver was attache<j by SYSTEM.ATTACH.

CONCKHDL PHP ;Duplicate the 1st three instruc~;ons of CONCK
PHA ;as they were patched by SYSTEM.ATTACH to jump

Page 16

•TXA below .to the 1st instruction of this driver •

.Here you can put the code for your own part of CONCK (you
,may want to check some additional device like a keypad or
.something or you may want to replace the system CONCK
;routine alltogether. If you do this, you must save the rest
;of the machine state and return it when you are finished .
•See example below.

TYA
PHA

.Save Yreg contents for a second.

;Add 3 so you enter right after the three
.instructions you duplicated at CONCKHDL.

.This code gets us to the system CONCK routine.
CLC
LOY #55. ;Offset to the address of system CONCK in the

;copy of the original jmp vector.

LOA @OE2, Y
ADC 13

STA ROUTINE
INY
LOA @OE2,Y
ADC #0
STA ROUTINE+l
PLA ;Restore Yreg.
TAY
TXA ;Last of CONCK instructions SYSTEM.ATTACH

;overwrote with the jmp to the start of this
;driver.

JMP @ROUTINE jGoto system CONCK and return from there •

•END

Here is another alternative for the CONCKHDL part of the above
program.

CKRTN
CONCKHDL

.WORD CONCKRTN-l
I.If you don't care about type-ahead, this could be

simply the following code (assuming your CONSOLE:
read gets a character directly fro~ your CONSOLE:
device whenever it is called) :

PHP
INC RANDL .RANDL is a permanent word at BF13 used in

.the built in random function.
BNE $1
INC RANDH ;RANOH

$1 PLP
RTS

; 2.If you want type-ahead, this code should check to see
.if there is a character available and stuff it into a type­
;ahead buffer.

o "no ,"7

; 3.lf you are using this with the regular CONCK (extra keypad
ito check or statistics for example), then you can do it thlS
;way.

PHP ;Save state of machine
PHA
TXA
PHA
TYA
PHA

;Put your driver's part of CONCK here (gives your driver
;priority)

LOA CXRTN+1
PHA
LOA CKRTN
PHA
PHA
PHA

CLC
LOY ISS.

;Set up' things to return from reg CONCK

;Push garbage to account for other pushes done
;in first three bytes of CONCK

;Setup to call CONCK
;Offset to the address of system CONCK in the
;copy of the original jmp vector.

;Add 3 so you enter right after the three
;instructions you duplicated at CONCKHDL.

LOA OOE2,Y
AOC 13

STA ROUTINE
INY
LOA @OE2,Y
AOC #0
STA ROUTINE+l

;In this example we don't have to worry about
;the machine state here as we are restoring
tit after we call CONCK

JMP @ROUTINE ;Goto system CONCK and return to CONCKRTN

CONCXRTN PLA ;Restore state of machi ne
TAY
PLA
TAX
PLA
PL?
RTS ;Return to the guy who called CONCK.

MAKING ATTACH. DRIVERS

1. Xecute the standard 1.1 LIBRARY program.
2. The output code file should be ATTACH.DRIVERS or could be named

somethine else and renamed ATTACH.DRIVERS when you put it on the
boot disk.

3. For the Link code file use the code file of your first driver.

Pace 18

4. Copy its slot #1 into slot #0 of ATTACH.DRIVERS.
5. As long as you have more drivers to add. useN(EW to get another

Link code file and copy it's slot HI into slots #2.3 •••• 15 of
ATTACH.DRIVERS.

6. When done. type 'Q' then 'N' followed by a RETURN for the notice.
See the 1.1 Operating System Reference Manual for further info on
the LIBRARY program.

THE WORKINGS OF SYSTEM.ATTACH

If it is on the boot disk. SYSTEM.ATTACH is Xecuted by the operating
system (both regular 1.1 and runtime 1.1) before SYSTEM.STAP.TUP. The
1.1 runtime system will use a runtime version of SYSTEM.ATTACH.

The error messages that can be generated by SYSTEM.ATTACH are:

1. ERROR a>No records in ATTACH.DATA
2. ERROR a>Readfng segment dictionary of ATTACH.DRIVERS
3. ERROR a>reading driver
4. ERROR a>A needed driver is not in ATTACH.DRIVERS
5. ERROR a>ATTACH.DATA needed by SYSTEM.ATTACH
6. ERROR_a>ATTACH.DRIVERS- needed by SYSTEM.ATTACH

If all goes well attaching drivers. SYSTEM.ATTACH will display
nothing unusual in the regular boot sequence except for extra disk
accesses and anything done in the in it calls to any of the attached
devices.

II.BIOS

This section explains things in the BIOS area that are extensions
and modifications that were added to Apple Pascal ve.rsion 1.1 th.at were
different or not there at all in Apple Pascal version 1.0 (UCSD version
11.1).

1. The disk routines have been modified to handle interrupts (So
interrupt driven devices could be.af~ach.ed to .. Ll pascal)Jf they are
being used. To use interrupts. one~uld have to attach an
interrupt dri ver. then patch the IRQ vector (FFFE hex)to poi nt to
this driver. The Pascal system is defined to .cane up with interrupts
turned off so. once the driver is brought in and the IRQ patched.
interrupts must be turned on. The driver's init call could patch the
IRQ and turn on. interrupts. The disk routines save the cuh'ent state
of the system and turn interrupts off only during crucial time
periods. the state of the system is returned during non crucial time
periods so interrupts can be handled. This has not been tested at
this time. so there is no data concerning the maximum interrupt response
time delay.

2. The control ~rd parameter in UNITREAD.and UNITWRITE was not passed
on to the BIOS level routines from theRSP level. This has been done

f'\ .. "

in 1.1 to allow the changes to the control word listed below under
special character checking and also so user defined units or attached
Pascal units can use the user defined bits 'of the control word.

3. IORESULTS 128-255 are available for user definition on user defined
devices.

4. UNITSTATUS has been implemented in the Apple II Pascal 1.1 system.
This works for the Pascal system units as described in the ATTACH
part of this document. For user defined units, Unitstatus can be
used for whatever necessary.

Unitstatus is a procedure that can be called from the Pascal level in
the same way Unitread can. It has three parameters:

1. uniU.
2. pointer to a buffer.

(any size buffer you want of type Packed
Array of Char)

3. control word.

When you make a Unitstatus call from Pascal, the call should look
1ike:

UNITSTATUS(UNITNUM,PAC,CONTROL);

Where UNITNUM &CONTROL are integers and PAC is a Packed Array of
CHAR or a STRING and may be subscripted to indicate a starting
position to transfer data to or from. See further information on
what Unitstatus is defined to do for the various devices in the
ATTACH part of this document.

The control word wi 11 tell the status proc.edure for a particul ar unit
what information about the unit you want. Bit 0 of this word should
equal 1 for input status and 0 for output status. Unitstatus is
implemented .with bit 1 of. the control word "'1 meaning the call is for
unit control. When this bit -.0 the callis for unitstatus. In all
cases bits 2-12 are reserved for system use and bits 13-15 are
available for user defined funtions.

An entry in the jump vector has been made for each of the system
Unitstatus cal1s, i.e.. CONSOLESTAT ,PRINTERSTAT ,REMOTESTAT,etc ••
Unitstatus calls to.a.user defined device (128-143) wi n all go
through the same jump .vector location •.

5. The handling of CTRL-Cby the Apple bios was non standard in l.0. The
UCSO BIOS definition specifies that a C.TRL-C coming from REMOTE: or the
PRINTER: should be placed in the input buffer and then no.more characters
shouldb.e received. Our bios did fill the buffer with nulls
including the place where the CTRL-C was to go. Apple Pascal's BIOS now
confonns to the standard definition,where the null filling of the buffer
is done only when CTRL-C comes from the CONSOLE: (11:).

6. The unitio routines can be accessed from assembly procedures by
pushing the correct parameters on the stack and using the jump vector

. to get to the BIOS routine. A seperate document needs to be
written describing how this is done and pointing out the problems
doing it in the case of the CONSOLE:,SYSTERM: ,PRINTER: &REMOTE: units.

"" .. _- ,.,,,

These problems are concerned with the special character handling done
in the RSP for these units. The assembly procedures calling the
pascal drivers for these units would either have to repeat portions
of the RSP code themselves or not get the special character handling
provided by the RSP. Calling the CONSOLE: init routine requires
pointers to syscom and the break routine to be passed on the stack.
These pointers are now stored in a fixed location so assembly
routines wanting to call coninit can get at them. See the locations
section.

7. Suppression of Special Character Checking.

Special characters in the Pascal system are of three types:

A. Chars used to control the 40 character screen. These are
ctrl-A.Z.W.E &K.

B. Pascal system control chars for general CONSOLE: use. These are
ctrl-S & F.

C. Types A &8 are checked for by the CONCK funtion in the bios.
There are other special chars checked for .in the RSP. These are
ctrl-C. OLE. and CR (line feeds are automatically appended to
CR). With UNITREAD and UNITWRITE the automatic handling done,by
the Pascal system of these characters can be turned off. To turn
off DLE expansion and EOf checking give bit 2,of the control word a
value of 1. The automatic adding of line feeds to carriage returns
can be suppressed by setting bit 3 of the control word to 1.

A way was needed to suppress speci a.l handl.ing> for types 'A '& '8'. Th is
can now be done in two ways. First, the corytrol \<lOrd of UNITR/W will
turn off checking for type 'A' control chars if bit 4 is set and will
turnoff checking for type 'S' chars .ifbit 5 is set. In this mode,
the special char handling wi.l1only beturn.ed off during that
particular unitio. This will be be done for you in the RSP by
setting bits in a b~te 'SPCHAR'at location8QC•. The CONCK routine
will look at bit 0 ofSPCHAR and if .set .willnot look for the type
IA'chars; if bit 1 is set, it will not lo.ok for. the type '8' chars.
If you set these bits in the.SPCHAR yourself instead of letting the
RSP do it through the unitiocontrol\ltOrd, then the associated
speci al character check i n9 wi1.l be turned Off until you reboot or
reset the bits again. When special char checUng is turned off, the
chars are passed back to the Pascal level lik~ all other chars would
be. You can use these added features to redefine the system special
chars in a particular application program or to just disable th~m.

8. The EOF char (etrl-C) causes a lot Of problems .in the Pascal system.
The cause of the problems is that the editor looks for. this character
to end many of it's editing modes. The editor has itls own getchar
routine which reads each character the user enters from SYSTERM:.
When reading from SYSTERM: instead of the CONSOLE:. the EOF char is
passed back as any other character but it still ends the current call
to unitread. The editor echoes each char to the CONSOLE: itself until
it comes to ctrl-C. The operating system and the filer both use the
getchar routine in the operating system. This routine is defined to
re-init the system if it gets a ctrl-C from the CONSOLE: and it reads
from the CONSOLE:, not SYSTERM:. You must be sure not to end responses
with control-C except for the cases (in the editor only) that are

o ~H'U:=- ."

supposed to end with control-C. See the 1.1 Operating System
Reference Manual.

9. The bios card recognizing section has been enhanced to recognize a
new 'FIRMWARE' type card. This card will allow OEM's to have their
drivers in their own firmware on the card. Routines have been added
to allow for init,read.write &status calls to this new type card.
This protocol has been documented and is attached as an appendix
to this document.

10. As you can see. the Pascal system memory usage is scattered
allover the 64k space. The Apple II was not designed with a
stack machine. like the Pascal P-machine. in mind. We don't
need any more constraints fixing certain pieces of the system
to certain EXACT places. To make the best use of the space we
have, we must have the ability to move things around. To
achieve this goal. we intend the following:

A. To stop people from writing things that peek here and poke there
and expect things to stay exactly where they were for future
versions.

B. Various people need space for patch areas and other purposes.
All programs have to be written so thi sspace does not have to
be in a pennanent fixed location if this is at all possible.
The areas reserved for system use are filling up fast. we need
to avoid using them. You can get space dynamically using NEW
but you mus.t be ca.reful that this space.stays around for the
whole. time you need. it. If you are attaching a driver. you
can get .bufferspacein thedriyer by using.WORD or .BLOCK
in the Assembler•.<This space can be accessed from outside the
driver i.f you k.nowtheoffset to the start of. this space from
the start of the dri ver. .Thi s met hod cou 1d even be used to get
space ..bel ow ..the heap by attaching a driver to one of the user
defined devices that is a large .BLOCK>and is only used as a
buffer •... You can get the address of this buffer (of a driver)
from the. jump vector that has a pointer to the driver. Pointers
to all the jump vectors are in zero page, see the 1ocat ions
secti on be.l ow.

C. The jump vectOr wi 11 .have a fi xed order for versi on 1.1 and
future vers; ons. The order is the same as in the 01 d versi on
LO with the new entrys added to the bottom. The setu.p for the
j\J'l1P vector and getting into the BIOS is different than the old
LO system. Here is how the new system is set up with the
fixed order for the jump vector:

;-----_._---
MAIN BIOS JUMP TABLE CALLED FROM INTERPREiER
(FOLLOWED BY REAL JUMP TABLE AT FIXED OFFSET)
RSP CALLS COME TO THIS JUMP VECTOR

j---

0:0(1" ??

BIOS

KCONCK

JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET
JSR SAVERET

JSR SAVERET
JSR SAVERET

iCONSOLE READ iJlJTlP vector before fold.
.CONSOLE WR ITE
;CONSOLE INIT
,PR INTER WR IrE
;PRINTER INIT
.DISK WRITE
iDISK READ
;0 ISK INIT
.REMOTE READ
;REMOTE WRITE
;REMOTE INIT
;GRAF IC WR ITE
;GRAFIC INIT
.PRINTER READ
.CONSOLE STAT
iPRINTER STAT
;DISK STAT
.REMOTE STAT
;To get to CONCK fran CONCKVEC
;USER READ For UDRWIS
;USER WR IrE
;USER IN IT
;USER STAT
;For PSUBDR
;IDSEARCH

j--------------------------------------
THIS JUMP TABLE MUST BE OFFSET
FROM BIOSTBL BY EXACTLY SSC.
SYSTEM.ATTACH MODIFYS THIS JUMP
VECTOR TO POINT TO ATTACHED DRIVERS
FOR THE STANDARD SYSTEM UNITS.

i--------------------------------------
BIOSAF JMP CREAD

JMP CWRITE
JMP CINIT
JMP PWRITE
JMP PINIT
JMP DWR ITE
JMP DREAD
JMP DINIT
JMP RREAD
JMP RWRITE
JMP RINIT
JMP IORTS
JMP GRAFINIT
JMp· IORTS
JMP CSTAT
JMP ZEROSTAT

JMP DSTATT
JMP ZEROSTAT

;Jump vector after fold.

;00 nothing for GRAFWRITE.

;00 nothing for PRINTER: read.

;For PRINTER: stat, pop params &store 0
tin 1st buffer word.

;For REMOTE: stat, pop params &store 0

JMP CONCK
JMP UORWIS

JMP PSUBOR

JMP IDS

tin 1st buffer word.

,Routine to get to user defined devices, see
;ATTACH part of document for description of
;this routine. .
;Routine to get to drivers that are substituted
;for the standard Pascal disk units 4,5,9 .. 12.
;See ATTACH part of document for description of
;thi s rout ine.

;--.
t

STR I? LOCAL RETURN AODR,
STRIP PASCAL ADOR AND SAVE IN RETL,RETH
PLACE 'GOBACK' ON RETURN STACK
THEN RESTORE LOCAL RET AODR &RETURN
MEANWHILE UNFOLD BIOS INTO DXXX

j--
SAVERET STA TTl

PLA
CLC
AOe ROSA
STA TT2
PLA
ADC 10
STA m
PLA
STA RETL
PLA
STA RETH
•IF RUNTIME=O
LOA OC083
.ENDC
LOA TTl'
JSR SAVRET2

;SAVE A REG

;ADD OFFSET TO JUMP TABLE (BIOSAF)
;LOCAL RET AGDR

;PRESERVE PASCAL RETURN

;UNFOLD BIOS INTO DXXX

;RESTORE A-REG
;PUTS I GOSACK, ON STACK

j--
; FOLD INTERP INTO OXXX

'; THEN RETURN TO PASCAL VIA
; RETURN ADOR SAVED IN RETL,RETH

;--
GOSACK STA m ;SAVE A-REG

LOA RETH
PHA
LOA RETL
PHA
•IF RUNTIME=O
LOA OC08S ;FOLD INTERP INTO OXXX
.ENDC
LOA TTl
RTS JAND BACK TO PASCAL

SAVRET2 JMP @TT2 ;JUMP INTO JUMP TABLE (BIOSAF)

o. In zero page are two words pointing to the base of the two
jump vectors (before and after the fold). These are stored in
PERMANENT locations that had a value of 0 in the old 1.0
release and were not used by the system (see locations
section). Applications needing to patch the jump vectors can
store the offset from the vector base in the Y reg and use
indirect indexed addressing to do the patch. The application
will need to have the vector base locations for the old release
hardcoded in as the base pointer for the old 1.0 release wi 11
be O. If you want to write an application that works with 1.0
and 1.1 and future versions, you know if the zero page vector
pointers are 0 it's the 1.0 system otherwise it's 1.1 or a future
version which will use the same protocols as 1.1 as described in
this document.

It is important that any application patching the jump vector
temporaril y. then return i ng it to its ori gina1 va 1ue get the
original value from the vector itself before the patch and put
it in a storage 1ocat ion. When the vector needs to be restored
to it's original state, use this storage location for it's
original value. The patches should be done in this manner so
the applications doing the patches will always return the
system to it's ori gi na1 state no matter what past, present or
future Pascal version it is patching.

E. For CONSOLE:init to be used from assembly routines the
locations of SYSCCt1and the BREAK .routine have to be available.
The CONINIT routi.oe requires these on the stack. Pointers to
SYSCOM and.8REAK will be stored. by the interpreter boot in a
PERMANENT location in the BFOO page (see Jocations section).

F. Since the old 1.0 release, the code to jump to the CONCK
routine has been set up at location BFOA. Anyone wishing to
get to the CONCK routine should do a JSR BFOA as this will
always get them there no matter where the CONCK routine really
is. The keypress function has been changed to conform to this
new conveptionbut it. will use .the old convention if it is
working from within .an.o1d system. Do not try to get to CONCK
in this way from within .an ATTACHED drive.r a.s you will loose
your return address to Pasca.l •.. Se.e ATTACH part .of this
document for how to get t.o CONCKfr.om an. att'-ached driver.

G. There is now aversion byteso.onecan tell which version (1.0,
1.1, etc.) of Apple Pascal he is ~rking with. There is also a
flavor byte to tell one which flavor of this version he has
(regular, runtime, runtime without sets, etc.). (see locations
section)

11. Whenever SYSTEM.ATTACH is used, it will make a copy of the
original BIOS jump vector (the after fold vector that has the
actual driver addresses in it) and put this below the heap with
the drivers that are attached. It will leave a pointer to this
copy of the vector at location 00E2. You can use this vector in
you drivers to get to the standard Apple drivers for any device.
This way you can define a driver that does something aqove and

Paoe 25

beyond the standard Apple driver yet this new driver can still
make use of the standard Apple driver. See the ATTACH part of
this document for more information.

12. In the RSP are two vectors that tell the RSP what is legal
(input &-or output) for a particular character orientated device
(CONSOLE:, REMOTE: &PRINTER:). For example it tells the RSP that
it is illE!9al to ~ad from the PRINTER:. If you wanted to ATTACH
a PRINTER: driver so you could read from the PRINTER:, you would
have to change this vector. 00E4 points to the READTBL vector
and 00E6 to the WRITTBL vector. Let's take the REAOTBL for an
example:

i6 is PRINTER:
iunit 7
i8 is rem write which has
jan address in the wKITTBL

disk units

j unit 1
iuni t 2
junit 3
i4 &5 are

jtable of routine addresses to be called when
jwriting to that unit (disk I/O does not use
jthis table).
jan entryaO means that the operation is illegal
jfor that unit •
•WORD BIOS+CONREAD
.WORD BIOS+CONREAD
.WORD a
.WORD a
.WORD a
.WORD a
.WORD BIOS+REMREAD
.WORD a

REAOTBL

Here BIOS refers to the base of the jump vector before the fold and
COr-mEAD is the offset off the base .of that vector· to get to the
jump to the CONSOLE: read rout tne (for CONSOLE:. read the offset is
O,forCONSOLE::write it's. 3 t etc). Th;yaluefor BIOS is the
pointer stored in location OOEC mentioned in the locations
section below.

LOCATIONS.

These are the locations of new system permanents mentioned in
thi sdocum.ent,. all pointers are set upby the syste!T1 and are
stored low byte first. 00 n.ot modify ...mat is stored. in these
pointers (except for SPSHAR.ifyouwant to suppress special
character checl<ing) since the system uses this information too.
These locations .are defined to have .the same function & remain
in the same place fo.r future versions. of Apple II Pascal.

BF1C

BFlD
BFlF

BF21

BF22

SPCHAR

IBREAK
ISYSCOM

VERSION

FLAVOR

(To control special chars)

(Set by boot in interp for assembly calls to CONINIT)
(II)

(1 byte Version I of system, =2 for the new release, 0
for the old 1.0 release)

(This byte tells which flavor [runtime,regular,
etc.] of this VERSION you are dealing with)
The encoding is:

1 -->regular system

P~ap ?Ii

This flavor

runtime versions:
2 -->LC-ALL (LC- means no

language card)
3 -->LC-no sets
4 -->LC-no floating point
5 -->LC-no sets or floating point
6 -->LC+ALL
7 -->LC+no sets
8 -->LC+no fl oat ing poi nt
9 -->LC+no sets or floating point

byte is a in the old 1.0 release.

BFCO-BFFF BOEVBUF
00E2 ACJVAFLD

00E4 RTPTR
00E6 WTPTR
00E8 UOJVP
OOEA DISKNUMP
OOEC JVBFOLO
OOEE JVAFOLD

FFF6

FH8
FFFA
FFFC
FFFE

(Area for non Apple boot devices, like the CORVUS)
(Pointer to ATTACH copy of the original Jump Vector
after the. fold)

~~~1rif~~ i~ ~~r+~t~
(pointer to userdevic~ jump vector)
(Pointer to disknlJilvector)
(Pointer to jump vector before fold)
(Pointer tb jump vector after fold)

(Version word which = 1 for version 1.0 and
= a for version 1.1

Thi s version word shaul d not be used at runtime
to tell Which version you have. For that use the
version byte mentioned above. This word should only
be used by software that ~ants to see which
SYSTEM.APP.LE it is dealing with by looking at the
contents .of thi s h()rd in theSYSTEM.APPL& fi 1e
when it is not loaded in memory)
(Start vector)
(NMI non maskable interrupt vector)
(RESET vector)
(IRQ ; nterrupt request vector)

The locations and code in the 1.0 IPRELIMINARY APPLE PASCAL GUIDE TO
INTERFACING FOREIGN HARDWARE I .s lOS dOCunent .are not the samei\.for
Apple Pascal 1.1 and that document clearly stated we would not
COOl1lit ourselves to keeping them the same.

Pascal 1.1 Firmware Card Protocol------_... ,... _--- ._...-....-

One maj·or problem with Apple Pascal 1.0 is the way it deals with
peripheral cards. It was set up to WOrk with the four peripheral cards that
Apple supported at the time of its release (the diSk,cOOl1lunciations,serial
and parallel cards) and had no mechanism for interfacing any other devices.
Since Apple as well as many Other vendors continue to produce new peripherals
for the Apple Je, a new protocol was designed and implemented in the Pascal
1.1 BIOS which allows new peripheral cards to be introduced to the system in
a consistent and transparent fashion. The new protocol is called the
"firmware card" protocol since the SIOS deals with these cards by making
calls to their firmware at entry points defined by a branch table on the card



itself. The new protocol fully supports the Pascal typeahead function and
KEYPRESS will worx with firmware cards used as CONSOLE devices. The
following paragraphs describe the finnware card protocol in full detail.

A firmware card may be uniquely identified by a four byte sequence in
the card's $CNOO ROM space. Location SCNOS must contain the value S38 and
location SeN07 must contain S18. Note that these are identical to the Apple
Serial Card. A finnware card is distinguished from a serial card by the
further requirement that location SCNDB must contain the value SOl. This
value is called the "generic signature" since it is cormon to all finnware
cards. The value at the next sequential location, SCNOC, is called the
-device signature" since it uniquely identifies the device.

The device signature byte is encoded in"a meaningful way. The high
order 4 bits specify the cl ass of the device wh11 e the low order four bits
contain a unique number to distinguish between specific devices. of the same
class. The appendix to this document defines. some device class nllTlbers; in
any case vendors should contac:tApple Technical Support to make sure they use
a unique number for their device signature •. Although the device signature is
ignored by the 1.1 BIOS, it may be used by appl ications programs to identify
specific devices. '

Following the 2 signature bytes is a list of four entry point offsets
starting at address SCNOD. These four entry points must be supported by all
firmware cards. They are the initial ization, read, write and status call s.
The BIOS takes care of disabling the·SC800 ROM space of all other cards
before ca11i ng the fi nnware routines.

The offset to the initialization routine is at location SC~OD. Thus. if
SCNOD contains XX, th~BIOS willcal1SCNXX to initialize the card. On
entry. the X registercontains$CN (where N is the slot nlll1ber) and the Y
register contains SNO •. On. exit, the X register should contain an error code,
whi ch shoul d be a if there was no error. This error code is passed on to the
higher levels of the system in the global variable "IORESULT". Registers do
not have to be preserved.

The offset to the read routine is at location SCNOE. On entry. the X
register will contain $CNandthe Y register will conta.in SNO. On exit, the
A register should contain the character that was read I'!tlile the X register
contains the IORESULT error code. The.A and Y registers do no~ have to be
preserved.

The offset to the write routine is at location SCNOF. On entry, the A
register contains the character to be written while the X register contains
SeN and the Y register contains SNO. On exit the X register should contain
the IORESULT error code (which should be 0 for no error). The A and Y
registers do not have to be preserved.

The offset to the status routine is at location scrno. On entry, the
rf!9ister contains SeN and .the Y register contains SNO while the A register
contains a request code. If the A register containsO. the request is "are
you ready to accept output?". If the A register contains I, the request is
"do you have input ready for me?". On exit, the driver returns the IORESULT
error code in the X regi ster and the results of the status request in the
carry bit. The carry clear rreans "false" (i.e., no, 1 donlt have any input
for you), while the carry set means true. Note that the status call must
preserve the Y register but does not have to preserve the A register.



Thus, sample code for the first few bytes of a firmware card's SCNOO
space should look something like:

BAS IC INIT BIT SFF5B ;set the v-flag
BVS BASICENTRY ja lways taken

IENTRY SEC jBASIC input entry poi nt
DFB $90 jopcode for BCC

OENTRY ClC jBASIC output entry point
ClV
BVC BASICENTRY ;Always taken

Here is the Pascal 1.1 Firmware Card Protocol Table

DFB $01 jGeneric signature byte
DFB $41 jDevice signature bye

;
PASCALINIT DF8 >PINIT ; > means low order byte
PASCALREAD DF8 >PREAO joffset to read
PASCALWR ITE OFB >PWRITE ;offset to write
PASCALSTATUS DF8 >PSTATUS joffset to status routine

The above code fulfils all the requirements for both the BASIC and
Pascal 1.1 I/O protocols. The routines PINIT. PREAD. etc. are probably jumps
into the card's SC800 space which is already properly enabled by the BIOS.
The reason the $CNOO space was chosen for the protocol (as opposed to the
SC800 space) is ·that the BASIC protocol requires that all cards have SCNOO
ROM space while some smaller cards may not need any SCBOO ROM space.

The firware card protocol includes 2 optional calls that do not have to
be impl emented but waul d be ki nd of ni ceo The BIOS checks .1 ocati on SCNll :0
determine if the optional calls are present; if that .location contains a sao
then the BIOS thinks the call s are implemented. Thus if your card does not
implement the optional calls. you should ensure that SCN11 contains a
no.n-zer.o .yalue•. The tl'lQ optional calls are a cont.rol .call pointed to by
SCN12 and. an interrupt handler call pointed toby $CN13.

The control call entry point is specified by the offset at SeN12. On
entry. the X register contains SCN. the Y register contains SNO and the A
register contains the control request code. Control requests are defined by
the device. On exit the X register should contain the IORESULT error code.

The interrupt poll entry point is specified by the offset at SCNI3. On
entry. the X register contains SCN and the Y r.egister contains SNO. The
interrupt poll routine should poll the card's hardware to determine.if it has
a pending interrupt; if .it does not it should return with the carry clear.
If it does. it should handle the interrupt (including disabling it) and
return with the carry set. Also. the X register should contain the IORE:SULT
error code which should be 0 if there was no error. An interrupt polling
routine must be careful not to clobber any zero page or screen space
temporari es.

The control and interrupt requests are not implemented in the Pascal 1.1
8IOS but it would be nice to support them if possible as they may be
impl emented in 1ater versi ons of the Pascal BIOS as well as other forthcom; ng
operating system environments for the Apple ][.

Paoe 29



/fate that the fi rmware card signature is a superset of. the Appl e. ser; a1
card signature as recognized by the Pascal 1.0 8IOS. This allows a firmware
card to function with both Pascal 1.0 and Pascal 1.1. If a card wishes to
worK with Pascal La as .a Ilfake" seral card, it must provide an input entry
point at $C84D and an output entry point at SC9AA. Note that since Pascal
1.0 will think the card is a serial card, typeahead and KEYPRESS capabilities
will be lost.

Additional Notes

1. The Pascal RSP expects the high order bit of every ASCII character
it receives from the Console read routine to be clear. The RSP will not do
this for you; you must ensure the high bit of all text your card passes to
the RSP from the console read routine is clear.

2. Zero page locations sao to S35 may be used as temporaries by your
finnware, as are the slot 0 screen space locations ($478,S4F8,etc.).
In general, peripheral card firmware should be as conservative as
possible in their memory usage, preserving zero page contents whenever
possible. An interrupt polling routine must not destroy these or any
other memory locations.

3. Location $7F8 must be set. up to contain the value SCN, where N is the
slot number, if your card utilizes the SC800 expansion ROM space. The BIOS
does not do this for you; his must be done if you want your card to
function in an interrupting environment.

4. The firmware card status routine should be as quick as possible, as it
may be called from within the I/O poning loops of many other peripheral s
if your card is being used as the console device. In no case should the
status routi he take longer than 100 mill i seconds.

5. A finnwarecard in sl.ot 1 is> automatically recognized as the.vot.L6lle"PRINTER:". A Hrmware card in slot 2 is automatically recognized as
the volumes "R£MIN: H and "REMOUT:". A firmware card in slot 3
is automactically recognized as the volLanes "CONSOLE:" and "SYSTERM:".

APPENDIX

The. following numbers correspond to device classes used in the d vice
signature code. Make sure you contact Apple Technical Support t
ensure that you have a unique device signature code.

o reserved
1 printer
2 joystiCK or other X-Y input device
3 I/O serial 01" parallel card
4 modem
5 sound or speech device
6 clod
7 mass storage device



8 80 column card
9 Network or bus interface
10 Special purpose (none of the above)

11 through 15 are reserved for future expansion

Additional Infonnation

1. The type ahead buffer is located at $03B1 hex and is S4E hex in length.
It is impl emented with a read poi nter (RPTR at BF18 hex) and a wri te
pointer (WPTR at $BF19 hex). At CONSOLE: init time, these should both
be set to O. When a character is detected by CONCK, the WPTR is
incremented then compared with $4E. If it is equal to $4E, it is set
to $0 (this is a circular buffer). Then the WPTR is compared with RPTR
and if they are equal the buffer is full. If the buffer is not full,
the character is stored at $03B1+the value in WPTR.

When removing a character from the type ahead buffer, use the following
sequence. Compare the RPTR with WPTR and if they are equal, the buffer
is empty and you must wait until a character is available from the
keyboard. If they are not equal, increment the RPTR and compair it
to $4E. If it equal s $4E, set it to SO. Now get the character from
location S03B1+the value in RPTR.

If you are implementing your own type ahead, you can do it however
you wish. This information is made available in case you want to check
for input from another device as well as the standard system CONSOLE:
and have characters from that device be put in the system type ahead
buffer.

2. The example drivers in this document did not show the setting of the
IORESULT in the X register. This would be done in the code specific
to your driver and should allways be set to something (0 if there are
no errors). If there are errors, set it as described elsewhere in this
document and the Pascal Manuals.

3. For further infonnation,see the newest edition of the Apple II Reference
Manual.

4. These listings from the BIOS are included to show. you hO.w ~ implemented
certain system drivers. You cannot rely on the locations of these
to stay in the same place in the BIOS in future releases of Apple II
Pascal nor can you rely on the. routines themselves staying the same.
They are only included as examples and to give you information that
may not be documented elsewhere. This is not a complete BIOS listing so
you ~y find references to routines or locations that are not included in
this listing. The only locations that will be sure to remain the same
for future releases are those mentioned in the LOCATIONS section above.
We are against you poking the BIOS yourself to change or overwrite any
of these routines. We did not include this information so you could poke
the BIOS. If you do modify the BIOS, it is completely at your own risk!
We have provided the ATTACH utility so you can add your own drivers
the system without poking the BIOS and this is the way it should b.e done!
If you have special requirements that are not solved by ATiACH, please

r'\. _ _ ..,.,



contact Apple Technical Support.

,---------------------------------------·,
; ZERO PAGE PERMANENTS

i----------------------------------- _
FIRST .EQU OFO ;START ZERO PAGE USE
BASIL .EQU FIRST ;SCREEN 1 PTR
BASIH .EQU FIRST+1
BAS2L .EQU FIRST+2 ;SCREEN 2 PTR
BAS2H .EQU FIRST+3
CH .EQU FIRST+4 ;HORIZ CURSOR, 0•• 79
CV .EQU FIRST+5 ;VERT CURSOR, 0•• 23
TEMP1 .EQU FIRST+6
TEMP2 .EQU FIRST+7
SYSCOM .EQU FIRST+8 ;2 BYTES PTR TO SYSCOM AREA

;-------------------~-------------------·,
; BFOO PAGE PERMANENTS
·,
;---------------------------------------

;2 BYTES
; 1 BYTE
;1 BYTE

;4 BYTES.EQU OBFOA
.EQU OBFOE
.EQU OBFOF
.EQU OBFll
.EQU OBFl2
.EQU OBFl3
.EQU OBFl4
.EQU OBns
.EQU OBF16
.EQU OBn8
.EQU OBn9
.EQU OBFlA
.EQU DBFlB
.EQU OBnc ;00 MEANS 00 ALL SPECIAL CHARACTER CHECK!NG

;01 MEANS DON1T CHECK FOR APPLE SCREEN STUFF
;02 MEANS DON1T CHECK FOR OTHER SCREEN STUFF

.EQU OBF1D ;INTER? STORES BREAK &SYSCOM ADR HERE FOR

.EQU OBF1F ;USER ROUTINES TO GET AT

.EQU OBF21 .VERSION OF SYSTEM SET TO 2 FOR APPLE 1.1

.EQU OBF22 ;SEE TABLE IN INTERP arrOT

.EQU OBF27 .BF27 •• 0BF2£

.EQU OBF2F .INTERP INITS THIS TO LOCATION OF XIT

.FORTRAN PROTECJION USES BF56 •• BF7F

.VENDOR BOOT DEVICES CAN USE BFCO •• BFFF

CONCKVECTOR
SCRMODE
LFFLAG
NLEFT
ESCNT
RANDL
RANDH
CONFLGS
BREAK
R?TR
WPTR
RETL
RETH
SPCHAR

IBREAK
ISYSCO~'

VERSION
FLAVOR
SLTIVPS
XITLOC

;---------------------------------------
;
; MISCELANEOUS PROGRAM EQUATES
·,
;---------------------------------------
BUfFER .EQU 0200 iTEMP HSHIFT BUFFER (OVERLAPS DISK BUF)
CONBUF .EQU 03B1 i78 CHAR TYPE-AHEAD BUF
CBUFLEN .EQU 04E ;78 DECIMAL
NCTRLS .EQU 14. iN CTRL CHARS IN TABLE
SIGVALU~ .EQU 1

n ...... A ..,,,



BHEPSEC
SECPTRAK
TRAKPDSK
UOJVP
DISKNUMP
JVBFOLD
JVAFOLD
HCMODE
HSMODE

JVECTRS

.EQU 256.

.EQU 16.

.EQU 35.

.EQU OE8

.EQU OEA

.EQU OEC

.EQU OEE

.EQU OEl

.EQU OEO

.WORD

.WORD

.WORD

.WORD

UDJMPVEC
DISKNUM
BIOS
BIOSAF

;DISK INFO FOR DISKSTAT

;0 PAGE JUMP VECTOR POINTER LOCATIONS

iTHESE TWO BYTES USED FOR HIRES STUFF

j---------------------------------------
,
; HARD RESET INITIALIZATION

t---------------------------------------
START ClD ;SET HEX MODE

SEI ;MAKE SURE INTERRUPTS ARE OFF.
-t---------------------------------------

,
; CLEAR ALL MEMORY 0 TO BFFF
; (RUN-TIME SYSTEM:O TO TOPMEM + BF PAGE);.
t

;---------------------------------------

ZERLP

$1 :

lOA HO
STA ZEROL
STA ZEROH
TAY
TAX
STA (ZEROl), Y
INY
BNE ZERLP
INC ZEROH
INX
•IF RUNTIME:1
CPX ITOPMEM
BNE $1
LOX 10SF
STX ZEROH
CPX lOCO
BNE ZERlP
.ELSE
CPX lOCO
BNE ZERLP
.ENnC

;WRITE A BYTE OF a
;BUMP PO INTER
ilOOP TIll NEXT PAGE
;BUMP MSB POINTER

;DONE CLEARING MEM?

;ClEAR SF PAGE

DONE CLEARING BFXX?

.-----------------------.
t

; CHECKSUM PROMS ON EACH SLOT
; TO FIND OUT WHO'S OUT THERE
•; SUM TWICE TO TELL IF CARD THERE



; IF SUMS OONT MATCH THEN NO PROM IS THERE
; IF MS BYTE OF SUM-O THEN NO PROM IS PRESENT

.----------------_._._--
LOY lOC7

NXTCRD STY CKPTRH
JSR CKPAGE
STA CHECKL
STX CHECKH
JSR CXPAGE
CPX #0
BEQ NOPROM
CMP CHECKL
BNE NOPROM
C?X CHECKH
BNE NOPROM
BEQ SKI?IORTS

;----------------------------

iPOINT TO SLOT 7 PROM
;(CKPTRL~O FROM HEM CLEAR)
;16 BIT SUM IN X,A

iSAVE FOR MATCH
iSUM AGAIN
iWAS MSB ZERO?
iYES NO PROM ON CARD
iLSB MATCH?
iNO, NO PROM ON CARD

;MS8 OIDNT MATCH
;ALWAYS TAKEN

·,
; TABLE OF CNOS AND CN07 BYTES OF EACH CARD
·,
;----------------------------CNOS8YTS
CN07BYTS

.BYTE 003,018.038,048

.BYTE 03C,038,018,048

;----------------------------·
; NOW THAT WE KNOW A CARD IS THERE.
i EXAMINE bNOS AND eN07 BYTE TO
i DETERMINE WHICH CARD IT IS
·•
; SET CARDTYPE AS FOLLOWS:
i o-eKSUM NOT REPEATABLE OR MSB~O .
i l-CXSUM REPEATABLE,CARD NOT RECOGNIZED
i 2-DISK CARD (BYTE 07~ 03C)
i 3~COM CARD (BYTE 07~ 038)
i 4-SERIAL (BYTE 07a 018)
is-PRINTER (BYTE 07 2 048)
; 6-FIRMWARE (BYTE 07- 048)
;-----------------------------
SKIPIORTS LOX'5
NXTYP LOY #S

LOA (CKPTRL). Y
CMP CN05BYTS-2.X
BNE TRYNXT
LOY 17
LOA (CKPTRL), Y
CMP CN07BYTS-2,X
BEQ STOR

TRYNXT DEX
CPX 12
BCS NXTYP

STaR CPX #4
BNE STORl
LOY lOB
LOA (CKPTRL),Y
CMP IS IGVALUE

i4 TYPES OF CARDS
;CHECK BYTE CNOS OF CARD

iMATCH TABLE?
;NO, TRY NEXT IN LIST

;TEST eN07 BYTE
;MATCH TABLE?
iBOTH MATCHED. CARD RECOGNIZED
iBUMP TO NEXT IN LIST
'TRY ALL TYPES IN LIST
!IF NOT IN LIST,FALL THRU WITH X=l
;IS IT A SERIAL CARD?·



STORl

NOPROM

SNE STORl
LOX #6
LOY CKPTRH
TXA
STA SLTTYPS-OCO,Y
LOY CKPTRH
DEY
CPY lOCO
SNE NXTCRD

.BUMP TO NEXT LOWER SLOT
;SLOTS 7 OOWNTO 1 DONE?
.LOOP TILL 7 SLOTS DONE
.LEAVE WITH Areg::O

;---------------------------------------.
t

i SET UP CONCK VECTOR FOR KEYPRESS FUNCTION

;---------------------------------------
$1

52
$21

$3

BEQ S2 iALWAYS BRANCHES
JSR KCONCK .HERE ARE THE 2 INSTRUCTIONS TO BE TRANSFERRED
RTS
LOY #3 .TRANSFER 4 BYTES TO BFOA
LOA $l,Y
STA CONCKVECTOR,Y
DEY
BPL 521··

.SET UP JUMP VECTOR POINTERS IN 0 PAGE
LOY 117
LOA JVECTRS,Y
STA UDJVP,Y
DEY
BPL $3

;---------------------------------------
t

i SET SCREEN MODE ETC

j---------------------------------------

STARTUP

LOA 180
STA HCMODE
LOA OC051
LOA OC052
LOA OC054
LOA OC057
LOA OC010
JSR FORM
JSR INVERT
JSR ORESET
LOA SLnYPS+3
LOY 1030
JSR GENIT
CPX 10
BNE STARTUP
LOA 14
STA SCRMODE
JMP JPASCAL

;SET TEXT MODE
;SET BOTTOM 4 GRAFIX
.SELECT PRIMARY PAGE
.SELECTHIRES GRAFIX
;CLEAR KEYBOARD STROBE
;ERASE SCREEN
.PUT CURSOR ON SCREEN
;00 ONCE ONLY DISK INIT
.WHAT CARD IN SLOT 37
.SLOT 3
.sn BAUp IF COM OR SER THERE
;WASAN EXTERNAL CONSOLE THERE?
.NO,USE APPLE SCREEN

.SET BIT 2 FOR EXT CON
;FOLO IN INTERP AND START PASCAL

;-------------------------.,
• SUB TO CHECKSUM ONE PAGE

... ~ _. .... ...



.,
C~PAGE

C~NX

HOCRY

LOA 10
TAX
TAY
CLC
AOC (CKPTRL), Y
BCC NOCRY
INX
INY
BNE CKNX
RTS

.CLEAR SUM
;CLEAR INDEX

.ADD BYTE

iINC HI BYTE IF CARRY
iBUMP INDEX
iSlU'f 256 BYTES
.RETURN SUM IN X,A AND Y=O

;-------------------------------------------------------------
,
; BIOS HANDLERS FOR LOGICAL AND PHYSICAL DEVICES.
·•;-------------------------------------------------------------

;---------------------------------------
,
j CONSOLE CHECK FOR CHAR AVAIL
• STATUS AND ALL REGS PRESERVED
• IF CHAR AVAIL.PUT IN CONBUF AND INC WPTR.
•i WARNING ••• THIS ROUTINE ALSO CALLED FROM OISK ROUTINES
·•;---------------------------------------
CONCK

RNDINC

RNDOK

TSTKBo

PHP
PHA
TXA
PHA
TYA
PHA
INC RANDL.
BNE RNDOK
INC RANDH
LOA SLTIYPS+3
CMP 13
BEQ COMCK
CMP #4
BEQ JDONCK
CMP #6
BEQ FIRMCK
LOA OCOOO
BPL JOONCK
STA OCOIO
AND I07F
TAX
LOA speHAR
ROR A
BCS NOTFOLP2
TXA
CMP ,11.

.BUMP 16 BIT RANDOM SEED

iWHAT CARo IS 'IN SLOT 3?
; IS IT A COM CARD? -
iYES,GOCHECK IT
.ISIT A SERIAL CARD?
;YES, IT CANT BE TESTED

.TEST APPLE KEYBOARD
iNO CHAR AVAIL
iCLEAR KEYBD STROBE
iMASK OFF TOP BIT
;See if checking for apple special chars is
;turned off.

iJLmP if SO

;CTRL-K?

Oana 1h



BNE NOrK
LOA 105B iYES,REPLACE WITH LEFT SQR BRACKETT

NOTK CMP 11 ,CTRL-A?
BNE NTIAB
JSR HTAB iVES.TAB NEXT MULT 40
LOA CONFLGS
AND 10FE
STA CONFLGS ;CLEAR AUTO-FOLLOW BIT
JMP DONECK

NTIAB CMP 126. ;CTRL-Z?
BNE NOTFOL ;NO.PUT CHAR IN BUFFER
LOA CONFLGS
ORA 11
STA CONFLGS ,SET AUTO-FOLLOW BIT
BNE DONECK ;BR ALWAVS

COMCK LOA OCOBE ;CHAR AVAIL?
LSR A
BCC DONECK ' iNO CHAR AVAIL
LOA OCOBF ;GET CHAR FROM UART

GOTCHAR AND H07F ;MASK OFF BIT 7
NOTFOL TAX

LOA SPCHAR ;See if console special char checking is
,turned off.

ROR A
NOTFOLP2 ROR A

BCS NFMIl iJumP if'so
TXA
LDV 1055
CMP (SYSCOM). V iSTOP CHAR?
BNE NOTSTOP
LOA CONFLGS
EOR H080
STA CONFLGS ;VES.TOGGLE STOP BIT (BIT 7)

JDONCK JMP DONECK

FIRMCK LOA #1
LDV 1030
JSR FIRMSTATUS
BCC DONECK
JSR FREADI

, JMP GOTCHAR

NOTSTOP DEY
CMP (SYSCOM).V
BNE NOTBRK
LOA CONFLGS
AND 103F
STA CONFLGS iCLEAR FLUSH&STOP BITS
• IF RUNTIME:rO
JMP TOBREAK

.ELSE
JMP @BREAK iBREAK OUT

.ENDC
NOTBRK DEY

CMP (SYSCOM}.V iFLUSH?
BNE NOTFlUS



LOA CONFLGS
EOR 1040
STA CONFLGS ~TOGGLE FLUSH BIT (BIT 6)
JMP DONECK

NFMIl TXA
NOTFLUS LOX WPTR

JSR BUMP
C?X RPTR ~BUFFER FULL?
BNE BUFOK
JSR BELL
JMP DONECK ~BEEP&IGNORE CHAR

BUFQK STX WPTR
STA CONBUFtX ~PUT CHAR IN BUFFER

DONECK BIT CONFLGS ;IS STOP FLAG SET?
BPL CKEXIT
JMP RNDINC ;LOOP IF IN STOP MODE

CKEXIT PLA
TAY
PLA
TAX
PLA
PLP
RTS ;ELSE RESTORE STAT AND ALL REG AND RETURNBUMP INX ~BUMP BUFFER POINTER WI111 WRAP-AROUND
CPX ICBUFLEN
BNE BMPRTS
LOX #0

8MPRTS RTS

;----------------------------------.
I

; INITIALIZE CONSOLE:

;----------------------------------
CINIT PLA

STA TEMPI
PLA
STA TEMP2
PLA
STA SYSCOM
PLA
STA SYSCOM+l
PLA
STA BREAK
PLA
STA BREAK+I
LOA TEMP2
PHA
LOA TEMPI
PHA
LOA RPTR
STA WPTR
LOA CONFLGS
AND ,03E

;SAVE RETURN ADOR

;SAVE PTR TO SYSCOM AREA

~SAVE BREAK ADDRESS

~RESTORE RETURN AOOR

~FLUSH TYPE-AHEAD BUFFER

0"'''0 "HI



CINIT2

STA CONFLGS
JSR TAB3 .
LOX 10
RTS

jCLEAR STOP,FLUSH,AUTO-FOLLOW BITS
jNO,HORIZ SHIFT FULL LEFT
jCLEAR IORESULT
JANo RETURN

j----------------------------------
j
j READ FROM CONSOLE:
j KEYBOARD ,COM OR SERIAL CARD IN SLOT 3

;----------------------------------
CREAo

CREAD2

JSR ADJUST
lOY 1030
lOA SLTTYPS+3
CMP 14
BNE CREAD2
JSR RSER
AND fl7F
RTS
JSR CONCK
lOX RPTR
CPX WPTR
BEQ CREAo
JSR BUMP
STX RPTR
lOA CONBUF,X
LOX 10
RTS

iHORIZ SCROll IF NECESSARY
jSlOT 3
;WHAT TYPE OF CARD?
;IS IT A SERIAL CARD?
;NO,CONTINUE
JYES, READ IT
iMASK OFF TOP BIT

_TEST CHAR

jlOOP TILL SOMETHING IN BUFFER

jBUMP READ POINTER
jGET CHAR FROM BUFFER
jCLEAR IORESUL T
JANo RETURN TO PASCAL

;----------------------------------
,
j INITIALIZE PRINTER:
; PRINTER IS ALWAYS IN SLOT 1
j IT MAY BE A PRINTER,COM,OR SERIAL CARD

j----------------------------------
PINIT LOY #010 _SLOT 1 j 010

LOA SLTTYPS+1 jWHAT CARD IN SLOT 1?
CMP #5 jPRINTER CARD?
BEQ CLRI01 jVES ,NO INIT NEEDED

GENIT CMP #4 j5ERIAL CARD?
SEQ ISER JYES, INIT SER CARD
CMP #3 JCOM CARD?
SEQ ICOM _YES,INIT COM CARD
CMP #6
SEQ FIRMIN IT
LOX 19 JNONE OF.ASOVE,OFFLINE
RTS

FIRMINIT PHA
JSR SER1
lOY 100

FVEC1 LOA (TEMP1),Y
STA TEMPl
LOY 6F8
PLA
JMP @TEMPl



.----------------------------------·,
; INITIALIZE REMOTE:
; REMOTE IS ALWAYS IN SLOT 2
; IT MAY BE A COM OR SERIAL CARD
t

;----------------------------------RINIT LOA SLTTYPS+2 ;WHAT CARD IN SLOT 21
LOY 1020
BNE GENIT ;BR ALWAYS TAKEN

· .,----------------------------------·,
; IN IT COM CARD, Y-ONO

;SET BAUD ETC
;CLEAA IORESULT
;AND RETURN

CLRIOI

t-------------------------------~--ICOM LOA #3 ;MASTER IN IT
STA OC08E,Y ;TO STATUS
LOA 121.
STA OC08E,Y
LOX 10
RTS

j----------------------------------
,
; INIT SERIAL CARD, yzONO

iSER--------jSR-SERi------------~ASSORTED GARBAGE
JSROC800 ;SET UP SLOT DEPENDENTS

CLRI03 LOX #0 ;CLEAR IORESULT
RTS iAND RETURN

;----------------------------------,
; ASSORTED SERIAL CARD SET-UP.,
;----------------------------------
SERI STY 06FS

TYA
LSR A
LSR A
LSR A
LSR A
ORA lOCO
TAX
LOA #0
STA TEMPI
STX TEMP2
LOA OCFFF
LOA (TEMPl),Y
RTS

iSTORE NO

;MAKE OCN IN X

iSET UP INDIRECT ADDRESS
iTURN OFF ALL C8 ROMS
;SELECT C8 BANK

;----------------------------------
•; WRITE TO CONSOLE:
i VIDEO SCREEN,COM OR SER CARD IN SLOT 3

PilOP 40



iOO THE BUSINESS
.RESTORE THE CURSOR
;CLR IORESULT
;RETURN FROM VIDOUT

.ELSE RESTORE CHAR &SEND TO SCREEN
;SAVE CHAR FOR LATER
iREMOVE CURSOR

VIDOUT

CLRIO

;----------------------------------
CWRITE JSR CONCK ,CONSOLE CHAR AVAIL?

BIT CONFLGS ;IS FLUSH FLAG SET?
BVS CLRIO ;YES,DISCARD CHAR &RETURN
TAX ;SAVE CHAR IN X
LOY 1030 iSLOT 3;010
LOA SLTTYPS+3 ;WHAT KIND OF CARD?
CM? #3 ,COM CARD?
BEQ WCOM ,YES WRITE TO COM CARD SLOT 3
CMP 14 ,SERIAL CARD?
BEQ WSER ,YES,WRITE TO SER CARD SLOT 3
CMP 116
BEQ WFIRM
TXA
STA TEMPI
JSR INVERT
LOY CH
JSR VOUT2
JSR INVERT
LOX #0
RTS

WFIRM TXA
PHA
LDA #0
JSR IOWAIT
JSR SERl
LOY IIOF
JMP FVECl

;----------------------------------,
; WRITE TO SERIAL CARD, Y-ONO,CHAR IN X

i---------------------------------~WSER JSR CONCK
TXA
PHA
J SR SERl
PLA
STA 0588,X
J SR OC9AA
LOX 10
RTS

;CONSOLE .CHAR?

iSAVECHAR ON STACK
;ASSORTED GARBAGE

,SET UP DATA BYTE
,SEND IT (SHOUT)

i----------------------------------.,
; WRITE TO REMOTE:, CHAR IN A

;----------------------------------
RWRITE TAX iSAVE CHAR

LOA SLTTYPS+2 iWHAT CARD IN SLOT 2?
LOY 1020
BNE GEN'..I2 ,BR ALWAYS TAKEN

,----------------------------------
,
, WRITE TO PRINTER CARD SLOT1, CHAR IN X



;----------------------------------
WPRN JSR CONCK ,CONSOLE CHAR AVAIL?

LOA OClCl ;TEST PRINTER REAOY
BMI WPRN ;LOOP TILL READY
SIX OC090 ,SEND CHAR

CLRI02 LOX 10
RTS

;----------------------------------.,
; WRITE TO COM CARD, Y=ONO, CHAR IN X.,
j----------------------------------
WCOM JSR CONCK ,CONSOLE CHAR?

LOA OC08E,Y ;TEST UART STATUS
AND N2 ;READY?
BEQ WCOM ;NO,WAIT TILL READY
TXA
STA OC08F,Y ,SEND CHAR
LOX 10
RTS

i----------------------------------.,
; WRITE TO PRINTER:, CHAR IN A

;----------------------------------PWRITE TAX ;SAVE CHAR IN X
LOA LFFLAG ,TEST LINE-FEED FLAG
BPL LFPASS ,PASS IF BIT7=0
CPX #10. ;15 IT A LINE-FEED?
BEQ CLRIO ;YES,IGNORE

LFPASS LOY 1010 ;SLOT 1
LOA SLTIYPS+l ,WHAT KIND OF CARD?

GENW CMP #5 ,PRINTER CARD?
SEQ WPRN ,YES WRITE TO PRINTER CARD

GENW2 CMPLI4 ,SER IAL CARD?
BEQ WSER ;YES WRITE TO SER CARD
CM? 13 ,COM CARD?
SEQ WCOM ,YES WRITE TO COM CARD
CMP 16
BEQ WFIRM

OFFLINE LOX #9
RTS

.----------------------------------
;
• READ FROM REMOTE:.,

;SERIAL CARD?
;GET FROM SER CARD
,COM CARD?
,GET FROM COM CARD

GENR

;----------------------------------
RREAO LOA SLTIYPS+2 ;WHAT CARD

LOY 1020
CMP ,4
BEQ RSER
CMP 13
BEQ ReaM
CMP 16

IN SLOT 2?



BEQ RFIRM
BNE OFFLINE iCARD NOT RECOG

;---------------------------------~.,
; READ FROM COM CARD, Y-NO

j----------------------------------
RCOM

RFIRM

FREADI

JSR CONCK
LOA OC08E,Y
LSR A .
BCC RCOM
LOA OC08F,Y
LOX #0
RTS

LOA 'I
JSR IOWAIT
JSR SERI
PHA
LOY 10E
JMP FVECI

iCHECK FOR CONSOLE CHAR
iTEST UART STATUS
iTEST BIT 0
; WAIT FOR CHAR
iGET CHAR

IOWAIT

;----------------------------~-----,
; READ FROM SERIAL CARD, Y-ONO

;----------------------------------
RSER JSR CONeK iCONSOLE CHAR AVA~L?

JSR SERI ;ASSORTED GARBAGE
JSR OC84D ;GET A BYTE (SHIFTIN)
LOA OSB8,X ;GET BYTE 0678+SLOT
LOX NO
RTS

FIRMSTATUS PHA
JSR SERI
LOY 110
JMP FVECI

JSR CONCK
PHA
JSR FIRMSTATUS
PLA
Bce IOWAIT
RTS

Page 43





APPLE COMPUTER. INC.
20S2S-Mariani Avenue
Cupertino, CA 95014

APPLE II PASCAL 1.2
ADDENDUM TO PASCAL TECHNICAL NOTE 1# 11 B

(December 1983)

For further information contact:
PCS Developer Technical Support
MiS 22-W, Phone (408) 996-1010

Disclaimer ~~ Warranties ~,Liabilities

Apple Computer, Inc. makes no warranties,. either express or implied, with
respect to this documentation or with respect to the softw"lre described in
this documentation, its quali ty, performance, .merchantabili ty, or fitness :.for
any particular purpose~ Apple Computer. Inc. s-,ftware is sold or licensed
'las is". The' entire risk as to its quality and performanc'e is' lo1ith the

, vendor. Should the programs prove defective folowing their purchase, the
vendor (and not Apple Computer , Inc. • its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair. or correction and
any incidental or consequential damages. In no event will App le Computer.
Inc. be liable for direct. indirect. incidental. or consequential damages
resulting from any defect in the software, even if Apple Computer. Inc. has
been advised of the possibili ty at' such damages. Some states do not (\110101 the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages. so the above limitation may not apply to you.

This documentation is copyrig~ted. All rights are reserved.
may not. in whole or part. be copied. photocopied, reproduced.
reduced to any electronic medium or machine readable form
consent. in writin~. from Apple Computer. Inc.

Copyright 1983 by Apple Computer. Inc.
20525 Mariani Avenue
Cupertino. CA 95014

(408) 996-1010

Notice

This document
translated or

w.i thout prior

Apple Comouter. Inc. reserves the ri~ht to make imorovements in the
product described in this document at any time and'without notice.





APPLE COMPUTER, INC.
20525 Mariani Avenue
Cupertino, CA 95014

APPLE II PASCAL 1.2
ADDENDUM TO PASCAL TECHNICAL NOTE #11

(December 1983)

For further information contact:
PCS Developer Technical Support
MiS 22-W, Phone (408) 996-1010

Contents:

ATTACH Software
SYSTEM. ATTACH
ATTACHUD.CODE
ADMERG.CODE
CONVAD.CODE
SHOWAD.CODE
IM.CODE

Changes to ATTACHUD

Changes to the ATTACH Mechanism
Transient Initialization

Interrupt Handling
Handling Interrupts in Version 1.2
Drivers for Devices with Interrupts
Changes from Version 1.1.
Example of an Interrupt-Based Device Driver



.• ""-Addendum to'Pascal'~echnic:al' Note #11 "Page 3

This document is meant to accompany Pascal Technical Note #11 - Apple Pascal
~~ Reconfiguration Using Attach. It describes change;-and additions to
the Apple II Pascal 1.1 ATTACH facilities.

To use the software described in this addendum. you must have version 1.2 of
Apple II Pascal.

ATTACH Software

This section describes the files on the ATTACH TOOLS disk which contains the
ATTACH facilities provided for the Apple II Pasc~l system, version 1.2.

SYSTEM.ATTACH -- attaches device drivers at startup time. usin~ the
information in ATTACH. DATA. and the driver code in the
ATTACH. DRIVERS library. This version of SYSTEM.ATTACH is
for use with the 64K and 128K Development Systems only.
There is a special version for use with the Runtime
Systems which is available on the Runtime System.
diskettes.

The following programs are provided for the creation and handling of the
ATTACH. DATA file.

ATTACHUD.CODE

ADMERG. CODE

CONVAD.CODE

SHOWAD.CODE

creates a version 1.2 ATTACH.DATA filefrbmlnformation
supplied by the user
merges multiple version 1.2 ATTACH. DATA files .into. a
single ATTACH. DATA file
converts an ATTACH.DATA file from version 1.1 to version
1.2
shows the contents ofa version 1.2 ATTACH.DATA file

The interfaces to the utilities ADMERG. CONVAD, and SHOWAD are self'"
explanatory, and we don't describe them in this addendl1m~

1M. CODE contains the interrupt managef(IM) f6rthe 64K Pascal
system

Changes to ATTACHUD

If you are familiar with the 1.1 version of ATTACHUD, you will find that the'
1.2 version contains some additional prompts. After the question

Do you want this driver aligned on
a particular byte boundary? (YIN)

ATTACHUD asks the new question



'~'''''l\ddendum to 'Pascal"Technical 'Note # 11

Do you want this driver to have a
transient initialization section? (YIN)

Page 4

If you respond with "Y", ATTACHUD will go on to ask you for the .PROe name of
the transient initialization code, and its alignment requirements.

ATTACHUD also asks the new question

Will this driver use interrupts? (YIN)

If you answer "y" to this question, ATTACHUD will ensure that a record for the
interrupt manager (IM) is present at the end of the ATTACH.DATA file.

Finally, note that unit numbers 13-20 are now available to user-defined
devices. These numbers correspond to block-structured devices, and they must
be controlled by user-written attach drivers.

Changes ~ the ATTACH Mechanism

Transient Initialization

As described in Pascal Technical Note #11, a device driver is attached at boot
time. If the driver's data record (created by ATTACHUD) specifies that th~

driver should be initialized at startup time, then its initialization code is
executed.

Und~rversion 1.2, there is an additional step. The driver may be accompanied
by a "transient initializationl' mod.ule that is executed only at startup time.

After all the drivers are loaded onto the heap and initialized, each of the
transients will be loaded and executed in the same order as their associated
driver was loaded. They will overlay each other, going away after completion.

Each of the transients will. have passed to it, on the stack. the address<ofthe
associated driver. This way communication can be setup between the two. Note
that this ',is the address of the start of the driver, not start - 1.

In order to help data stucturing, the transient code may be loaded art a 0 to 256
byte boundary •.. TransiE!nts must be written in assembler, 'not use .ABSOLUTE (must
be relocatable), and have a single .PROe at the beginning. The transient
initialization code must be assembled as a separate module from the device
driver itself. Like a device driver, it must be placed in the ATTACH.DRIVERS
file using 'the LIBRARY utility.

Note that the transient initialization code is executed after the device
driver's o~ (callable) initialization code is executed.

This facility was provided for the use of the Pascal ProFile Driver, but it is
available to any user-defined device driver.



· Addendum to Pascal ,Technical Note 1111

Interrupt Handling

.. Page 5

Version 1.2 of Apple II Pascal supports interrupts from multiple devices.

The first part of this section describes interrupt handling on the Apple II.
The second part discusses how to write a device driver that supports
interrupts. A sample scheme for such a driver appears at the end of this
section.

Important: The interrupt manager (IM) is shipped in the file IM.CODE. For the
64K Pascal systems, the rM driver must be placed in ATTACH.DRIVERS if any
devices are to use interrupts. For the 128K Pascal systems, interrupt handling
is built in, and the system will ignore the IMdriver if it is present in
ATTACH. DRIVERS.

The 48K runtime systems cannot use interrupts.

Handlin!t_Interrupts .!!!. Version 1..:1.

The main problem in handling interrupts is to save the context of the current
program, and then restore that context once the interrupt has been processed.
This includes saving the contents of various systc~ registers, and restoring
them once the driver returns.

When an interrupt can come from one of several devices, it is also necessary to
identify which device, so that the appropriate driver can handle the interrupt.

A.driver for a user device that supports interrupts lI1Ust con.tain a section of
code called the "interrupt service routine." This code will be called by the
interrupt manager, as describedbelo~.

The interrupt manager (1M) itself is responsible for saving the current context
and restoring it later. The interrupt service routines themselves are
responsible for determining whether they should han~l~ •. a· given interrupt ( ust
how th~y do this depends on the particular device;· see below).

Interrupt service routines are set up in a linked chain (see it~.m 3 in the
following section). If an interrupt service routine recognizes an interrupt, it
processes it and then returns to the 1M. If the serv:ice routine doesn't
recognize an interrupt, it transfers control to the n.ext Illterruptservice
routine in the chain. If none of the service routines clailllsan interrupt, then
an. error has occurred, and the· sys tem is res tar ted •

Thus, under this scheme, interrupts are handled in the following sequence.

- A device interrupt occurs. This disables interrupts and causes the
processor to execute the code that starts at the address stored in the IRQ
vector (located at SFFFE-FFFF).

- The IRQ points to the 1M. which looks at the processor status on ~he stack
and checks the break bit. If the break bit is s~t. the IM tranfers control



Addendum to "'Pascal >Technical Note /I 11

to the Pascal reset code which restarts the system.

.:..page 6

- If the break bit is not set, the 1M saves the current context and then
transfers control to the first interrupt service routine in the chain.

- If the service routine doesn't recognize the interrupt, it transfers
control to the next service routine in the ~hain. Otherwise, it processes
the interrupt and then returns to the IM •

... If the last interrupt service routine in the chain doesn't recognize the
interrupt, it transfers control to the reset code for the Pascal system.

- When the 1M regains control, it restores the interrupted program's context
which re-enables interrupts. Execution proceeds from the point at which it
was interrupted.

A spurious interrupt can be generated as the result of a hardware malfunction,
or of a BRK instruction in currently executing code. In the case of a hardware
malfunction, the interrupt falls through the chain of routines, and control is
ultimately passed to the Pascal system reset code. In the case of a BRK
instruction, the break bit is set causing the IM to restart the system as
decribed above.

To determine whether ··it '.should process an interrupt,.· an interrupt service;.,p,,;'
routine can (in general) check the interrupt flag register for the appropriate
card slot.

The location of the interrupt flag register, unfortunately, may vary according
to the hardware; it is best if the peripheral card follows the conventions
described in the Apple lli Design Guidelines manual, in the section on
"Peripheral Card Firmware."

For 64K Pascal systems, the code fo~ the 1M is in the form of an ATTACH driver.
However, the 1M cannot be called from a user program. (For 128K Pascal systems,
interrupt handling is built in, and the !Meade is ignored if it is present in
ATTACH. DRIVERS ).

';'-.:'

User-written device drivers that support in.terrupts must also be ATTACH drivers.
The following section discusses how td write such a driver.

Drivers ~ Devices~ Interrupts

The following considerations must be taken into account when you write a driver
for a device that generates interrupts.

1. Any volume number appropriate for a user-defined device (128-143) can be
used, except for number 128 (decimal), which has been defined as the
standard number for the large disk driver. The IM itself is assigned the
highest available number. It is recommended that you use numbers in the
130-140 range.

Note: If you use ADMERG, there is a chance of cancelling another driver
that had already been installed with the same number, so it is important to



"Addendum to l'ascal Technical Note #11

use SHOWAD to look a~ the ATTACH. DATA files before you run ADMERG.

.. Page 7

In addition, if you wish to execute
should not be done with just an SEl
sequence of PEP, SEl •• code •• PLP.
correctly restored when you exit the

2. SYSTEM.ATTACH enables interrupts after ·the full chain of interrupt service
routines has been built and all transient initialization modules have been
executed. Device driver code should never enable interrupts.

some code with interrupts disabled, this
instruction. Instead you should use the
This ensures that the system state is
critical section (after the PLP).

3. Any driver that uses interrupts must initialize itself before the system
starts up in order to link its interrupt service code into the chain of
service routines. The initialization code should do the following (before
exi ting) in order to ini tialize the links:

LDA OFF'FE
STA STORElT
LDA OFFFF
STA STORElT+l

LDA I ADDRESS
STA OF'ITE
LDA I ADDRESS+l
STA . OFFFF

I ADDRESS •WORD I HANDLER
STOREIT •WORD 0

; move IRQ vector into next
driver pointer

move interrupt service routine
address into the IRQ vector

next driver pointer

where: I HANDLER is the entry point of the driver's interrupt service
routine;

STOREIT will contain the address of the next interrupt service
routine to~be called if the current one finds that its device did
not generate the interrupt.

Note: This code must be executed only~ and must ~ be in a transient
initialization module. The driver ltself may also contain "regular"
initialization code to reset the device or its buffer, and so forth.

4. At the start of its interrupt service routine(s), a device driver must first
determine whether the driver's device hardware generated the interrupt.

The details are device-dependent, but in general involve checkin~ a register
on the device's controller card (for example, an interrupt fla~ register on
a 6522).

If the interrupt was generated by the driver's device, the driver should
pro~ess the interrupt and then return to the 1M by an RTI instruction.

If the interrupt was not generated by the driver's device, the driver should
do an indirect jump to the next device driver (the address of the next
driver is saved as STOREIT in the sample initialization code under item J,
above). If this device driver is the last in the chain. the ;ump will be to



A.ddendum· to 'PascalTechnical Note /I 11

the Pascal system reset code.

Page 8

Note: The jump to Pascal system reset code. is accomplished automatically,
since the system initializes the IRQ vector to point to the reset code. If
the initialization for all interrupt-based device drivers is correct (as
shown in item 3). this pointer will be moved to the end of the interrupt
service routine chain.

Important: If your device card has no way of signalling that it generated
an interrupt, then its service routine must be the last service routine in
the chain. It will have to assume that~it is called. it will handle an
interrupt. This is not a good approach, since the routine won't be able to
detect BRK or hardware failure interrupts.

To ensure that a driver is the last one in the interrupt drivers chain,
assign it a unit number lower than all other interrupt driver unit numbers.

S. An interrupt service routine must be an integral part of the driver's code.
This ensures' that it will be loaded by SYSTEM.ATTACH. If you don't do this.
your code is in danger of being released by the system - a subsequent
interrupt may cause unpredictable effects.

6. If you use the 64K Pascal system. the 1M driver sttould be included on the
boot diskette inside the ATTACH.D.RIVERS file •. You may use' the.standarl
library program (LIBRARY.CODE) to look into t~e file and/or transfer the
code segment to another file. The code size of 1M will be shown as
approximately 280 bytes, but much of this size corresponds to relocation
code that will not be resident at run time. At run time, the !M occupies
approximately 200 bytes.

7. The program ATTACHUD.COD~ is used to.save information. about a driver in
ATTACH. DATA. For each driver, ATTACHUD will ask you if. the driver uses
interrupts. If you answer yes, A'l"1'ACHtJI).ensures that a data record for the
1M driver is automatically included in the. ATTACH.DATA file. Note that this
data record is automatically included in ATTACH.DATA as long as at least one
of your drivers uses interrupts.

On the 64K Pascal system, the IMdri'v"er ls automatically attacheditf the 1M
data record is present in ATTACH.DAT~. If the re.cord is not present, the 1M
driver is 'not attached. On the 128K Pascal system, theIM data record is
ignored if it is present.

8. It is not, repeat not, necessary to save re.~isters in an interrupt service
routine. The 1M sms them before jumping to the drivers chain. and
restores them before resuming no~al execution of the interrupted code. You
should use the standard 'RTI' instruction at the end of the interrupt
service routine: not an 'RTS'. The 'RTI' instruction transfers control
back to the 1M. (iT! is used because the 1M saves additional status
information in the processor status byte and then pushes this byte onto the
stack. )

9. A change has been made to the 1.2 Pascal syste~ to eliminate a problem
associated with abnormal termination of the system with certain interruptin~

devices. This can occur when a program gets a system error or when a user



Addendum to ·,Pascal 'Technical 'Note Hll

interrupts the program from the keyboard (CTRL-@).

Page 9

When the system terminates abnormally, it executes a UN!TCLEAR on all
devices (l-20and 128-143). This is done even when the driver's data record
(in ATTACH.DATA) specifies that no initialization is to be done at boot
time.

This presents a problem when the UN!TCLEAR portion of a driver contains code
to initialize the service routine chain (as described above in item 3).
Drivers under version 1.2 must have some code to distinguish between the
first initialization (which sets up the driver chain) and any subsequent
initialization (i.e., a call to UN!TCLEAR).

In the driver, these two kinds of initialization may be distinguished" by a
simple check of a byte of memory to see which type of initialization code
needs to be run (if any)., This is the scheme used in the example below.

The 1.2 system reinitializes all devices because some drivers may have
pointers into the stack/heap spa.ce. If this space were released without
reinitializing the device drivers, the pointers would now point to invalid
code or data. The problem can't be solved by simply disabling further
intenupts, since some external devices (e.g., a remote network printer
server) may have to be notified,of the reset : if interrupts were disabled,
information coming back from the remote device could not be handled
correctly.

10. Location $7F8 must contain the'value $Cn, where n is the slot number of the
card, if your card uses the$C800 expansion space. The reason for this is
that when ydl1 are exi!cutil'lg in your $C800 space and an internptoccurs,
the interrupt routine may decide to use its own $C800 space•. When the, .
internpt has completed, the system l11ust kt10,~ if it needs, to reselect the
$C800 space for your ,~ard., 'l11pIM will take the contents, of location $7F8
(which,can, be i~iti~lize~.a~Y'tilIlebefore your driver 'enter~ the$C800
space), and use it to reselect your card. If you ,do not do this, it is
very possible that your routines may not work correctly since your $C800
space will not be reselec:ted. The only otl'ler way to avoid this is to
disable all interrupts while you are in your $C800 space.

Note: Interrupt service routines must,never alter the contents of location
$7F8, as this mayeause the wt'ong $C800 space to be reselectedafter ttle
interrupt has been serV'iced. "

11. Interrupts are disabled when an interrupt occurs, and are re-enabled by the
IM after the interrupt ha.s been serviced. Only one interrupt may be
handled at a time.

Devices or driV'ers m\Jst neverre"enable interrupts if they have been
disabled by the IM~

12. There are additional restrictions on interrupts for applications that
execute under the 64K Pascal syst,em and that also use the auxiliary 64K
memory on a IIe. Since the IM and all interrupt service routines are
resident in the main RAM, if an interrupt occurs while the application is
using the auxiliary RAM, the interrupt will not be serviced properly. and



Addendum to ~ascal'Technical Note #11

may cause the system to crash.

Page 10

For this reason. an application should disable interrupts while the
auxiliary 64K is in use, or should be able to handle the interrupt
management itself.

13. On the Apple lIe, the IM will save the state of the 80STORE and PAGE2 soft
switches, and will deselect PAGE2 if 80STOR! is selected. The original
state of the PAGE2 switch is restored after the interrupt is serviced.

14. In the 128K Pascal system, the IM will save the state of the RAMRD and
RAMWRT soft switches and will then ~elect read main RAM and write main RAM.
The original state is restored after the interrupt is serviced.

15. If an interrupt .s~rvice routine uses any zero-page user temporaries
($0-$35), then it·diust save their corttents, and restore them after the
interrupt has been serviced.

16. If an application switches in the Monitor ROM, it must disable interrupts
prior to doing so.

The following is a brief scenario for installing an interrupt-based device
driver in your Pascal system.

1. Write the device driver and assemble it, accordi~g to the requirements given
above.

2. Execute ATTACHuD to create an attach data file for your driver.

If you have already defined other device drivers, call the new attach
data file INTERRUPT. DATA, for example. Then execute ADMERG to append
your driver data file INTERRUPT.DATA to the existing ATTACH.DATA file.

If you do not have any other device drivers in your system, call the new
attach data file ATTACH. DATA.

Be sure to tell ATTACHUD that your driver uses interrupts.

Next, execute LIBRARY.CODE to place your driver code in the ATTACH.~RIVERS

file. (On the 64K Pascal system, you must include IM.CODE in
ATTACH. DRIvERS , if it is not already present.)

Note: If you change ~our device driver and reassemble it, you don't always
need to run ATTACHUD a second time. Changes to driver code don't affect the
data record in ATTACH. DATA unless you have changed something which affects
the answer to one of the questions which ATTACHUD asks you. You will still
have to use LIBRARY to place the new code in the ATTACH.DRIVERS file.

3. Along with the standard files for a bootable Pascal disk, the following
files must be on your new boot diskette: SYSTEM. ATTACH , ATTACH. DRIVERS , and
ATTACH. DATA. When you boot from the new diskette, the driver will be
loaded, and you can test it and use it.



Addendum to Pascal Technical Note #11 Page 11

Remember that you can use SHOWAD to view the contents of ATTACH. DATA, and
LIBRARY to view the contents of ATTACH.DRIVERS.

Changes~ Version~

Under version 1.1, intert"Upts were theoretically allowed, since the system
disabled interrupts during time-critical operations such,as disk accesses.
Unfortunately, ~hen a disk access was completed interrupts were never
re-enabled, so that interrupts functioned correctly only until a program's first
disk access!

Version 1.1 could support only one interrupting device per system.

This is the scheme described in Pascal Technical Note tIll.

Version 1.2 of the Apple II Pascal system can support multiple interrupting
devices. For 128K systems, this capability is. built in. For 64K systems, the
interrupt manager (IM) is shipped in the file IM.CODE.



Addendum to Pascal Technical Note #11 Page 12

Example of ~ Interrupt-Based Device Driver

•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• I •

• " ""., .. 'I "" .. " .. "" .. " ". ".,,, " ,,". ""." .. " ", ., , .,,, , •••• , " " , ,

Apple II Pascal 1.2 Sample Interrupt Driver

........................................................................., " • , . " , • " .. t·" , , , .. " .. " ,. , ... , " .. , , " .... , .. , , , " , •• , .. , • , .. " " .. , , .. , .. " , .. , ... " , .... , , , , , " . " ,

Copyright 1983 - Apple Computer Inc •

.. ...... . .. . ... .. .. .. .. .... ... ..
, " , , , .. , •• , , , • , , , .. , .. , , , , t t , , , , , " .. ., , , t ,. , , , , , , , ...... , .. , .. , , "., , , • , , , ,

This sample driver is a user-defined device driver. It shows both
the overall skeleton of a user driver and more importantly it shows
how to write an interrupt-based device driver that uses the
interrupt manager (1M).

Macro Subroutines

Save/restore
•MACRO
PLA
STA
PLA
STA
.ENDM

word off the stack (used to save return addresses)
POP

%1

7.1+1

"7.4" <> "*"

7.3,Y

i.3+ 1,Y

A

%1

"%2" <> '"'
{/%2+1
$010

•MACRO PUSH
LDA %1+1
PHA
LOA
PHA
.ENDM

01' switch macro. (see SOS Reference Manual for description)
•MACRO SWITCH..
•IF "7.1" <> ,'"
LOA %1
.ENDC·
• IF
CMP
BCS
.ENDC
ASL
TAY
LDA
PHA
LOA
PHA
.IF
RTS
.ENDC
.ENDM

first word into the second

The

$010
: Move



•MACRO
LDA
STA
LDA
STA
.ENDM

MOVE
7.1
7.2
7.1+1
7.2+1

Addendum to Pascal TeehnicalNote lIl1 Page 13

••••• t " " •••• " •••••••••••••••••••••••••••••••••••••••
t • , ... , , t , • , , , • , , •• , , , , " , .... ~ .. , , , , , , ... " • , , , , • , •• , •• , .. " , , , • , , , , , , ,. , , , • 'I ,

Equates

Zero page (0-$35 is available) is used for return addresses,
and global temps.

Zero page temporary locations

CSLIST .EQU
CTRLWORD .EQU

IRQ .EQU
FLAG6522 .EQU

o
2

OF'FFE
OC2ED

Buffer address
storage for ctrl word

IRQ vect~r location
Interrupt Flag Register

for a hypothetical card in Slot 2

Error code equates

Upon completion of the driver, the X register will hold an appropriate
error code that will be converted into the Pascal reserved variable
IORESULT. The Pascal program should check IORESULT after all UNITSTATUS
calls made to. the driver. Error code numbers 128-255 are to be used by
your driver.

XNOERRS .EQU
XBADCMD •EQU
ERRCODE .EQU

.PROC

o
3
128.

SAMPLE

no errors encountered
bad command to driver
user defined error message

............... " , .
" .... " '" • " ,,, •• ,,,, • , .. " •• "., "., ,,,, " , , .. , .,.", ••• , 11 ,., •• , ••

This is the main entry point for the ATTACH driver. This driver
is defined as a 'user device' and therefore will only be used from
Pascal using direct I/O (i.e, UNITSTATUS, UNITREAD!WRITE).

Upon entrance, the X register will contain the type of call r~quested'

(UNITREAD ,WRITE ,CLEAR, etc). See ATTACH documentation for more
details on the stack setup.

START
POP
TXA

RETURN save return address
get type of call



Addendum to Pascal Technical Note #11

SWITCH ,4 , IDTABLE

Page 14

BADREQ LDX
BNE

GOBACKOK LDX
GOBACK PUSH

RTS

IDTABLE .EQU
•WORD
•WORD
•WORD
•WORD
•WORD

IIXBADCMD
GOBACK
IIXNOERRS
RETURN

'*
READ-1
WRITE-1
INIT-l
BADREQ-l
U STATUS-l

if you got here, the call is in error!
always taken
go here if you want to return with no errs
or return with X register holding error code
main exit point

............ " .
""-'ttt", •• "t,."" •• """"".",."""., •• ,."""".",t",."""

INIT does two things: 1) moves the IRQ vectors to the appropriate
locations the first time called and 2) every additional call will be
meant to issue an appropriate initialization request to the driver
(if requi red) •

INIT
PHP
SEI
LDA
BEQ

TYPE
$001

Disable Interrupts

if zero then do init stuff

Any UNITCLEAR call after the initial one by the system will ;ump
to this area

SOOl
JMP
INC

$090
TYPE

always taken
bump type field so next time we dont do it

This next section moves the IRQ vector into a temporary
location. The MOVE macro is a 16-bit move instruction -- see above
macros for an explanation.

MOVE
MOVE

IRQ,JUMPTO
INTADR, IRQ patch IRQ location and jump vector

more code for initial initialization call

S090

INTADR
JUMPTO

Pl.P
lMP
•WORD
.WORD

GOBACKOK
INTHNDLR
a

Interrupt handler address
save area for next interrupt svc routine



Addendum to Pascal Technical Note #11 Page 15

TYPE
RETURN

.B';{TE
•WORD

o
o

if 0 then init call else cleanup call
return address for Pascal

.........................................................................
,,' '" If" , , "" t , ,. '"'' , "t", , ,,' , """"',,' "" """" , "."" ,.,,,,,,,,, """""" .... ". "",. "" ,,, ,

READ is called when the program generates a UNITREAD

READ

code for the UNITREAD call

LDX
JMP

#ERRCODE
GOBACK

error completion code

............................. " .". , 'I"'''''''''''''''''''''''' 11 , , , , , , , .. , , " , • " , , • , , , , " , , , , , , , , , , , , , , , , , , , , , , , t , , , ,

WRITE is called when the program generates a UNITWRITE

WRITE

code for the UNITWRITE call

LDX
JMP

IIERRCODE
GO BACK

error completion code

•••••••••••••••••••••••••••••• " •••••••••••••••••••••••••••.•••• " ••••••••• I
, , • , t , .. , " , , , , " •• , , , , • , , , .. , • , " , " , , .. , , , , , , , , , , , , , • t " , , , , , , , , , , , , , , " , • , , , , , •

U STATUS is called when the program executes a UNITSTATUS call to
this particular device.

The order of the stack (4 bytes) is:

TOS:a) POINTER TO STATUS RECORD

CONTROL WORD bits 15 •• 13
user

defined

12 •• 2
reserved

for future

1
status/
control

o
direction

direction - 0 D status 6f output channel
1 :a status of input channel

status/ctrl - 0 ~ status call
1 :a control call

Bits 13-15 should have the number of the
control/status request.



Addendum .toP.ascaL .Technical Note #.11

From Pascal, the call should be:

UNITSTATUS(130,BUFFER,OPTION)

Page 1-6

where:
130 3 Device driver number (currently 130 is used by this driver)
BUFFER • PACKED ARRAY (a •. ??] OF 0•• 255:

This array is as big as needed by the code called.
OPTION • PACKED RECORD

DIRECTION: 0 •• 1;
STAT_C'l'RL : 0 •• 1;
RESERVED: 0 •• 2047;
CODE: 0 •• 7;

END;
U STATUS

POP
POP
LDA
BIT
BNE
JMP

CSL!ST
CTRLWORD
1/02
CTRLWORD
CONTROL
STATUS

see above
ditto
mask for status/control bit
if bit 2 is set, zero flag will be cleared
go d~ a control call
status request

CTRLWORD+1 get control word
I/OEO is it I/O 0000 0000
CODE ZERO yes
#20 is it 111 0010 0000
CODE ONE yes
1/40 is it #2 0100 0000
CODE TWO
1/60 is it 1/3 0110 0000
CODE THREE
I/XBADCODE completion code error
GO BACK

This is the unitstatus call -' control request section

CONTROL
LDA
AND
BEQ
CMP
BEQ
CMP
BEQ
CMP
BEQ
LOX
JMP

CODE ZERO

code for control code zero

LDX #ERRCODE completion code error
JMP GO BACK and report it

CODE ONE

code for control code one

LDX IIERRCODE completion code error
JMP GOBACK and report it



Addendum to Pascal Technical Note #11

; repeat for codes 2 and 3

CODE TWO

Page 17

LDX
JMP

CODE THREE

LDX
JMP

IIERRCODE
GOBACK

IJERRCODE
GO BACK

completion code error
and report it

completion code error
and report it

This is' the unitstatus call - status request section

STATUS
LDA
AND
BEQ
CMP
BEQ
LDX
JMP

SCODE ONE

CTRLWORD+l
110EO
SCODE ONE
1120
SCODE TWO
IIXBADCODE
GO BACK

get <control word
is it #0 0000 0000
yes
is it #1 0010 0000
yes

status code one

LDX IIERRCODE
JMP GOBACK

SCODE TWO

status code two

LDX IIERRCODE
JMP GOBACK

completion code error
and report it

completion code error
and report it

••••••••••••••••••••••••••••••••••••••• , •••••• " •••••••••••••••••• 1.1 •••••
• • , •• , , •• , 11 , 11 , , , • , , , , • , , ••• 11 , 11 , , , , , , , , , , , , , • , • , • , , •••• 11

This is the interrupt handler. Remember that we don't have to save
the context of the system. The code used to check for an interrupt
will have to be changed depending on your hardware.

INTHNDLR

first we check to see if we generated the interrupt



Addendum to ,Pascal ,Technical Note #11 Page 18

LDA
AND
BPL
JMp

FLAG6522
//80
GOAHEAD
NEXT

check for 6522 interrupt flag
mask out bit
if bit was set, we generated it
otherwise goto the next interrupt handler

Since we generated the interrupt, we service it and then return to
the interrupt manager with an 'RTI'

GOAHEAD

interrupt handler code for our card

RTI Go back to the Interrupt Manager

If we got to NEXT, we must have decided that the interrupt was not
generated by us.

NEXT
JMP @JUM.PTO
•END





Apple Pascal Object Module Forcat

Pacal Technical Note # 16

15 October 1981

urrRODOCIION

This document describes the object module format of codefiles currently
produced in the Apple ] ( and II/Pascal systems. The only d1.ffe.t'eI1ce between
the format of the 1( and /1/ codefnes is the informar:ion contained in block 0
as nor:ed below. The P·code for both systems is identical.

A CODEr!lE ON DISKETTE

Codefiles may be unlinked files crear:ed by the compiler or assembler, library
files with units which may be used by programs in other codefiles, . or. linked
files composed of segments ready for execur:ion. All codefiles (linked and
unlinked) consist of a segment dictionary in block 0 of the file followed by a
sequence of one or more code segments up to a total of sixteen segments.

Segments may be linked or unlinked code segments, or data segments for an
intrinsic unit. Code segments may have interface text, code blocks, and li nker
information in that order In blo'cks dn. che diskette, though some of these pa::'ts
may be present only for particularcypes of code segments. For exatlple,
interface text: is only preseat i1'1 code segmenr:s ofunics. Data· segmerics only
have an entry ,in the segment dictionary: they do not' occuPyap.y blos~<on che
diskette since they hav4!nocode, interfa,ce,or linker inf.ormacionassodated
W'ir:h them. The only d.:l.fference ber:ween the . .formatof H and III codefiles is
Che in.f ormation in bldc:.k O.

Each code segment begiti.s on a boundary between diskette blocks (the 512-byte
disk allocation quantUlJ1 used by th7 Apple Pascal operating system) •. Each
segmenr: may occupy many blocks (up to a maximum of 32Kbytes). A typical
codefile is showt1 in rigureO •

.!The following' sections >descri be the parts of" a codefile 'in greater deta.il.
First the segment dictionary is described. Then the part:s of .a codesegmeIlt
are "presented in the order in which they ~ould occur in a file: the interface
part:, the code part:, and finally linker information. The code part description
is broken up into sections describing r:he similarities and differences between
code parts for P-codeand assembly language modules.

SEGKENT DICIIONARY: BLOCK ZERO OF A CODErItE

The segment dictionary in block 0 of a codefile contains info~tion regarding,
name, kin~, relative address and length of each code se~ent. It is

Page 1



i:'e"'!'t'esented 'by a ,,:.recor.4·,presentedbelowc.d.n-,'a pseudo-code presenta'tion and
illustrated in Figure 1.

The segment dictionary contains an ~try for each code or data segment in che
file. (The userprogram main segment is assigned segment number li che sys~em
main segment is assigned segment number O. Both are placed in slot a of cheir
respective codefiles by the compiler. ,This differs from the statement in the
"Pascal Operating System Manual", page 250, ..mich incorrectly states that "the
main program is assigned segment tIO".)

Each segment dictionary entry includes the segment's size (in bytes). This
size 1s set to zero 1f there is no segment in the slot. !he entry also
contains the segment's disk 10cati9n, which is set to a for a data segment of
an intrinsic unit. Blocks in a coderile are numbered sequentially from 0, °
being the segment dictionary. The disk location for non-data segments is givec
as the block number of the first block containing code for the segment.

RECORD {This record is composed of parallel 16 element arrays, one element for
each possi ble segment ,slot in the segment dictionary of a codef ile.}

DISKINFO: ARRAY(0 ••15] OF
R.!CORD

CODELENG, CODEADDR: INTEGER
END;

{The first array is co~osed oe two-.Jord records made up of two
integers representing 'the length of the cocie part of a segment 1n
bytes and the block number of the s~art of the code part of the
segm7nt. On the diskette, the CODE.ADDR field appears before the
CODELENG in each pa1 r • }

SEGNAME:~'ttO~.lS1 OFPAc:o:D ARRAY[9.~tl OF. <:eAR;
{'!his !sa sixteen element array of eight character arrays ..mich
describe the segments by name. These eight characters are those
which identify tae main program and its segment procedures at compile
time. Unused segment sloes have name fiel.ds filled with ught
ASCII space characters; if the oatl1e is less. than e.i ght charact ers it
is padded on the right by spaces; 1£ ehe name 1s. longer than eight
characters, it is truncated. Note that a blank field is allowed for
au existing code segment. CODELENG-O should be used to dete~ne an
empty slot:.j

S'EGUND: j;U,AY [0 •.• 15] OF

{The ne~ array describes the kind of segment
particular entry locat:ion of the dictionary.
values are described below.}

in the
!he possible

(LINKED, {-e. !his represents a fully executable segment.
Either all external references (regular UNITS or ~TE~~ALS

or .REFs) have been resolved, or none were present.}

aOSTSEG, {-l. This represents the outer block of a Pascal

Page 2



..program if·.···th-e· program' -has "unresolved ''eX'te-rnal
references.}

SEGPROC, {-2. A Pascal segment procedure. !his type is not
currently used.}

UNI'ISEG, {-3 •
unit. }

SEl'R'l'SEG, {-4 •
functions.
type. }

A compiled regular (as opposed to intrinsic)

A separately compiled (set of) procedures or
Assembly language codefiles are always of this

UNL!NKED-!N'IRL~S, {-So An intrinsic unit containing
unresolved calls to assembly language procedures or
functioUs • }

LINKED-INTRINS, {-6. An intrinsic unit in its final,
ready-eo-run state.}

DAXASEG)j {-7. A specification of the data segment associated
~1th an intrinsic' uni t telling how .many bytes 1:0 allocate
and which segment to use.}

n::t'IADDR: ARRAY [o•• 151 OF I.NTI:GERj {'!his array of integers g1 ves the
block number of the start of the int.erface part of each regular or
intrinsic unit. The last block of ,theintedace secUon is infer-red
f-r~m CODEADDR-l. Array elements cor-responl1ing to non-uni I: segments
have the value zero. Seg-cents .are stored with th~ir interface blocks
(if any) first, followed bythet.r code part blocks and finally their
linker information. blocks (containing. ~ymbol •• table elements for items
Wledbut. netdt!.fined in the . segment or for items de..fined in the
segment and externally .accessible. ) Linker informations records are
described in detail belo~.}

SEGINFO: PACKED ARRAY [0 ••15] OF
{This array has one word per segment entry.J

PACK!D . RE CORD

SEGNUM: O•• 255

{Bi ts 0 through 7 (t~.elo~orde.rbi ts of each word
specify the> segtnent number for that code. This is
the.~?sition the code segment will occupy in the
system's SEGIABLE at execution time. This table is 32
elem~l:l.ts long in the Apple .l[ and 64 ele::lents long in I:he
Apple III. Thus valid numbers for the first field are
0 ••31 on the ]( and 0 •• 63 on the III.

The run time segment table contains an entry for each
segment thae is used in executing the program. There are
eneries for 6 segmenes thae the system uses when
execueing a user program on ehe J [; on the III, 8

Page 3



segments ,au ..wied ,by....the ..Pascai ,~rating 'system. There
is an entry for each segment in the se~ent dictionary of
the program's code file. Finally, there ~s an ent=; :or
each code and data segment of each intrinsic ~nit.

At run time no tyO segments in the segment table can have
the same number since the numbers are used to indeY- the
table. A number is, assigned to' a program segment when an
entry is created for it in the code file's segment
dictionary. The main program has segment number 1. 7ne
segments used by the system are 0 and 2 •• 6 on the ][ and
III and, additionally, 62 and 63 on the III. Also,
segments 59 through 61 are reserved for use by the
system. !he segment number of an intrinsic ur~t is
determined by the unit's head:ia~-when the unit is
cOt$iled. (!hese numbers&'n-;f;eo.:rotmd by examining the
segment dictionary of the SYSI!~LIaRARY file ~ith the
LIBMAP or LIBRARY utility programs.) The segment numbers
of regular unit se~ents and of segment pocedures and
~unctions are automatically assigned by the system; they
begin at 7 and ascend. Note that after a regular unit is
linked into a program, it may not have the same se~ent

number shown for it in the library's segment dictionary
~hen the library is examined w1th LI~~~.

Since the Pascal system itself uses 6 slots on the 1[ and
8 slots on, the 1/1 in the runtime SEG'IABLE, this means
that a program can have 26 use:' defined or intrinsic
segments (6+26-32) on the ] [. A code: ile is, as >:e have
seen, limited to 16 segments by the number of spaces in
the segm~~t. dicti0l1.at'7; this is trueJor both user
codefiles;m~ the StS'!EM.~I~P..AR.'IC94l!file...Thus on the
] (,16 of the 26~atl~1t1. thl'!)USer's codefile\wmle the
excess over 16 could be intri,nsics. On the I /I ,there
are 64 possible segments. Ho~ever, the maximum ~hich can
be used is 56: 8 for the system, a maxi~ of .16 for the
user program, up to 16 user. program library code or data
segments, and up to 16 system library code or data
segments. &+16+1&+16-56.

Thus, segment numbers of the program itself., the segments
used by the Pascal system, and of any intrinsic units
used. by the pt'ogr~lJ1 are fi.xed before. the program is
coarp1led'; .the. segments ...0# regular units and of segment
procedures. and functions •. are .. not.f1x~d and are aSsigned
as the program is compiled and litl.~ed in ascending
sequence beginning ~ith 7. Normally, users oeed to
specifysegmerttrt'Umbers only when 'Iort'lting an intrinsic
unit. !he choice cust avoid the fixed nucbers 0 •• 6 (and
59 through 63 on 'the /1 /) or any other intrins'ic unit
whi~h may be used in the sa~e progra~ as :he unit being
wt'i tten. In particular, the "magic uni ts" l?A.SCALIO and
LONGINTIO occupy segments numbers 30 and 31.

Page 4



'~Intrinsic' unit segment numbers must also avoid contlic:
~ith numbers which may be assigned automatically to
regular units and segment procedures. However, when

. unavoidable conflicts arise,· the "Next Segmen~" compiler
option described in the "Apple Pascal Language ~nual

.{ Addendum" may be used to set the segment number to another
value. }

MTn'E: O•• 1.5 ;

{The second byte in che SEGINFO ~ord has in bits 8
through 11 the "machine type" ~hich tells what kind of
code is present in the code segment. The ~chine types
are:

o Unidentified code. P.erhaps from a previous
compiler.

1 P-code, most significant byte first.

2 P-code, least significant byte first. A
stream of packed ASCII characters fills the low
byte of a word first, then the high byte. !his is
the kind of P-code used by Apple.

3 through 9 Assembled machine code, produced f~om

assembly-language text.. Machine type 7 identifies
machine eodefor Apple's 6502.}

UNUSED: 0 •• 1;

VDtSION: 0 •• 7

{The version number. of the system.. On the· Apple ] ( the
current version number is 2; on the Apple III the cuneot
version number is 3.}

END;

!N!RINS~SEGS: {ON !BE ](} StTOF 0••31;
{ON 'IRE II/} SET OF O•• 63;

{Ihese"~ords (two on the ](, four on the /11) tell the system ..mieh
intr1.nsi~1lUits art! ·needed in order to execute the .codefile. Each
int.rinsic 1lUit in SYsn:M.LIBRARY (and in. the program libFary on the
Apple ///).is identified by a segmeot number (or two segment numbers
1f the intrillSic unit has. a data segment.). Each of the bi ts in these
words cor-respond to one. of the thirt,.-t;Jo or sixt'Y... four possible
intrinsic segment ~umbers. If the n-th bit is set to 1, this
Indicates. tne program needs the intrinsic uni t whose seg::ent number
in SYS'ttM.LIBR.A.RY (or in the program librar).. on the Apple III) is n.}

IN"l'-NAM-CH:ECXSUM: {Only on the II/}
. PACKED ARRAY[0 •• 63J OF 0 •• 255;

Page 5



{These fields contain eighc-bic checksums of che names of intrinsic
units needed to run the codefile. Each entry corresponds to one of
the sixty-four possible intrinsic segment numbers on the {I/o

The checksum is calculated by shifting the characters of che UNI:
name to upper case and adding up che resulting ASCII values of t~e

chara.cters of the tJN!T name ~OD 256. The name is· padded with spaces
on the right if it is shorter than eight characters; it is truncated
to eight characters if it is longer than eight characters. Padding
spaces are included in che checksums. Elements corresponding to
unused segment numbers are set to zero.

These words are nQt used on the ](i they must be zeroed.}

{UNU SED JUNK (FII..UO WIIR ZEROES) FOLLOWED BY}

COMMENT: PACKED ARRAY [0 •• 79] OF caAR
{the text follOWing a Comment compiler option, starting in byte 432 of
the header}

END;

Code segments for units may hav~ an I~~RFACE part ~fore their associated code
blocks. This concains the ASCII' teAt of the INTERFACE declaration in the
source code of the UNIT. The construction or an INTERrACE part of a code
segment from its source code is shown in Figure 2.

!he Pascal compiler emits two block pages (1024 bytes) of text which are
identical to the. sp\lrce text blocks except for the ·firsteutd last pages. The
in.for:na.tion in the Ur~t page is moved up so the.first character in the page is
che character follOWing "IN'l'DU'ACE" in the original source. This may leave a
considerable amount of unused characters in the first page. Useful information
is terminated by a CR and followed by at least one ASCII NULL character (byte
value 0). The last page is truncated after che. token ".IMFLEMENTATION"; i.t is
possi ble that only one block of this page may bf! puc out if "I}!PLEMENTA!ION"
occurs in the first block of the page.

There is some special encoding af.ter the tok.en "IMPLEMEN'I'.A1'ION." The
immediately foll0r.w:(ng t.en chara.cters are cOllI9osed .0£ ASCIIspacesexcepc for an
"E" iIi the nint~. positio~. . '!h:is is required <by the Pascal compiler ~d
librarian program. to .terminate the .interface section. .A "p" m..ay occur instead
of a space in the second of the ten character positions to signify to the
Pascal compiler that che unit requires che PASCA.LIO unit. The fourt~position

may be occupied by a.ll '''Lit 1£ the unit requites the LONGINTIO unic. Failure to
include these can cause the system units not to be loaded when needed ~using a
system crash. Note chat these items--!XFtEXE~~ATIO~, E, P, and L--are all
taken to be tokens by che compiler; thus, the order is significant, che spacing
and case is not.

The INTERFACE cext is not stripped of ~~cess non-printing characters or

Page 6



'comments and 'is accessed 'by the compiler when the UNI! is USEd by, ~other
program. Leaving the comments in the INTERFACE part could lead to more
complete internal program documentation but may increase size 0: codefile.

,ThiS text is not necessary for execution.

!he address of the INTERFACE part is given as a block number relative :0 :he
start of the code file in the !EX!ADDR field described below. Tnis field is
zero for segme~s which are not UNIT code segments or do not have an inte=:ace. .
text.

CODE PAltTS

As has been mentioned, all non-data segments appear on the diskette as the text
of an interface part (if the segment is a regular or intrinsic unit) followed

"by code blocks followed by link.er information (if the segment has undefined
element's or has elements 'which may be linked to other modules.) Data segments
for intrinsic units do. not. occupy any disk blocks.

All code parts have the same general format illustrated in Figure 3. Each code
part contains code for that segment's outer block, as well as the code for each
of the (non~segment) procedures'within that segment. Following code for
various procedures associated with the segment is the procedure dictionary a.t'
the high address indicated by the CODELtNG field of the associated entry in the
segment dictionary in block· 0 of~ the codefile. This procedure dictionarygtows
down; the code starts at the firSt byte of the block flpedfied in the CODEADDR ,
:ield of the segment dictionary and grows up.'

Each procedure in a code part is assigned a procedure number starting at 1 f~r

the outer block (the Ill&inprog't'aID; o.r segII1ent procedure) and ranging as high as
160. All references<to aproc~dur~ are madev1a HStlU1l1ber. !ranslationfrom'
a procedure's number to the loc:.ation of that procedure's code in the code
segment is accomplished via the procedure dictionary at the end of the seg=ent.
This dictionary is an array indexed by the. pr9cedure number. Each array entry
is a self-relatiVI! pointer to the code for the corresponding procedure.J Since
the procedure dictionary starts at .. the high end' of a code segment and works
down toward lower addresses, the term "self relative pointer" could be
ambiguous: it could be positive or negative depending on interpretation!. In
all that follows, a self relative pointer is taken to be .the absolute distance
(in bytes, a positive integer riumber)be.tween the. low order byte of the pointer
and. the low order byte of the wo.rd to wtU..chit poincs.] In other words, you
subtract the pointer from its 'location to find the word pointed to.

Since zero 1s not a valid procedure cumber, .the :;ero-ch entry of the dic:ionaty
is used to 'seore the segIll:nt l1t1lJ1bel:' of the cqde segment in the low order
(even) byte and the ~berof procedures in that code segment in the high order
(odd) byte. The segment aumber corresponds to the value in the SEGNUH field of
the segment dictionary entry.

!here are currently two fo~ of code contained in procedures: P-code and
assembly language (or 'I1.A for "The Last Assembler", the familiar name of the
assembler. currently in use in the Apple Pascal sys tem). Each procedure's code

Page 7



:section.consises of ...cwo·'.parts: ,-the ..procedure code its-elf (in ~he"l~wer -p-or-:ion
of the section growing up toward higher addresses) and a cable of ~ttributes of
the procedure pointed to by the entry in the procedure dictionary. This table
of attributes is loosely known as the Jump Table (jIAE) , a term cor~ properly
used to refer only to a portion of the table in P-code procedures. The for=at
of the attribUte table for a !LA procedure is very different from that for a
P-code procedure. These formats are described in the following two sections •

.
While the compiler and the assembler produce "pure" P-code or nA code
sections, it is possible to produce segments with mixed procedure code type
using the Linker. In this case the MrYPE field in the segment dictionary is
set to 'the value for assembly language code, because the code for that segment
is now machine specitic. The interpreter is. able to detercine the type of code
of a particular procedure via information contained in the procedure's
attribute table as is discussed below.

P-CODE PROCEDURE AITRIBUTE !ABLES

The format of a P-code attribute table is illustrated in Figure 4. The
contents of the P-code attribute table are:

PROCEDURE ~ER: Low order, even byte of the word pointed to by the
segment dictionary entry. Refers to the number given this procedure in the
procedure dictionary of the parent code segment.

u:t LEVEL: High order, odd byte of the same word·. Specifies' the absolute
lexical nesting level for the procedure.

EN1U. Ie: A self-re.lati"1epoi'nter (again, a positive number, pointing back)
to the first p-c:ode inst1:"Uet:ion to be executed for the procedure.

EXI! IC: A self-relative pointert:o the beginning of the block of p-code
instructions which lIIUst be executed to terminate. the procedure properly.

PARAME'I'ER SIZE: The number of words of paramet ers passed to a procedure
from its caller.

DATA SIZE: The size of the proc:edure'sactivacion record in bytes,
excluding the Markstac:k and PAR.AME'I'ER SIZE. The activation record ineludes
yariables and temporary space used by the procedure.

Between these attributes and the' procedure code there may be an optional
section called the "jump cable". Its entries . are addresseS'lJ'ithin the
procedure code (as self-relative pointers). During execution, the J7AE system
register points to the attributes and jul:tp table sectio.n of the currently
executing procedure (points to the byte containing the procedure nuober).

In executing jumps in P-code, a juop opcode has a single byte ope~and. This is
a signed offset: the high order byte is taken to be the sign extension of bit,
7. If the offset is non-negative (a short forward juop) , it is added to the

Page 8



interpreter program 'counter, !PC. (A value of zero for. ch..e jump. of.!set ..makes
any jump a ~o-byte NOP.) If it is negative (a backward or long forward jUQ?) ,
chen the operand D!V 2 is used as a word offset into JTAB to find a .
self-relative pointer', and che instruction program counter is chen set Co che by~e

address (JTA]-[operand DIV 2]) - contents of (JTAE(operand D!V 2J).'

ASSEMBLY LANGUAGE (!LA) PROCEDURE .~I3UTE ~~LES

The format of' a JTAB for an assembly procedure is very different from that for
a P-code procedure. It is illustrated in Figure 5.

:he highest word in the JTAB in an assembly procedure always has a zero in its
PROaDURE NUMBER field. In what was theLEXtEVn field of a ?-code procedure
JTAB (the high order byte) is ei ther a zero (indicating that. BASE R:E1.A!IVt:
relocation is Co be relative to ehe>host program activation record) or a
non-zero number (indicating the number of the segment relative to which BASE
RELAXIVE relocation s~ould take place.) In ehe c:ase of INn.INSIC units wiehout
explicitly specified data segments, ehe number placed in this field is 1. When
the interpreter encounters a zero in the procedure number field as it loads che

I segment, it realizes it must fix up references in the '!'LA code according co
information contained in the rest of the attribute table.

The second highest word of the attribute table is, as before, the ENTER
IC: the self-relative pointer to the first instruction to be. executed for this
procedure. Following this arefbur relocation tablec- used by the interpreter
at fiX-Up time.

Working down from the high addres.! start of the. J'IA.B....e.~counte1;' in order the
BASE RELAIIVE, SEGMENT RELA:rIVE)'; SEI..r RE.I.A!IVE' •••• and ••. INttRl'RE'!ER... RELATIVE
relocation tables. The fOt"mat of all .of these tables is the same: the highest
address word of each table specifies ..the numger of entri.es (possibly zero)
which follow (at lower diskette addresses) in the table. Then. follows that
many single-word entries, Which are self rela.cive pointers to locations in ehe
code 1Jh1c.h must be "fixed up" by the addition of the appropriate relative
relocation constantknotom to' the i.nterpreter at load time.

In the c:ase of the BASE REl..A!IVE relocal::ion .table,th.e .value contained in the
,interpreter'sB.A.SE pseudo-register is added 1£ the u:x LEVEL (high order) byte
lot the procedure's attribute ta.ble is zero; if the byte is non-zero, the
relocations W'ill be relative. t~ .the segt11ent whose segment number is contained
in the field. The BAS!r:gister is .a p~in5er. to theactivat10n record of the
most recently invoked base procedure (lexical level 0) ~ Global (lex level 0)
variables are accessed by indexing off BASE. !he '!LA .?UBUC and .PRIVAIE
constructs define those entities whose use results in entries into . this table.

In the case of the SEGMENT RELAIIVE table, the value of the address of the
lowest byte in the segment is added. The !LA .REF and .DEF are che relevant
cons tructs •

SELF RELAIIVE items have the procedure address (i.e., the address of che lowes:
byte in tpe procedure) added.

Page 9



!h'1'ERPRE'l'Dt REU!IVE· i"tems "access ~he Pascal interpreter ?rocedures or
variables. !hey should never be used.

LINKER L~FORMA!ION

Following the code part of a segment there may be Linker information. The
starting location of linker information is not included in the segment
dictionary as was the caSe with the starting location of the interface and code
parts. It ~st be inferred. Linker information items may be present for
unlinked code segments (i.e., a segment containing unresolved external
references) as well as for segments containing items ~~ich ~y be referenced
from other segments (e.g., ,PReC and ,ruNC elements in asse~bly language
programs which may be accessed as EXl'tRNAL PROCEDURES and FUNCTIONS.) 'The
Linker information begins at the first block boundary following the last block
of code for a segment. It 1s desc:.ribed in detail below. The linker
information is a series of records, one for each unit, routine or variable
whi ch is ref erenced bU,t not defined in the source as well as. records for it el!1s
defined to be accessible from other modules. There are records for the
following types of items:

Htypes •

{OJ (EOFMARK, {end-of link-information marker}

{External reference types~ designates fields to be updated by the
linker}

{1} U'NInEF, {references to invisibly used units- i.e." a reference ill
one unit ...t0a.n9ther.uni~ •.. ased itl.thecase.of one non-intrinsic
un:!. t using another non-intrinsic uui. t.}

{2} GLOBREF,{referencesto exterful1 global.addt'esses: tesults from a
.REF construct in an assembly language. program. }

{3} PUBLREF, {refereIlcesto a V'ari.ible in the global data segcent of the host
program: results from a. .!'trBLIC in assembly language code or use
of vadables declared .in the. I~ltFACEipat'1;<of regular units. (They
are stored in anoth"er segment in intrinsic un.its ...... the data segtlent
of the unit .. ) "

{4} PR.IV1tE:E', {references to V'aria.bles:.of an asselnbly langu.a.ge routine or
regular<uni.t to be··stored inthe.host.program's··global data segment
and yet bEtit1.a.ccessible to the host program. Space is allocated by
the Linker. Generated by'PRIYA'!.E in assembly language. Also, .
generated by use of global variables declared in the !~LE~iArION

part of regular units. (In intrinsic units, these are also scored
in the data segment of the unit.)"

{S} CONSTREF, {references to a globally declared constant in the hose
prograQ. Generated by .CO~S! in assecbly language,

Page 10



'{defining r:ypes :-gi,ves linker values r:o fix references}

{6} GLOBDEF) {Global address locar:ion. Generated by .DEF (and .PROe and
.FUNC) in'assembly language}

{7} PUBLDEF) {A variable location in r:he host program. Generated by VA:;..
declaration in Pascal}

(8} CONS!DEF, {A host program constanr: definicion. Generated by CONST~~
in Pascal.}

{procedure/function information:
Assembler r:o Pascal and Pascal co Pascal interfaces}

m ..EXTPROC) { Referen~es to procedure declared co be external in
Pascal: generated by PROCEDtJRE ••• O::rZRNAL}

-{IO} EX!ruNC, { References Co function declared to be external in
Pascal: generated by ~CTION •••~TERNAL}

{ll} $EPPROC, {Separate Procedure definition co be linked into Pascal:
generated by .PROC in assembly language.}

'{ 12} SEPFUNC, {Separate Function definition to be linked inr:o Pascal:
'generated by .FUNC in assembly language.}

{13} SEPPREF, {Not currently used. Was once used for references r:o
procedures in a "separate unit", a concept: yhich has been removed
from the current implementation.}·

{14} S-~FREF) {Not currently used. Was once used for references to
functions in a "separate tmi til) a concept yhich has been removed
from che current implementation.}

The exact format of data in the linker information block is dependent on the
type of entir:y. They are described by the folloYing record.

OPFORMAT • (WORD,BYTE,BIG);
LI~Y • RECORD

NAME: PACKI:D AR.RAY[ 0 •• 7) OF CRAR.; { !he name of the syc.boL }

CASE LInPE: LI'I'n'ES OF

GLOBREF,
PtTBLREF,
PlUVREF,
CONS1"R.EF,
UNI'IREF,

SEPPREF, {Not currently used}
SEPFREF: {Not currently used}

(FOR.'1A!; OPFOR.."'LA..T; (The fot'1!1at of the operand :epresented by

Page 11



the named (and cunently undefined). symbol. ,~y.be BIG, BY-:=:
or WORD. (See page 229 of the '~ascal Operating System
Manual".)}

NREFS: INTEGER; {The number of references to this s~bol in :~e
compiled code segment. There will be this number of pointers
after this record into the code segment. !hese specify :he
addresses of references to the symbol.}

NWORDS: LCRANGE; {where L~GE is 1..~L;XLC, currently ~.AXI~~T.

This field is meaningful only in the case of a PRIVREF type
in which case it is the size of the privates in words.}

GLOBDEF:

(HOMEPROC: PROCRANGE; {which procedure the global definition
appears in.}

ICOITSEI: ICRANGE)j {The byte offset of the occurence in
ass~mbly language. IC stands for instruction count.}

PO'Bt.DEF:

(BASEOFFSEI: LCRANG!); {compiler assigned word offset into host
program data segment.}

CONSIDEF:

(CONSTVAL: I17EGER); {User's defined value}

EXTPROC, EXIroNC, SEPPROC, SEPFUNC~

(SRCPROC~ PROCltANGE; {PROCltANGE· 1••M.AXPROC. MAXPROC is
currently 160. !his field is the procedure number of this
procedure definition in its source segment.}

N13ARAMS: IN'I"EGER); {Number of parameters expected (really
number of words of parameters e~ected).}

EOFMA.RK:

(NEXnASELC: LCRANGE; {Pr'ivate variable· allocation
information-- amount of space the host used in its data area.
Meaningful only for bost segments.}

PRIVDA!ASEG~ SEGNUMBER); {Data segment number associated with
intrinsic uni t code segment. Otherwise oot used.}

If the LITYPE is one of the first case variants, then folloWing this portion of
the record is a list of pointers into the code segment. Each of these pointers
is the absolute byte address within the code segment of the reference to the
variable, tTh'"IT or routine named in the LIE~7RY. !his pointer list is contained
in eight-word records, but only the first «~F-l) ~OD 8)+1' iJords of the las:
record ar~ valid.

Page 12



APPENDIX: SUMMARY OF L"1POR.TAN1' RECORD DEFINITIONS

I _ SEGMENT DICTIONARY: BLOCK ZERO OF A CODEFIU

RECORD

nISKL~F6: ARRAY(0 •• 15] OF
RECORD

CODELENG, COD~~DR.: INTEGER
END;

SEGN~~: ARRAY(0 •• 15] OF PACKED .~Y(0 •• 7] OF caARj

SEGKIND: ARRAY (0 •• 15] OF
(LINKED,
HOSTstG,
SEGPROC,
ON1TS~G,

SEPR.TSEG,
tJ'NLINKED-INTRINS ,
LI1"Ia:D- IN'l'1UNS ,
DAIASEG); .

TIXTADDR.: ARRAY(0 •• 15] OF IN'rEGERj

SEGINFO: PACKED ARRAY(0.~15] OF
PACKED RECORD .

SEGNUM:
M'!n'E:
O'NUSED:
VERSION:

O•• 255
O••15;

O••1;
0 ...7

END-,

Im'RINS-SEGS: {ON IRE] [} SET OFO •• 31 ;
{ON !HE III} SET OF 0•• 63;

INT-NAM-O:IECKStJM: {Only on the I/I}
PACKED ARRAY(0 •• 63] OF 0•• 255;

{These yords are llOt used on the ] (; they lI1USt be zeroeet.}

{TJNO'SED JUNK (FII.U:D W'rm ZEROES) FOLLOWED BY}

COMMENT: PACKED ARRAY [0 •• 79J OF aaAR
{the text folloYing a Comment compiler option, star:ing in byte 432 of
the header}

END;

Page 13



II. LINKER INFORMATION

The linker information is a series of records, one for each unit,
routine or variable which is referenced but not defined in the source as
as records for items defined to be accessible from other modules. !here
records ·for the following types of items:

li types •

well
are

(EOFMARK, {end-of link-information marker}
Uh~!REF, {references to invisibly used units.}
GLOBREF, {references to external global addresses.}
PUBLREF, {references to a variable in the global data segment of the

host ,program.}
PRlVREF, {references to variables of an assembly language routine :0

be stored in the host program's global data segment and yet be
inaccessible to the host program.}

CONSTREF, {references to a globally declared constant in the host
program.} .

GLOBDEF, {Glpbal address location.}
PUBLDEF, {A variable location in tile host progra:m.}
CONS'rDEF, {A host program constant definition.}
EXTPROC, { References to procedure declared to be external in

Pascal. }
EXIFUNC, { References to function declared to be external in

Pascal. }
SEPPROC, {Separate Procedure definition to be linked into Pascal.}
SEPFUNC, {Separate Function definition to ~ linked into Pascal.}
SEPPREF, {Not cunently used:}
SEPFREF); {Not currently used.}

The exact formac: of data 'in the li:c.k.er information block .. is deperident on the
type of entity. They are described by the following record.

LmrrRY • RECORD

NAME: PACKED ARRAY(O •• 7j OF CB.AR; { The nameo£ the sy:J.bol.

CASE LIIYPE: LI~ES OF

GLOBREF,
PtrnI.UF,
PRIVRE.F ,
CONS!"REF,
ONITREF,

SEPPREF, {Noe cunenely used}
SEPFRtF: {Not currently used}

(FORMAT: OPFO~~~I; {The fo~t of the operand represented by
the named (and currently l.lndefined) s;"t:lbol. ~.ay be arc, BY:::
or WORD.)}

,
~!'REFS: :mn:CER; {The number of references :'0 :.his s)"":lbol in :he

Page 14



· compiled code segment. .There will be this number of pointers
after this record into the code segment. These specify the
addresses of references to the s~bol.}

NWORDS: LCRANGE;
This field is
in which case

GLOBDEF:

{where LCRANGE is 1 •• MAX.LC, current:ly ~ L"IT •
meaningful only in t:he case of a PRIVREF t:ype

it is the size of the privates in words.}

(HOMEPROC: PROCRANGE; {which procedure the global definition
appears in.}

!COFFSEI: I~~GE)i {The byte offset of the occurence in
.assembly language. IC stands for ins truction count.}

PUBLDEF:

(BASEOr.rSEI: LCRANGE)j {compiler assigned word offset into host
pro~ram data segment.}

CONS'IDEF:

(CONSTVAL: INTZGER)i {User's defined value}

EATPROC, !XIFUNC, SEPPROC {not used}, SEPFUNC {not used}:

(SRCPROC: PROCRANGE; {PROCRANGE. 1•• ~_A,.~PROC. MA.'<PROC is
currently 160 •• This field is the procedure n~~ber of this
procedure definit:ion in its source segment.}

NPARAMS: INIEGER)j {Number of p4rameters expected (really
number of words of par~eters expected).}

EOFMARK:

(N!XIBASELC: LCRANGE; {Private variable allocation
information-- amount of space the host used in its data area.
~eaningful only for host segments.}

PRIVDA!ASEG: SEGNUMBER).j {Data segment number associated with
intrinsic unit code segment. Otherwise not used.}

Page 1.5



FI~O'RE 0: !HE CODEFILE ON DISKE~~£:

A mICAL CODEnLE

n + 1 n

(see Figure 1) byte 0

Block a Segment
(256 words) Dicxionary

'---__..---_..J byte 510

Only Unit code segments have the
Interface Part.

Interface, Code, and Linker
~arts start on block boundaries.

n + 1 n
-/

k 1 Interface
Part.-~--_ ....-----

k 2

---~

k 3

.

k 4 Code Part

en

k 5 -

k 6

ck 7

k 8 Linker
Inf0 rni.a.t: ion

ck 9

Bloc

Bloc

Bloc

Bloc

Blo

Bloc

Bloc

Blo

.noc

First Code Segm

7

Code Part

Block 10

Second Code Se~~~----

Linker
InformationI

---1..-l-------_-I
I

Block 11

-------_._-_ ..



DISK INFO

CO'DEADDR
CODELENG

(0)

OS)
(15)

" 1

30
31

2

3

4

5

SE~A-~i

~ame is truncat~d

if greater than 8
characters; padded
with spaces if less
than 8 characters

" ·CHAR (1) · CHAR (0) 3·1-- ·· 3· -· 3·
CHAR (7) · 3··-< •· 9

9. . . 9.
9

2

3
4 -.::.- .~=~~E~~AME ( 1.5)

5

SEGKrnD

193

SEG Itnrn ,{,I
1::::::==::========_ S"EGJmm

225

'I'EX'I'ADDR:
Block Address of
interface part
text for units.

{:,....-:-X"1'-;..n-:'p-:-:-------...,

SEGINFO

ON' ~! ON /11 .
IS I

I , I i j I I I I I I j 1
0 144 IS I I I j I I I I I I I I I 10

;

31
,

16 145 31 16

~VlII?ZZZIZTJZ//OZZl/jj 146

47 32

A1 , 48·

145

146

147

144

CHAR (0) 1216

CHAR (78) 1253

I
. I

. ClIKSlJM (1) =suM (0) I}14~'"I"_l-cr....s,
.I CB:KSTJM (63) CHKSUM (62) I 179 I

i
Vlllllllllllllll I I I IJ}180 i

; mros~

VOllllZ7Z2777ZZ11171 215

·•···••····•··········VIlZlmzzzZiz//7 IIZllld 215

{
f CHAR (1)

I CHAR (79)

COMMEm':
80 characters from
comment compiler

;option



Page n
(2 blocks)

IIlterface---------const

Block 2

Standard textfile page
format (stored in TEXTADDR

. 1 ~~ ~~~~ n'c:ionary)
Interface ?a=
of Codef::':e

A: . Block m

garbage

Block :n + 1

Page n +1

procedure B; pt:ocedure Bj

· ·· Block 2(n + 1) ·
· ·

~ -· 2(n 't 1)+1 ·· Block ·· ·
copied intact

Page n + 2

··

SaURO: 'I'Dcr

Block 2 (n + 2)

Block 2(n + 2)+ 1

Implementation
(unit info)

···
Standard textfile form~t

except unused block may be
omitted.
(unit info P,t, and E
characters referred to in
the text.)
!N'!'D..FAC:E: .S:E:c:nON
OF COtlU'IU:

'Valid data iIl· each. block of a text file end with an ASCII aASCII null
character sequence.



LOW AD
- ~-

D~______

I " -I
I I
I I
I OPTIONAl I
I J!JMP TABU I

I
DATA SIZE ill BYTES l
PARA.~lER SIZE Dr BYTES I

I
'En! IC I

I
E:N'In. IC I

u:K u:vEI.1 FROe II Itf

Self relati"Je
pointers :0 co~~

HIGH ADDRESSES
tl -+- 1 n

nGURE 5:' n.A ASS:E:HBLY UNGOAGE PROCz:ntrRE AT!RI:3!J"I'E !A.BL!

nrrnu'P..En:R
JU:I.;A'l'IVE
R.l;.,.OCATION TABU

SZU'- RD:.A'I'IVE
RELOenON
l'.A.BU

SEQ!EN1'
REt..A.n:VE
!ELOCA.nON '!ABU

BASE RD:.A'I'IVE
'?!LOCATION
'l'..o\l3LE

~t"~~'l:'~

· }· Q WORDS··- · Stu'- Rt!.A1'IVE··· POnT!RS·, · -·
I! ENTRIES • (0)

·· }p W9~S·· - -· Sztr-~t"'T· ,Vi:.·· POIN'I'ERS···
!J EN'l'lUtS • (P)

O}: M.WORDS
:' stLi-~rrn
: .... nRS.
··

It ~s • (~)

· }· N WORDS··· Sn.7- R..'C1..ATIVE··· P1"?.S.···
(,f EnRIES "" (N)

~l~R Ie
I

R....'C'toe. SEC. NO. I ?R~Cn ~"UM. ,
ill? (')

To sta.rt: of
procedure code

R!C? ADDRESSES
n .,. 1 n



O'I'HDt
PROCEDURES

OJ ... \,,) \';'l'.. ~ l.,u," c;. ~ \",on l:a~"'lec ::.:-.
Codeadd:- -::'e.lc.
.of Segment
Dictionary)

+----------..,-----*.
CODE

, .,.,

O'l'IiER PROc::DURES

.Because of nesting, procedu=e~

need not be in any obvious
order on the diskecce .

-r----

CODE

-+-----
~~

ATl1U:strtt· t.Al3U:
PROCEDURE () 1 +-t-i-+-----............-----...l--:-1"1-~-4----
PTR TO PROe tIN t I--J._...;..;;.;;.;....:..::....::..:.::.::..::.....::..:.:.................--.....J .._,- .....;.· ~-I Procedure

PTRTO PROe 111 _..... Dictionary

Number of I Segment -- I
'0_",,,, A"''''''''''' \1, ....1-...... •......_""':'O'............::.;:l"....J,....;.;:~:.::.::.=__ __..l_. _.:.. _

0+1 B~e n Need not end on block
boundary

-i-------..,..-----+ .-
eOMUNG
BYT".:.S

.;."be several

..Jcks long)

Jdeleng stored
~ segment dictiona

---- - -l

RIGH ADDRESSES Follo~ed bv li:'.ke~ inior--a:ion
or by na~t' se~ent, i: any.



APPLE COMPUTER, INC.
20525 Mariani Avenue
Cupertino, CA 95014

PASCAL TECHNICAL NOTE H20
APPLE II PASCAL 1.2

VOLUME MANAGER UNIT TECHNICAL SPECIFICATION
(January 1984)

For further information contact:
PCS Developer Technical Support
MIS 22-W, Phone (408) 996-1010

Disclaimer~!bhWarranties ~ Liabilities

Apple Computer, Inc.-maKesno-warranties, either express or implied, with
respect to this documentation or with respect to the software "described in
this documentation, its quality, performance, merchantability, or fitness for
any particular purpose. Apple Computer, Inc. software is sold or licensed
"as is". The entire risk as to its quality and performance is with the
vendor. Should the programs prove defective folowing their purchase, the
vendor (and not Apple Computer, Inc., its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or correction and
any incidental or consequential damages. In no event will Apple Computer,
Inc. be liable for direct, indirect, incidental, or consequential damages
resulting from any defect in the software, even if Apple Computer, Inc. has
been advised of the possibility of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved.
may not, in whole or part, be copied, photocopied, reproduced,
reduced to any electronic medium or machine readable form
consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010

Notice

This document
translated or

without prior

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.





VOLUME MANAGER TECHNICAL SPECIFICATION

INTRODUCTION

Apple II Pascal release 1.2 only supports the UCSD file format. With the
introduction of the Profile for use with the Apple II, the ProDOS operating
system has been chosen as the operating system for the support of large mass
storage devices. Clearly, the UCSD file format and thus the use of Pascal
with a Profile is severely limited (i.e. non-existent) unless there is some
means for Pascal to share the resources of the Profile with ProDOS.

The Pascal Profile Manager is a collective term for a set of programs
that allow Pascal to share the Profile with ProDOS. These programs supply
both user and programatic means to allocate and deallocate Pascal space on the
Profile and to assign UCSD file format volumes (known as pseudo-volumes) to
the Pascal area of the disk. These pseudo-volumes act analogously to the
standard UCSD volumes that currently are found on floppies.

The Volume Manager Unit is a programatic means by which an application
program can take advantage of the Profile for the storing of both data and
code files. Use of the Volume Manager Unit assumes that the end-user has the
PPM program and has already created a Pascal Area on hislher Profile. This
unit allows a program to create and manage pseudo-volumes on a Profile. Its
functions are:

a. Create a Pascal pseudo-volume.
b. Delete a Pascal pseudo-volume.
c. Assign a pseudo-volume for use.
d. Release a psedo-volume from use.
e. Set or clear write-protection for a pseudo-volume.
f. '''!Crunch'' the Pascal region of the Profile to give

space back to ProDOS.
g. Modify the name andlor description field of a pseudo­

volume
h. Select the Profile drive to act upon
i. Get the current contents of the Pascal area volume

directory
j. Get the current contents of the Profile driver

status record
k. Volume Display and Error Reporting

PASCAL USAGE OF THE PROFILE

1. The Pascal Area

The Pascal area of the disk is a contiguous set of blocks that occupies
the highest end of the disk, i.e. highest block number down to that block
whose number is equal to highest block number minus the total number of blocks
that that the Pascal region occupies. This area is not static but expands and
contracts as pseudo-volumes are created or deleted and the region is krunched.
To insure that Pascal can freely expand, it is a "requirement" that the blocks
just below the Pascal region be available and that they be contiguous.
Currently a problem may arise if ProDOS has fragmented the disk ~uch that

COPYRIGHT 1984 APPLE COMPUTER, INC Page 2





· . ··VOLUME MANAGER TECHNICAL SPECIFICATION

there may be enough logical space for Pascal but not enough contiguous
physical space.

The Pascal area is divided into two areas. The first is the Pascal
volume directory that specifies the currently allocated Pascal pseudo-volumes
in the Pascal area. The second is the pseudo-volumes themselves, each of
which haVing its own volume directory (UCSD format) and its accompanying
files.

2. Modifications to the Prodos Directory

The PPM accesses the ProDOS volume directory when. it initializes the
Profile for use by Pascal. It makes two changes to the directory contents.

The first change is a file entry that specifies the Pascal area on the
disk. This file entry is placed in the first available entry slot in the
ProDOS volume directory. An error will occur if there is no available slot to
put this entry.

Once this slot has been made available, PPM will initialize it with a
file entry with the following contents:

Stype • 4 this is a ProDOS foreign file structure
name_length • 10
file name • 'PASCAL.AREA'
file type • OEFH this is a special type tu denote the Pascal area
key-pointer • first block used (in this case the second to the

last block on the disk)
blocks used • 2
header-pointer • 2
access • 0 (backup bit is not· set)

All other fields are set to O.PPM will look for this entry (primarily
the name 'PASCAL.AREA') in the ProDOS directory to determine if the disk has
been initialized for Pascal use.

The file entry for the Pascal area increments the number of files in the
ProCOS directory and the keYJointer for thi.s file now pO.ints .. to. TOTAL_BLOCKS
- 2. Thus the Pascal area occupies the last two blocks available on the
Profile. Blocks used Lnthe file entry is s.et to 2. When the .Pascal.~'['ea

expands or contracts, the key-pointerand bloc~~~used V'alues.are~'PdaFed .
accordingly. With any access to this fileentl:'Y(i.e. if Fhe Pascal area is
expanded or contracted by adding or deletingpseudo-volumes) the b~ckl.\'P bit
will not be set. However, a ProCOS based Backup program can explicitly backup
the Pascal area as a whole. At any time that it cannot expand due.to hoOOS
usin~ the.requireci blocks, an error is reported. Because ProCOS can fragment
its area on the Profile, it is quite possible fat' Pascal to be unable to
expand, though there is logically enough rOom on the disk to do so.
Currently, the only means to correct this is to have the user do the
follOWing:

a. backup the Pascal region
b. backup the ProCOS region
c. reformat the disk

COPYRIGHT 1984 APPLE COMPUTER, INC Page J



VOLUME MANAGER TECHNICAL SPECIFICATION

d. restore the ProDOS region
e. restore the Pascal region
f. get back to real work

3. Volume Directory Format

The Pascal volume directory contains two separate but contiguous data
structures that specify the contents of the Pascal area on the Profile.
The vol~ directory occupies 2 blocks to support 31 pseudo-volumes. It is
found.at the physical block specified in the ProDOS volume directory as the
value of KEY POINTER, i.e. it occupies the first block in the area pointed to
by this value. To access the Pascal area volume directory requires reading
the ProDOS volume header. via a UNITREAD of block 2, getting the value of .
KEY POINTER and using this in a UNITREAD of block number KEY POINTER. The
vol~ manager maintains a 1K buffer to read in this directory. It is
important to define the directory data structures in the volume manager as
contiguous to insure that the· data read in is interpreted correctly.

The first portion of the volume directory is the actual directory for the
pseudo-volumes. It is an array with the following declaration:

TYPE RTYPE· (HEADER, REGULAR)

VAR VOIR: ARRAY [0 •• 31] OF
PACKED RECORD

CASE RTYPE OF
READER: (PSEUDO_DEVICE_LENGTH:INTEGER;

CUR NOM VOLS:INTEGER;
PPM-NAME: STRING(3]);

REGULAR: (START: INTEGER;
LENGTH: INTEGER;
DEFAULT UNIT:0.255;
FILLeR:O •• 127;
WP: BOOLEAN;
OLDDRIVERADDR:INTEGER

END;

the READER speCifies inf.ormation about. the Pascal area. It specifies the
size in blo.cks in PSEUDO_DEVICE_LENG'I'H,. the number of currently allocated
p!lel.1do-volume!l. in. CUlt NOM VOLS, and. a speCial validi ty check value in
PPM NAME.' which is a thrl!e character string< containing the value 'PPM'. The
he~der.inforTl1ation.is a,ccessl!d via a reference to VDIR[OI. The REGULAR entry
specifies information .for each pseudo-volume. START is the starting block
address. forShf:! .•• p!leudo- volume and LENGTH is the length of the pseudo-volume
+n blo:ks •.. DEFAULT_UNIT specifies the default Pascal unit number that this
pseudo-volume should be assigned to upon booting the system. This value is
set by the volume manager elther by the user or an application program and
remains valid if it is not released. If· the system is shut down, the pseudo­
volume will remain assigned and will be active once the system is rebooted.
WP is a Boolean that specifies if the pseudo-volume is write- protected.
OLDDRIVERADDR holds the address of this unit's (if assigned) previous driver
address. It is used when normal floppy unit numbers are assigned to pseudo­
volumes so that when released the floppies can be activated again. Each

COPYRIGHT 1984 APPLE COMPUTER, INC Page :.



-...WJLUME .MANAGER. .. TECHNICAL SPECIFICATION

REGULAR entry is accessed ~ia an index (from 1 to 31). This index ~alue is
thus associated with a pseudo-~olume. All references to pseudo- ~olumes in
the ~olume manager are made with these indexes.

Immediately following the VOIR array is an array of description
fields for each pseudo-volume:

VDESC: ARRAY [0 •• 31] OF STRING[15]

The description field is used to differentiate pseudo-volumes with the
same name. It is set when the pseudo-volume is created. This array is
accessed with the same index as VOIR.

The ~olume directory does not maintain the names of the pseudo- ~olumes.

These are found in the directories in each pseudo-volume. When the ~olume

manager is activated, it reads each pseudo-~olume directory to construct an
array of the pseudo-volume names:

VNAMES: ARRAY [0 •• 31] OF STRING[7]

Each pseudo-volume name is stored here so that the volume manager can use
it in its display of pseudo-volumes. The name is set when the pseudo-~olume

is created and can be changed by the Pascal filer. The names in this array are
accessed via the same index as VDIR. This array is set up when the ~olume

manager is initialized and after there is a delete of a pseudo-volume.
Creating a pseudo-volume will add to the array ~~ the end.

4. Pascal Pseudo-Volume Format

Each Pascal Pseudo-volume is astande;trdUCSD f()rma.t.<volume •..Block 0 and
of the pseudo-:,olulI1t! .aret'~served for.bootstrap.load~Fs(whic.h in this case
are irrele~ent!). The directory for the volume is in bl.ocks2 through 5 of
the pseudo-volume. When a pseudo-volume is created the directory for that
pseudo- ~olume is initialized with the following ~alues:

dfirstblock a 0

dlastblock ··6

first logical block of the volume

first available block after· the directory

dvid a name of the ~olume used in create

deovblk a size of ~olulDe specified in. create

dnumfiles a 0 no files yet

dloadtime .. set to current system date

dlastboot .. 0

The Pascal Tech Note #4 describes the format for the UCSD directory.

Files within this subdirectory are allocated ~ia the standard Pascal I/O
routines in a contiguous manner.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 5



VOLUME MANAGER TECHNICAL SPECIFICATION

5. Volume Name Format

A valid Pascal UCSD format volume name may be up to seven characters in
length and can include any printable ASCII character except' " '.', '$',
'?', and' ,'. When ever a user is prompted to enter a volume name, they may
enter it in either upper or lower case, however, all lower case letters will
be forced to upper case before this volume name is used. For example, if the
user enters 'death' as a volume name, it will be uppercased to 'DEATH'.

6. System Limitations

1. Number of Profiles Supported

The Profile driver will currently support only three
Profiles, because a Profile interface card can only be
plugged into slots 4, 5, or 7 in an Apple / / .'

The unit numbers used by the Pascal syst"em to refer to
the Profiles must be in the range 128 to 143. If they are
not, the volume manager will not be able to find them and
an error (No Profiles on the system) will result.

2. Number of Pseudo-volumes per Profile Supported

The number of Pascal Pseudo~volumes supported per
Profile is limited to 31. ThiS is due to the lind tation
as to the size of the Pascal area Volume di.j,'ectory. The
volume directory is accessed by the Profile driver at
boot time in order to assign the default pseudo-volumes.
Extending the numb~r .. of pseudo-volumes supported will
requirethatt~e driver. be changed in. o.rderto~aI1dle

a larger volume directory. Currently the volume directory
is 256 bytes.

3. Number of Pseudo-volumes Selected

The Ptofile driver will allow up to 30 pseudo-volumes
to be mounted at" any one time. This limit is imposed by
the Pascal system as to its number of allowed units. It is
reflected in the driver in the data structure STATUS RECORD.
To increase this number requires '"a change to the Pascal system
and to both the Profile Driver and SYSTEM. ATTACH.

4. Pascal Blocked Device Volumes versus" User Devices

The Pascal supports the following device numbers
as "blocked devices". This implies that they may be
accessed like floppies via RESET, REWRITE, READLN,
etc.

Blocked Device Unit Numbers

4, 5, 9 - 20

The following unit numbers are for "User devices". They

COPYRIGHT 1984 APPLE COMPUTER, INC Page 6



VOLUME MANAGER TECHNICAL SPECIFICATION

can only be accessed via UNITREAD and UNITWRITE, which implies
that Pascal files are not supported for these devices.

User Device Unit Numbers

128 - 143

Thus this system will only support 14 blocked devices on-line
at any time. The other '16 volumes are only useful for programs
that do their own physical I/O to these volumes. Any floppies
attached to the system will use some of the blocked devive
unit numbers which leaves fewer of these for·pseudo-volumes on
the Profile. A user may assign the normal floppie deV'ice number
to pseudo-volumes, but this will effectively make these floppie-s
inaccessible for use until the pseudo-volumes are released.

5. Volume Name Conflicts

This design allows a user to designate pseudo-volumes
with the same name on a single Profile. Many applications
may require pseudo-volumes that have the same name, i.e.
DATA. In order to support this re~uirement, we must allow
multiple.pseudo-volumes with the samen~, howeV'er, there
must be a. way to differentiate them both for the user using
the Volume Manager Program and for an application program
assigning and.. releasing pseudo-volumes proe!'ammatically.
To cio this, each. pseudo-volume entry in thl:: volume directory
has an associated description field which is 15 characters
in length. This is much the same as extending the volume
name by 15~charlcters.

In order to have pseudo-volumes with the same n~ on
a single Profile, they must have different description
fields. For example,

name

DATA
DATA
DATA

description

QUICKFILE
PFSREPORT
MY LIFE STORY

When. a pseudo-volume is cteated this field is specified.
When ever a specific pseudo-volume is to be referenced
by name, the description field contents are used to
differentiate between those with the same name. A user
will simply poitlt to the pseudo-volume via cursor
motion. using the description field contents displayed
as a mnemonic device helping he/she to know which volume
is which. A program must pass the expected description
contents to the volume manager so it can decide which
1s which. The rules for finding pseudo-volumes are:

1. If there is only one pseudo-volume with the
the name requested then act on that pseudo-volume.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 7



·VOLUME MANAGER TECHNICAL SPECIFICATION

2. If there are more than one pseudo-volume with the
name requested, then match description fields,
return the one matched. If no description content
is supplied, return an error.

The volume manager will not allow a user or a program to
create pseudo-volumes which cannot be differentiated.

For new applications, it will be important to document
how to create and copy their floppy volumes into pseudo-volumes.
In this case, the. d~scription field will be used by users when
hand-assigning Pascal unit numbers prior to execution of the
application. Applications that.use the volume manager
unit can specify this description itself and when assigning
unit numbers it can use it to find its own pseudo-volumes.

6. Unit number Conflicts - #4 and #12

Pascal normally allocates its blocked device unit numbers
(4, 5, 9 - 12; 13- 20 are .new with Pascal 1.2) to floppies.
Unit 114 is n0 t1ll8lly Fhe floppy drive used to boot the system.
It is also by definition, the Pascal system disk which ~an

be referenced via '*'. It is possible to assign this (and any
other unit number) to a pseudo-volume. If a user assigns what
is normally a .. floppy drive. unit number to .. >pseudo-volulDe, they
have effectively made that floppy unusable until such tinie as
they release the unit number.

If uni t #4 is assigned to a pseudo-voll.1ll!e,·· the volume
manager will then assign unit #12 to the device that was
assigned to unit .#4. In the usual case, this will be the
original boot floppy drive. By doing so ,this floppy drive
will remain accessible. If unit 114 is assigned anduni t
fl12 is currently not assigned, then unit #12 will be assigned
automatically to the device that is normally assigned to be
unit #4. Conversely, when unit #4 is released, unit #12 which
has been re-assigned will be put back to its original (default)
device. If unit #12 is currently assigned (to a pseudo-volume)
it will be released and assigned< to the normal unit 114 floppy
drive. It this .case when unit #4 is released, unit 1112 will
be released from the floppy driveuni t, BUT it will NOT be
reassigned to its previously assigned pseudo-voll.1tne.

This scheme has been adopted because unit 1112 is tlorll1ally
assigned to the sixth floppy drivedevi7e,which tl()rmally does
not exist. It will be common practice to assign unit #4 to
a pseudo-volume in order to use it as the system "disk" on
the Profile. Re-assignment of unit #12 when it has been
released from the normal unit #4 floppy drive will only
take place if unit #12 was preViously assigned to a device,
which implies that it has its own driver. Assignment of
unit 1112 to a pseudo-volume can not be restored.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 8



VOLUME MANAGER TECHNICAL SPECIFICATION

NOTE: If a user assigns unit #4 to a pseudo-volume (which
causes unit #12 to be assigned to the boot floppy device) and
then assigns unic Q12 CO a pseudo-volume, chis action will make
the boot floppy device- inaccessible until unit #4 is released.

IMPORTANT NOTE: Assigning a pseudo-volume to unit #4 will
immediately release the current unit #4, making it unavailable
for use. This may have serious effects. If a program is running
that has been invoked from unit #4 (for example, the PPM/volume
manager program) and a pseudo-volume is assigned to unit #4,
the Pascal operating system will request that the user put in
the disk that is in the normal unit 14 device when they exit
the program. This is because the system requires the program
to be on-line to exit and because the program has been put
off-line by the assignment of unit #4. The only recourse is
for the user to re-boot the system. Assignment of uni.t #4
should be done with some thought. Also, if the user intends
to place his/her system vol~e (Pascal development system)
in a pseudo-volume and assign this pseudo-volume to unit #4,
they must insure that the files for the Pascal operating
system occupy the same logical blocks in the pseudo-volume as
they occupy on the boot diskette.

If the user assigns a unit number that corresponds Co a device
that has been configured into the system via ATTACH, that
device will become unavailable. Any produc: that assumes
a unit number for a device should warn the user not to assign
that unit number to a pseudo-volume when that device must be used.

7. Default Assigning of Pseudo-volumes

the volume directory maintains a mapping of pseudo-volumes to cheir
~urrently assigned Pa-scal unit numbers. This as~umes that a Pascal area has
been in.itialized, pseudo-volumes have been created in it, and some number of
them have. bee.n assignedito<\1nit numbers and have .not been officially released,
i.e•.the systeJIlhas been shutdown without ever releasing these pseudo­
volumes. Whene.ver the system is booted, the Profile driver when activated
will tead thev61.uJIledirectory.from the Profile to determine if and what
pseudo-volumes are cur!'ently assignl!d. It will prompt the user

Assign volumes to their default unit number? (Y/N)

and if the user types '1' che driver will update its status record to
effectively assign these pseudo-volumes to their unit numbers. If the user
types 'N' they will not be assigned and will not be accessible.

8. P!'ofile Driver Status Record

The P!'ofile driver maintains a status record that maps Pascal pseudo­
volumes to Pascal unit numbers. When a pseudo-volume is assigned, the status
record is updated to reflect the assignment. The status record is an array
that is mapped into the standard Pascal unit numbers via the mapping

COPYRIGHT 1984 APPLE COMPUTER, [NC Page 9



VOLUME MANAGER TECHNICAL SPECIFICATION

PASCAL UNIT NUMBER INDEX

4 1
5 2
9 3

•
20 14
128 15

143 30

The format of the status record is shown below:

STATUS RECORD • ARRAY [1 •• 30] OF
PACKED RECORD

DRIVE: : 0 •• 7 ;
DFMT_DRIVE: 0 •• 7;
FILL1: 0•• 255;
WRITE_PROTECT: BOOLEAN.;
PRESENT: BOOLEAN;
START: INTEGER;
LGTH: INTEGER;

END;

When a pseudo-volume is assigned/released, write-protected, and at boot
time this status record is updated. Each entry in the status. record
corresponds to a Pascal Unit number. The field PRESENT, if a 1, connotes that
this unit number is assigned. The field DRIVE specifies the Prof~le drive on
which the pseudo-volume resid~s.START gives the physic:alblock rtUmb.er of the
starting blo.ck of the pseudo-volume, and LGTR is the length of the pseudo­
volume in blocks.. WRITE PROTECT, if a 1,impllesthat thlspse\1do-volume is
write-protected. DFMT DilVE is used to assign the last used drive when the
volume manager. prog.ram7unit is restarted. When the. sY9te~fs booted the
default mount drive (DFMT DRIVE) is s.et .to O. If the~ex~ drive<.coramand or
SELECT DRIVE procedure is-called, thi.s value is ch~nge~to.Feflectthe.new
drive and stored in the Profile driver. When the volume manager is exited and
then at some point re-invoked, it will read this value from the driver and use
it as the current drive. lithe system is shu.tdown, this value will revert to
O. This data structure is not intended to be accessed by any program other
than the volume manager and the Profile driver itself.

9. Use of the Profile Driver

Both the PPM and the volume manager assume that there is a Profile driver
attached and that the name of this driver is 'PROFILE'. At initialization
time for both these programs, 1f no Profile driver 1s found (identified by its
name 'PROFILE') then an error message is issued:

ERROR: There is no Profile driver available for this Pascal system

and the program will. terminate.

COPYRIGHT 1984 APPLE COMPUTER, INC Page to



...VOLUME.MANAGER. ..TECB:N!CAL .SPECIFICATION

The P~ofile Driver is supplied as the file ATTACH.bRIVERS and its
associated data. file is ATTACH. DATA. This driver is configured to be
unit 11128.

THE VOLUME DISPLAY

The volume display occupies the major por~ion of the screen and is used
to display the pseudo-volumes available for use on the cur~ently selected
Profile drive. This display has two uses:

1. Display the pseudo-volumes available

2. Serve as the means to select a pseudo-volume upon
which to apply one of the actions in the volume
manager command line.

The format for the the volume display is shown below with
example pseucio-volum.es: .

P'rofile drive: 0
WP Name Description Unit WP Name Description Unit.. DATA QUICKFILE 119 .. ACCOUNT PFSREPORT #134

DATA DBMSTUFF .. DATA PFSFILE
LETTERS #13 FUN SOME GAMES
PASSY.S PASCALSYS 114 MOREFUN NOT A GAME
PASDEVO SOME TOOLS #5
BOB OUR SAVIOR
YHVR1 STARK FIST
AP APPLEACCOUNT
GL APPLEACCOUNT
AR APPLEACCOUNT
<none> PFSDATAVOL
TOOLS MORE TOOLS 1115
TEXT DOCUMENTS tJ16
YETI
PICTURE TURTLEG'RAPHICS #19.. RESlJME FUTURES

COPYRIGHT 1984 APPLE COMPUTER, INC Page It



VOLUME MANAGER TECHNICAL SPECIFICATION

This format will allow up to 31 pseudo-volumes to be displayed at one
time. If there is less than 17 pseudo-volumes to be displayed, the right hand
column header is suppressed.

The first line shows which Profile drive is active by giving the drive
number (in this case 0). As other drives are selected, this number will
change.

The fields in the display are described below:

WP - this is the write-protect attribute for the pseudo­
volume. If it is write-protected, a '*' will be
displayed in this column.

NAME - this is the name of the pseudo-volume. It can be
up to 7 characters in length. Multiple pseudo­
volumes can have the same name if and only if
their description fields are different. It is
possible for a pseudo-volume to not have a name,
i.e. some applications use the entire volume for
data wiping out the directory. If no name is
found the string "<none>" is displayed.

DESCRIPTION - this is the description field for the pseudo­
volume that helps to both differetttiateit
from others with the same n~ and also
serve as a reminder to the user what the
contents of that pseudo-volume are.

UNIT - if the pseudo-volume is currently mounted thert its
Pascal unit number will be displayed,else this
field will be blank.

SELECTING A VOLUME

When an action that affects an individual pseudo-volume is selected from
the prompt line, the characters '->' willappearriext tcf the f:f.rstpseudo­
volume displayed. By using the up or down arrow keys (as defined by the
Pascal system and machine in use) the user can move the pointer from one
pseudo-volume to another. UP will move the cursor up on the screen and DOWN
to1ill move it down. The pseudo-volumes ·are 'numbered' from top to bot tom to1i th
the first column 'numbered' from 1 to 16 and the second column 'numbered' from
17 to 32. UP moves down the 'numbers' and DOWN moves up the numbers!! If more
than 32 pseudo-volumes are allowed in the display then multiple screen pages
are used to display the pseudo- volumes. Movement between screen pages is
done using the UP and DOWN arrow keys and a to be determined modifier key.

For a standard Apple II system, CTRL-o is defined be UP and CTRL-L is
defined to be DOWN. This is the convention followed by Pascal on the Apple
II. For the lIe the up-arrow and down-arrow keys are respectively UP and
DOWN.

COPYRIGHT 1984 APPLE COMPUTER, LNC Page 12



VOLUME MANAGER TECHNICAL SPECIFICATION

Once the pointer has been moved to the desired pseudo- volume, typing a
RIGHT ARROW will select that pseUdo-volume for 'the action specified in
responce to the prompt line. When a pseudo- volume is selected, it will be
highlighted. The volume manager may ask for further promptinglinformation
once RIGHT ARROW has been typed. When prompted, typing ESCAPE will cancel
both pseudo-volume selection and the action selected from the prompt line.

The right-arrow key on both the Apple II and the lie corresponds to
RIGHT ARROW.

THE VOLUME MANAGER UNIT SPECIFICATION

1. Introduction

The Volume Manager Unit (VOLUME MANAGER) is a programatic interface, to
allow developers to write programs that can manage Pascal pseudo-volumes on a
Profile. It supplies the following generic capabilities through lower level
procedure calls:

a. Create a Pascal pseudo-volume

b. Delete a Pascal pseudo-volume (this is not a
recommended practice for application programa
to do.)

c. Assign a Pascal Unit number to a pseudo-volume
to make it available for use

d. Release a Pascal Unit number from a pseudo-volume

e. Set the write-protection attribute for a pseudo-volume

f. Krunch the Pascal region to give space on the Profile
back to ProDOS (this.is also oota recommended practice
for applications to perform. This ability will be built
in to the Delete call as well as being a stand alone
procedure. )

g. Modify the name andlor description field of a pseudo­
volume.

h. Select the Current Profile drive on which to perform
the above actions (an application program would not
normally have· to do this except to search for a pseudo­
volume that it needs to assign.) .

i. Get the contents of the Pascal area volume directory. This
is for information purposes only. A program cannot change
its contents.

j. Get the contents of the status record in the Profile
driver. Again this is for information purposes only.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 13



VOLUME MANAGER TECHNICAL SPECIFICATION

k. Utilize the volume display (section 4.4.2 and 4.4.3)
to display and select pseudo-volumes.

1. Er~o~ repo~ting.

The use~ has the option to do their own screen management for input
and/o~ er~o~ reporting.

An application program cannot initialize a Pascal region on a Profile.
This must be done via the Pascal P~ofile Manager by the end-user.
Applications that require this action will need to document this requirement
so that the user of the application can correctly set up the Profile for u~e.

The volume manager unit is a REGULAR unit and must be linked to a host
program.

2. Volume Manager Unit Interface

1. Constants

MAX VOLS

This is the maximum number of pseudo-volumes that
can be allocated in the Pascal area on a. P~ofile. This
number is 31.

MAX DRIVE

This is the highest drive number for use in
referencing thep~ofiledrives. This number is
currently 7, but only drives 0, 1, 2 are supported.

VOIR SIlt

This is the size of the volume directory in
blocks. For 31 pseudo-volumes its value is 2.

MAXDUNIT

This constant represents the highest unit number
for blocked devices which is 20.

2. Types

UNIT RANGE

This is the range of unit numbers supported by
the Pascal system. The range is 0 to 255.

RTYPE

This 1s used to differentiate the two types of
record fields 1n the volume directory. The two
types are HEADER which refers to the header information

COPYRIGHT 1984 APPLE COMPUTER, INC Page 14



VOLUME MANAGER TECHNICAL. SPECIFICATION

in the volume directory and REGULAR ~hich refers to the
entry used for each pseudo-volume in the directory.

DRIVE RANGE

This is the range of values for drive numbers used
to reference Profile drives. The range is 0 to MAX DRIVE.

STAT REC

This is the declaration for the data structure
STATUS_RECORD that is found in the Profile driver. It
maintains information about the currently assigned
Pascal unit numbers. Its format is:

STAT REC • ARRAY [1 •• 30] OF
PACKED RECORD

DRIVE: 0 •• 7;
DFMT DRIVE: 0 •• 7;
FILLl: 0 •• 255;
WRITE_PROTECT: BOOLEAN;
PRESENT: BOOLEAN;
START: .. INTEGER;
LGTE: INTEGER;

END;

This structure is described above.

VOIR STRUCT

This is the format for the V'olumediredory. Its
structure is:

VOIR STRUCT • ARRAY [0 •• MAX_VOLS] OF
PACKED RECORD

CASE RTYPE OF
HEADER: (PSEUDO_DEVICE LENGTH:INTEGER;

CUR NUM VOLS:INTEGER;
PPt£'NAME': STRING (J] ) ;

REGULAR: (START: INTEGER;
LENGTH: INTEGER;
DEFAULT UNIT:UNIT_RANGEj
FILLER:O •• 127;
WP:BOOU;AN;
OLDDRlVERADDR:INTEGER)

END;

This data structure is fully described above.

DESC ARRAY

This array holdi the description fields for each
pseudo-volume. It is important that any program that
gets the volume directory contents must also declare

COPYRIGHT 1984 APPLE COMPUTER, INC Page 15



VOLUME MANAGER TECHNICAL SPECIFICATION

this data structure contiguous to the volume directory
data structure. Its format is:

DESC ARRAY: ARRAY [0 •• MAX_VOLS] OF STRING(15]

N ARRAY

This array will hold the names of the pseudo-volumes.
It also must be declared if the application program intends
to get the volume directory contents. It does not have
to be declared in any special place however. Its format
is:

N ARRAY: ARRAY [0 •• MAX_VOLS] OF STRING(7]

STRING7

This is a string of length 7. It should be used
to declare any variable that is to hold a pseudo­
volume name.

STRING15

This is a string of length 15. It should be used
to declare any variable that us to hold a description
field.

BLOCK TYPE

This is a 512 element array of bytes that is used
to hold blocks of data read in from a disk. It is
primarily used for low-level routines and is not necessary
for application programs.

3. Variables

VALID DRIVE

This is a set that holds the valid drive numbers
for .1.11 the available Profile drives. Its format is

VALID DRIVE: SET OF DRIVE RANGE

This variable is initialized when the volume tUanager is
activated. If a drive number is in VALID DRIVES it does
not imply that: this drive has a Pascal ar;a. It only
implies that this drive is active and that it has a
ProDOS directory. An application program should use
PASCAL_DRIVES to determine if this drive has a valid
Pascal area.

This is the set that specifies all the available

COPYRIGHT 1984 APPLE COMPUTER, INC Page l6



VOLUME MANAGER TECHNICAL SPECIFICATION

P~ofiles that have Pascal areas. All of the volume
manager unit functions can only be applied to P~ofiles

that are specified in this set. Any application must
check the drive number against this set prior to
making any calls to the volume manager unit. Since
SELECT DRIVE must be called prior to making any other
calls,-it will check the drive number against this
set and return an error if it is not in the set. A
call to INIT VM will put together both VALID DRIVE
and PASCAL_DRIVES. The format for this set Is

PASCAL DRIVES: SET OF DRIVE_RANGE

MY UNIT

This is the unit number by which the Pascal system
refers to the Profile driver. It is an integer.

ERR LINE

This variable holds the line number on which errors
are reported. Its value defaults to 3. An application
program can change this value. It is only used when
E~FMT (see below) is TRUE.

DISPLAY ERR

Thi~bool~~n variable is used to control whether
or not the volume manager willl report errors to. the
screen. If TRUE, then errors will be reported, else
they will not be reported.

ERR FMT

If this boolean variable is TRUE then errors will
be reported on ERR LINE, else they will be reported on
the current line or the display.

VM ERROR.

This integer variable will contain an error code
if an er~or has occurred on a call to the volume
manager. If it is 0, then no error has occurred.

VM 10 ERROR

This integer variable will contain the value of
IORESULT after any call to the volume manager. If it
is 0 then no error has occurred.

CUR DRIVE

This is the current drive number for the currently

COPYRIGHT 1984 APPLE COMPUTER, INC Page 17



VOLUME MANAGER TECHNICAL SPECIFICATION

accessible P~ofile unto which volume manage~ actions
can oce:ur.

CUR INDEX

This is the index of the currently selected pseudo­
volume on the cur~ent d~ive. It is only set via the
volume selection routine SEL VOLUME.

VDIR BYTES

This is the size of the volume directory plus the
description array in bytes. It is used in reading
and ~iting the contents from and to the Profile. It
is initialized by the volume manager unit.

VDIR

This is the cur~ent copy of the volume directory
of the currently selected drive. It is initialized
by SELECT DRIVE.

VDESC

This is the cur~ent copy of the array of descriptions
that corresponds to the pseudo-volume~ of the currently
selected drive. It is initialized by SELECT_DRIVE.

VNAMES

This is the current ar~ay of volume names for the
pseudo-volumes of the currently selected drive. It is
initialized by SELECT DRIVE.

STATUS REC

This is the cur~ent copy of the status record from
the Profile driver. It is initialized by INIT_VM.

4. Procedures and Functions

CREATE VOLUME

Call format:

INDEX :- CREATE_VOLUME(NAME, DESC, SIZE)

where NAME is a 7 byte string that will be
the name of the volume, nESC is a 15 byte
string that denotes the description field
(this may be null), and SIZE which is an
integer that denotes the number of blocks

COPYRIGHT 1984 APPLE COMPUTER, INC Page 18



VOLUME MANAGER TECHNICAL SPECIFICATION

this pseudo-volume is to occupy. INDEX
is a user-supplied integer to hold the index
value that is returned.

CREATE VOLUME will create a pseudo-volume
on the currently selected Ptofile drive.
It will be assigned a name, its description
field will be specified, and it ~ll be SIZE
blocks in length. This function will then
return an index value that must be used
in any other call to act on this pseudo-volume.
It is up to the calling program to save this
index value. ~It can be found however through
a VOLUME INDEX call described below.) If an
error occurs, INDEX will be set to O. Use of
this function will change the index ·values that
correspond to the pseudo-volumes on the Profile.

Errors reported:

a. Not enough room - there is not enough room
in the Pascal region to allocate a pseudo­
volume of this size or the Pascal region
cannot expand into the ProDOS area. A
Krun~h may alleviate this problem.

b. Directory full - there is no more room in
the volume directory to allocate this
pseudo-volume.

c. Name conflict-- a pseudo"'volwoewith this
name alreadye:dsts and the description
field does not diffefentiate them. This
can be solved either byspecifyirtg the
description field or changing it.

d. Illegal volume name

e. Volume size must be greater than 6 blocks.

DELETE VOLUME

Call format:

DEUTE...yOLUME (INDEX. KRUNCH_FLAG)

where INDEX is an index into the volume
directory that specifies which volume
to act upon and KRUNCR_FLAG is a Boolean.

DELETE_VOLUME will delete the pseudo-volume
specified by INDEX, which corresponds to
a pseudo-volume (either through a create or
VOLUME INDEX call) only If it contains to

COPYRIGHT 1984 APPLE COMPUTER, INC Page 19



VOLUME MANAGER TECHN1CAL SPECIFICATION

files (if so an error occurs). If KRUNCH FLAG
is set to TRUE, the volume manager will
then krunch the Pascal region, else it will
not. This procedure follows the name matching
convention specified above. Use of this procedure
will cause a change in the indexes used to specify
pseudo-volumes. If this procedure 1s used, an
application program should update its own copy of
the indexes prior to making any calls that use
an index.

Errors reported:

a. No such volume - a vqlume with the INDEX
passed was not found.

b. Write-protect error - if the pseudo-volume
is write-protected it cannot be deleted

c. Volume has files cannot delete.

ASSIGN VOLUME

Call format:

where. INDEX is. an integer and .. UNIT NUMBER is an integer
in the range 4, 5, 9 - 20, 128 - 143.

This procedure will assign the Pascal unit number
(UNIT._NUMBER) .to. the pseudo-volume specified by
INDEX. The. unit number must be in the
correct range. This. action will mak.e the pseudo-volume
accessible through the normal Pascal I/O routines.
If this u~it number is already assigned, the current
devive (or volume) will be released from this
unit number and the new one will be assigned.

Errors reported:

a. No such volume', - a volume wi th the irtdex
passed was not found.

b. Illegal Unit Number - the unit number
passed to this procedure was out of
range.

c. Cannot assign Profile driver unit number.

RELEASE VOLUME

Call format:

COPYRIGHT 1984 APPLE COMPUTER, INC Page 20



VOLUME MANAGER TECHNICAL SPECIFICATION

where UNIT NUMBER is an integer in the range
4, 5, 9 - 20, 128 - 143.

This procedure will release the pseudo-volume
assigned to the Pascal unit number (UNIT NUMBER).
Doing so will make this pseudo-volume in-;ccessible
to Pascal I/O calls.

Errors reported:

a. Not assigned - this unit is currently not
assigned.

b. Illegal Unit Number - the unit number passed
is not in the legal range.

WP VOLUME

Cal-l format:

WP_VOLUME (INDEX, WP_FLAG)

where INDEX is an integer and WP FLAG is a
Boolean.

W? voLuME will set or unset the write-protect
attI'.ibu~.e of .the.volume specified by INDEX.
If ..WP:"LA.Gis.'rRUE then it will be write-protected
else Tt .will..... b~. unwri te-pro tected.

Errors reported:

a. No such volume - there is no volume specified
by this index

KRUNCR AREA

Call format:·

KRUNCH AREA

This procedure will krunch the Pascal region of
the currently active Profile.

SELECT DRIVE

Call format:

SELECT DRIVE(DRIVE_NUMBER)

where DRIVE NUMBER is an integer in the range
o to 7.

COPYRIGHT 1984 APPLE COMPUTER, LNC Page 21



VOLUME MANAGER TECHNICAL SPECIFICATION

SELECT DRIVE will select a Profile for the
Volume-Manager to act upon. The available
set of Profile drives is given in the set
PASCAL DRIVES found in the global variables.
All volume manager calls are specific to a
sibgle.Profile. To sWittti Profiles requires
this call.

Errors reported:

a. Drive not active - this drive is not
available for use.

b. Illegal drive number - the drive number
passed is out of range.

c. No Pascal area on drive.

MODIFY VOLUME

Call format:

MODIFY_VOLUME(INDEX, NAME, DESCRIPTION)

where NAME is a 7 character string and DESCRIPTION
is a 15 character string, INDEX is an integer

This procedurenlllllod:f..fy the nJl.~~ and I or the
description fieldofapse~~o-volumespecified
by INDEX. Either string passed may be null. This
nIL reave the current contents unchanged. Errors that
can occur are:

a. No such volume - there is no such volume
specified by this index

b. Illegal volume name

c. Write protect error

d. Name .conflict

VOLUME INDEX

Call forraat:

INDEX :~ VOLUME_INDEX(NAME, DESCRIPTION)

where NAME is 7 byte string, DESCRIPTION
is a 15 byte string, and INDEX is an integer.

VOLUME_INDEX will look up a volume in the
volume directory and return its index, which

COPYRIGHT 1984 APPLE COMPUTER, INC Page 22



VOLUME MANAGER TECHNICAL SPECIFICATION

is then used to perform any volume manager
action on that volume. This routine will
follow the volume name matching conventions
specified above. This call will usually
proceed. any other volume manager call.
Use of these indexes can be made easier if the
calling program maintains a mapping between pseudo­
volume names and their indicies once this call has
been made. After the deletion of pseudo-volume,
however, the application cannot assume that the
indexes will remain the same.

Errors reported:

a. No such volume - a volume with this name
cannot be found.

GET VIDR

Call format:

where VOL DIRECTORY is of type VDIR STRUCT (defined
in Volume-manager interface section) and
NAME_ARRAY is of type N_ARRAY (a:ao defined in the
interface section. DRIVE NUMBER is an integer in
the .range 0 to 7. -

This procedure will return the contentSaf the volume
directory>on the Pt'ofiledrive designated by
DRIVE NUMBER. The contents areteturned in the user
supplied data structure VOL DIRECTORY which is
declared to be of <type VDIR::SnUCT. The names of the
pseudo-volumes are returned in NAME_ARRAY.

It is important to declare in the application program
the following data structures in this order and
contiguous:

VOL DIRECTORY: VDIR.<STRUCT;
DESCRIPTIONS: DESC~AkRAY;

because this call will fill both these data structures.

Errors reported:

a. Illegal drive number - must be in the range
o to 7

b. Invalid drive - this drive is not available

c. No Pascal area on this drive - this Profile
does not contain a Pascal area

COPYRIGHT 1984 APPLE COMPUTER, INC Page :23



VOLUME MANAGER TECHNICAL. SPECIFICATION

Call format:

where STATUS RECORD is of type STAT REC (defined
in the interface section of the unit.)

This procedure will return the contents of the
status record foound in the Profile driver. This
contains information about the currently assigned
Pascal unit numbers.

Errors reported:

a. No Profile driver - ~here is no Profile
driver attached

INrT VM

Call format:

INrT VM'

This procedure will initialize the volume manager
uni~. It sets various global variables. identifies
the Profile driver. and. its unit number, and sets
the value for CUR. DR.lVE. It DOES NOT iltitialize
the volume.directory orstatusrec:orddata structures.
The callerraust illDDediately call SELECT.DRIVE with
an appropriate drive number to initialize these
data. structures prior to making any other calls
to the volume manager unit. If the volume manager
unit is configured such that it is swapped in and
out of memory (NOLOAD option) then thiS procedure
must be called whenever the volume manager unit
is swapped back in followed by a call to
SELECT_DRIVE. ThiS procedure sets up the sets
VALID DRIVE and PASCAL DRIVES.

Errors reported:

a. No profile driver attached - this is essentially
a fatal error since no actions can occur without
a profile.

WP DISPLAY

Call format:

WP_DISPLAY(INDEX, WP)

COPYRIGHT 1984 APPLE COMPUTER, INC Page 24



VOLUME MANAGER TECHNICAL SPECIFICATION

where INDEX is an integer and WP is a Boolean.

An application may have the volume manager unit
display the volume selection screen (shown above)
This procedure will update the write-
protect field in the display that corresponds
to the pseudo-volume specified by INDEX~ If
WP is true a '*' will be placed in the column
or if it is false a ' , will be placed there.

Errors reported:

a. No such volume - this index value does not
correspond to an existing pseudo-volume.

NAME DISPLAY

Call format:

where INDEX is an integer and NAME is a seven
character string.

An application may have the volume manager unit
display the volume selection scrbdO (shown above)
This procedure will update the name
field for the pseudo-volume specified by INDEX
with the name passed in NAME.

Errors reported:

a. No such volume - this index value does not
correspond to an existing pseudo-volume.

Call format:

DESC_DISPLAY(!NDEX, DESC)

where INDEX is an integer and DESC is a 15 character
string.

An application may have the volume. manager uni t
display the volume selection screen (shown above)
This procedure will update the description
field for the pseudo-volume specified by INDEX
with the string passed in DESC.

Errors reported:

a. No such volume - this index value does not
correspond to an existing pseudo-volume.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 2S



VOLUME MANAGER TECHNICAL SPECIFICATION

UNIT DISPLAY

Call format:

where INDEX and UNIT_NOM are integers.

An application may have the volume manager unit
display the volume selection screen (shown above)
This procedure will update the unit
number display for the pseudo-volume specified
by INDEX. If UNIT_HUM isa valid UCSD unit number
it will update the display to show the number,
else it will set the unit number display to
blanks (meaning that this pseudo-volume is
not assigned.) When a pseudo-volume is
released, the display can be updated by calling
this procedure with UNIT_NOM equal to O.

Errors reported:

a. No such volume - this index value does not
correspond to an existing pseudo-voltime.

VOL DISPLAY

Call format:

VOL_DISPLAY(INDEX)

where INDEX is an integer.

An application may have the volume manager unit
display the volume selection screen (shown above)
This procedure will update all the
information (write-protect, name, description,
and unit number) for the pseudo-volume specified
by INDEX.

Errors reported:

a. No such volume - this index value does not
correspond to an existing pseudo-volume.

TITLE DISPLAY

Call format:

TITLE DISPLAY

An application may have the volume manager unit
display the volume selection screen (shown above)

COPYRIGHT 1984 APPLE COMPUTER, LNC Page 26



VOLUME MANAGER tECHNICAL SPECIFICATION

This procedure displays the column headings for the
volume display.

SCREEN DISPLAY

Call format:

SCREEN DISPLAY

An application may have the volume manager unit
display the volume selection screen (shown above)
This procedure will put the complete
volume display on the screen for the currently
selected Profile. It requires that SELECT_DRIVE
has been called. After any create or delete of
a pseudo-volume, this procedure should be
called to update the complete volume display.

Call format:

INDEX :,. SEL VOLUME

where INDEX is an integer.

An application may have the volume manager unit
display the volume selection screen (shown above)
t.f the volume disl'lay is used, th,is
routine can bl! c.a11ed to have Cl. user select.
apseudo-volume.f'r.om the displayCls .described
in the section above. The pseudo-volume selected
is specified by the. value returned in INDEX.
t.f INDEX is 0 this. specifies .. that the user has
aborted the sele;Sion process and that NO
pseudo-volume has been selected.

REPORT ERROR

Call· format:

REPORT ERROR

An application tll.a.y choose to have the volume manager
unit report any errors that may have occurred to
the screen. If DISPLAY_ERR is true, this procedure
will report an error message to the screen. If
ERR FMT is true, the error messages will be
displayed on line 3 else they will be displayed
at the current position of the cursor. The error
displayed will be based on the value of VM ERROR
or VM 10 ERROR with VM ERROR having the highest
preceden~e. If both these values are 0 (no error)
then no error message will be displayed. After

COPYRIGHT 1984 APPLE COMPUTER, INC Page 27



VOLUME MANAGER TECHNICAL .SP,ECIFICATION

a volume manager routine has been called, an
application program can then call REPORT_ERROR
to report any errors that may have occurred.

S CLEARSCREEN

Call format:

S CUARSCREEN

This procedure will clear the screen. It is supplied
as a low-level screen management procedure.

S CL&ARLlNE

Call format:

S C1.EARLlNE

This procedure will clear the current line (i.e.
the line in which the cursor currently lies.)
It assumes that the cursor is in column O.

USING THE VOLUME MANAGER UNIT

1. Introduction

This section reviews indetailth~.way. an application wri ter will use the
Volume Manager Unit. Detail.s.for:.the. procedure and function calls are given
above. The· actions that can be performJ!d with tllis. unit are shown below:,

a. Creating A Pascal Pseudo-volume
b. Deleting A Pascal pseudo-volume
c. Assigning A Pascal Ps.eud0-v0lum.e
d. 'Releasing A Pascal Pseudo-volume
e. Setting the Write-protection of a Pascal Pseudo-volume
f. Krunching the Pascal region of the Profile
g. Modify the name/description field of a pseudo-volume
h. Selecting the Profile Drive to Use
i. Getting the Index for a Pseudo-volume
j. Getting the Pascal area Volume Directory
k. Getting the Profile Driver Status Record
1. Screen> management routines
m. Error reporting

Each of these actions is performed on the current drive selected, thus it
is important for the user to know which drive they are performing these
actions.

All existing pseudo-volumes are referenced via their volume directory
index. This value tan be obtained either when a program calls the volume
manager to create a pseudo-volume or through a function call to the volume

COPYRIGHT 1984 APPLE COMPUTER, INC Page 23



,VOLUME MANAGER ..TECHNICAL. SPECIFICATION

manager given a pseudo- volume's name and description field. Also, a function
is supplied that will allow an application program to use the human interface
found in the volume manager program.

2. Data Structures

The data structures supplied in the interface section can be divided into
3 areas:

a. Profile information

b. Pseudo-volume directory information

c. Concrol of display and error reporting

2.1 Profile Information

The volume manager unit maintains a certain data
structures that describe the state of the Profile
driver. The~e are:

VALID DRIVES - the set of all available Profile
drive-numbers (does not imply that these drives
have Pascal areas)

PASCAL DRIVES - the set of all Profilcd with Pascal
areas

CUR DRIVE - the currently selected Profile drive
number

STATUS REC - the Profile driver status record
whis~maps pseudo-volumes to Pascal unit numbers
making them" available for use

2.2 Pseudo-volume Directory Information

Once a Profile, drive has been selected by a call to
SELECT DRIVE, the volume, manager unit will maintain
directory information for the pseudo-volumes on that
Profile. This information is kept in the following
data structures:

VOIR - this is the actual volume directory for the
Pascal area on this Profile

VDESC - this is the array which holds the description
fields for the pseudo-volumes

VNAMES - this is the array which holds the volume names
for the pseudo-volumes

The volume manager unit will update both these data structures
and their counterparts on the drive itself aft~r any change

COPYRIGHT 1984 APPLE COMPUTER, INC Page 29



·.VOLUME MANAGER .TECHNICAL . SPECIFICATION

is made by a call to the volume manager.

2.3 Control of Display and Error Reporting

Use of the volume manager unit's display routines
is based on the setting of some control flags:

DISPLAY_ERR - if TRUE the volume manager unit will
report errors to the screen on the line specified
by ERR_LINE (normally set to 3)

ERR_LINE - the line on which errors are reported

ERR FMT - if TRUE report errors on ERR LINE else
report them at the current location of-the cursor

When errors occur in the volume manager unit, two
variables are set to reflect the error condition:

VM ERROR - this holds an integer that denotes the
error that has occurred

VM IO ERROR - if an I/O error occurs then this
variable will have the value of IORESULT.

3. Creating A Pascal Pseudo-volume

To create a Pascal pseudo-volume requires a call of the
form:

INDEX :- CREATE VOLUME(NAME, DESC, SIZE)
. -

This will create a pseudo-volumeon the currently selected Profile with
the name NAME, its description field will be set to the stting passed in DESC,
and it will be SIZE blocks in length. The index returned should be stored in
the calling program, for it must be used for all other calls that will assign,
delete, etc. this pseudo-volume. The index can also be obtained by a call to
VOLUME INDEX using the same name and deseription fi.eld •...This call can return
3 possible errors, either to the calling program or by reporting them to the
screen (if so desired.)

4. Deleting· A Pascal Pseudo-volume

This is not a recommended practice for application programs to do. The
end-user should only delete pseudo- volumes via the volume manager program
(from the PPM). If an application needs to delete a pseudo-volume, it is done
through the call

The index corresponds to a pseudo-volume that is obtained either through
a CREATE VOLUME or VOLUME INDEX call. After a pseudo-volume has been deleted,
the Pascal region can be krunched if the KRUNCH_PLAC is set to TRUE. This
call will return an error if there is no volume that corresponds to that index

COPYRIGHT 1984 APPLE COMPUTER, INC Page 30



VOLUME MANAGER TECHNICAL. SPECIFICATION

or if the volume is write-p~otected.

5. Assigning A Pascal Pseudo-volume

For a program to use a pseudo-volume as a Pascal volume. the pseudo­
volume must be assigned to a Pascal unit number. To do so requires a call of
the fot'1ll

The index value spe~ifies the pseudo-volume to assign with the Pascal
unit number passed via UNIT NUMBER. An error will occur if there is no
corresponding pseudo-volume-or if the UNIT NUMBER value is not in the correct
range of Pascal unit numbers (4, 5. 9 - 207 128 - 143).

6. Releasing A Pascal Pseudo-volume

To release a pseudo-volume from its assigned Pascal unit number. requires
a call of the fot'1ll:

where UNIT_NUMBER corresponds to the Pascal unit number that has been
assigned. It is recommepded tha~ an)'.~pplication that assigns unit numbers
will also release them before completion of execution. This will free the
user from having to hand-release these pseudo-vclumes before executing another
program. This call can return two errors, one 01' which if. the unit is not
currently assigned or if the unit number is not in the corr~ct range.

7. Setting the Write-protection of a Pascal Pseudo-volume

To set or clear the write-protectattrib\1te of pseud6- volume. make the
call

INDEX selects the volume and if W'Pr'LAG is true it will be write­
protected, else the write-protecta5trib\1te ""ill be cleared. An error will
occur if the is no volume that corresponds to the index passed.

8. Krunching the Pascal Region of the Profile

This is not a recommended practice for application programs. The only
time it may be necessary is if when a create of volume. is. attempted and there
is not enough room for the volume a call to KRUNeR AREA may free up enough
space for the volume. The call is simply

KRUNCH AREA

9. Modify the name/description field of a Pseudo-volume

An application can change the name and/or the description field of a
pseudo-volume. This is not a recommended practice. Calling
MOOIFY_VOLUME(INOEX. NAME. DESCRIPTION) will change the specified values.

COPYRIGHT 1984 APPLE COMPUTER. INC Page 31



VOLUME MANAGER TECHNICAL SPECIFICATION

Either the NAME or DESCRIPTION parameter may be null, to not change the field~

10. Selecting the Profile Drive to Use

All volume manager actions are performed on the currently selected
Profile drive. Each Profile drive is assigned a drive number (in the range 0
to 7). ~e default Profile is drive O. To select a Profile, the application
program should check the set PASCAL_DRIVES in the volume manager interface to
determine which drives are active. PASCAL DRIVES is set up when the volume
manager is initialized. Any currently active Profile drives will be placed in
it. If a user turns off a Profile after PASCAL DRIVES is set, then any action
to that Profile will result in art I/O error. For example,

SELECT DRIVE will return an error if the drive is not active, Le.if it
is not-in PASCAL_DRIVES or if an illegal drive number (out of range) is
passed.

11. Getting the Index of a Pseudo-volume

In order to act upon a pseudo-volume, you require the index that
corresponds to that pseudo-volume. To get the index requires a call

INDEX :- VOLUME_INDEX(NAME, DESCRIPTION)'

This function will return the .index that corresponds to the pseudo-volume
whose name and descI'iption field match the values passed. If an error occurs
it will return a value of 0 to INDEX. The rules for matching are:

a. if there is only one pseudo-volume with the name NAME
then return its index

b. if there are more than one pseudo-volume with the same
name, then match description fields. If there is no
match then return an error. If there is a clear
match then return the index.

c. if no name is matched then return an error.

12. Getting the Pascal Area Volume Directory

Normally, an application program will not have to know about the contents
of the Pascal area volume directory. In such cases as it may, this procedure
is supplied to allow a program to inspect .'the contents (but it may not change
them.) The program needs to declarE!. the following data structures in its
global data.section in the following order and format:

VAR

VOLUME_DIRECTORY: VDIR_STRUCT;
DESCRIPTIONS: DESC ARRAY;
NAME ARRAY: N_ARRAY;

COPYRIGHT 1984 APPLE COMPUTER, INC Page 32



VOLUME MANAGER TECHNICAL SPECIFICATION

Calling GET_VDIR will transfer the information into these data
structures. Care must be made that the programmmer does not put any other
data structures amidst these Eor they will be wiped out! Use of this
procedure will not set CUR DRIVE to this drive number.

13. Getting the Profile Driver Status Record

Using GET_STATREC is also not intended for the usual use of the volume
manager unit. Again, this only supplies information and the user cannot
change the contents. The program must declare the data structure
STATUS_RECORD sho~ below in its global data area:

STATUS RECORD: STAT_REC;

14. Error Handling

After any call to the volume manager unit, there is a possibility that an
error occurred. This is registered in the VMERROR variable found in the
volume manager interface. After any call, this variable should be checked to
see if an error has occurred. Any I/O errors are noted in the variable
VM 10 ERROR. It should also be checked. The error values are shown below for
VMERROR:

o - No error

1 - No such pseudo-volume

2 - Not enough rool'll to allocate pseudo-volume

3 - Volume directory full

4 - Name conflict

5 - Illegal unit number

6 - Pseudo-volume not assigned

7 - Profile Drive not active

8 - Illegal drive number

9 - Illegal volume name

10 - Write Protect error

11 - No Pascal Area on this Profile

12 - No Profile driver attached

13 - Volume size must be greater than 6 blocks

COPYRIGHT 1984 APPLE COMPUTER, INC Page 33



VOLUME MANAGER TECHNICAL SPECIFICATION

14 - Pro DOS directory is full

15 - Pseudo-volume contains files cannot delete

16 - Cannot assign unit number used for Profile driver

17 - The ProDOS directory haa a ProDOS file called
PASCAL. AREA

VM 10 ERROR will contain the standard IORESULT value for any I/O errors
that may have occurred. Use of these ~o variables parallels the use of
IORESULT in Pascal programs. After a call has ,been made to the volume
manager, the application should 'check VM ERROR and VM_IO_ERROR, to determine
the success of the call.

The application program has the choice whether or not it wishes to
report any errors that may occur while using the volume manager unit. Also.
it can allow the volume manager unit to report the errors. Two variables
found in the interface control error reporting. They are:

DISPLAY ERROR - if TRUE then the volume manager will
report errors to the console, else no error messages
will be displayed

ERR FHl' - if TRUE and if DISPLAY ERROR is TRUE then all
error messages will be displayed-on li~a ERR LINE which
is set to 3, by default, of the. console, else if 'ERR_FM'l'
is FALSE and DISPLAY ERROR is TRUE then error messages will
be displayed on the current line of the. console, i.e. at
the current cursor position

ERR LINE - this variable specifies on which line to report
errors. It is set to line 3 by default. An application
program can change this value to suit its needs. It is
only used if ERR_FMT is set TRUE.

The volume manager supplies an error reporting procedure
REPORT ERROR. that will print an error message based on the
current values of VMERROR or VM 10 ERROR. An a.pplication
program can call this procedure-to-report any errors. This
procedure will report errors given thesettings~ofthe above
flags.

15. Managing the Screen Display

For the most part, the application program is expected to manage its own
screen display a propos to its purposes. The volumE! tl1anager unit supplies the
routines necessary to use the volume display shown in the section above.
After an an application has performed a SELECT DRIVE it can display the
available pseudo-volumes on that drive by calling SCREEN DISPLAY. Various
fields within that display can be updated after any volu;e manager unit call
following the protocols given below:

After the creation of a pseudo-volume:

COPYRIGHT 1984 APPLE COMPUTER, INC Page 34



VOLUME MANAGER TECHNICAL SPECIFICATION

call SCREEN DISPLAY

After the deletion of a pseudo-volume:

call SCREEN DISPLAY

After assigning a pseudo-volume:

call SCREEN DISPLAY

After releasing a pseudo-volume:

call UNIT DISPLAY with the index of the
pseudo-volume that has been released with
a unit number of a

After clearing or setting of write-yrotection:

call WP_DISPLAY with the index of the
pseudo-volume and a boolean where TRUE
means write-protection has been set and
FALSE means write-protection has been
cleared

~fter krunching:

no update to the screen is necessary

After modifying the name or description field:

call either/both ~AME_DISPLAY and/or
DESC_DISPLAY with the index of the pseudo-volume
and the new value for that field

After selecting a Profile drive:

To have the user select a pseudo-volume:

once SCREEN_DISPLAY has been called, call
SEL_VOLUME to have the user select a pseudo­
volume, this call will return its index

An application can use the volume manager unit's error
reporting mechanism if it so chooses. If it chooses to do it
itself, the variables VM ERROR and VM 10 ERROR are available to
the application program to use to determine what if any error
has occured and to report it in its own manner.

16. Swapping the Volume Manager Unit In and Out of Memory

When an application program that uses the volume manager unit ls loaded,

COPYRIGHT 1984 APPLE COMPUTER, INC Page 35



VOLUME MANAGER TECHNICAL SPECIFICATION

the initialization code for the unit is executed. This code will set up
VALID DRIVES and some internal variables used by the volume manager unit. To
conserve space in an application, this unit can be NOLOADed so that it is
resident only when required. If this is done a call to INIT_VM must be made
prior to using any other functions in the volume manager unit. This call
will set up these variables again.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 36


	partie05_01
	partie05_02
	partie05_03
	partie05_04
	partie05_05
	partie05_06
	partie05_07
	partie05_08
	partie05_09

