APPLE COMPUTER, INC.
20525 Mariani Avenue
Cupertino, CA 95014

PASCAL TECHNICAL NOTE #10

Configuration and Use of The
Apple IT Pascal 1.2 Runtime Svstems

(December 1983)
For further {information contact:

PCS Developer Technical Support
M/S 22-W, Phone (408) 996=1010

Disclaimer of All Warranties and Liabilities

Apple Computer, Inc. makes no warranties, either express or implied, with
respect to this documentation or with respect to the software described in
this documentation, 1its quality, performance, merchantability, or fitmess for
any particular purpose. Apple Computer, Inc. gsoftware is sold or licensed
"ag 1s", The entire risk as to 1its quality and performance {is with the
vaendor. Should the programs prove defective folowing their purchase, the
vendor (and not Apple Computer, Inc., 1its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repalr, or correction and
any incidental or consequential damages. In no avent will Apple Computer,
Inc. be liable for direct, indirect, incidental, or counsequential damages
resulting from any defect in the software, even 1f Apple Computer, Inc. has
been advised of the possibility of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This document
may aot, in whole or part, be copied, photocopied, reproduced, translated or
reduced to any electronic wmedium or machine readable form without prior
consent, in writing, from Apple Computer, Inc.

Copyright 1983 by Apple Computer, Inc.
: 20525 Mariani Avenue
Cupertino, CA 95014
(408) 996~1010

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

APPLE COMPUTER, INC.
20525 Mariani Avenue
Cupertino, CA 95014

PASCAL TECHNICAL NOTE #10

Configuration and Use of The
Apple II Pascal 1.2 Runtime Systems

(December 1983)

For further information contact:
PCS Developer Technical Support
M/S 22-W, Phome (408) 996-1010

I. INTRODUCTION

The Apple II Pascal 1.2 Runtime Systems permit the "turnkey" execution of
application software that has been developed using Apple Pascal. This Technical
Note is intended to aid Vendors and applications developers who are familiar
with the Apple II Pascal 1.2 Development System. Those who are not should read
carafully the following documents:

* Apple Pascal Operating System Reference Manual (with addendum)
* Apple Pascal Language Reference Manual (with addendum)
* Apple II Pascal 1.2 Update Manual

II. SYSTEM OVERVIEW

The Runtime Systems support oanly the execution of an application package.
Unlike the Pascal Development System, the Runtime Systems do not contain the
Assembler, Compiler, Editor, Filer or Linker, nor even an error reporting
mechanism at the system lavel. System operations such as transferring files,
disk compacting ("Krunching'). and the reporting of and recovery from errors,
‘are ‘all left to the application program. Clearly, it is the software
developer's responsibility to design and implement "friendly," entirely
self-contained packages for use with the Runtime Systems. The safest assuwption
to make when developing such packages 1s that the end—user is not only
unfamiliar with the facilities of the Pascal Development System, but may also be
ignorant of computer operation and use in general.

The three runtime systems currently available are :

* The 48K Runtime System (standard and stripped versionms)
* The 64K Runtime System (standard version only)
* The 128K Runtime System (standard version only)

The name of each runtime system indicates the minimum amount of RAM
necesgary for proper operation. Any additiomal RAM available above the minimum
will not be used by the Runtime Systems.

Tech Note #10 Apple II Pascal 1.2 Runtime Systems Page 3

There are two vaersions of the 48K Runtime System available, one of whic
provides more freae memory for the application package's programs and data than
does the other. Except as noted later, the 'standard" configuration of the
Runtime System supports all features of the Pascal Development System that are
relevant to turnkey execution of applications software. The 'stripped”
configuration lacks set operations and floating=-point arithmetic.

I[II. CONTENTS OF APPLE II PASCAL 1.2 RUNTIME DISKETTES

The following files are contained on "RT48:", the Apple II Pascal 1.2
48K Runtime System diskette:

RTSTND.APPLE (29 blocks) = 48K Runtime "gtandard" P-machine.

RTSTRP.APPLE (24 blocks) == 48K Runtime "stripped' P-machine.

SYSTEM.PASCAL (28 blocks) — 48K Runtime operating system.

SYSTEM.LIBRARY (39 blocks) — Contains the same Intrinsic Units as
described in the Apple Pascal Language Reference Manual. However,
thegse Units are for use only with the Runtime System, and will not
execute properly in the development enviromment. Conversely, only .
Units in this library, NOT those on the 1.2 Development System
diskettes, should be used when executing programs in the Runtime
environment. Note that the develover is, however, free to add his owm
Intrinsic Units to the Runtime SYSTEM.LIBRARY.

SYSTEM.ATTACH (9 blocks) =— A runtime version of the dynamic driver-
attachment program described in the Appie IT Pascal Attach Tools
manual. This version may only be used with the Runtime Systems.

RTSETMODE.CODE (4 blocks) =~- Utility program that permits Vendor to arm
or disarm any or all of four configuration optionsg: . !"Filehandler
Overlay'", "Single Drive System", "Ignore External Terminal' and
"Get/Put and Filehandler Overlay'.

* RTBOOTLOAD.CODE (4 blocks) == Utility program to load 48K Runtime
bootstrap code. onto blocks 0 ‘and | of Vendor Product Diskette.

RTBSTND.BOOT (4 blocks) — Contains bootstrap code for RTSTND.APPLE.

* RTBSTRP.BOOT (4 blocks) == Contains bootstrap code for RTSTRP.APPLE.

* [I40.MISCINFO (1 block) — Miscinfo file optomized for a 40-columm
Apple II or Apple II Plus. ‘Identical to that supplied with the
Development System.

* TI80.MISCINFO (1l block) = Miscinfo file optomized for an 80~-column App.
IT or Apple ITI.Plus . Iderntical to that supplied with the Develcpment
System.

* TIE4O.MISCINFO (1 block) == Miscinfo file optomized for a 40-column Apple
//a. Identical to that supplied with the Development System.

* SYSTEM.MISCINFO (1l block) =—— Miscinfo file optomized for an 80-column
Apple //e. 1Identical to that supplied with the Development Svstem.

* SYSTEM.CHARSET (2 blocks) =— Identical to that supplied with the

Development System. it is included here onlv for redundancy’'s sake.

SYSTEM.CHARSET is needed on the Vendor Product Diskette only if
TURTLEGRAPHICS 13 used.

*+ ¥ * *

iecn Note #lU h Appla II Pascal 1.2 Runtime Systems Page 4

The following files are contained om "RT64:", the Apple II Pascal 1.2
64K Runtime System diskette:

* SYSTEM.APPLE (32 blocks) =— 64K Runtime "standard" P-machine.
SYSTEM.PASCAL (29 blocks) =—— 64K Runtime operating system.

%

SYSTEM.LIBRARY
SYSTEM.ATTACH
RTSETMODE .CODE
II40.MISCINFO ——-=> game files as 48K Runtime System
IT80.MISCINFO
IIE40 . MISCINFO
SYSTEM.MISCINFO
SYSTEM.CHARSET

& % % % % ¥ & ¥

The following files are contained om '"RT128:", the Apple II Pascal 1.2
128K Runtime System diskette:

* SYSTEM.APPLE (32 blocks) =— 128K Runtime ''standard' P-machine.
SYSTEM.PASCAL (29 blocks) — 128K Runtime operating syscem.

¥

SYSTEM.LIBRARY
SYSTEM.ATTACH
RTSETMODE .CODE ———> game files as 48K Runtime System
SYSTEM.MISCINFO
SYSTEM.CHARSET

¥ & * ¥ *

O0f these files, the final Vendor Product Diskette should contain only
the Runtime P-machine (RTSTND.APPLE, RTSTRP.APPLE, or SYSTEM.APPLE),
~ SYSTEM.PASCAL, SYSTEM.LIBRARY, the appropriate miscinfo file renamed to
SYSTEM.MISCINFO, and, optionally, SYSTEM.CHARSET. Information on . the
different miscinfo files {s contained in the Apple II Pascal 1.2 Update Manual.
SYSTEM.ATTACH, with its attendant data files ag described in the Apple II Pascal
Attach Tools manual, should be included on the Vendor Product Diskette if and
only if special device drivers, written in machine-code, must be bound into the
system for use by the Applications Package. All other files on the Runtime

System diskettes are used in creating and configuring the Vendor Product
Diskette.

IV. OPERATION

The term "Vendor Product Diskette," as used throughout this Technical Note,
refers to the primary (boot) diskette in a turnkey application package, which is
assumed to contain the following software: ~the Runtime P—machine , the Runtime
Operating system, a SYSTEM.LIBRARY file, a SYSTEM.MISCINFO file, and the files
comprising the applications package's programs (and any necessary data). In
most instancesg, the Vendor Product Diskette will be the only software diskette
in the package. Larger systems, however, may also include other diskettes that
contain additional software and data which will not fit on the bootstrap
diskette.

Tach Note #10° Apple II Pascal 1.2 Runtime Systems Page 5

Nota that the main application program must be named SYSTEM.STARTUP, so
that the Runtime System can find {t at bootstrap-load time.

A two-stage boot process can be used with the 64K and 128K Runtime Systams
if the necessary boot files listed above cannot fit on a single diskette. In
this case, the primary boot diskette would contain only the Runtime P-machine.
A second-stage boot diskette would contain the remainder of the files. A
two-gtage boot process cannot be used with the 48K Runtime System.

A. The Bootstrapping Process

In a machine equipped with an auto-start ROM, the bootstrap loading
‘process occurs automatilically, as soon as the Apple's main power switech is
turned "ON." As a result, the end—user is greeted by the applications
package. In a machine that lacks an auto—-start ROM, the end-user first
encountars the Apple MONITOR, or BASIC, and must initiate the bootstrapping

process by issuing a 6—CTRL-P command (in the case of the MONITOR) or a
PR#6 command (for BASIC).

The bootstrap loader checks for the P-machine file and loads 1t into
RAM, The P-machine, in zturn, brings in and initializes the Runtime
operating system. (In tha case of a two—-stage boot, the massage "Insert
boot diskette with SYSTEM.PASCAL on 1it, then pregss RETURN" appears after
the P-machine has been loaded. The end—usgser should then insert the
second-stage boot diskette and preas RETURN which results in the Runtime
operating system being loaded and initialized.) The first noteworthy
action taken by the operating system is to executa SYSTEM.ATTACH, if that
utility program is available on the Vendor Product Diskatte. Remembar that
SYSTEM.ATTACH must not be present on the Vendor Product Diskette unless
special, low—-level I/O drivers must be bound into the system. As explained
more fully in the Apple II Pascal Attach Tools manual, SYSTEM.ATTACH uses
two ‘special data files, and will fail if these filesg are not present on the
bootstrap disketta. A vendor who puts SYSTEM.ATTACH on his Vendor Product
Diskette without also providing the data files required by that program
insures consistent failure of the system bootstrap process. The vendor may
include the SYSTEM.ATTACH software on the Vendor Product Diskette, while:
defeating the automatic execution of that utility at bootstrap load time,
by changing its name in the diskette directory.

The bootstrap process culminates when the main applications program,
SYSTEM.STARTUP, is loaded and executed. Any failure during the bootstrap

process i3 fatal. Whenever possible, a failure will leave displayed the
message

SYSTEM FAILURE NUMBER nn. PLEASEkREFER TO: PRODUCT MANUAL.

Here, "nn'" refers to the actual number reported when the failure
occurs. This number will correspond to ome of the following failures:

Tech Note #10

Apple II Pascal 1.2 Runtima Systems Page 6

0l Unable to load specified program

‘02 Specified program file not available

03 Specified program file is not code file

04 Unable to read block zero of specified file

05 Specified code file is un~linked

06 Conflict between user and intrinsic segments

07 UNASSIGNED ERRCR CODE

08 Required intrinsics not available

09 System internal inconsistancy

10 Can't load required intrinsics/Can't open library file
11 Specifiad code file muat be run under the 128K system
12 Original disk not in boot drive

Clearly, these messages ares useful as debugging tools as well as in
mechanisms for field failure-reporting. The "PRODUCT MANUAL'" mentioned in
the bootstrap failure message 1s, of course, the vendor's own product
manual. It is the responsibility of the vendor to ennumerate and explain
for the end-user the situations in which bootstrap failures may occur, as
well as suggest remedies for these failures.

B. General Considerations

Once the program is loaded and rumning, operation proceeds normally,
and may even include removal of the system disk. (Iz is, however, the
responsibility of the application package to protect i{tself against the
possibility that the system disk will not be on=line when a segmant must be
overlaid, or a specific subprogram must be chained to. At such times, the
application software should first determine whether or not the required
disk is on=line, and, if not, suspend operatiomn, after giving a suitable
prompt, until the user has inserted the disk in the appropriate drive.)
Any errors that occur during execution of the applications package cause
the system to transfar program control to a specific procedure in the
currently-executing application progrim, where code intended to respond to
errors is assumed to exist. If any program in the applications system
terminates without chaining to another one, the Runtime system re-boots
into SYSTEM.STARTUP.

SPECIFICATIONS

A. Available Configurations

The memory requirements of different applications impose the need for
different Runtime Systems. The applications developer should choose one of
the gystems as the target environment, and keep 1ts limitations and
capabilities in mind during design and implementation of the applications
package. Apple currently supports the following Runtime Systems:

* 48K Runtime System (standard and stripped versions)
* 64K Runtime System (standard versiom only)
* 128K Runtime System (standard version ounly)

The difference between the standard and stripped versions of the 48K

Tech Note #10 Apple II Pascal l.2 Runtime Systems

Page 7

Runtime System {s that the stripped version does not support set operatior-

or floating point arithmetic thereby making more memory available for thy
application.

The chart beiow sumarizes the amount of free memory that i{s available
under the different Runtime Systems for use by the application package.

Note that when swapping 1ls set to level | the amount of memory available to
the application package 1is increased by 3668 bytes.

FREE MEMORY IN APPLE II PASCAL 1.2 RONTIME SYSTENMS

NO SWAPPING SWAPPING ON
LEVEL 1
48K STANDARD 23372 bytes 27040 bytes
48R STRIPPED 25676 bytes 29344 bytes
64K 40322 byrtes 43990 bytes
128K (CODE) 41227 bytas 44879 bytas
128K (DATA)| 44502 bytes | 44526 bytes
I

NOTE = the amount of free memory avallable with the 64K Runtime System
is reduced by 1024 bytes if it is operating in 40-column mode.

There 13 another level of swapping (level 2) which provides an
additional 822 bytes of usable mesmory, howaver, application writers should
not depend on the ‘extra memory being available in the future. Certain
planned enhancements to the Pascal system will reduce the memory available
to applications by approximately 1000 bytes. Swapping level 2 will help.
programg currently running at the limit of available memory to run under
the enhanced system.

NOTE - using GET or PUT to disk will be slow if swapping level 2 is
selected since these routines will have to be loaded repeatedly. READ and
WRITE to disk will also be slow since they use GET and PUT. BLOCEKREAD,
BLOCKWRITE, UNITREAD, and UNITWRITE will be unaffected.

Swapping can be set to the desired level by using RTSETMODE (described
later) or by calling a procedure in CHAINSTUFF before chaining to another
subprogram. See the Apple II Pascal 1.2 Update Manual for further
information on swapping.

B. Use Environment

The hardware environment must include the following:

Tech Nota #10 Apple II Pascal 1.2 BRuntime Systems Page 8

48K Runtime System - An Apple II or II Plus with 48K of RAM
(minimum), or an Apple //e

64K Runtime System - An Apple II or II Plus with 48K of RAM and an

Apple Language Card, or an Apple //e

An Apple //e with an Extended 80-columm Text

Card

All Runtime Systems - At least one disk drive, set up for lé-sector
operation.

All Runtime Systems - Video screem or external terminal (video screen
preferred).

128K Runtime Syscem

Note that the Runtime Systems support all Appla peripheral cards.
Other cards may not operate properly, especially if they include firmware
that depends upon specific intermal characteristics of the P-machine
interpreter or operating system. SYSTEM.ATTACH must be used by those
Vendors who wish to reconfigure the BIOS (Basic I/0 Subsystem) to support
non-standard peripheral devices. Through the ATTACH facility, it is
possible to assign new physical devices to any of the existing logical I/O
units in the Pascal system, as well as retain the standard device
assignments while adding new devices to the system. Drivers prepared for
use with SYSTEM.ATTACH are bound into the system dymamically, at each and
every boostrap load. . Note that the addition of special I/0 drivers to the
gsystem will further restrict the amount of free memory avallable for use by
the applications code, since drivers are loaded on the Pascal system heap.
For more information, see the Apple II Pascal Attach Tools manual.

C. Rastrictions and Considerations

1. SYSTEM.ATTACH and the CHAINSTUFF, LONGINTIO, and PASCALIO units
in SYSTEM.LIBRARY make assumptions about the internmal structure of
the Paacal operating system. Because the intermals of the Runtime
operating systems are different from those in the Developmentc .
System, only the versions of CHAINSTUFF, LONGINTIO, PASCALIO and
SYSTEM.ATTACH that are supplied on the Runtime System diskettes
should be used in the Runtime execution environment. :
(Furthermora, these special versions should never be used in the
Development environment!)

2. The units TRANSCEND and TURTLEGRAPHICS eﬁbloy floating=-point
operations, so software intended to be executed under the 48K
Stripped Runtime System should not use-them. For software that
employs: the TURTLEGRAPHICS procedure TURNTO, note that turns
through right-angles and null-angles are treated as special cases,
and the TURTLEGRAPHICS unit uses only integer arithmetic in
calculating the trigonometric values needed to-exscute them. So,
TURTLEGRAPHICS may be used under the 48K Stripped Runtime System
1f and only if the turtle {s allowed to make only right-angle
turns (as in the HILBERT demonstration program oa APPLE3:, for
example). Attempts to draw arbitrary curves, as demonstrated in
the GRAFDEMO program on APPLE3:, will produce execution errors in
the 48K Stripped Runtime environment.

Tach Note #10 .Apple II Pascal !.2 Runtime Systems Page 9

3. Pascal's special function keys retain thelr meanings in the
Runtime Systems. The following keys have special meaning:

Fraeze (Stop) screen display - CTRL-S

Flush screen display - CTRL-F

Switch to alternate half of screen - CTRL-A

Toggle display to switch screen halves to follow cursor - CTRL-Z
Laft square bracket - CTRL-K

Right square bracket - SHIFT-M

Break - CIRL- @

Upper/lower case activation toggles - CTRL-¥, CTRL-E

% % % ¥ ¥ ¥ # *

NOTE - Somes of these special function keys are ignored by Pascal
if it is running on a //e. See the Apple II Pascal 1.2 Update
Manual for more information. It 13 possible to disable soma of
these special key functions. See the Apple II Pascal Attach
Tools manual for complete details.

4, The Runtime System will oparate correctly only with programs that
have been prepared, using Apple's Pascal compiler and/or
Pascal-system assembler on either an Apple II or an Apple ///, fo:
execution in the Apple II Pascal environment.

5. The Runtimes System 1s optimized for operation with the Apple's
built=in video output scresen. There 13 no easy way for a turnkey
package to reconfigure its host Runtima System to use the
random—cursor facilities of any arbitrary extermal tarminal.
Therafore, it.is expectad that users of the system will be
operating with the standard Apple video screen, and not an
external terminal. Any program that makes use of screen control,
such as clearscreen, random cursor addressing, or backspacing, is
not likely to work properly on an external terminal. To avoid
this problem, the Runtime System contains a switch which can be
set through the RTSETMODE program (explained below). When set,
this switch caugses the system to ignore an external terminal, if
one {3 connected. Simple programs that do not make use of any

screen countrol may leave the external terminal switched in without
any adverse consequences.

D. Runtime System Configuration Utilitias

l. RTSETMODE (provided with all Runtime Systems)

Flags which note the state of four system options are contained
within a special part of the directory of any Runtime System bootstrap
diskette: - (These flags will not normally be present on diskettes
prepared for or used with the Pascal Development System.) When a flag
is set (TRUE), the corresponding system option is emabled. The option
is disabled when the corresponding flag is raset (FALSE). At
bootstrap time, the option-flags are retrieved and are used during a
dynamic coufiguration process which occurs before the applications
goftware 13 executed.

Tech Notae #10 Apple IT Pascal 1.2 Runtime Systems Page 10

The RTSETMODE utility 1is used by the applications developer to
set or reset the option-flags, according to the requirements of the
applications package. In operating RTSETMODE, the developer first
selects the Pascal volume to be affected, then answers four yes-or-no
questions by pressing the "Y" or '"N" keys, respectively. Responding
to any prompt for input by pressing only the RETURN key causes
immediate termination of the program.

Answering '""Y" to any of the following questions ARMS the
indicated option (setting the corresponding flag), while answering "N"
DISARMS the option (and resets the corresponding flag).

*® ARM Filehandler Overlay Option? - Arming this option sets
_swapping to level l. System primitives related to disk file
opening and closing are overlaid as needed by the
application software, thus freeing 3668 bytes of RAM for
use by the applicatiom.

* ARM Singla-Drive System Option? = With this option armed, once
the initial bootstrap process is finished at the beginning
of any turnkey sdoftware run, the system itself will not
agsume the availability of any disk drives other than the
bootstrap device. Specifically, "volume searches’ will be
limited to the single drive. The application may still use
Apple Pascal's UNITREAD and UNITWRITE procedures to access
any other drives which may be connected to the system.

* ARM Ignore External Terminal Option? = Arming this option
insures that the system CONSOLE: device will always be the
Apple's built~in video screen, whether or not an extermal
terminal interface or 80=-columm card i{s available in slot 3.

* ARM Get/Put and Filehandler Overlavy Option? = Arming this
option ‘dets swappling to level 2. System primitives related
to disk file opening and closing, as well as GET and PUT to
disk are overlaid as needed. (See section A for more
information on swapping level 2.)

After the four-=question sequence, RISETMODE asks the user to
confirm that all information input to that point 13 correct and should
be used to update the Vendor Product Diskette. If so, an attempt is
made to update the disketre's directory with the new set of option
flags, and RTSETMODE finishes by reporting the success or failure of
the update operation.

Developers should note that only exact copies of a Runtime
bootstrap diskette will retain its option-flags. Transferring the
Runtime System and applications software from diskette to diskette on
a fila-by=-file basis will not also transfer the option~flags between
the diskettes. For this reason, it is recommended that RTSETMODE be
applied to the product master of any Runtime-based package immediacely
prior to releasing that master to production, in order to insure the
correct status of the option~flags.

Tach Note #10 Apple II Pascal 1.2 Runtime Systems Page 1]

If a two-stage boot will be used for a runtimas application,
RTSETMODE must be run on both boot diskettes since some of the flags

are checked by the P-machine while others are checked by the operating
. 8ystem.

2. RTBOOTLOAD (48K Runtime System only)

This program is used to transfer to the Vendor Product Diskatte
the proper bootstrap code for the chosen 48K Runtime configuration
(STND or STRP). Responding to- any prompt for imput by pressing only
the RETURN key results in immediate terminatiom of the program.
RTBOOTLOAD first asks for the name of the file which contains the
appropriate bootstrap code (either RTBSTND.BOOT or RTBSTRP.BOOT). The
file name must be entered exactly as it appears in the directory
(including a volume prefix {f the file 13 not on the default volume),
or the program will not be able to find the file, and will repeat its
request for a file name. Once it has fetched the bootstrap code,
RTBOOTLOAD asks for the volume name of the: Vendor Product Diskette,
then waits for the user to press the SPACE-BAR (thus providing the
user with an opportunity to mount the selected volume, if necessary)
before attempting to transfer the bootstrap information. The success
or fallure of the transfer {3 reported before RTBOOTLOAD terminates.
This program i3 only supplied on the 48K Runtime System diskette and
should never be used to transfer bootstrap information to a diskette
which contains the 64K or 128K Runtime Systems, as doing so will
pravent the systems from booting correctly.

E. Error Bandling

If an error in execution or I/0 occurs during program operation, the
Runtime System attempts to let the application package itself acknowledge,
and if possible, recover from the error condition. Just as he may in the
Pascal Development environment, the application developer is free to use
the $I- and $R~ compiler options to assume localized, programmatic control
of the corresponding error situations.

When the Runtime System detects an error, it stores the error number
in IORESULT and calls '"PROCEDURE NUMBER TWQO" of the currently-executing
program. This is the procedure in segment number 1l that has been given the
procedure number 2 by the compiler. In other words, it is the first one
declared aftaer the program heading that is not itself a unit or segment
procedure, or within a unit or segment procedure. In a compiler listing,
"PROCEDURE NUMBER TWO'" may be identified as those lines whose "S" (segment)
agumber is !, and whose "P' (procedure) aumber 1is 2.

"PROCEDURE NUMBER TWO" may be declared as a forward procedure since
the procedure number i3 assigned at the forward declaration.

From now on, "PROCEDURE NUMBER TWO" will usually be called the "Error
Handler," since 1t must always be reserved by the applications programmer
for the gsole purpose of handling errors. The Error Handler mav not have
any parameters, and must always be declared as a PROCEDURE, never as a

Tech Note #10 Apple II Pascal 1.2 Runtima Systems Page 12

FUNCTION.

The Error Handler can determine what kind of error has occurred by
checking the value of the IORESULT function. In the Development System,
this function is restrictad to containing the codes for any I/0 errors that
might occur during execution. In the Runtime Systems, LORESULT has been
extended to report all system errors, as well as the usual I/O errtors.

Here ars all the values IORESULT can assume during Runtime execution:

00 No error 100 Upknown Runtime error

01 Bad block, parity error 101 Value range error

02 Bad I/0 unit number - 102 No procedure in segment table (%)
03 Illegal I/0 request 103 Exit from uncalled procedure (*)
04 Data-com timeout 104 Stack overflow (*)

05 Volume went off-line 105 Integer overflow

06 File lost in directory 106 Divide by zero

07 Bad file name 107 Wil pointer reference

08 No room on voluma 108 Program interrupted by user

09 Volume not found 109 System I/0 error

10 File not found 110 User I/0 error

11 Duplicate directory entry 111 Unimplemented instruction

12 File already open 112 Floating point error

13 Fila not open 113 String overflow

14 Bad input format 114 Programmed HALT

16 Disk i3 write-protected 115 Programmed breakpoint

17 Illegal block number 116 Codespace overflow

18 Illegal buffer address

19 Must read a multiple of 512 bytes
20 Unknown ProFile error

64 Device error (bad disk format)

* » fatal error

It 13 recommended that a program's Error Handler should simply report
""system error' for all cases except those which are relevant to the
program. Global state variables in the program may be used to help
determine the nature of the problem and report it to the user. Note that a

system re-~boot occurs if an attempt 1is made to exit the program (without
chaining to another). ‘

After the Error Handler finishes its operation, control returns to the
caller of the procedure where the arror occurred (unless the error was
fatal). In this way, program operatiom may be continued, cleanly and
simply, after an error is handled. The caller of a failure-prone procedure
can set and test status flags to determine whether or not the called

procedure completed its operation, and either repeat the procedure call, or
perform an alternmative action.

In developing particularly large systems where program chaining is
used, the applications programmer should remember that each chained program
must reserve "PROCEDURE NUMBER TWQO'" as an Error Handler.

Following are two programming examples. The first shows a typical

Tech Note #10 Apple II Pascal 1.2 Runtime Systems Page 13

Error Handler routine, and the second 1s a .program fragment that
demonstrates an error recovery techaique.

(* EXAMPLE #1 —— ERROR HANDLER *)

(* THE FOLLOWING PROCEDURE IS ONLY *)
(* CALLED BY THE OPERATING SYSTEM *)

PROCEDURE ErrorHandler:

PROCEDURE Message(Space: Boolean; S: String);
VAR Ch : Char;
BEGIN (* Magssage *)
Writaln;
WritaLn('#*%* ' 5);
IF Space THEN
BEGIN
Writa('*#** Pragg SPACE~BAR to continue');
REPEAT "
Read(Reyboard, Ch)
UNTIL ((Ch = ' ') AND (NOT EoLn)):
END;
END (* Message *);

BEGIN (* ErrorHandler *)
I¥ (IOResult = 14) THEN
Message(True,'That i{s not a legal integer!')
ELSE IF (IOResult = 106) THEN
Megsage(True, 'Division by zero is impossible!')
ELSE BEGIN
Message(False,'System error, Please reboot.'):
WHILE True DO (* Hang *);
END:
END (* ErrorHandler *);

(* END OF EXAMPLE #] *)

(* EXAMPLE #2 — ERROR RECOVERY USING ERROR HANDLER OF EXAMPLE #l *)

PROCEDURE Calculator;
(* Features recovery from input or arithmetic error. *)
TYPE Order = (First, Second);
VAR A,B : Integer;
Flag : Boolean;

PROCEDURE GetNumber(Which: Order; VAR Number: Integer):
BEGIN
Write('Input the'):
IF (Which = Firstc) THEN
Write(' firstc')
ELSE Write(' second');
Wwrite(' number: '):

Tech Note #10 Apple II

Read(Number); Rea
Flag := True;
END (* GetNumber *

PROCEDURE Answer:
VAR R : Real;
BEGIN
R := A/ B; (* Bom
Writeln;

Pascal 1.2 Runtime Systems Page l4

dLn:

)i

bs 1f B=Q %)

WriteLa(A,' divided by ',B,' is ',R);

END (* Answer *);

BEGIN (* Calculator *)
REPEAT
Flag := False;
Writeln;
Writeln;
REPEAT

GatNumber(First,A)

UNTIL Flag;
Flag := False;
WriteLn;
REPEAT
GetNumber(Second
UNTIL Flag;
Answver;
UNTIL Eof;
END (* Calculator *)

(* END EXAMPLE #2 *)

To illustrate the ef
mechanism, here 1s the in
typical run of the above
a press of the <RETURN> k

»B)

.
»

fect of the Runtime System’s error handling
teraction hatween user and machine during a
"Calculator" program. User-input is terminated by
ey in all cases except the first and last. In the

first case, the Error Handler 1is invoked during the erroneous numeric

{npuct. In the last case,

the system accepts and acts upon a <CONTROL-C>

signal before the user has a chance to press any other keys.

Input the first number: N

*** That is not a legal integer!

Input the first number: |

Input the second number:

6

0

»** Division by zero is impoassiblel!

Input the first number: 1

Input the second number:

6

2

Tech Note #10 Apple II Pascal 1.2 Runtime Systems Page |5

16 divided by 2 1s 8
Input ‘the first number: <CONTROL-C>

As soon as the user presses <{CONTROL-C>, the Runtime system detects

the end of the standard input file (EOF), and re~boots (right back into
"Calculator").

V. DIFFERENCES BETWEEN THE PASCAL DEVELOPMENT SYSTEM AND THE RUNTIME SYSTEMS

Although the Runtime Systems will run wmost Pascal code files exactly as
does the Pascal Development System, the applications system developer must be
~aware of important differences between the two envirounments. As mentioned
above, there is no "system—level' handling of any type of error that may occur,
including stack overflow, arithmetic errors, or bad disk reads. It is left to
the application package to respond to all error conditions. The typical user
will not have access to (nor knowledge of) the Pascal Formattar or Filer.

Many programs which fit comfortably in the 64K Development System
environment may fail to execute at all under the 48K Runtime System due to the
difference {in available user memory. Similarly, programs developed with the
128K Development System may fail to exacute under the 64K Runtime System for the
same reason. While large systems can be made to fit within the confines of a
particular Runtima envirooment, this is possible only through use of Apple
Pascal's program segmentation (overlay) and chaining facilities. It is
suggested, however, that much thought and care be taken when using chaining and
seagmantation in software design, since these facilities, by their very nature,
involve time=-consuming disk accasses., Application softwara that abuses chaining
and/or segmentation, or employs them in a careless fashion, may easily waste a
large amount of time in "disk thrashing,'" especially if swapping 1is being used.
Finally, an applications package runs the risk of massive failure unless calls
to program overlays and chaining are preceded -by checks that the axpected
diskette is in the appropriate drive. This is especially important when the
target machine includes only ome disk drive (as is frequently the case).

The following items are never present in the Runtime Systems:

System HOMECURSOR, CLEARSCREEN, and CLEARLINE functiomns

System prompt function

Compiler, Assembler, Linker, Editor, Filer

IDSEARCH and TREESEARCH procedures (which exist in the Development Svstem
only to benefit the Compiler).

* * ¥ *

Programs that make use of information stored in specific memory locations
within the 1.2 Development System P-machine, or that make assumptions about
static or dynamic memory allocation at the operating system level (e.g., for the
purpose of accessing system data structures) are likely to function incorreccly
when executed in the Runtime environment. This 13 due to the code

reorganization, compaction, and optimization that was necessary to produce the
Runtims Systems.

Tech Note #10 Apple II Pascal 1.2 Runtime Systems Page 16

VII. CREATION OF VENDOR PRODUCT DISKETTE

The following steps can be used as a guide for creating a Vendor Product
Diskette: ’

l = Format a diskette using the Pascal Development System formatter.

2 - Transfer the filas SYSTEM.APPLE (or RTSTND.APPLE or RTSTRP.APPLZI),
SYSTEM.PASCAL, SYSTEM.LIBRARY, SYSTEM.MISCINFO, and SYSTEM.CHARSET (if

needed) from the Runtime System diskette to the Vendor Product
disketta,

3 - Transfer the code file(s) for the application to the Vendor Product

diskette. The main code file for the application must be named
SYSTEM.STARTUP.

4 = Run the Pascal Development System library program to add any needed
library units to SYSTEM.LIBRARY on the Vendor Product disketta.

5 = Run RTBOOTLOAD to load the appropriate bootstrap code from RT48: onto
the Vendor Product diskatta. (48K RUNTIME SYSTEMS ONLY)

6 = Run RTSETMODE if you wish to ARM the '"Filehandler Overlay' option, the
"Single-Drive System" option, the "Ignore External Terminal' option
and/or the "Get/Put and Filehandler Overlay" option.

Vendor Product Diskettes, or other diskettes which contain 48K Runtime
System software should be copied using ounly ''whole volume' transfer mechanisms,
such as that provided by the Pascal system Filer. A succession of "individual
file'" transfers, or a "Wildcard" tramsfer (such as transferring "#5:=" to
"#5:8"), will only copy files from one disk to another. They will not copy the
crucial 48K Runtime boostrap code between disks. Only "whole volume' transfers
(such as "#4:" ro "#5:", or "SOUP:" «to "NUTS:") will result in complete
copies, containing the proper bootstrap information.

Vendor Product Diskettes, or other diskettes which contain 64K or 128K
Runtime System software can be copied using either whole volume or individual
file transfers since they do not contain special bootstrap information.

VIII. APPLE FORTRAN AND THE RUNTIME SYSTEMS

Apple FORTRAN programs will execute correctly under the Apple II Pascal 1.2
Runtime Systems (48K and 64K only), so long as no executiom errors or untrapped
1/0 errors occur. Using only FORTRAN, it i3 impoasible to produce object code
that contains the specially—-placed error—~handling procedure to which control {is
transferred in the event of an untrapped error during Runtime execution.
Furthermore, the FORTRAN Run Time Support Library includes system—level code for
handling FORTRAN I/0 errors independently of the Apple Pascal system's own
error-handling facilities. Execution of this special code will always lead to a
system re=boot in the Runtime enviromment.

Tech Nota #10 Apple II Pascal 1.2 Runtime Systems Page 17

Users who wish to provide turnkey packages based on FORTRAN object—code are
advised to link the FORTRAN object—code to a Pascal host, as explained in the
Apple FORTRAN Language Reference Manual. The only "live code' which the Pascal
host must contain is the error-handling procedure that the Runtime Systems
raquire for robust execution of turnkey software.

APPLE COMPUTER, INC.
20525 Mariani Avenue
Cupertino, CA 95014

PASCAL TECHNICAL NOTE #11

Apple Pascal 1.l
BIOS Reconfiguration Using ATTACH

(02 April 1981)

For further information contact:
PCS Developer Technical Support
M/S 22-W, Phone (408) 996~1010

Disclaimer of All Warranties and Liabilities

Apple Cowmputer, Inc. makes no warranties, either express or implied, with
respect to this documentation or with respect to the software described in
this documentation, its quality, performance, merzhantability, or fitness for
any particular purpose. Apple Computer, Inc. gsoftware 1s sold or licensed
"ag 1ig". The entire risk as to 1its quality and performance 1is with the
vendor. Should the programs prove defective folowing their purchase, the
vendor (and not Apple Computer, Inc., 1its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repailr, or correction and
any incidental or consequential damages. In no event will Apple Computer,
Inc. be 1liable for direct, indirect, incidental, or consequential damages
resulting from any defect in the software, even if Apple Computer, Inc. has
been advised of the possibility of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or:
consequential damages, so the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This document
may not, in whole or part, be copled, photocopled, reproduced, translated or
reduced to any electronic medium or machine readable form without prior
consent, 1n writing, from Apple Computer, Inc.

Copyright 1981 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

ATTACH-BIOS document for Apple Il Pascal 1.1

By Barry Haynes
Jan 12, 1980

This document is intended for Apple Il Pascal internal applications
writers, Vendors and Users who need to attach their own drivers to the
system or who need more detailed information about the 1.1 8I0S. It is
divided into two sections, one explaining how to use the ATTACH utility
available through technical support and the other giving general
information about the BIOS. It is a good idea to read this whole _
document before assuming something is missing or hasn't been completely
explained. This document is intended for more advanced users who
already know a fair amount about I/0 devices and how to write device
drivers. It is not intended to be a simple step by step description of
how to write your first device driver, nor does it claim to be a
complete description of all there is to know about the Pascal BIOS.

The Apple Pascal UCSD system has various levels of [/0 that are each
responsible for different types of actions. It was divided at UCSD

into these levels to make it easy to bring up the system on various

processors -and also various configurations of ihe same processor and
yet have things look the same to the Pascal level regardless of what
was below that level. The levels are:

LEVEL TYPES OF 10 ACTIONS

Pascal READ & WRITE
BLOCKREAD & BLOCKWRITE
UNITREAD & UNITWRITE
UNITCLEAR
UNITSTATUS

RSP (Runtime Support Package) This is part of the interpreter and
is the middle man between the above
types of I/0 and the below types of
I/0. All the above types are
translated by the compiler and
operating ‘system into UNITREAD,
UNITWRITE, UNITCLEAR ‘and UNITSTATUS if
they are not already in that form in
the:Pascal program. The RSP checks
the . legality of the parameters passed
and. reformats these calls into calls to
the BIOS routines below.. The RSP also
expands DLE (blank suppression)
characters, adds line feeds to
carriage returns, checks for end of
file (CTRL C from CONSOLE:), monitors
UNITRW control word commands, makes

Pace 1

calls to attached devices if present,
echoes to the CONSOLE:.

BIOS (Basic I/0 Subsystem) This is the lowest level device
driver routines. This is the level
at which you can attach new drivers
to replace or work with the regular
system drivers and also attach drivers
for devices that will be completely
defined by you.

T.RECONFIGURING THE BIOS TO ADD YOUR OWN DRIVERS USING THE ATTACH UTILITY.

INTRODUCTION

With the Apple Pascal 1.1 System (both regular and runtime 1.1),
there is an automatic method for you to configuer your own drivers
into the system., This method requires you to write the drivers
following certain rules and to use the programs ATTACHUD.CODE and
SYSTEM.ATTACH provided through Apple Technical Support. At boot
time, the initialization part of SYSTEM.PASCAL looks for the program
SYSTEM.ATTACH on the boot drive. If it finds SYSTEM.ATTACH, . it
Xecutes it before Xecuting SYSTEM.STARTUP. SYSTEM.ATTACH will use
the files ATTACH.DATA and ATTACH.DRIVERS which must also be on the
boot disk. ATTACH.DATA is a file the develcner will make using the
program ATTACHUD. It tells SYSTEM.ATTACH the needed information
about the drivers it will be attaching. ATTACH.DRIVERS is a file
containing all the drivers to be attached and is constructed by the
developer using the standard -LIBRARY program. The drivers are put on
the Pascal Heap below the point that a regular program can access it.
They do take away Stack-Heap (= to the size of the drivers attached)
space from that available to Pascal code files but this should not be
a problem unless the drivers are very large or the code files very
hungry in their use of memory. Since these drivers are configured
into the system after the operating system starts to run, this method
will not work for configuring drivers for devices that the system
must cold boot from. Some of supporting code in the RSP, boot and
Bios may make the task of bringing up boot drivers easier though.
The advantages to this kind. of setup are: -
1. Software Vendors can use the ATTACHUD program to put

their own drivers-into-the system at boot time. This will
be invisible.to the user.

2. There can be no problems losing drivers due to improper heap
management since the drivers are put on the heap by the

operating system and before any user program can allocate heap
space.

3. This method does not freeze parts of the system to special

memory locations since it enforces the clean methodology of
ysing relocatable drivers.

Page 2

USING ATTACHUD

ATTACHUD.CODE will ask you questions about the drivers you want to
attach to the system. It makes a file called ATTACH.DATA which tells
SYSTEM.ATTACH which drivers to attach to the system, what unit

numbers to attach them to and other information. The options covered
by ATTACHUD are:

1. A driver can be attached to one of the system devices, then
all 1/0 to this device (PRINTER: for example) will go to
this new driver. In the case of a new driver for a disk

device the user will have to specify which of the 6 standard
disk units will go to this new driver. This will allow
replacement of standard drivers with custom ones without
having to restrict the I/0 interface to UNITREAD and
UNITWRITE as is the case with option 2.

2. A driver can be attached to one of 16 userdevices. /0 to
these will be done with UNITREAD and UNITWRITE to device
nunbers 128-143.

3. A method will be included to allow the attached driver to
start on an N byte boundry. The driver writer will be
responsible for aligning his code from that point.

4, More than one unit can be attached to the same driver. This
way only one copy of the driver residec in memory and /0 to
all the attached units goes to this one driver. It is up to
the driver to decide which unit's I/0 it is doing. How this
is done is explained below.

5. The initialize routine for any attached driver can be called by
SYSTEM.ATTACH after it has attached the driver and before any
programs can be Xecuted.

6. In case any of your programs use the Hires pages, you can specify
in ATTACHUD that drivers must not be put on the heap over these
areas. Your drivers would have to be quite large before they could
possibly overlap the Hires pages.

Follow through this example of a session with ATTACHUD where the
options available are completely described. First Xecute ATTACHUD:

You will be given the prompt:

Apple Pascal Attachud [1.1]

Enter name of attach data file:
This is asking for what you want the output file from this session
with ATTACHUD to be called. You could call it ATTACH.DATA or some other
name and then rename it-to ATTACH.DATA when you put it on the boot disk
with SYSTEM.ATTACH.

If you ever get a message of the form:

ERROR => some error
Try again (RETURN to exit program):

then just retype what was requested on the previous prompt after
deciding what mistake you made while typing it the first time.

The next prompt is:

These next questions will determine if
attached drivers can reside in the hires
pages. It will be assumed they can for the
page in question if you answer no to the
prompt for that page.

Will you ever use the (2000.3FFF hex)

hires page?

Followed by:

Will you ever use the (4000.5FFF hex)
hires page?

You should answer yes to the question for a particular Hires page if
you will ever be running a program that uses that Hires page while the
drivers are Attached. You don't want the possibility of your driver

residing in the Hires page if that page will be clobbered b{ cne of
your programs. After answering the Hires questions you will be asked
the following questions once for each driver you will be attaching:

What is the name of this driver? This
must be the .PROC name in its assembly
source (RETURN to exit program):

This must be the name of one of the drivers .in the ATTACH.DRIVERS that
will be used with this ATTACH.DATA. The length of this name must not be
more than 8 characters, After entering the name you will be asked:

Which unit numbers should refer to this
device driver?

Unit number (RETURN to abort program):

You must enter a unit nunber in the range 1,2,4..12,128..143 or will

be given an error message. You cannot attach a character unit (CONSOLE:,
PRINTER: or REMOTE:) to the same driver as a block structured unit and if
you try you will be given the message:

You can''t attach a character unit and
a block unit to the same driver. [
will remove the last unit# you entered.

Type RETURN to continue:
If you don't get the above error, you will be asked:

Do you want this unit to be
initialized at boot time?

A yes response will put the unit number just entered on a list of
units that SYSTEM.ATTACH will call UNITCLEAR on after attaching all

Nama A

the drivers, This gives you a way to have the system make an initialize
call on your attached unit at boot time. A no response will mean

that no boot time init call will be made on this unit to the driver

you just attached.

You will be eventually asked:

Do you want another unit number to refer
to this device driver?:

A yes response will get you to the Unit number prompt again and a no
response will get you to the prompt:

Do you want this driver to start on a
certain byte boundary?

A yes here will give you more prompts:

The boundry can be between 0 and 256.
0=>Driver can start anywhere.(default)
8=>Driver starts on 8 byte boundary.
N=>Driver starts on N byte boundary.

256=>Driver starts on 256 byte PAGE boundary.

Enter boundary (RETURN to exit program):

And the last line of the prompt will repeat until you enter a
boundary in the correct range. The boundary refers to the memory
location where the first byte of the driver is loaded. If your
driver needs to be aligned on some N byte boundary you-can assure it
will be using this mechanism. if you know how the driver's origin is
aligned, You can align internal parts of your driver however you
want. Finally you will get to the prompt:

Do you want to attach another driver?

And if you answer Yes to this you will return to the 'What is the name
of this driver' prompt and answering No will end the program, saving
the data file you have made.

THE DRIVER

Drivers must be written in assembly using the PasCal Assembler,

They must not use the .ABSOLUTE option, so the drivers can be
relocated as they are brought in by the system. Each driver must be
assembled separately with no external references. When all drivers
are assembled, use the LIBRARY program (in the same way you would use
it to put units into a library) to put all the drivers in one file.
Name this file SYSTEM.DRIVERS. See further explanation of making
SYSTEM.DRIVERS below.

Considerations for all drivers:

1. Study the examples below as certain information is only
documented there,

2. Refer to the Apple Il Pascal memory map below and you will see

Dana R

5.

that parts of the interpreter and BIOS reside in the same address
range and are bank-switched. The system automatically folds in
the BIOS.for drivers added using ATTACH. Most of these drivers
will have to make calls to CONCK if they want type ahead to
continue to work properly., CONCK is the BIOS routine that
monitors the keyboard., See the example drivers below to be sure
you are doing this correctly. You cannot call CONCX through the
CONCK vector at BFOA (see BIOQS part of this document) because
this call would go through the same mechanism used to get to your
driver and the return address to Pascal would be lost.

A1l attached drivers must be written with one common entry point
for read, write, init and status. The driver will use the Xreg
contents to decide which type of I/0 call this is and jump to the

appropriate place within it's code. The Xreg is decoded as
follows: '

-->read (no bits set)

-->write (bit 0 set) .

-=>init (bit 1 set) § The Pascal statement
UNITCLEAR(UNITNUMBER); makes an init call for
unit UNITNUMBER t

4 -->status (bit 2 set)

N O

The drivers must also pop a return address off the stack, save
it and later push it to do -a RTS when the driver is finished. All
other parameters must be removed from the stack by the driver.

Fgr 211 calls, the return address will be the top word on the
stack. :

SYSTEM.ATTACH will make a copy of the normal system jump vector
(the vector after the fold) and put this on the heap. There will
be a pointer to this vector at QE2. Your drivers can use this .

vector to get to the normal system drivers for device numbers 1..12.
See example below.

All drivers must pass back a completion code in the X register
corresponding to the table on page 280 of the 1.1 "Apple Il Apple
Pascal Operating System Reference Manual".

In references below to parameters passed on the stack, all
parameters are one word parameters so0 they require two bytes to
be popped from the stack by the driver.

Control word format for Unitread & Unitwrite

bits 15..13 12..6 5 4 3 2 1..0
user reserved type B type A nocrlf nospec reserved
defined for future chars chars for future
functions expansion _ expansion

type B =0 ==>System will check for CTRL S & F from CONSOLE:
during the time of this Unitio call.
=] ==)System will not check for CTRL S & F during this
Unitio.
type A =Q =a>]f using Apple Keyboard, system will check for
CTRL A, Z.XK,W & E from CONSOLE: during the period
of this Unitio.

Page 6

=adSystem will not check for the chars during
this Unitio.

=s>]ine feeds are added to carriage returns by the
Interpreter.

=z)no line feeds are added ...

=2=)DLE's (blank suppression code) are expanded on
outﬁut and the EOF character is detected on input

s=)nothing special is done to DLE'S on output and

EOF on input.

nocrlf

=0
=1

nospec

default setting for all control word bits = Q.

9. Control word format for UNITSTATUS

bits 15..13 12..2 1 0
user reserved for direction
defined for future purpose
direction =0 ==>Status of output channel is requested
a] s=>Status of input ...
purpose =0 ==>Call is for unit status
=] ==2>Call is for unit control

10. These are the new vectors and routines
attach work.
to allow for attaches.

added to the BIOS to make

The RSP, boatstrap, and readseg were also modified

UDJMPVEC ;Junp vector for user devices, offset=0 => unattached device.
;The correct addresses are initialized by SYSTEM.ATTACH
;See locations section of BIOS part below for pointers to
;this vector.
JMP 0 :Unit 128
JMP 0 ;Unit 129
M0 Unit 143

DISKNUM ;If high byte=FF then

’

device is not a disk drive

;else

@ We W M We W W we

if high byte=0 then
device is a regular disk drive and low byte=drive #

else

- driver for this disk drive has been attached by SYSTEM.ATTACH
and the driver address is stored in this word.
(Driver address has to be the address-l1 for RTS in PSUBOR

to work correctly, remember this for ATTACH. PSUBDR is
listed below.)

;See locations section of BIOS part below for pointers to
;this vector.

WORD OFFFF ,unit #1

JHORD OFFFF ;Uunit #2 (ATTACH would modify the words
LWORD OFFFF ;Unit #3 for units 4,5,9.,12 if a
LWORD O Unit #4 different disk driver were
JHORD 1 ;Unit #5 attached to any of them)
JWORD OFFFF ;Unit #6

MNamn ?

UDRWIS

PSUBDR

JNORD OFFFF Unit 47

.WORD OFFFF .Unit #8
JHORD 4 Unit #9
MWORD 5 .Unit #10
JWORD 2 Unit #11
JHORD 3 sUnit #12

;Routine to get to an attached driver through UDJMPVEC
;Assume unit# in Areg & operation to be performed in Xreg.
1See the jump vector in the BIOS secticns to see how you
;get to this routine.

STA TT1

AND #7F ;Clear top bit of unit#

STA T2 1Make address in UDJMPYEC table

ASL A ;Address=Areg*3 + base of table

CLC

ADC TT2 ;Now we have (Areg+3).

ADC #JVECTRS ;Add in low byte of base of table having

STA 72 ;N0 carry problem with only 16 UD's.

LDA #0

ADC JVECTRS+1 ;JVECTRS is a word pointing to the base
;0f UDJMPVEC.

STA TT2+1

LDA ™1

JMP @TT2

;Routine to get to an attached driver through OISKNUM

JWe assume on entry, Areg=unit#, Yreg=DISKNUM

;offset & Xreg=the command to be performed by the substituted

ydisk driver.

;See the jump vector in the BIQS sections to see how you

;get to this routine.

STA 171 ,Sdve unit#.

LDA DISKNUM-1,Y ;Store MSB of driver address.

PHA

taﬁ DISKNUM-2,Y ;Store LSB of driver address.

LDA ™1 ;Restore unité to Areg.

RTS ;Jump to substituted driver, This assumes
;the driver address in DISKNUM =
; (ADDRESS OF DRIVER)-1 for the RTS to work

Special considerations when attaching drivers for the system
devices, unitnumbers 1..12.

A. Character Oriented Devices (Pass the character to be read-written

in the A-register and make Bios c¢alls one character at a time
from RSP level. On entry, the unit number will be in the Y
register in case you wanted to attach all character oriented
devices to the same driver)., If you attach REMOTE: & or PRINTER:
to the same driver as CONSOLE:, all will have their jump vectors
pointing to the start of the driver+3 bytes. See further
discussion on this below.

Units 1 & 2 (CONSOLE: and SYSTERM:)
1. These must both go to the same driver.

Neama N

7.

8.

9.

The system CONCK routine will be patched to jump to the start of
the driver. The CONCK routine gets characters entered at the
keyboard and fills the type ahead buffer. See the example CONSOLE:
driver below.

Because of item 2, the entry point for normal calls (not CONCK
calls) to the attached driver will be 3 bytes beyond the start

of the driver.

The 1nterpreter takes care of expanding blank suppression codes
(DLE's), echo to the screen, EOF (the end of file character), and
adding line feeds to every carriage return. Your driver doesn't
need to do this.

CONSOLE: read and write have only the return address on the stack.
The stack for CONSOLE: init looks like:

POINTER TO BREAX VECTOR (This should be stored at
location BF16..BF17 by CONSOLE:
init.)

POINTER TO SYSCOM (This should be stored at
location F8..F9 by CONSOLE:
init.)

(Also at init time, the Flush
and Start/Stop conditions
should be set to normal and
the type-ahead queue should
be emptied.)

RETURN ADDRESS <=-=T0S (top of stack)

The stack for CONSOLE: status looks like:

POINTER TO STATUS RECORD

CONTROL WORD

RETURN ADDRESS <-=T0S

A status request should return, in the first word of the status
record, the number of characters currently queuved in the direction
asked for. This is the number of characters in the type-ahead
buffer. If no type-ahead is being used then output status should
always return a 0 and input status a 1 if a char is waiting to be
read, otherwise a0.

Since we:are - using 7 bit ASCII codes, the CONSOLE: read routine
should zero the high order bit of all characters it reads from
the keyboard and passes back to Pascal (to the RSP). The
CONSOLE: write routine should transfer all 8 bits as received
from the RSP since many devices use 8 bit control codes.

The RSP will send both upper and lower case chars to the CONSOLE:
write routine.,. The write routine should:map the lower to upper
if the device cannot handle lower case.

CONSOLE: Output Requirements:

A. CR (0D hex) A carriage return should move the cursor to the
beginning of the current line.

B. LF (OA hex) A line feed should move the cursor to the next line

© but not change the column position. If the cursor is on the
last line on the screen when a line feed is sent, the rest of
the screen should scroll up one line and the bottom line be
¢cleared.

C. BELL (07 hex) A sound should be made if possible when the
CONSOLE: gets 07. If making a sound is not possible then
ignore the 07.

D. SP (20 hex) Place a space at the current cursor position
overwriting whatever is there. Move the cursor to the next
column. If the cursor is on the last column of a line, it is
best if the cursor stays where it is after the space fills that

page 9

E.

Feo
G.

position. If the cursor is on the last column of the last line
on the screen, it is also best if the cursor remains in that
position and the screen does not scroll. These are the
prefered actions of the cursor at end of line & end of screen;
in the strict sense, the actions of the cursor in these
circumstances are undefined.

NUL (00 hex) When a Null {s sent to the CONSOLE: from the

RSP, the CONSOLE: should delay for the ammount of time
required to write one character but the state of the screen
should not change.

All printable characters should be written to the screen and
the cursor should move in the same way it does for SP.

See the discussion on pages 199-215 in the 1.1 Operating
System Reference Manual for further reguirements and
information.

10. CONSOLE: Input Regquirements:

A.

cC.

0.

The RSP takes care of echoing characters to the screen typed

from the CONSOQLE: keyboard.

(below items optional The Start/Stop, Flush & Break chars are
redefinable; see 9G above for more info.)

The Start/Stop character is detected by CONCX and is used

to stop all processing until the character is received a

second time. When the character is received (see 9G above

for more info) one should loop in CONCK continuing to process

other characters until:

1. the S/S char is received again
2. the Break char is received

In case 1, the suspended processing should continue as it

was before the first S/S was typed. ‘Action needed for the

Break char is described below. The S/S char is never returned

to the RSP and CONSOLE: type-ahead, if implemented, should

continue during the suspended state. Offset from SYSCOM to this

char is 85 decimal. (This and the next 2 chars are redefinable

by the Setup program and SYSCOM is the system: area that keeps

track of this info. The pointer to:the start of SYSCCM is

passed to the CONSOLE: init routine and is stored at

F8..F9 hex.) ‘

The Flush character will stop all output and echcing to the

CONSOLE: until it's second occurEnce (see 9G above). CONCK

detects this and must set a flag to tell the CONSOLE:

output routine to ignore characters while the flag is set. If

the CONSOLE: is re-initialized or a Break_char is received, the

flush state should be turned off, Flush is never returned to

the RSP. Flush only stops CONSOLE: output, other processing

continues. Offset from-SYSCOM to this char is 83 decimal.

The Break char should cause CONCX:to jump:to the location

stored. at BF16. This location is also passed to the CONSOLE:

init routine which stores it at BF16. The break char is never

returned to the RSP and it should remove the system from

Stop or Flush mode if it is in either mode. OQffset from

SYSCOM to this char is 84 decimal.

Type-ahead should be implemented in CONCK by storing

characters typed at the keyboard in a queue until they

are requested by a CONSOLE: read from Pascal., When the

queue fills, further characters should be ignered and

a bell sounded when they are typed. The length of the

queue should be at least 20 characters.

11. For more information on CONSOLE: requirements, see pages 196-

Oama 1N

216 of the 1.1 Operating System Reference Manual.

Unit 6 (the PRINTER:)

1. The 1nterpreter takes care of expanding blank suppression codes
(DLE's), EOF (the end of file character), and adding line feeds
to every carriage return.

2. PRINTER: read,write and init have only the return address on the
stack. PRINTER: status has the same items on the stack as CONSOLE:
status. PRINTER: init should cause the PRINTER: to do a carriage
return and a line feed and throw away any c¢haracters buffered to
be printed. No form feed should be done.

3. For status, return in the first word of the status record the
number of bytes buffered in the direction asked for; if this
cannot be determined by your PRINTER:, return a 0.

4. The PRINTER: write routine must buffer a line and send it all at
once if your PRINTER: can only receive data that way.

5. Line Delimiter characters:

A. CR (hex 0D) A carriage return should cause the PRINTER: to print

the current line and ‘return the carriage to the first column,
An automatic-line feed should not ‘be done by the PRINTER:
driver when it reads a CR.

B. LF (hex OA) The RSP will send line feeds to the PRINTER: driver
after each carriage return. This should cause the PRINTER: to
advance to the next line., If the PRINTER: must also do a
carriage return when it .is given a line feed, then this is

C. FF (hex 0C) This should cause the PRINTER: to move the paper to
top of form and do a carriage return. If top of form is not
possible on your PRINTER:, do a carriage return followed by a
line feed.

6. It is assumed that input cannot be received from the PRINTER:.
See the BIOS section. for a discussion of how to:get input from
the PRINTER:. .Normally, trying to get input from the PRINTER:
should return completion error code #3.

Units 7 (REMOTE: in) & 8 (REMOTE: out)

1. These must both go.to the same driver. ‘

2. The 1nterpreter takes care of expanding blank suppresswon codes
(DLE's), EOF and adding line feeds to every carriage return.

3. Same stack setup as the PRINTER:.

4. Status should return in first word of status vector the number of
bytes buffered for the direction specified in the control word,

0 if you have no way to check,

5. This unit is supposed to be an RS-232 serial line for many
different applications so it is necessary that it transfer the
data without modifying it in any way. The transfer rate default
is 9600 baud.

6. It would be nice if the input to REMOTE: could be buffered in the

- same way input to the CONSOLE: is but this is not an absolute
requirement.

7. REMOTE: init should set up the REMOTE: device so it is ready to
read and write.

B. Block Structured Devices

Naema 11

Units 4 (the boot unit),5,9,10,11,12.

l.

These units are assumed to be block structured devices, the
drivers for these units must do their own Pascal Block to
Track-Sector conversions.

The UCSD system assumes the disk device is a O-based consecutive
array of 512 byte logical blocks. A1l UCSD Pascal disks must
have this logical structure no matter what their actual physical
structure or size are. The physical allccation schemes for
information on different types of disks are arranged with sectors

‘that are of varijous sizes that depend on the hardware of the

particular disk device used. The driver must convert the Pascal
block # to the appropriate track & sector # of where that block
is stored on it's disk device. This could be a floppy or hard
disk or some other type of device. It doesn't really matter, so
long as your driver maps the Pascal Block to the cOrrect place and
continues to do so for the length (byte count) required for the
UnitI0 operation.
The Pascal system uses logical blocks 0 & 1 for it's bootstrap
code. These logical blocks should not be used for anything
else and should therefore only be available to Pascal through
direct UNITREAD & UNITWRITE operations and not accessable by
the system through an% other means. This document will not
attempt to describe the boot sequence & does not attempt to
give you enough information to attach another driver or device
to unit #4: so you can cold boot from that unit.
When a UNITWRITE is done to disk where the byte count MOD 512
is not equal to 0 (this means the last block included in the
write would be partially written to according to the byte count),
it is undefined whether garbage is written into the remaining
part of this last block. So you may write a whole block anyhow
if that is more efficient and the Pascal system will not suffer
any: bad. consequences,
When a UNITREAD is done from a disk you are not allowed to
overwrite into the unused part of the last block (if there is
an unused part due to byte count MOD 512 <> 0). You must only
send the number of bytes asked for because you could clobber
memory having some other valid use {if you wrote extra bytes.
You will have to buffer the last sector inside your disk
read routine then transfer exactly the number of bytes from
this. last sector needed to add up to the total bytes requested.
The unit number will always be in the A register.
The stack setup - for read and writae is:

CONTROL WORD . (The MODE parameter mentioned in the

1.1 Language Ref Manual on page 41)
DRIVE NUMBER

BUFFER ADDRESS

BYTE COUNT

BLOCK NUMBER

RETURN ADDRESS <--TOS

For init there is only the return address on the stack and
for status the setup is the same as for the CONSOLE:.
Status requests should return the following in the status
record:
wordl:Number of bytes buffered in the direction asked
for in the control word. Return 0 if you have no
way of checking.
word2:Number of bytes per sector.

Paae 1?2

word3:Number of sectors per track.
word4 ;Number of tracks per disk.

C. Other
Unit 3
1. This unit has no meaning for the Apple [I system except that
UNITCLEAR on this unit sets text mode.

Considerations when attaching drivers for user defined devices
numbers 128-143.

These unit numbers are provided for you to do whatever you want
with them. you can define what they do except for the following
protocols.
1. Follow the considerations for all drivers listed above,
2. The unit nunber will always be in the A register.
3. The stack setup for read and write is:
CONTROL WORD
DRIVE NUMBER
BUFFER ADDRESS
BYTE COUNT
BLOCK NUMBER
RETURN ADDRESS <--TQS

For init there is only the return address on the stack and
for status the setup is the same as for the CONSOLE:.

This is a sample driver for a user defined device.
;Locations 0..35 hex may be used as pure temps. One should
;never assume these locations won't be clobbered if you leave

;the environment of the driver itself. ("leaving”" includes
;calls to CONCK).

CONCKADR .EQU 02

;0nly one .PROC may occur in a driver, each driver to be
JATTACHED must be assembled separately using the Pascal
,assemb]er and can-have no external references.

.PROC U128DR

STA TEMP1 ;Save Areg contents (unit#)

PLA

STA RETURN

PLA

STA RETURN+1

TXA ;Use the X reg to tell you what kind of
;call this is.

CMP #2 '

BEQ INIT

-Paqge 13

PMS

READ

WRITE

CKR
GOTOCK

CMP 44

BEQ STATUS

CMP #0

BEQ PMS

cMP #1

BEQ PMS

;Could have error code here
JMP RET

PLA ;Get the parameters
STA BLXNUM

PLA

STA BLKNUM+1

PLA

STA BYTECNT

PLA

STA BYTECNT+!

PLA

STA BUFADR

PLA ,

STA BUFADR+l

PLA

STA UNITNUM ;Also in TEMP1
PLA

STA UNITNUM+1l ;Should always be 0
PLA

STA CONTROL

PLA

STA CONTROL+1

TXA

BNE WRITE

JSR GJTOCK

;Your driver's code for a read
(If more than one unit were attached to this driver, this

code could jump to various places depending on the contents
of the Areg stored in TEMPI?

JMp RET

JSR GOTOCK

iYour driver's code for a write
JMP RET

;1T you wanted to call CONCK whenever your device did a read

;or write, you would use this routine:
+WORD CONCXRTN=-1

LDY #55. ;0ffset to address of CONCK
LDA eQe2,y

STA CONCKADR

INY

LDA @0E2,Y

STA CONCXADR+1

LDA CKR+1 ;Set it up so you return to CONCKRTN after
PHA ;the CONCK call.

LDA CXR

PHA

JMP BCONCKADR ,Jump to CONCK

Danmo 14

CONCXRTN RTS ;Return to caller.

INIT

STATUS

RET

RETURN
TEMP1
CONTROL
UNITNUM
BUFADR
BYTECNT
BLKNUM

yYour driver's code for init

JHMP RET

PLA

STA CONTROL

PLA

STA CONTROL+1

PLA

STA BUFADR ;Address of status record.
PLA

STA BUFADR+1
;Your driver's code for status

LDA RETURN+1
PHA

LDA RETURN
PHA

LDA TEMPL
RTS

WORD
<WORD
«WORD
+WORD
<WORD
«WORD
+WORD

;Can't use 0 page for these since we leave
sour environment when going to CONCK.

[o¥eoloRo Yool o)

-END

This is a sample driver for a CONSOLE: driver replacement.

ROUTINE
TEMP1

EQU 02
LEQU 04

+PROC CXATCH

JMP CONCKHDL ;SYSTEM.ATTACH will patch the start of CONCX
;to jump here when you attach a driver to the
;CONSOLE:.

;We are not popping the return address from
ithe stack cause we'll return from the system
sroutine we call from this driver,

STA TEMP1 ;Al11 the read,write,init and stat calls will

;jump here (the starting address of your
;CONSOLE: driver+3).

STY TEMPL+l
TXA

Page 1%

;This example shows you how to have your
;own code for the COKSOLE: as well as using
;the system CONSOLE: routines. If you want
;t0 replace the system routines completely,
syou need to pull the return address here.

BEQ READ
[on 1 31

BEQ WRITE
CHP $2

BEQ INIT
MP 44

BEQ STATUS

READ

WRITE

INIT

STATUS

GET

CONCKHDL

;Error ccde here
;Your driver's code for a read

LDY 41 ;0ffset to address of CONSOLE: read in
sthe copy of the jmp vector made by
;SYSTEM.ATTACH. See the jump vectors in the
1BI10S section below to see how we get the
;offsets.

BNE GET
;You would have a JMP RET here (see example for user defined
;device) if you were not using the system CONSOLE: routines
;as well,

sYour driver's code for a write

LDY #4

BNE GET

sYour driver's code for init
Loy #7

BNE GET

;Your driver's code for status
LDY #43.

LDA 80E2,Y At E2 is a pointer to the copy of the
;jump vector made by SYSTEM.ATTACH before
;1t was modified to attach your drivers.

STA ROUTINE

INY

LDA @0E2,Y

STA ROUTINE+]

LDY TEMP1+l ;Restore registers

LDA TEMP1 , '

JMP @ROUTINE :Go to the original CONSOLE: driver for this
;1/0 command. You will return from there; the
;B10S is already folded in due to the way your
;driver was attached by SYSTEM.ATTACH.

PHP ;Duplicate the lst three instructions of CONCK
PHA ;as they were patched by SYSTEM.ATTACH to jump

Page 16

; TXA below ;to the 1lst instruction of this driver,

;Here you can put the code for your own part of CONCK (you
imay want to check some additional device like a keypad or
;something or you may want to replace the system CONCK
yroutine alltogether. If you do this, you must save the rest
;0f the machine state and return it when you are finished.
1See example below.

TYA ;Save Yreg contents for a second.
PHA

;This code gets us to the system CONCK routine.

cLc

LDY #85. ;0ffset to the address of system CONCK in the
,copy of the original jmp vector.

LDA @0E2,Y

ADC #3 sAdd 3 so you enter right after the three
;instructions you duplicated at CONCKHOL.

STA ROUTINE

INY

LDA @OE2,Y

ADC 40 ‘

STA ROUTINE+1

PLA ;Restore Yreqg.

TAY

TXA ;Last of CONCK instructions SYSTEM.ATTACH
;overwrote with the jmp to the start of this
ydriver,

JMP @ROUTINE ;Goto system CONCK and: return from there,
+END

Here is another alternative for the CONCKHOL part of the above

program.

CKRTN
CONCKHDL

+WORD CONCKRTN-1

; 1.If you don't care about type-ahead, this could be
; simply the following code (assuming your CONSOLE:
+ read gets a character directly from your CONSOLE:
; device whenever it is called) :

O . . D D S D D D N L G D TR D 4D SR PP WD D D b D P D G e D W D D R AR TR

PHP

INC RANDL ;RANDL is a permanent word at BF13 used in
;the built in random function.

BNE $1

INC RANDH ;RANDH

PLP

- - - - n P A) R G R D e D W U YR DR T WD R A WS W W S e W o

; 2.1f you want type-ahead, this code should check to see
;if there is a character available and stuff it into a type-
;ahead buffer.

Dama 17

; 3.If you are using this with the regular CONCK (extra keypad
;t0 check or statistics for example), then you can do it this

sWay.

PHP ;Save state of machine

PHA

TXA

PHA

TYA

PHA

;Put your driver's part of CONCKX here (gives your driver

;priority)

LDA CKRTN+1 ;Set up things to return from reg CONCK

PHA

LDA CXRTN

PHA

PHA ;Push garbage to account for other pushes done

PHA ;in first three bytes of CONCK

cLC ;Setup to call CONCK

L0y #55, ;0ffset to the address of system CONCK in the
;copy of the original jmp vector.

LDA @QE2,Y

ADC #3 ;Add 3 so you enter right after the three
;instructions you duplicated at CONCKHDL.

STA ROUTINE

INY

LDA @O0EZ2,Y

ADC 40

STA ROUTINE+1
;In this example we don't have to worry about
sthe machine state here as we are restoring
;1t after we call CONCK

JMP BROUTINE ;Goto system CONCK and . return to CONCKRTN

CONCKRTN PLA ;Restore state of machine

TAY

PLA

TAX

PLA

PLP

RTS ;Return to the guy who called CONCK.

MAKING ATTACH.DRIVERS

1. Xecute the standard 1.1 LIBRARY program.
2. The output code file should be ATTACH.DRIVERS or could be named
somethine else and renamed ATTACH.DRIVERS when you put it on the

boot disk.

3., For the Link code file use the code file of your first driver.

Page 18

4, Copy its slot #1 into slot #0 of ATTACH.DRIVERS.

5. As long as you have more drivers to add, use N(EW to get another
Link code file and copy it's slot #1 into. slots #2,3,...15 of
ATTACH.DRIVERS.

6. When done, type 'Q' then 'N' followed by a RETURN for the notice.

See the 1.1 Operating System Reference Manual for further info on
the LIBRARY program.

THE WORKINGS OF SYSTEM.ATTACH

If it is on the boot disk, SYSTEM.ATTACH is Xecuted by the operating

system (both regular 1.1 and runtime 1.1) before SYSTEM.STARTUP. The
1.1 runtime system will use a runtime version of SYSTEM.ATTACH.

The error messages that can be generated by SYSTEM.ATTACH are:

1. ERROR =>No records in ATTACH.DATA .

2. ERROR =>Reading segment dictionary of ATTACH.DRIVERS
3. ERROR =>reading driver

4. ERROR =>A needed driver is not in ATTACH.DRIVERS

5, ERROR =>ATTACH.DATA needed by SYSTEM.ATTACH

6. ERROR =>ATTACH.DRIVERS needed by SYSTEM.ATTACH

If all goes well attaching drivers, SYSTEM.ATTACH will display
nothing unuysual in the regular boot sequence except for extra disk

accesses and anything done in the init calls to any of the attached
devices.

[1.BIO0S

This section explains things in the BIOS area that are extensions

and modifications that were added to Apple Pascal version 1.1 that were
different or not there at all in Apple Pascal version 1.0 (UCSD version
I1.1). :

1. The disk routines have been modified to handle interrupts (So
interrupt driven devices could be attached to 1.1 Pascal) if they are
being used. To use interrupts, one would have to attach an
interrupt driver, then patch the IRQ vector (FFFE hex) to point to
this driver. The Pascal system js defined to come up with interrupts
turned off so, once the driver is brought in and the IRQ patched,
interrupts must be turned on. The driver's init call could patch the
IRQ and turn on interrupts. The disk routines save the current state
of the system and turn interrupts off only during crucial time
periods, the state of the system is returned during non crucial time
periods so interrupts can be handled. This has not been tested at
this time, so there is no data concerning the maximum interrupt response
time delay.

2. The control word parameter in UNITREAD and UNITWRITE was not passed
on to the BIOS level routines from the RSP level. This has been done

Mo N

4.

in 1.1 to allow the changes to the control word listed below under
special character checking and also so user defined units or attached

Pascal units can use the user defined bits of the control word.

IORESULTS 128-255 are available for user definition on user defined
devices.

UNITSTATUS has been implemented in the Apple II Pascal 1.1 system.
This works for the Pascal system units as described in the ATTACH

part of this document. For user defined units, Unitstatus can be
used for whatever necessary.

Unitstatus is a procedure that can be called from the Pascal level in
the same way Unitread can. [t has three parameters:

1. unité.

2. pointer to a buffer.
(any size buffer you want of type Packed
Array of Char)

3. control word.

?hen you make a Unitstatus call from Pascal, the call should look
ikes

UNITSTATUS(UNITNUM,PAC,CONTROL);

Where UNITNUM & CONTROL are integers and PAC is a Packed Array of
CHAR or a STRING and may be subscripted to indicate a starting
position to transfer data to or from. See further information on
what Unitstatus 1s defined to do for the varjous devices in the
ATTACH part of this document.

The control word will tell the status procedure for a particular unit
what information about the unit you want. Bit 0 of this word should
equal 1 for input status and O for output status. Unitstatus is
implemented with bit 1 of the control word =1 meaning the call is for
unit control. When this bit =0 the call is for unitstatus. In all
cases bits 2-12 are reserved for system use and bits 13-15 are
avaijlable for user defined funtions.

An entry in the jump vector has been made for each of the system
Unitstatus calls, i.e. CONSOLESTAT,PRINTERSTAT,REMOTESTAT,etc..
Unitstatus calls to a user defined device (128-143) will all go

through the same jump vector location.

The handling of CTRL-C by the Apple bios was non standard in 1.0. The
UCSD BIOS definition specifies that a CTRL-C coming from REMOTE: or the
PRINTER: should be placed in the input buffer and then no.more characters
should be received. QOur.bios did fill the buffer with nulls

including the place where the CTRL-C was to go. Apple Pascal's BIOS now
conforms to the standard definition, where the null filling of the buffer
is done only when CTRL-C comes from the CONSOLE: (#1:).

The unitio routines can be accessed from assembly procedures by
pushing the correct parameters on the stack and using the jump vector

"to get to the BI0S routine. A seperate document needs to be

written describing how this is done and pointing out the problems
doing it in the case of the CONSOLE:,SYSTERM:,PRINTER: & REMOTE: units.

Nama AN

These problems are concerned with the special character handling done
in the RSP for these units. The assembly procedures calling the
pascal drivers for these units would either have to repeat portions
of the RSP code themselves or not get the special character handling
provided by the RSP. Calling the CONSOLE: init routine requires
pointers to syscom and the break routine to be passed on the stack.
These pointers are now stored in a fixed location so assembly

routines wanting to call coninit can get at them. See the locations
section.

7. Suppression of Special Character Checking.
Specia1 characters in the Pascal system are of three types:

A. Chars used to control the 40 character screen., These are
ctrl-A,Z,W,E & K.

B. Pascal system control chars for general CONSOLE: use. These are
ctri-S & F.

C. Types A & B are checked for by the CONCK funtion in the bios.
There are other special chars checked for in the RSP. These are
ctrl-C, DLE, and CR (line feeds are automatically appended to
CR). With UNITREAD and UNITWRITE the automatic handling done_ by
the Pascal system of these characters can be turned off. To turn
off DLE expansion and EQF checking give bit 2 of the control word a
value of 1. The automatic adding of line feeds to carriage returns
can be suppressed by setting bit 3 of the control word to 1.

A way was needed to suppress special handling for types 'A'&'B'., This
can now be done in two ways. First, the control word of UNITR/W will
turn off checking for type 'A' control chars if bit 4 is set and will
turn off checking for type 'B' chars if bit 5§ is set. In this mode,
the special char handling will only be turned off during that
particular unitio. This will be be done for you in the RSP by
setting bits in a byte 'SPCHAR' at location BF1C. The CONCK routine
will look at bit 0 of SPCHAR and if set will not look for the type
‘A" chars; if bit-1 is set, it will not look for the type 'B' chars.
If you set - these bits in the SPCHAR yourself instead of letting the
RSP do it through the unitic control word, then the associated
special character checking will be turned off until you reboct or
reset the bits again. When special char checking is turned off, the
chars are passed back to the Pascal level like all other chars would
be. You can use these added features to redefine the system special
chars in a particular application program or to just disable them.

8. The EOF char (ctrl1-C) causes a lot of problems in the Pascal system.
The cause of the problems is that the editor looks for:this character
to end many of it's editing modes. The editor has it's own getchar
routine which reads each character the user enters from SYSTERM:.

When reading from SYSTERM: instead of the CONSOLE:, the EOF char is
passed back as any other character but it still ends the current call
to unitread. The editor echoes each char to the CONSOLE: jtself unti)
it comes to ctrl-C. The operating system and the filer both use the
getchar routine in the operating system. This routine is defined to
re-init the system if it gets a ctri-C from the CONSOLE: and it reads
from the CONSOLE:, not SYSTERM:. You must be sure not to end responses
with control-C except for the cases (in the editor only) that are

Dama 21

3

‘e

supposed to end with control-C. See the 1.1 Operating System
Reference Manual.

The biaes card recognizing section has been enhanced to recognize a
new 'FIRMWARE' type card. This card will allow OEM's to have their
drivers in their own firmware on the card. Routines have been added
to allow for init,read,write & status calls to this new type card.

This protocol has been documented and is attached as an appendix
to this document,

10. As you can see, the Pascal system memory usage is scattered

all over the 64k space. The Apple Il was not designed with a
stack machine, like the Pascal P-machine, in mind. We don't
need any more constraints fixing certain pieces of the system
to certain EXACT places. To make the best use of the space we
have, we must have the ability to move things around. To
achieve this goal, we intend the following:

A. To stop people from writing things that peek here and poke there

and expect things to stay exactly where they were for future
versions.

B. Yarious people need space for patch areas and other purposes.
A1l programs have to be written so this space does not have t2
be in a permanent fixed location if this is at all possible.
The areas reserved for system use are filling up fast, we need
to avoid using them. You can get space dynamically using NEW
but you must be careful that this space stays around for the
whole time you need it. If you are attaching a driver, you
can get buffer space in the driver by using .WORD or .BLOCK
in the Assembler. This space can be accessed from outside the
driver if you know the offset to the start of this space from
the start of the driver. .This method could even be used to get
space below the heap by attaching a driver to one of the user
defined devices that is a large .BLOCK and is only used as a
buffer. You can get the address of this buffer (of a driver)
from the jump vector that has a pointer to the driver. Pointers
to all the jump vectors are in zero page, see the locations
section below.

C. The jump vector will have a fixed order for version l.l and
future versions, The order is the same as in the old version
1.0 with the new entrys added to the bottom. The setup for the
jump vector and getting into the BIOS is different than the old
1.0 system. Here is how the new system is set up with the
fixed order for the jump vector:

MAIN BIOS JUMP TABLE CALLED FROM INTERPRETER
(FOLLOWED BY REAL JUMP TABLE AT FIXED OFFSET)
RSP CALLS COME TO THIS JuMP VECTOR

Dana 272

BIOS JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
JSR
KCONCK JSR
JSR

SAVERET
SAVERET
SAVERET
SAVERET
SAVERET
SAVERET
SAVERET
SAVERET
SAVERET
SAVERET
SAVERET
SAVERET
SAVERET
SAVERET
SAVERET
SAVERET
SAVERET
SAVERET
SAVERET
SAVERET

JSR SAVERET
JSR SAVERET

;CONSOLE READ ;Jump vector before fold.
;CONSOLE WRITE

;CONSOLE INIT

,PRINTER WRITE

;PRINTER INIT

;DISK WRITE

;DISK READ

;DISK INIT

;REMOTE READ

;REMOTE WRITE

;REMOTE INIT

;GRAFIC WRITE

;GRAFIC INIT

;PRINTER READ

;CONSOLE STAT

;PRINTER STAT

:DISK STAT

;REMOTE STAT

;70 get to CONCK from CONCKVEC
;USER READ For UDRWIS
;USER WRITE

;USER INIT

;USER STAT

;For PSUBDR

; IDSEARCH

THIS JUMP TABLE MUST BE OFFSET

FROM BIOSTBL BY EXACTLY $5C.

VECTOR TO POINT TO ATTACHED ORIVERS
FOR THE STANDARD SYSTEM UNITS.

. SYSTEM.ATTACH MODIFYS THIS JUMP
]

BIOSAF JMP

IORTS
GRAF INIT

- [ORTS

CSTAT
ZEROSTAT

DSTATT
ZERQSTAT

;Jump vector after fold.

;00 nothing for GRAFWRITE.
;00 nothing for PRINTER: read.

+For PRINTER: stat, pop params & store O
;in 1st buffer word,

;For REMOTE: stat, pop params & store 0

Panes 2R

;in 1st buffer word.

JMP CONCX

JMP UDRWIS ;Routine to get to user defined devices, see
;ATTACH part of document for description of
;this routine, '

JMP PSUBOR ;Routine to get to drivers that are substituted
;for the standard Pascal disk units 4,5,9..12.
;See ATTACH part of document for description of

;this routine,
JMP IDS

STRIP LOCAL RETURN ADDR,

STRIP PASCAL ADDR AND SAVE IN RETL,RETH
PLACE 'GOBACK' ON RETURN STACK

THEN RESTORE LOCAL RET ADDR & RETURN
MEANWHILE UNFOLD BIQS INTO DXXX

e wo B W we Ws OB

SAVERET STA TT1 ;SAVE A REG

ADC #05A ;ADD OFFSET TO JUMP TABLE (BIOSAF)
STA TT2 ;LOCAL RET ADDR

ADC #0

STA TT3

PLA

gzg RETL ;PRESERVE PASCAL RETURN
STA RETH

«IF RUNTIME=Q

LDA 0cC083 ;UNFOLD BIOS INTQ DXXX
.ENDC

LDA TT1 ;RESTORE A-REG

JSR SAVRETZ2 ;PUTS 'GOBACK' ON STACK

M N L L e e T PR R LT R L Y R L P]

. FOLD INTERP INTO DXXX
"3 THEN RETURN TO PASCAL VIA
! RETURN ADDR SAVED IN RETL,RETH

Y oD D D D D R NP N A DD L R w3 D R WD WS D R R W D R D R W

d0BACK STA TT1 .SAVE A-REG
LDA RETH
PHA
LDA RETL
PHA .
.IF RUNTIME=0
LDA 0CO88 .FOLD INTERP INTO DXXX
.ENDC
LDA TT1
RTS .AND BACK TO PASCAL

SAVRETZ JMP @TT2 ;JUMP INTO JUMP TABLE (BIOSAF)

D. In zero page are two words pointing to the base of the two
Jjump vectors (before and after the fold). These are stored in
PERMANENT locations that had a value of 0 in the old 1.0
release and were not used by the system (see locations
section). Applications needing to patch the jump vectors can
store the offset from the vector base in the Y reg and use
indirect indexed addressing to do the patch. The application
will need to have the vector base locations for the old release
hardcoded in as the base pointer for the old 1.0 release will
be 0. If you want to write an application that works with 1.0
and 1.1 and future versions, you know if the zero page vector
pointers are 0 it's the 1.0 system otherwise it's 1.1 or a future

version which will use the same protocols as 1.1 as described in
this document.

It is important that any application patching the jump vector
temporarily then returning it to its original value get the
original value from the vector itself before the patch and put
it in a storage location. When the vector needs to be restored
to it's original state, use this storage location for it's
original value. The patches should be done in this manner so
the applications doing the patches will always return the
system to it's original state no matter what past, present or
future Pascal version it is patching.

E. For CONSOLE: init to be used from assembly routines the
locations of SYSCOM and the BREAK routine have to be available.
The CONINIT routine requires these on the stack. Pointers to
SYSCOM and BREAK will be stored by the interpreter boot in a
PERMANENT location in the BFOQ page (see locations section).

F. Since the old 1.0 release, the code to jump to the CONCK
routine has been set up at location BFOA. Anyone wishing to
get to the CONCK routine should do a JSR BFOA as this will
always get them there no matter where the CONCK routine really
is. The keypress function has been changed to conform to this
new convention but it will use the old convention if it is
working from within an old system. Do not try to get to CONCK
in this way from within an ATTACHED driver as you will loose
your-return address to Pascal. See ATTACH part of this
document for how to get to CONCK from an attached driver.

G. There is now a version byte so one can tell which version (1.0,
1.1, etc.) of Apple Pascal he is working with. There is also a
flavor byte to tell one which flavor of this version he has
(regular, runtime, runtime without sets, etc.). (see locations
section) '

Whenever SYSTEM.ATTACH is used, it will make a copy of the
original BIOS jump vector (the after fold vector that has the
actual driver addresses in it) and put this below the heap with
the drivers that are attached. It will leave a pointer to this
copy of the vector at location OOE2. You can use this vector in
you drivers to get to the standard Apple drivers for any device.
This way you can define a driver that does something above and

Page 25

beyond the standard Apple driver yet this new driver can stil)
make use of the standard Apple driver. See the ATTACH part of
this document for more information.

12. In the RSP are two vectors that tell the RSP what is legal
(input &-or output) for a particular character orientated device
(CONSOLE:, REMOTE: & PRINTER:). For example it tells the RSP that
it is illegal to read from the PRINTER:. If you wanted to ATTACH
a8 PRINTER: driver so you c¢ould read from the PRINTER:, you would
have to change this vector. 00E4 points to the READTBL vector
and 00ES to the WRITTBL vector. Let's take the READTBL for an
example: .

READTBL ;table of routine addresses to be called when
.. ywWriting to that unit (disk I/0 does not use
;this table).
;an entry=0 means that the operation is illegal
;for that unit.
+HORD BIOS+CONREAD junit 1
+WORD BIOS+CONREAD ;unit 2

+WORD 0 ;unit 3

+WORD 0 ;4 & 5 are disk units
+WORD 0

+WORD 0 ;6 is PRINTER:

+WORD BIOS+REMREAD ;unit 7

+HWORD 0 ;8 1s rem write which has

;an address in the WRITTBL

Here BIQS refers to the base of the jump vector before the fold and
CONREAD is the offset off the base of that vector to get to the
jump to the CONSOLE: read routine (for CONSOLE: read the offset is
0, for CONSOLE: write it's 3, etc). The value for BIOS is the
pointer stored in location QOEC mentioned in the locations

section below.

LOCATIONS.

These are the locations of new system permanents mentioned in
this document, all pointers are set up by the system and are
stored low byte first. Do not modify what is stored in these
pointers (except for SPCHAR if you want to suppress Special
character checking) since the system uses this information too.
These locations are defined to have the same function & remain
in the same place for future versions of Apple Il Pascal.

BF1C SPCHAR (To control special chars)

BF1D IBREAK - (Set by boot in interp for assembly calls to CONINIT)

BF1F ISYSCOM (")

BF21 YERSION (1 byte version # of system, =2 for the new release, 0
for the old 1.0 release)

BF22 FLAVOR (This byte tells which flavor [runtime,regqular,

etc.] of this VERSION you are dealing with)
The encoeding is:
1 -->regular system

Page 2K/

runtime versions:

-->LC-ALL (LC- means no
language card)

-=>LC-no sets
-=>LC-no floating point
-=>LC-no sets or floating point
-=>LC+ALL
-=->LC+no sets
-=>LC+no floating peint
~->LC+no sets or floating point
This flavor byte is 0 in the old 1.0 release.

LD OO0~ W [aV]

BFCO-BFFF BDEVBUF (Area for non Apple boot devices, like the CORVUS)

00E2 ACJVAFLD (Pointer to ATTACH copy of the original Jump Vector
after the fold)

00E4 RTPTR Pointer to READTBL)

00E6 WTPTR Pointer to WRITTBL)

00e8 UDJvP (Pointer to user device jump vector)

OOEA DISKNUMP (Pointer to disknun vector)

00EC JVBFOLD (Pointer to jump vector before fold)

00tE JVAFOLD (Pointer tdo jump vector after fold)

FFF6 - (Version word which = 1 for version 1.0 and

0 for version 1.1

This version word should not be used at runtime

to tell which version you have. For that use the
version byte mentioned above. This word should only
be used by software that wants to see which
SYSTEM.APPLE it is dea11ng with by looking at the
contents of this word in the SYSTEM.APPLE file

when it is not loaded in memory)

FFF8 (Start vector)

FFFA - (NMI non maskable interrupt vector)
FFFC (RESET vector)

FFFE (IRQ interrupt request vector)

The locations and code in the 1.0 'PRELIMINARY APPLE PASCAL GUIDE TO
INTERFACING FOREIGN HARDWARE' B10S document are not the same.for
Apple Pascal 1.1 and that document clearly stated we would not
commit ourselves to keeping them the same.

Pascal*1.1 Firmware Card Protocol

---------------------- - - -

One major problem with Apple Pascal 1.0 is the way it deals with

peripheral cards. It was set up to work with the four peripheral cards that
Apple supported at the time of its release (the disk,communciations,serial
and parallel cards) and had no mechanism for interfacing any other devices,
Since Apple as well as many other vendors continue to produce new peripherals
for the Apple][, a new protocol was designed and implemented in the Pascal
1.1 BIOS which allows new peripheral cards to be introduced to the system in
a consistent and transparent fashion. The new protocol is called the
“firmware card" protocol since the BIOS deals with these cards by making
calls to their firmware at entry points defined by a branch table on the card

itself. The new protocol fully supports the Pascal typeahead function and
KEYPRESS will work with firmware cards used as CONSOLE devices. The

following paragraphs describe the firmware card protocol in full detail.

A firmware card may be uniquely identified by a four byte sequence in

the card’'s $CNOO ROM space. Location $CNOS must contain the value 538 and
Tocation $CNO7 must contain $18. Note that these are identical to the Apple
Serial Card. A firmware card is distinguished from a serial card by the
further requirement that location $CNOB must contain the value $01. This
value is called the “generic signature” since it is common to all firmware
cards. The value at the next sequential location, $CNOC, is called the
“device signature” since it uniquely identifies the device.

The device signature byte {s encoded in"a meaningful way. The high

order 4 bits specify the class of the device while the low order four bits
contain a unique number to distinguish between specific devices of the same
class. The appendix to this document defines some device c¢lass numbers; in
any case vendors should contact Apple Technical Support to make sure they use
a unique number for their device signature. Although the device signature is

ignored by the 1.1 BI0S, it may be used by applications programs to identify
specific devices.

Following the 2 signature bytes is a list of four entry point offsets
starting at address $CNOD. These four entry points must be supported by all
firmware cards. They are the initialization, read, write and status calls.
The BIOS takes care of disabling the $C800 ROM space of all other cards
before calling the firmware routines.

The offset to the initialization routine is at location $CNCD. Thus, if
SCNOD contains XX, the BIOS will call SCNXX to initialize the card. On
entry, the X register contains $CN (where N is the slot number) and the Y
register contains $NO. On exit, the X register should contain an error code,
which should be 0 if there was no error.. This error code is passed of ‘to the

higher levels of the system in the global variable "IORESULT". Registers do
not have to be preserved.

The offset to the read routine is at location $CNOE. On entry, the X
register will contain $CN and the Y register will contain SNO. On exit, the
- A register should contain the character that was read while the X register

contains the ICRESULT error code. The A and Y registers do not have to be
preserved.

The offset to the write routine is at location $CNOF. On entry, the A
register contains the character to be written while the X register contains
$CN and the Y register contains $NO. On exit the X register should contain
the IORESULT error code (which should be O for no error), The A and Y
registers do not have to be preserved.

The offset to the status routine is at location $CN1O. On entry, the X
register contains $CN and the Y register contains SNO while the A register
contains a request code. If the A register contains 0, the request is "are
you ready to accept output?”. If the A register contains 1, the request is
“do you have input ready for me?". On exit, the driver returns the JORESULT
error code in the X register and the results of the status request in the
carry bit. The carry clear means "false" (i.e., no, 1 don't have any input
for you), while the carry set means true. Note that the status call must
preserve the Y register but does not have to preserve the A register.

Oamma 2Q

Thus, sample code for the first few bytes of a firmware card's $CNOO
space should look something like:

BASICINIT BIT $FF58 ;set the v-flag
BVS BASICENTRY ;always taken

IENTRY SEC 1BASIC input entry point
DFB $90 ;opcode for 8CC

OENTRY CLC 1BASIC output entry point
cLv
8vC BASICENTRY ;Always taken

H
y Here is the Pascal 1.1 Firmware Card Protocol Table

OFB $01 ;Generic signature byte

OFB $41 ;Device signature bye
PASCALINIT DFB PINIT 3 > means low order byte
PASCALREAD OFB >PREAD ;0ffset to read
PASCALWRITE DFB JPWRITE ;0ffset to write
PASCALSTATUS DFB >PSTATUS ;0ffset to status routine

The above code fulfils all the requirements for both the BASIC and ,
Pascal 1.1 I/0 protocols. The routines PINIT, PREAD, etc, are probably jumes
into the card's $C800 space which is already properly enabled by the BIOS.
The reason the $CNOO space was chosen for the protocol (as opposed to the
$C800 space) is -that the BASIC protocol requires that all cards have $CNOO
ROM space while some smaller cards may not need any $C800 ROM space.

The firware card protocol includes 2 optional calls that do not have to

be implemented but would be kind of nice. The BIOS checks location SCN11 %o
determine if the optional calls are present; if that location contains a $00
then the BIQOS thinks the calls are implemented. Thus if your card does not
implement the optional calls, you should ensure that $CN1l contains a
non-zero value. The two optional calls are a control call pointed to by
SCN12 and an interrupt handler call pointed to by $CN13.

The control call entry point is specified by the offset at $CN1Z2. On

entry, the X register contains $CN, the Y register contains SNO and the A
register contains the control request code. Control requests are defined by
the device. On exit the X register should contain the [ORESULT error code.

The interrupt poll entry point is specified by the offset at $CN13. On
entry, the X register contains $CN and the Y register contains $NO. The
interrupt poll routine should poll the card's hardware to determine if it has
a pending interrupt; if it does not it should return with the carry clear.

If it does, it should handle the interrupt (including disabling it) and
return with the carry set. Also, the X register should contain the IORESULT
error code which should be 0 if there was no error. An interrupt polling
routine must be careful not to clobber any zero page or screen space
temporaries.

The control and interrupt requests are not implemented in the Pascal 1.1

BI0S but it would be nice to support them if possible as they may be
implemented in later versions of the Pascal BIOS as well as other forthcoming
operating system environments for the Apple][.

page 29

Note that the firmware card signature {s a superset of the Apple serial

card signature as recognized by the Pascal 1.0 BI0S. This allows a firmware
card to function with both Pascal 1.0 and Pascal 1.1. If a card wishes to
work with Pascal 1.0 as a "fake" seral card, it must provide an input entry
point at $C84D and an output entry point at $C9AA. Note that since Pascal

1.0 will think the card is a serial card, typeahead and KEYPRESS capabilities
will be Tost.

Additional Notes

l. The Pascal RSP expects the high order bit of every ASCII character
it receives from the Console read routine to be clear. The RSP will not do
this for you; you must ensure the high bit of all text your card passas to
the RSP from the console read routine is clear.

2. Zero page locations $00 to $35 may be used as temporaries by your
firmware, as are the slot 0 screen space locations ($478,54F8, etc.).
In general, peripheral card firmware should be as conservative as
possible in their memory usage, preserving zero page contents whenever

possible. An interrupt polling routine must not destroy these or any
other memory locations.

3. Location $7F8 must be sat up to contain the value SCN, where N is the.
slot number, if your card utilizes the $C800 expansion ROM space. The BI0S
does not do this for you; his must be done if you want your card to
function in an interrupting enviromment.

4, The firmware card status routine should be as quick as possible, as it
may be called from within the [/0 polling loops of many other peripherals
if your card is being used as the console device. In no case should the
status routine take longer than 100 milliseconds.

5. A firmware card in slot 1 is automatically recognized as the volume
"PRINTER:". A firmware card in slot 2 is automatically recognized as
the volumes “REMIN:" and "REMOUT:". A firmware card in slot 3
is automactically recognized as the volumes “CONSOLE:" ‘and “SYSTERM:".

APPENDIX

The following numbers correspond to device classes used in the device
signature code. Make sure you contact Apple Technical Support to
ensure that you have a unique device signature code.

-~ reserved

-- printer

-- joystick or other X-Y input device
1/0 serjal or parallel card

-= modem

-~ sound or speech device

-~ clock

-~ mass storage device

~NOoO UMW O
[]
1

Dana IN

8 -= 80 column card
9 -- Network or bus interface

10 -- Special purpose (none of the above)

11 through 15 are reserved for future expansion

Additional Information

l. The type ahead buffer is located at $03B1 hex and is $4E hex in length.
It is implemented with a read pointer (RPTR at BF18 hex) and a write
pointer (WPTR at $BF19 hex). At CONSOLE: init time, these should both
be set to 0, When a character js detected by CONCK, the WPTR is
incremented then compared with $4E. If it is equal to $4E, it is set
to $0 (this is a circular buffer). Then the WPTR is compared with RPTR
and if they are equal the buffer is full., If the buffer is not full,
the character is stored at $03Bl+the value in WPTR.

When removing a character from the type ahead buffer, use the following
sequence. Compare the RPTR with WPTR and if they are equal, the buffer
is empty and you must wait until a character is available from the
keyboard. If they are not equal, increment the RPTR and compair it

to $4E. If it equals $4E, set it to $0. Now get the character from
Jocation $03Bl+the value in RPTR.

If you are implementing your own type ahead, you can do it however

you wish., This information is made available in case you want to check
for input from another device as well as the standard system CONSOLE:
and have characters from that device be put in the system type ahead
buffer,

2. The example drivers in this document did not show the setting of the
IORESULT in the X register. This would be done in the code specific
to your driver and should allways be set to something (0 if there are
no errors). If there are errors, set it as described elsewhere in this
document and the Pascal Manuals.

3. For further information, see the newest edition of the Apple Il Reference
Manual. -

4, These listings from the BIOS are included to show you how we implemented
certain system drivers. You cannot rely on the locations of these
to stay in the same place in the BIOS in future releases of Apple I
Pascal nor can you rely on the routines themselves staying the same.
They are only included as examples and to give you information that
may not be documented elsewhere. This is not a complete BIOS listing so
you may find references to routines or locations that are not included in
this listing. The only locations that will be sure to remain the same
for future releases are those mentioned in the LOCATIONS section above.
We are against you poking the BIOS yourself to change or overwrite any
of these routines. We did not include this information so you could poke
the BIOS. If you do modify the BIOS, it is completely at your own risk!
We have provided the ATTACH utility so you can add your own drivers
the system without poking the BIOS and this is the way it should be done!
If you have special requirements that are not solved by ATTACH, please

Aama "

contact Apple Technical Support.

TEMP2
SYSCOM

.

Z BFOO PAGE

FIRST

FIRST+1
FIRST+2
FIRST+3
FIRST+4
FIRST+5
FIRST+6
FIRST+7
FIRST+8

PERMANENTS

.
DB e D O D D P G D A P D R > WD TP D A R MR E T 4D WD D P 4B am T

;START ZERQC PAGE USE
;SCREEN 1 PTR

;SCREEN 2 PTR

;HORIZ CURSOR, 0..79
;YERT CURSOR, 0..23

;2 BYTES PTR TO SYSCOM AREA

‘------—------------------------—-n-----

CONCKVECTOR
SCRMODE
LFFLAG
NLEFT

ESCNT
RANDL

RANDH
CONFLGS
BREAK
RPTR
WPTR
RETL
RETH
SPCHAR

- IBREAX
[SyscoM
YERSION
FLAVOR
SLTTYPS
XITLOC

.

NCTRLS
SIGVALUE

EQU
-EQU
EQU
QU
EQU
.EQU

;4 BYTES

32 BYTES
;1 BYTE
;1 BYTE

;00 MEANS DO ALL SPECIAL CHARACTER CHECKING
;01 MEANS DON'T CHECK FOR APPLE SCREEN STUFF
;02 MEANS OON'T CHECK FOR OTHER SCREEN STUFF
;INTERP STORES BREAK & SYSCOM ADR HERE FuR
,USER ROUTINES TO GET AT

;VERSION OF SYSTEM SET TO 2 FOR APPLE 1.1
;SEE TABLE IN INTERP BOQT

+BF27 . .0BF2E

; INTERP INITS THIS TO LOCATION OF XIT

;FORTRAN PROTECTION USES BFS56..BF7F
; YENDOR BOOT DEVICES CAN USE BFCO..BFFF

LEQU
.EQU
LEQU
QU
.EQU

0200
0381
04t
14,
1

;TEMP HSHIFT BUFFER (OVERLAPS DISK BUF)
;78 CHAR TYPE-AHEAD BUF

;78 DECIMAL

;# CTRL CHARS IN TABLE

NRama 29

BYTEPSEC
SECPTRAK
TRAKPDSK
UbJvp
DISKNUMP
JVBFOLD
JYAFOLD
HCMODE
HSMODE

JVECTRS

256.

16.
35,
OE8
QEA
QEC
QEE
QEl
CEO

UDJMPVEC
DISKNUM
BIOS
BIOSAF

;DISK INFO FOR DISKSTAT

;0 PAGE JUMP VECTOR POINTER LOCATIONS

;THESE TWO BYTES USED FOR HIRES STUFF

; HARD RESET INITIALIZATION

. CLEAR ALL
. (RUN-TIME

ZERLP

$1:

.

MEMORY O TO BFFF
SYSTEM:0 TO TOPMEM + BF PAGE);

LDA #

STA ZEROL
STA ZEROH

0

STA (ZEROL),Y

BNE ZERLP
INC ZEROH

JIF RUNTIME=1

CPX #TOPMEM

BNE $
LDX #

STX ZEROH

CPX #

BNE ZERLP

+ELSE
CPX ¢#

BNE ZERLP

+ENDC

1
0BF

0co

0co

> CHECKSUM PROMS ON EACH SLOT
: T0 FIND OUT WHO'S OUT THERE

;SET HEX MODE
;MAKE SURE INTERRUPTS ARE OFF.

\WRITE A BYTE OF O
;BUMP PO INTER

;LOOP TILL NEXT PAGE
;BUMP MSB POINTER
;DONE CLEARING MEM?

;CLEAR BF PAGE

;DONE CLEARING BFXX?

: SUM TWICE TO TELL IF CARD THERE

Dama

; IF SUMS DONT MATCH THEN NO PROM IS THERE
3 IF MS BYTE OF SUM=Q THEN NO PROM IS PRESENT

LDy #0C7 ;POINT TO SLOT 7 PROM
NXTCRD STY CKPTRH + (CKPTRL=0 FROM MEM CLEAR)

JSR CKPAGE ;16 BIT SUM IN X,A

STA CHECKL

STX CHECKH ;SAVE FOR MATCH

JSR CXPAGE ;SUM AGAIN

CPX #0 ;WAS MSB ZERO?

BEQ NOPROM ;YES NO PROM ON CARD

CHP CHECKL ;L.SB MATCH?

BNE NOPROM ;NO, NO PRCM ON CARD

CPX CHECKH

BNE NOPROM ;MSB DIDNT MATCH

BEQ SKIPIORTS ;ALWAYS TAKEN

.

CNOSBYTS .8YTt 003,018,038,048
CNO7BYTS -BYTE 03C,038,018,048

NOW THAT WE KNOW A CARD IS THERE,
EXAMINE GNOS AND CNO7 BYTE TO
OETERMINE WHICH CARD IT IS

SET CARDTYPE AS FOLLOWS:

0=CKSUM NOT REPEATABLE OR MSB=Q -
1=CXSUM REPEATABLE,CARD NOT RECOGNIZED
2=DISK CARD (BYTE 07= 03C)

W W WS WE P W WE Mo we We WO we e

3=COM CARD §BYTE 07= 038
4=SERTAL BYTE 07= 018
5=PRINTER (BYTE 07= 048)
6=F IRMWARE (BYTE 07= 048)
SKIPIORTS LDX #5 ;4 TYPES OF CARDS
NXTYP LDY #5 ;CHECK BYTE CNOS OF CARD

LDA (CKPTRL),Y |
CMP CNOSBYTS-2,X ;MATCH TABLE?

335 ;gYNXT ;NO, TRY NEXT IN LIST

LDA (CKXPTRL),Y ;TEST CNO7 BYTE

CMP CNO7BYTS-2,X ;MATCH TABLE?

BEQ STOR ;BOTH MATCHED, CARD RECOGNIZED
TRYNXT DEX ;BUMP TO NEXT IN LIST

CPX #2 ;TRY ALL TYPES IN LIST

BCS NXTYP ;IF NOT IN LIST,FALL THRU WITH X=1
STOR CPX #4 IS IT A SERIAL CARD?.

BNE STOR!

LDY #C8

LDA (CKPTRL),Y
CMP #SIGVALUE

ODans WU

BNE STOR1
LDX #6
STOR1 LOY CKXPTRH

STA SLTTYPS-0CO,Y
NOPROM LDY CKPTRH
DEY ;BUMP TQ NEXT LOWER SLOT
CPY #0CO 3SLOTS 7 DOWNTO 1 DONE?
BNE NXTCRD ;LOOP TILL 7 SLOTS DONE
+LEAVE WITH Areg:=0

BEQ 32 ;ALWAYS BRANCHES
$1 JSR KCONCK ;HERE ARE THE 2 INSTRUCTIONS TO BE TRANSFERRED
RTS
$2 LDY #3 ;TRANSFER 4 BYTES TO BFOA
$21 LDA $1,Y
STA CONCKVECTOR,Y
DEY .
BPL $21

3 SET UP JUMP VECTOR POINTERS IN O PAGE
LDY #7
$3 LDA JVECTRS,Y
STA UDJVP,Y
OEY
BPL $3

LDA #80
STA HCMODE
LDA 0CO51 ;SET TEXT MODE
LDA 0C052 ;SET BOTTOM 4 GRAFIX
LDA 0C054 ;SELECT PRIMARY PAGE
LDA 0C057 ;SELECT HIRES GRAFIX
LDA 0CO10 ;CLEAR KEYBOARD STROBE
JSR FORM ;ERASE SCREEN
JSR INVERT ;PUT CURSOR ON SCREEN
JSR DRESET ;00 ONCE ONLY DISK INIT
LDA SLTTYPS+3 - ; WHAT CARD IN SLOT 3?
LDY #030 ;SLOT 3
JSR GENIT ;SET BAUD IF COM OR SER THERE
cPX #0 +WAS AN EXTERNAL CONSOLE THERE?
BNE STARTUP ;NO,USE APPLE SCREEN
LDA #4
STA SCRMODE ;SET BIT 2 FOR EXT CON
STARTUP JMP JPASCAL ;FOLD 'IN INTERP AND START PASCAL

; SUB TO CHECKSUM ONE PAGE

CKPAGE

CXNX

ROCRY

.

; CONSOLE CHECK FOR CHAR AVAIL
; STATUS AND ALL REGS PRESERVED

LDA #0

TAX

TAY

CLC

INX
INY

ADC (CXPTRL),Y
BCC NOCRY

BNE CXNX
RTS

;CLEAR SUM
;CLEAR INDEX

JADD BYTE

+INC HI BYTE IF CARRY
;BUMP INDEX

;SUM 256 BYTES

;RETURN SUM IN X,A AND Y=0

; WARNING...THIS ROUTINE ALSO CALLED FROM DISK ROUTINES

. IF CHAR AVAIL,PUT IN CONBUF AND INC WPTR.

RNDINC

RNDCK

TSTXBD

CMpP

RANDL.
RNOOK
RANDH
SLTTYPS+3
#3
COMCK
#4
JDONCK
#6
FIRMCK
0cooo
JOONCK
0co10
#07F

SPCHAR
A
NOTFOLP2

#l1.

;BUMP 16 BIT RANDOM SEED

;WHAT CARD IS IN SLOT 32
;IS IT A COM CARD? -
;YES,GO CHECK IT

;1S IT A SERIAL CARD?
;YES,IT CANT BE TESTED

;TEST APPLE KEYBOARD

+NO CHAR AVAIL

;CLEAR KEYBD STROBE

;MASK OFF TOP BIT

;See if checking for apple special chars is
;turned off.

WJunp if so

;CTRL-K?

Dana A

NOTK

NTTAB

CoMCK

GOTCHAR
NOTFOL

NOTFOLP2

JDONCK

FIRMCK

NOTSTOP

NOTBRK

BNE
LDA
CMP
BNE
JSR
LDA
AND
STA
JMP
CHP
BNE
LDA
ORA
STA
BNE

LDA
LSR
BCC
LDA
AND
TAX
LDA

ROR
ROR
BCS
TXA
Loy
CMP
BNE
LDA
EOR
STA
JMP

LDA
Loy
JSR
BCC
JSR

- JMP

DEY
CHp
BNE
LDA
AND
STA
oIF

NOTX

#058 ;YES,REPLACE WITH LEFT SQR BRACKETT
#1 ;CTRL-A?

NTTAB

HTAB ;YES,TAB NEXT MULT 40
CONFLGS

#OFE

CONFLGS ;CLEAR AUTO-FOLLOW BIT
DONECK

#26. ;CTRL-2?

NOTFOL +NO,PUT CHAR IN BUFFER
CONFLGS

#l

CONFLGS ;SET AUTO-FOLLOW BIT
DONECK ;BR ALWAYS

ocose ;CHAR AVAIL?

A

DONECK " 3NO CHAR AVAIL
0CoBF ;GET CHAR FROM UART
#07F sMASK OFF BIT 7

SPCHAR ;See if console special char checking is
jturned off.
A

A
NFMI1 ;Jump if “so

#055

(SYSCOM) , Y ;STOP CHAR?

NOTSTOP

CONFLGS

£080 '

CONFLGS ;YES,TOGGLE STOP BIT (BIT 7)
DONECK

#1

#030
FIRMSTATUS
DONECK
FREAD1
GOTCHAR

(SYSCOM) , Y

NOTBRK

CONFLGS

#03F

CONFLGS ;CLEAR FLUSH&STOP BITS
RUNTIME=0

JMP TOBREAK

+ELSE

JMP R@BREAK ;BREAK OUT
- ENDC

DEY
CMp
BNE

(SyscoM),Y ;FLUSH?
NOTFLUS

Dama U7

NFMI1
ROTFLUS

BUFOK
DONECK

CKEXIT

BUMP

BMPRTS

LDA
EOR
STA
JMP

TXA
LDX
JSR
CPX
BNE
JSR
JMP
STX
STA
BIT
BPL
JMP

PLA
TAY
PLA
TAX
PLA
PLP
RTS
INX
cPX
BNE

CONFLGS
#040
CONFLGS
CONECK

HPTR
BUMP
RPTR
BUFOK
BELL

DONECK

WPTR
CONBUF ,X
CONFLGS
CKEXIT
RNDINC

#CBUFLEN
BMPRTS

LOX #0

RTS

TEMP2
SYSCOM
SYSCOM+1

BREAK

BREAK+1
TEMP2

TEMP1

RPTR
WPTR
CONFLGS
#03E

;TOGGLE FLUSH BIT (BIT 6)

;BUFFER FULL?

;BEEP&IGNORE CHAR

;PUT CHAR IN BUFFER
;1S STOP FLAG SET?

;LOOP IF IN STOP MODE

;ELSE RESTORE STAT AND ALL REG AND RETURN
;BUMP BUFFER POINTER WITH WRAP-AROUND

e D B - - o e = - -

;SAVE RETURN ADDR

;SAVE PTR TO SYSCOM AREA

;SAVE BREAK ADDRESS

;RESTORE RETURN ADDR

;FLUSH TYPE-AHEAD BUFFER

Oana 2R

STA CONFLGS ; CLEAR STOP,FLUSH,AUTO-FOLLOW BITS

JSR TAB3 +NO,HORIZ SHIFT FULL LEFT
CINIT2 LDX #0 ;CLEAR IORESULT
RTS ;AND RETURN

READ FROM CONSOLE:
KEYBOARD,COM OR SERIAL CARD IN SLOT 3

s we we we

CREAD JSR ADJUST ;HORIZ SCROLL IF NECESSARY
LDY #030 .SLOT 3
LDA SLTTYPS+3 ;WHAT TYPE OF CARD?
CMP #4 " ,1S IT A SERIAL CARD?
BNE CREAD2 sNO, CONT INUE
JSR RSER \YES, READ IT
Q¥D #7F ;MASK OFF TOP BIT
S
CREAD2 JSR CONCK sTEST CHAR
LDX RPTR
CPX WPTR
BEQ CREAD ;LOOP TILL SOMETHING IN BUFFER
JSR BUMP
STX RPTR ;BUMP READ POINTER
LDA CONBUF,X .GET CHAR FROM BUFFER
LDX #0 :CLEAR IORESULT
RTS ;AND RETURN TO PASCAL

.

INITIALIZE PRINTER:
PRINTER IS ALWAYS IN SLOT 1
IT MAY BE A PRINTER,COM,CR SERIAL CARD

INIT LDY #010 ;SLOT 1 ; 010
LDA SLTTYPS+1 sWHAT CARD IN SLOT 1?
CMP #5 ;PRINTER CARD?
BEQ CLRIOL ;YES,NO INIT NEEDED
GENIT CMP #4 ;SERIAL CARD?
BEQ ISER ;YES, INIT SER CARD
CHP #3 ;COM CARD?
BEQ ICOM sYES,INIT COM CARD
CMP #6
BEQ FIRMINIT
LDX #9 ;NONE OF ABOVE,OFFLINE
RTS
FIRMINIT PHA
JSR SER1
LDY #0D
FVEC1 LDA (TEMP1),Y
STA TEMP1
LDY 6F8
PLA

JMP BTEMP]

INITIALIZE REMOTE:
REMOTE IS ALWAYS IN SLOT 2
IT MAY BE A COM OR SERIAL CARD

ws we WO we we W

RINIT LDA SLTTYPS+2 ;WHAT CARD IN SLOT 27
LDY #020
BNE GENIT ;BR ALWAYS TAKEN

R T A L R L

ICOM LDA #3 ;MASTER INIT
STA 0CO8E,Y ;70 STATUS
LDA #21.
STA 0QCO8E,Y ;SET BAUD ETC
CLRIOL LDX #0 ;CLEAR IORESULT
RTS ;AND RETURN

.

{ser JSR SER1 :ASSORTED GARBAGE

JSR - 0C800 .SET UP SLOT DEPENDENTS
CLRIO3 LDX #0 :CLEAR TORESULT

RTS .AND RETURN

SER1 STY 06F8 +STORE NO
TYA
LSR A
LSR A
LSR A
LSR A
ORA #0CO
TAX ;MAKE OCN IN X
LDA #0
STA TEMP1
STX TEMP2 ;SET UP INDIRECT ADDRESS
LDA QOCFFF ;TURN OFF ALL C8 ROMS
LDA (TEMP1),Y ;SELECT C8 BANK
RTS

J T - D R - D R D W o

L WRITE TO CONSOLE:
. VIDED SCREEN,COM OR SER CARD IN SLOT 3

Paage 40

T R L P T T L L L]

CWRITE JSR CONCK :CONSOLE CHAR AVAIL?

BIT CONFLGS +IS FLUSH FLAG SET?
BVS CLRIO 3 YES,DISCARD CHAR & RETURN
TAX 3SAVE CHAR IN X
LDY #030 »SLOT 35010
LDA SLTTYPS+3 yWHAT KIND OF CARD?
CHP #3 ;CCM CARD?
BEQ WCOM ;YES WRITE 7O COM CARD SLOT 3
CMP 44 ;SERIAL CARD?
BEQ WSER ;YES,WRITE TO SER CARD SLOT 3
CMP #6
BEQ WFIRM
TXA ;ELSE RESTORE CHAR & SEND TO SCREEN
VIDOouT STA TEMP1 ;SAVE CHAR FOR LATER
JSR INVERT ;REMOVE CURSOR
LDY CH
JSR VOUT2 ;00 THE BUSINESS
JSR INVERT ;RESTORE THE CURSOR
CLRIO LDX #0 ;CLR IORESULT
RTS ;RETURN FROM VIDOUT
WFIRM TXA
PHA
LDA #0
JSR IOWAIT
JSR SERI
LDY #0F
JMP FVEC]

M R T Y P L T LN

Y o D - D W

WSER JSR CONCK ;CONSOLE CHAR?
TXA
PHA ;SAVE CHAR ON STACK
JSR SER1 +ASSORTED GARBAGE
PLA '
STA 0588,X ;SET UP DATA BYTE
JSR 0CS%AA ;SEND IT (SHOUT)
LDX #0
RTS -

RWRITE TAX ;SAVE CHAR
LDA SLTTYPS+2 JWHAT CARD IN SLOT 2?
LDY #020
BNE GENW2 ;BR ALWAYS TAKEN

M L N L L TP YRR

. WRITE TO PRINTER CARD SLOT1, CHAR IN X

Dana A1

.

LFPASS
GENW
GENW2

OFFLINE

JSR CONCK
LDA 0C1Cl
BMI WPRN
STX 0C0s0
LOX #0
RTS

JSR CONCK

LDA 0CO8t,Y

AND #2
BEQ WCOM
TXA

STA 0CO8F,Y

LDX #0
RTS

LDY #010

LDA SLTTYPS+1

CMP 45
BEQ WPRN
CHPL#4
BEQ WSER
CHP #3
BEQ WCOM
CHP #6
BEQ WFIRM
LDX #9
RTS

LDA SLTTYPS+2

LDY #020
CHMP #4
BEQ RSER
CMP #3
BEQ RCOM
CMP #6

;CONSOLE CHAR AVAIL?

;TEST PRINTER

READY

;LOQP TILL READY

;SEND CHAR

;CONSOLE CHAR?

;TEST UART STATUS

;READY?

;NO,WAIT TILL READY

;SEND CHAR

;SAVE CHAR IN

X

;TEST LINE-FEED FLAG
;PASS [F BIT7=0

;1S IT A LINE-
;YES, IGNCRE

;SLOT 1
s WHAT KIND OF

yPRINTER CARD?

;YES WRITE TO
;SERIAL CARD?
;YES WRITE TO
;GO CARD?

;YES WRITE TO

;WHAT CARD IN

;SERIAL CARD?
.GET FROM SER
.COM CARD?

.GET FROM COM

FEED?

CARD?
PRINTER CARD
SER CARD

CoM CARD

SLOT 27

CARD

RFIRM ~
OFFLINE ;CARD NOT RECOG

RFIRM
FREAD1

PHA
Loy
JMP

CONCK ;CHECK FOR CONSOLE CHAR
ocose,Y ;TEST UART STATUS

A ' ;JEST BIT O

RCOM ; WAIT FOR CHAR

ggOBF,Y ;GET CHAR

FIRMSTATUS

IOWAIT

CONCK ;CONSOLE CHAR AVAIL?
SER1 ;ASSORTED GARBAGE
0C84D ;GET A BYTE (SHIFTIN)
0588,X ;GET BYTE 0678+SLOT

SER1

#10

FVEC]
CONCK
FIRMSTATUS

IOWAIT

Page 43

APPLE COMPUTER, INC.
20525-Mariani Avenue
Cupertino, CA 95014

APPLE II PASCAL 1.2
ADDENDUM TO PASCAL TECHNICAL NOTE #11B

(December 1983)
For further information contact:

PCS Developer Technical Support
M/S 22-W, Phone (408) 996~-1010

Disclaimer of All Warranties and Liabilities

Apple Computer, Inc. makes no warranties, either express or implied, with
respect to this documentation or with respect to the software described in
‘this documentation, its quality, performance, merchantability, or fitness .for
any particular purpose. Apple Computer, Inc. sg~ftware 1s sold or licensed
"as is". The entire risk as to its quality and performance is with the
. vandor. Should the programs prove defective folowing their purchase, the
vendor (and not Apple Computer, Inc., its distributor, or its rtetailer)
assumes the entire cost of all necessary servicing, repair, or correction and
any incidental or consequential damages. In no event will Apple Computer,
Inc. be liable for direct. indirect., dincidental, or consequential damages
resulting from any defect in the software, even if Apple Computer, Inc. has
been advised of the possibility of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This document
may not, in whole or part, be copied, photocopied, reproduced, translated or
reduced to any electronic medium or machine readable form without prior
consent, in writing, from Apple Computer, Inc.

Copyright 1983 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

APPLE COMPUTER, INC.
20525 Mariani Avenue
Cupertino, CA 95014

 APPLE II PASCAL 1.2 '
ADDENDUM TO PASCAL TECHNICAL NOTE #11

(December 1983)

For further information contact:
PCS Developer Technical Support
M/S 22-W, Phone (408) 996-1010

Contents:

ATTACH Software .
SYSTEM.ATTACH
ATTACHUD.CODE
ADMERG.CODE
CONVAD.CODE
SHOWAD.CODE
IM.CODE

Changes to ATTACHUD

Changes to the ATTACH Mechanism
Transient Initialization

Interrupt Handling '
Handling Interrupts.in Version 1.2
Drivers for Devices with Interrupts
Changes from Version 1l.l '
Example of an Interrupt- Based Device Driver

~+++.Addendum to-Pascal-Technical Note #11 ~Page 3

This document is meant to accompany Pascal Technical Note #11 - Apple Pascal
1.1 BIOS Reconfiguration Using Attach. It describes changes s and additions to
the Apple // Pascal 1.1 ATTACH facilities.

To use the software described in this addendum. you must have version 1.2 of
Apple II Pascal.

ATTACH Software

This section describes the files on the ATTACH TOOLS disk which contains the
ATTACH facilities provided for the Apple II Pascal system, version 1l.2.

SYSTEM.ATTACH - attaches device drivers at startup time, using the
information in ATTACH.DATA, and the driver code in the
ATTACH.DRIVERS library. This version of SYSTEM.ATTACH is
for use with the 64K and 128K Development Systems only.
There is a special version for use with the Runtime
Systems which is available on the Runtime System,
diskettes.

The following programs are provided for the creation and handling of the
ATTACH.DATA file.

ATTACHUD.CODE -— creates a version 1.2 ATTACH.DATA file from informatiom
supplied by the user)

ADMERG.CODE -—— merges multiple version !.2 ATTACH.DATA files into_ a
single ATTACH.DATA file

CONVAD.CODE -- converts an ATTACH.DATA file from version l.l to version
1.2

SHOWAD.CODE -— shows the contents of a version l.2 ATTACH.DATA file

The interfaces to the utilities ADMERG, CONVAD, and SHOWAD are self-
explanatory, and we don't describe them in this addendum.

IM.CODE -- contains the interrupt manager (IM) for the 64K Pascal
» system

Changes to ATTACHUD

If you are familiar with the 1.l version of ATTACHUD, you will find that the-
1.2 version contains some additional prompts. After the question

Do you want this driver aligned on
a particular byte boundary? (Y/N)

ATTACHUD asks the new question

~~whddendum to -Pascal-Technical Note #11 Page 4

Do you want this driver to have a
transient initialization section? (Y/N)

If you respond with "Y', ATTACHUD will go on to ask you for the .PROC name of
the transient initialization code, and its alignment requirements.

ATTACHUD also asks the new question
Will this driver use interrupts? (Y/N)

If you answer "Y' to this question, ATTACHUD will ensure that a record for the
interrupt manager (IM) is present at the end of the ATTACH.DATA file.

"Finally, note that unit numbers 13-20 are now available to user—defined
devices. These numbers correspond to block-structured devices, and they must
be controlled by user-written attach drivers.

Changes to the ATTACH Mechanism

Transient Initialization

As described in Pascal Technical Note fll, a device driver is attached at boot
time. If the driver's data record (created by ATTACHUD) specifies that the
driver should be initialized at startup time, then its initialization code is
executed. .

Under version 1.2, there is an additional step. The driver may be accompanied
by a 'transient initialization' module that is executed only at startup time.

After all the drivers are loaded onto the heap and initialized, each of the
transients will be loaded and executed in the same order as their associated
driver was loaded. They will overlay each other, going away after completion.

Each of the transients will have passed to it, on the stack, the address of the
associated driver. This way communication can be set up:between the two. Note
that this.is the address of the start of the driver, not start - l.

In order to help data stucturing, the transient code -may be loaded on a 0 to 256
byte boundary. Transients must be written in assembler, -not use .ABSOLUTE (must
be relocatable), and have a single .PROC at the beginning. The transient
initialization code must be assembled as a separate module from the device
driver itself. Like a device driver, it must he placed in the ATTACH.DRIVERS
file using ‘the LIBRARY utility. :

Note that the transient initialization code is executed after the device
driver's own (callable) initialization code is executed.

This facility was provided for the use of the Pascal ProFile Driver, but it is
available to any user-defined device driver.

. Addendum to.Pascal Technical Note #11 .Page 5

Interrupt Handling

Version 1.2 of Apple II Pascal supports interrupts from multiple devices.

The first part of this section describes interrupt handling on the Apple II.
The second part discusses how to write a device driver that supports

interrupts._ A sample scheme for such a driver appears at the and of this
section.

Important: The interrupt manager (IM) is shipped in the file IM.CODE. For the
64K Pascal systems, the IM driver must be placed in ATTACH.DRIVERS if any
devices are to use interrupts. For the 128K Pascal systems, interrupt handling

is built in, and the system will ignore the IM driver if it is present in
ATTACH.DRIVERS.

The 48K runtime systems cannot use interrupts.

Handling Interrupts in Version 1.2

The main problem in handling interrupts is to save the context of the current
program, and then restore that context ouce.the interrupt has been processed.
This includes saving the contents of various systcm registets, and restoring
them once the driver returms.

When an interrupt can come from one of several devices, it is also necessary to
identify which device, so that the appropriate driver can handle the interrupt.

A driver for a user device that supports ‘interrupts must contain a section of
code called the '"interrupt service routine." This code will be called by the
interrupt manager, as described below.

The interrupt manager (IM) itself is responsible for saving the current context
and restoring it later. The interrupt service routines themselves are
responsible for determining whether they should handle a given interrupt (just
how they do this depends on the particular device; ‘see below).

Interrupt service routines are set up in a linked chain (see item 3 in the
following section). If an interrupt service routine recognizes an interrupt, it
processes it and then returns to the:IM:. 1If the service routine doesn't
recognize an interrupt, it transfers control to the next interrupt service
routine in the chain. If none of the service routines claims an interrupt, then
an error has occurred, and the system is restarted.

Thus, under this scheme, interrupts are handled in the following sequence.
- A device interrupt occurs. This disables interrupts and causes the
processor to execute the code that starts at the address stored in the IRQ

vector (located at SFFFE-FFFF).

~ The IRQ points to the IM, which looks at the processor status on the stack
and checks the break bit. If the break bit is set, the IM tranfers control

| dddendum to -Pascal Technical Note #11 Page 6

to the Pascal reset code which restarts the system.

-~ If the break bit is not set, the IM saves the current context and then
transfers control to the first interrupt service routine in the chain.

=~ If the service routine doesn't recognize the interrupt, it transfers
control to the next service routine in the chain. Otherwise, it processes
the interrupt and then returms to the IM.

= If the last interrupt service routine in the chain doesn’'t recognize the
interrupt, it transfers control to the reset code for the Pascal system.

- When the IM regains control, it restores the interrupted program's context
which re-enables interrupts. Execution proceeds from the point at which it
was interrupted.

A spurious interrupt can be generated as the result of a hardware malfunctiom,
or of a BRK instruction in currently executing code. In the case of a hardware
malfunction, the interrupt falls through the chain of routines, and control is
ultimately passed to the Pascal system reset code. In the case of a BRK
instruction, the break bit is set causing the IM to restart the system as
decribed above.

To determine whether it should process an interrupt,-an interrupt service ., .,
routine can (in general) check the interrupt flag register for the appropriate
card slot.

The location of the interrupt flag register, unfortunately, may vary according
to the hardware; it is best if the peripheral card follows the comnventions
described in the Apple Ile Design Guidelines manual, in the section on
"Peripheral Card Firmware." .

For 64K Pascal systems, the code for the IM is in the form of an ATTACH driver.
However, the IM cannot be called from a user program. (For 128K Pascal systems,
interrupt handling is built in, and the IM code is ignored if it is present in
ATTACH.DRIVERS).

User—wficten device drivers that support interrupts must also be ATTACH drivers.
The following section discusses how to write such a driver. ‘

Drivers for Devices with Interrupts

The following considerations must be taken into account when you write a driver
for a device that generates interrupts.

l. Any volume number appropriate for a user—defined device (128-143) can be
used, except for number 128 (decimal), which has been defined as the
standard number for the large disk driver. The IM itself is assigned the
highest available number. It is recommended that you use numbers in the
130-140 range.)

Note: If you use ADMERG, there is a chance of cancelling another driver
that had already been installed with the same number, so it is important to

‘Addendum to Pascal Technical Note #11 ..Page 7

use SHOWAD to look at the ATTACH.DATA files before you run ADMERG.

SYSTEM.ATTACH enables intertupts after the full chain of interrupt service
routines has been built and all transient initialization modules have been
executed. Device driver code should never enable interrupts.

In addition, if you wish to execute some code with interrupts disabled, this
should not be done with just an SEI instruction. Instead you should use the
sequence of PHP, SEI ..code.. PLP, This ensures that the system state is
correctly restored when you exit the critical section (after the PLP).

Any driver that uses interrupts must initialize itself before the system
starts up in order to link its interrupt service code into the chain of
service routines. The initialization code should do the following (before
exiting) in order to initialize the links:

LDA OFFFE .+ move IRQ vector into next

STA STOREIT ; driver pointer

LDA OFFFF

STA STOREIT+1

LDA 1_ADDRESS y move interrupt service routine
STA OFFFE + address into the IRQ vector
LDA I_ADDRESS+1

STA " OFFFF

I_ADDRESS .WORD I_HANDLER
STOREIT «WORD O : next driver pointer

where: I _HANDLER is the entry point of the driver's interrupt service
routine; ,

STOREIT will contain the address of the next interrupt service
routine to be called if the current one finds that its device did
not generate the interrupt.

Note: This code must be executed only once and must not be in a transient
initialization module. The driver {tself may also contain "regular"
initialization code to reset the device or its buffer, and so forth.

At the start of its interrupt service routine(s), a device driver must first
determine whether the driver's device hardware. generated the intertupt.

The details are device-dependent, but in general involve checking a register
on the device's controller card (for example, an interrupt flag register on
a 6522).

If the interrupt was generated by the driver's device, the driver should
process the interrupt and then return to the IM by an RTI instruction.

If the interrupt was not generated by the driver's device, the driver should
do an indirect jump to the next device driver (the address of the next
driver is saved as STOREIT in the sample initialization code under item 3,
above). If this device driver is the last in the chain, the jump will be to

Addendum- to Pascal Technical Note #11 . Page 8

the Pascal system reset code.

Note: The jump to Pascal system reset code is accomplished automatically,
since the system initializes the IRQ vector to point to the reset code. If
the initialization for all interrupt-based device drivers 1is correct (as
shown in item 3), this pointer will be moved to the end of the interrupt
service routine chain.

Important: If your device card has no way of signalling that it generated

an interrupt, then {ts service routine must be the last service routine in

the chain. It will have to assume that if it is called, it will handle an

interrupt. This is not a good approach, since the routine won't be able to
detect BRK or hardware failure interrupts.

To ensure that a driver is the last ome in the interrupt drivers chain,
assign it a unit number lower than all other interrupt driver unit numbers.

An interrupt service routine must be an integral part of the driver's code.
This ensures that it will be loaded by SYSTEM.ATTACH. If you don't do this,
your code is in danger of being released by the system -—- a subsequent
interrupt may cause unpredictable effects.

If you use the 64K Pascal system, the IM driver should be included on the
boot diskette inside the ATTACH.DRIVERS file. ' You may use the. standard
library program (LIBRARY.CODE) to look into tihe file and/or transfer the
code segment to another file. The code size of IM will be shown as
approximately 280 bytes, but much of this size corresponds to relocation
code that will not be resident at run time. At run time, the IM occupies
approximately 200 bytes.

The. program ATTACHUD.CODE is used to save 1nformation about a driver in
ATTACH.DATA. - For each driver, ATTACHUD will ask you. if the driver uses
interrupts. If you answer yas, ATTACHUD ensures that a data record for the
IM driver is automatically inecluded in the ATTACH.DATA file. Note that this
data record is automatically included in ATTACH.DATA as long as at least one
of your drivers uses interrupts.

On the 64K Pascal system, the IM driver is automatically attached if the IM
data record is present in ATTACH.DATA. 1If the record is not present, the IM
driver is not attached. On the 128K Pascal system, the IM data record is
ignored if it is present.

It is not, repeat not, necessary to save registers in an interrupt service
routine. The IM saves them before jumping to the drivers chain, and
restores them before resuming normal execution of the interrupted code. You
should use the standard 'RTI' instruction at the end. of the interrupt
service routine: not an 'RTS'. The 'RTI' instruction transfers control
back to the IM. (RTI is used because the IM saveg additional status
information in the processor status byte and then pushes this byte onto the
stack.)

A change has been made to the 1.2 Pascal system to eliminate a problem
associated with abnormal termination of the system with certain interrupting
devices. This can occur when a program gets a system error or when a user

100

1.

12,

‘Addendum to ~Pascal ‘Technical Note #11 Page 9

interrupts the program from the keyboard (CTRL-@).

When the system terminates abnormally, it axecutes a UNITCLEAR on all
devices (1-20 and 128-143). This is done even when the driver's data record

(in ATTACH.DATA) specifies that no initialization is to be done at boot
time.

This presents a problem when the UNITCLEAR portion of a driver contains code
to initialize the service routine chain (as described above in item 3).
Drivers under version 1.2 must have some code to distinguish between the
first initialization (which sets up the driver chain) and any subsequent
initialization (i.e., a call to UNITCLEAR),

In the driver, these two kinds of initialization may be distinguished by a
simple check of a byte of memory to see which type of initialization code
needs to be run (if any).. This is the scheme used in the example below.

The 1.2 system reinitializes all devices because some drivers may have
pointers into the stack/heap space. If this space were released without
reinitializing the device drivers, the pointers would now point to invalid
code or data. The problem can't be solved by simply disabling further
interrupts, since some external devices (e.g., a remote network printer
server) may have to be notified of the reset; if interrupts were disabled,
information coming back from the remote device could not be handled
correctly.

Location $7F8 must contain the value $Cn, where n is the slot number of the
card, i1f your card uses the $C800 expansion space. The reason for this is
that when you are executing in your $C800 space and an interrupt occurs,
the interrupt routine may decide to use its own $C800 space. .When the .
interrupt has completed, the system must know 1f it needs to reselect the
$C800 space for your card. The IM will take the contents of location $7F8
(which can be initialized any time before your driver enters the $C800
space), and use it to reselect your card. If you do not do this, it is
very possible that your routines may not work correctly since your $C800
gspace will not be reselected. The only other way to avoid this is to
disable all interrupts while you are in your $C800 space.

Note: Interrupt service routines must never alter the contents of location
$7F8, as -this may cause the wrong $C800 space to be reselec:ed after the
interrupt has been serviced. 0

Interrupts are disabled when an interrupt occurs, and are re—enabled by the
IM after the interrupt has been serviced. Only one interrupt may be
handled at a time.

Devices or drivers must never re-enable interrupts if they have been
disabled: by the IM.

There are additional restrictions on interrupts for applications that
execute under the 64K Pascal system and that also use the auxiliary 64K
memory on a IIe. Since the IM and all interrupt service routines are
resident in the main RAM, if an interrupt occurs while the application is
using the auxiliary RAM, the interrupt will not be serviced properly, and

13.

14,

15.

16.

Addendum to Pascal Technical Note #11 Page 10

may cause the system to crash.

For this reason, an application should disable interrupts while the
auxiliary 64K 1is in use, or should be able to handle the interrupt
management itself.

On the Apple IIe, the IM will save the state of the 80STORE and PAGE2 soft
switches, and will deselect PAGE2 if 80STORE is selected. - The original
state of the PAGE2 switch is restored after the interrupt is serviced.

In the 128K Pascal system, the IM will save the state of the RAMRD and
RAMWRT soft switches and will then select read main RAM and write main RAM.
The original state is restored after the interrupt is serviced.

If an interrupt service routine uses any zero-page user temporaries
($0-835), then it dust save their contents, and restore them after the
interrupt has been serviced.

If an application switches in the Monitor ROM, it must disable interrupts
prior to doing so.

The following is a brief scenario for installing an 1nterrupt-based device
driver in your Pascal system.

1.

2.

Write the device driver and assemble it, according to the requirements given
above.

Execute ATTACHUD to create an attach data file for your driver.

If you have already defined other device drivers, call the new attach
data file INTERRUPT.DATA, for example. Then execute ADMERG to append
your driver data file INTERRUPT.DATA to the existing ATTACH.DATA file.

If you do not have any other device drivers in your system, call the new
attach data file ATTACH.DATA.

Be sure to tell ATTACHUD that your driver uses interrupts.

Next, execute LIBRARY.CODE to place your driver code in the ATTACH.DRIVERS
file. (On the 64K Pascal system, you must include IM.CODE in
ATTACH.DRIVERS, if it is not already present.)

Note: 1If you change your device driver and reassemble it, you don't always
need to run ATTACHUD a second time. Changes to driver code don't affect the
data record in ATTACH.DATA unless you have changed something which affects
the answer to one of the questions which ATTACHUD asks you. You will still
have to use LIBRARY to place the new code in the ATTACH.DRIVERS file.

Along with the standard files for a bootable Pascal disk, the following
files must be on your new boot diskette: SYSTEM.ATTACH, ATTACH.DRIVERS, and
ATTACH.DATA. When you boot from the new diskette, the driver will be
loaded, and you can test it and use it.

Addendum to Pascal Technical Note #11 Page 11l

Remember that you can use SHOWAD to view the contents of ATTACH.DATA, and
LIBRARY to view the contents of ATTACH.DRIVERS.

Changes from Version 1.l

Under version l.l, interrupts were theoretically allowed, since the system
disabled interrupts during time-critical operations such . as disk accesses.
Unfortunately, when a disk access was completed interrupts were never

re—enabled, so that interrupts functioned correctly only until a program's first
disk access!

Version 1.1 could support only one interrupting device per gystem.

This is the scheme described in Pascal Technical Note #l1l.

Version 1.2 of the Apple I1 Pascal system can support multiple interrupting
devices. For 128K systems, this capability 1is built in. For 64K systems, the
interrupt manager (IM) is shipped in the file IM.CODE.

-Addendum to Pascal Taechnical Note #11 Page

Example of an Interruvt-Based Device Driver

--

...................................... L2 TN A BT I AT BT R A I B U I I T I DR I B I L O I I I S L IR)
L I A A I e e N B I e R B N I O N N RN E R RN

H This sample driver 1s a user-defined device driver. It shows both
H the overall skeleton of a user driver and more importantly it shows
H how to write an interrupt-based device driver that uses the

H interrupt manager (IM).

H Macro Subroutines

1 Save/restore word off the stack (used to save return addresses)

.MACRO POP
PLA

STA %1
PLA

STA Z1+1
.ENDM

«MACRO PUSH
LDA Zl+l
PHA

LDA A1l
PHA

« ENDM

: The ol' switch macro (see SOS Reference Manual for description)
.MACRO SWITCH. .

.IF "zl oo™
LDA 21

.ENDC-

JIF xR O
cMpP #T2+1

BCS $010

.ENDC

ASL A

TAY

LDA Z3+1,Y

PHA

LDA 23,Y

PHA

oIF Hza” <> u*n
RTS

.ENDC

S010 . ENDM
. Move first word into the second

12

Addendum to Pascal Technical Note #11 Page 13

+MACRO MOVE
LDA %1
STA - %2
LDA Zl+1
STA Z2+1
.ENDM

’

; Equates

Zero page (0-$35 is available) is used for return addresses,

H and global temps.

; Zero page temporary locations

CSLIST .EQU 0
CTRLWORD .EQU 2

IRQ +EQU OFFFE
FLAG6522 .EQU 0C2ED

; Error code equates

)

Buffer address
storage for ctrl word

IRQ vector location
Interrupt Flag Register
for a hypothetical card in Slot 2

Upon completion of the driver, the X register will hold an appropriate
error code that will be converted into the Pascal reserved variable

; LORESULT. The Pascal program should check IORESULT after all UNITSTATUS
i calls made to. the driver. Error code numbers 128-255 are to be used by

+ your driver.

.
i

XNOERRS .EQU 0
XBADCMD .EQU 3
ERRCODE .EQU 128.

.PROC SAMPLE

no errors encountered
bad command to driver
user defined error message

...
I I I L R R N R N DL DL I N R L L N N L BN 25 N0 T 2 TR N N O BN DN BN IO JOE A BN DN TR IO TNCINE TR INC TN IR B)

H This 1is the main entry point for the ATTACH driver. This driver
: is defined as a 'user device' and therefore will only be used from
H Pagcal using direct I/0 (i.e, UNITSTATUS, UNITREAD/WRITE).

H Upon entrance, the X register will contain the type of call requested

: (UNITREAD,WRITE,CLEAR, etc).
H details on the stack setup.
START

POP RETURN

.
*

See ATTACH documentation for more

save return address

; get type of call

Addendum to Pascal Technical Note #11 Page 14

SWITCH ,4,IDTABLE

BADREQ LDX #XBADCMD i if you got here, the call is in error!
BNE GOBACK : always taken
GOBACKOK LDX #XNOERRS i g0 here if you want to return with no errs
GOBACK PUSH RETURN : or return with X register holding error code
RTS : main exit point
IDTABLE .EQU *

.WORD READ-]
+WORD WRITE-l
+WORD INIT-1
+WORD BADREQ-1
+WORD U_STATUS-1

A A N R RN RN RERR A AR R R RS R R R

: INIT does two things: 1) moves the IRQ vectors to the appropriate
H locations the first time called and 2) every additional call will be

3 meant to issue an appropriate initialization request to the driver
H (if required). :
INIT

PHP

SEI ; Disable Interrupts

LDA TYPE

BEQ $001 3 1f zero then do init stuff

Any UNITCLEAR call after the initial one By the system will jump
to this area

Jup $090 ; always taken
5001 INC TYPE : bump type field so next time we dont do it
;+ This next section moves the IRQ vector into a temporary
: location. The MOVE macro is a 16-bit move instruction -— see above

: macros for an explanation.

$090

INTADR
JUMPTO

MOVE IRQ,JUMPTO
MOVE INTADR, IRQ : patch IRQ location and jump vector

more code for initial initialization call

°

PLP
JMP GOBACKOK
<WORD INTHNDLR : Interrupt handler address

LWORD O ; save area for next interrupt svc routine

Addendum to Pascal Technical Note #11 Page 15

TYPE .BYTE 0 i 1£ 0 then init call else cleanup call
RETURN .WORD 0 : return address for Pascal

.. e
v‘!nv!!!!ﬁ!i)'"!79”"Q!v"o’!!$09v|vvv0|ttqcy~)$s.|\0‘\\"““"""”'

H READ is called when the program generates a UNITREAD

»
*

READ

code for the UNITREAD call

LDX #ERRCODE i error completion code

JMP GOBACK
H WRITE is called when the program generates a UNITWRITE
WRITE

code for the UNITWRITE call

LDX #ERRCODE ; error completion code
JMP GOBACK

...............

-
-
-
-
-
.o
.o
e
-s
P
-
..
..
s
.
-
-
-
-
-
-
-
e
.o
-e
-
P
-
.o
-e
-
-
Prs
.o
P
-e
-
s
-
we
PR
-e
-
.o
-s
se
-
-
-e
.o
-
-
.
-s
-e
.o
xS
.
-
.
.
.
.

"0"!)\"\0

; U_STATUS is called when the program executes a UNITSTATUS call to
; this particular device.

; The order of the stack (4 bytes) is:

H TOS => POINTER TO STATUS RECORD

3 CONTROL WORD bits 15..13 12..2 1 0

: user reserved status/ directiom
: defined for future control

; direction - O = status of output channel

: 1 = status of input channel

: status/ctrl - 0 = status call

. "1 = control call

; Bits 13-15 should have the number of the

i control/status request.

Addendum to Pascal. Technical Note #11

. From Pascal, the call should be:

H whe

C3 o0 v we

_STATUS

.
.

;y This

CONTROL

re:

POP
POP
LDA
BIT
BNE
JMP

is the unitstatus call —

LDA
AND
BEQ
cMP
BEQ
cMP
BEQ
CcMP
BEQ
LDX
JMP

CODE_ZERO

CODE_ONE

.

UNITSTATUS(130,BUFFER,OPTION)

:Page 16

130 = Device driver number (currently 130 is used by this driver)
BUFFER = PACKED ARRAY [0..??] OF 0..255:

This array 1s as big as needed by the code called.

OPTION = PACKED RECORD
DIRECTION : 0..l;
STAT CTRL : 0..1:
RESERVED : 0..2047;

CODE :

END;

CSLIST
CTRLWORD
#02
CTRLWORD
CONTROL
STATUS

CTRLWORD+1
#OEO
CODE_ZERO
#20
CODE_ONE
#40

CODE TWO
#60
CODE_THREE
#XBADCODE
GOBACK

0..7;

: see above
ditto

2% we we 4o

mask for status/control bit

if bit 2 is set, zero flag will be cleared
go do a control call
status request

control request section

: get control word

+ is it #0
7 yes

1 is it #1
i yes.

: 1s. it #2

. 1s it #3

; completion

code for control code zero

LDX
JMp

code for control code

LDX
JMP

#fERRCODE
GOBACK

#ERRCODE
GOBACK

; completion
: and report

one

; completion
; and report

0000 0000
0010 0000
0100 0000

0110 0000

code error

code error

it

code error

it

Addendum to Pascal Technical Note #11 Page

; repeat for codes 2 and 3

CODE_TWO
LDX ffERRCODE :
JMP GOBACK '
CODE_THREE
LDX #ERRCODE 3
JMP GOBACK :
+ This is the unitstatus call =-
STATUS
LDA CTRLWORD+1 H
AND #0EO H
BEQ SCODE_ONE :
cMP #20 :
BEQ SCODE_TWO H
LDX #XBADCODE
JMP GOBACK
SCODE_ONE
status code one
LDX #ERRCODE H
Jp GOBACK H
SCODE_TWO

status code two

‘.

LDX #ERRCODE :
JMP GOBACK :

completion code error
and report it

completion code error
and report it

status request section

get ‘control word

is it #0 : 0000 0000
yes
is it #1 : 0010 0000
yes

completion code error
and report it

completion code error
and report it

...
LR N N N R N N N A R R R A R N R N N R I I I A R AL DL L N DL DR AL AL N R 2 2 I I 2 2 2 2 T 2 DL IO N T O O N 2N DR B 2N I)

This is the interrupt handler. Remember that we don't have to save

The code used to check for an interrupt

will have to be changed depending on your hardware.

Y
; the context of the system.
’
*

INTHNDLR

.
+

first we check to see {f we generated the interrupt

17

Addendum to Pascal Technical Note #11 Page 13

LDA FLAG6522 + check for 6522 interrupt flag

AND #80 + mask out bit

BPL GOAHEAD : if bit was set, we generated it

JMP NEXT i otherwise goto the next interrupt handler

H

i Since we generated the interrupt, we service it and then returm to
; the interrupt manager with an 'RTT’

GOAHEAD

interrupt handler code for our card

RTI s+ Go back to the Interrupt Manager

3y If we got to NEXT, we must have decided that the interrupt was not
+ generated by us.

.
A _

NEXT
JMP @JUMPTO
+END

Apple Pascal Object Module Format
Pacal Technical Note # 16

15 October 1981

INTRODUCTION

This document describes the object module format of codefilas currently
produced in the Apple |{ and /// Pascal systems. The only difference between
the format of the }{ and /// codefiles is the information contained in block 0
as noted below. The P-code for both systems is idencical.

A CODETILE ON DISKETTE

Codefiles may be unlinked files created by the compiler or assembler, library
files with units which may be used by programs in other codefiles, or linked

. files composed of segments ready for executiom. All codefiles (linked and

- unlinked) consist of a segment dictionmary in block O of the file followed by a
sequence of one or more code segments up to a total of sixteen segments.

Segments may be linked or unlinked code segments, or data segments for an
intrinsic unit. Code segments may have interface text, code blocks, and linker
information in that order in blocks on the diskette, though some of these parts
may be present only for particular .types of code segments. For example,
interface text is only present in code segments of units. —~Data segments only
have an entry in the segment dictionmary: they do maot occupy any blocks on the
diskette since they have no code, interface, or linker information associated
with them. The only difference between the format of][and /// codefiles is

the information in bloeck 0.

Each code segment begins on a boundary between diskette blocks (the 512-byte
disk allocation quantum used by the Apple Pascal operating system). Each
segment may occupy many blocks (up to a maximum of 32K bytes). A typical
codefile is shown in Figure 0.

‘The following sections describe the parts of a codefile in greater decail.
‘Firgt the segment dictionary is described. Then the parts of a code segment
are presented in the order im which they would occur in a file: the interface
part, the code part, and finally linker information. The code part description
is broken up into sections describing the similaricies and differences between
code parts for P-code and assembly language modules.

SEGMENT DICTIONARY: BLOCK ZERC OF A CODEFILE

The segment dictiomary in block O of a codefile conrtains information regarding
name, kind, relative address and length of each code segment, It is

Page |

tepresented by & :record .presented below.in-a pseudo-code présentation and
illustrated in Figure 1.

The segment dictionary contains an entcry for each code or data segment in the

file., (The userprogram main segment is assigned segment number l; the systen

main segment 1s assigned segment number 0. Both are placed in slot O of their
respective codefiles by the compiler. .This differs from the scatement in the

"Pascal Operating System Manual", page 250, which incorrectly states that "the
main program is assigned segment #0Q".)

Each segment dictionary entry includes the segment’s size (ia bytes). This
size {s set to zero if there is no segment in the slot. The entry also
contains the segment’s disk locatiom, which is set to 0 for a data segment of
an intrinsic unit. Blocks in . a codefile are numbered sequentially from O, O
being the segment dictiomary. The disk location for non-daca segments is given
as the block number of the first block containing code for the segment.

RECORD {This record is. composed of parallel 16 elemen:‘arrays, one element for
each possible segment slot in the sagment dictiomary of a codefile.} ‘

DISRINFO: ARRAY(0Q..l5] OF
RECORD
CODELENG, CODEADDR: INTEGER
END;

{The first array 1i1s composed of two=-word records made up of two
integers representing the length of the code part of a sagment in
bytes and the block number of the start of the code part of the
segment. On the diskette, the CODEADDR £field appears before the
CODELENG in each pair.}

SEGNAME: ARRAY(0..l15] OF PACKED ARRAY(0..7] OF CHAR;
{This is a sixteen element array of eight character arrays which
describe the segments by name. These eight characters are those
which identify the main program and its segment procedures-at compile
time. Unused segment slots have name fields filled with eight
ASCII space characters; if the name is less than eight characters it
is padded on the right by spaces; if the name is longer than eight
characters, it is truncated. Note that a blank field is allowed for
an existing code segment. CODELENG=Q should be used to determine an

empty slot.}
SEGRKIND: ARRAY (0..lS5] OF

{The next array describes the kind of segment in the
particular entry locatiom of the dictiomary. The possible
values are described below.}

(LINRED, {=0. This represents a fully executable segment.
Either all extermal references (regular UNITS or EXTERNALS
or .REFs) have baen resolved, or none were present.}

BOSTSEG, {=1. This represents the outer block of a Pascal

Page 2

.ércgram if.+the program has -unresolved external
refarences.}

SEGPROC, {=2. A Pascal segment procedure. This type is not
currently used.} .

UNITSEG, {=3. A compiled regular (as opposed to intrinsic)
unit.}

SEPRTSEG, {=4. A separacely compiled (set of) procedures or
functions. Assembly language codefiles are always of this
type.}

UNLINKED=INTRINS, {=5. An intrinsic unit containing
unresolved calls to assembly language procedures or
functions.}

LINRED=-INTRINS, {=6. An intrinsic unit in ics final,
ready=-to-run state.}

bAIASEG); {=7. A specification of the data segment associated
with an intrinsic unit telling how many bvtes to allocate
and which segment to use.} ‘

TEXTADDR: ARRAY[O..l5] OF INTEGER; {This array of integers gives the
block number of the start of the interface part of each regular or
intrinsic unit. The last block of the incazxface section 1s inferred
from CODEADDR=~1. Array elements corresponding to non-unit segments
have the value zero. Segments are stored with their interface blocks
(1f£ any) firsc, followed by their code part blocks and finally cheir
linker jinformation blocks (containing symbol table elements for items
used but oot defined in the segment or for items defined in the
segment and externally accessible.) Linker imzformatioms records are
described in detail below.}

SEGINFO: PACKED ARRAY[0..15] OF
{This array has one word per segment entry.}

PACXED RECORD
SEGNUM: 0..255

{Bits 0 through 7 (the low order bits) of each word
specify the segment number for that code. This is

the position the code segment will occupy in the

system’s SEGTABLE at execution time. This table is 32
elements long in the Apple][and 64 elements long in the
Apple ///. Thus valid oumbers for the first field are
0..31 on the][and 0..63 on the ///.

The run time segment table contains an entry for each
segment that is used in executing the program. There are
entries for 6 segments that the system uses when
executing a user program oa the]J{; on the ///, 8

Page 3

segments .are.used .by .the Pascal operating :system. There
is an entry for each segment in the segment dictionary of
the program’s code file. Finally, there is an entIy for
each code and data segment of each intrinsic uynict.

At run time no two segments in the segment table can have
the same number since the numbers are used to index the
table. A number is assigned to a2 program segment when an
entry is created for it in the code file’s segment
dictionary. The main program has segment number l. The
segments used by the system are QO and 2..5 on the][and
/// and, additionally, 62 and 63 on the ///. Also,
segments 59 through 61 ara reserved for use by the
system. The segment number of an intrigsic unit is
determined by the unit’s heading -when the unit is
compiled. (These numbers—esfT~be~Found by examining the
segment dictionary of the SYSTEMLLIBRARY file with the
LIBMAP or LIBRARY utility programs.) The segment numbers
of regular unit segments and of segment pocedures and
functions are automatically assigned by the system; they
begin at 7 and ascend. Note that after a regular unit is
linked into a program, it may not have the same segment
‘number shown for it in the library’s segment dictiomary
when the library is examined with LIBMAP.

Since the Pascal system itself uses 6 slots on the][and
8 slots on. the /// in the runtime SEGTABLE, this means
that a program can have 26 user defined or imtrinsic
segments (6+26=32) on the]J{. A codefile is, as we have
seen, limited to 16 segments by the number of spaces in
the segment dicticnary; this is true for both user
codefiles and the SYSTEM.LIBRARY codefile. Thus:on the
1(,716 of the 26 can be in the user’'s codefile while the
excess over 16 could be intrinsics. On cthe ///, there
are 64 possible segments. However, the maximpum which can
be used is 56: 8 for the system, a maxizoum of 16 for the
user program, up to l6 user program library code or data
segments, and up to 16 system library code or data
segments. &+l6+16+16=56.

Thus, segment numbers of the program itself, the segments
used by the Pascal system, and of amy intrinsic units
used by the program are fixed before the program is
compiled; the segments of regular units and of segmenc
procedures and functiomns are not fixed and are assigned
as the program is compiled and linked iz ascending
sequence beginning with 7. Normally, users need %o
specify segment numbers only when writiong an intrinsic
unit. - The choice must avoid the fixed numbers 0..6 (and
59 through 63 om the ///) or any other intrinsic unit
which may be used in the same program as the unit being
wricten. In particular, the "magic units" PASCALIO and
LONGINTIO occupy segments numbers 30 and 31.

Page &

" ~Intrinsic-unit segment numbers must also avoid conflic:
with numbers which may be assigned automatically to
regular units and segment procedures. However, when
‘unavoidable conflicts arise, the "Next Segment'" compiler
option described in the "Apple Pascal Language Manual
Addendum'" may be used to set the segment number to another
value.}

MTYPE: 0..15;

{The second byte in the SEGINFO word has in bits 8
through 11 the "machine type" which tells what kind of
code is present in the code segment. The machine types

are:
0 Unidentified code. Perhaps from a previous
compiler.
1 P-code, most significant byte first.
2 P-code,.leas: significant byte firstc. A

stream of packed ASCII characters £ills the low
byte of a word first, then the high byte. This is
the kind of P-code used by Apple.

3 through 9 Assembled machine code, produced from
assembly-language text. Machine type 7 identifies
machine code for Apple’s 6502.}

UNUSED: O0O..l;

VERSION: O0..7

{The version number of the system. On the Apple][the
current version number is 2; on the Apple /// the current
version number is 3.}

END;

INTRINS-SEGS: {ON TEE][} SET OF 0..31;

{ON TEE ///} SET OF 0..63;

{These words (two on the][, four om the ///) tell the system which
intrinsic units are naeded in order to execute the codefile. Each
intrinsic unit in SYSTEM.LIBRARY (and in the program library on the
Apple ///) is identified by a segment number (or two segment numbers
if the intrinsic unit has a data segment.) Each of the bits in these
words correspond to one of the thirty-two or sixcy-four possible
intrinsic segment dumbers. If the n-th bit is set to l, this
indicates thie program needs the intrinsic¢ unit whose segz=eat number
in SYSTEM.LIBRARY (or im the program library om the Apple ///) is n.}

INT-NAM=-CHECXSUM: ({Ounly om the ///}

. PACRED ARRAY(0..63) OF 0..255;

Page 5

{These fields contain eight-bit checksﬁms of the names of intrinsic
units needed to run the codefile. Each entry corresponds to one of
the sixty~four possible intrinsic segment numbers on the ///.

The checksum is calculated by shifting the characters of the UNIT
name to upper case and adding up the rasulting ASCII values of the
characters of the UNIT name MOD 256. The name is- padded with spaces
on the right if it is shorter than aeight characters; it is truncatad
to eight characters if it is longer than eight characters. Padding
spaces are included in the checksums. Elements corresponding to
unused segment numbers are set to zero.

These words are not used on the][; thev must be zeroed.}
{UNUSED JUNK (FILLED WITE ZEROES) FOLLOWED BY}

COMMENT: PACKED ARRAY (0..79] OF CHAR
{the text foallowing a Comment compiler option, starting in byte 432 of
the header}

END;

TEE INTERFACE PARTI

Code segments for units may have an INTERFACE part bafore their associated code
blocks. This contains the ASCII text of the INTERFACE declaration in the
source code of the UNIT. The coamstruction of an INTERFACE part of a code
segment from its source code is shown in Figure 2.

The Pascal compiler emits two block pages (1024 bytes) of text which are
identical to the source text blocks excapt-for the first and last pages. The
information in the first page is moved up so the first character in the page is
the character following "INTERFACE" in the originmal source. This may leave a
considerable amount of unused characters in the first page. Useful information
is terminated by a CR and followed by at least one ASCII NULL character (byrte
value Q). The last page is truncated after the token "IMPLEMENTATION"; it is
possible that only onme block of this page may be put cut if "IMPLEMENTATION"
oczurs in the first block of the page.

There is some special encoding after the token "IMPLEMENTATION." The
immediately following tem characters are composed of ASCII spaces except for an
“"E" in the ninth position. This is required by the Pascal compiler and
librarian program to terminace the interface section. A "P" may occur instead
of a space in the second of the ten character positioms to signify to the
Pascal compiler that the unit requires the PASCALIO unit. The fourth position
may be cccupied by an "L" if the unit requires the LONGINTIO unitc. Failure to
include these can cause the system units not to be loaded when needed causing a
system crash. Note that these {tems—IMPLEMENTATION, E, P, and L——are all
taken to be tokens by the compiler; thus, the order is significant, the spacing
and case is noc.

The INTERFACE ctext is not stripped of excess non-printing characters or

Page 6

‘comments and ‘is' accessed by the compiler when the UNIT is USEd by another
program. Leaving the comments in the INTERFACEZ part could lead to more

complete internal program documentation but may increase size of codefile.
‘This text Is not necessary for execution.

The address of the INTERFACE part is given as a block qumber relative fo the
start of the code file in the TEXTADDR field described below. This field is
zero for segments which are mot UNIT code segments or do not have an interace
text.

CODE PARTS

As has been mentioned, all non-data segments appear on the diskette as the text
of an interface part (if the segment is a regular or intrinsic unit) followed
"by code blocks followed by linker informaticn (if the segment has undefined
elements or has elements which may be linked to other modules.) Data segments
for intrinsiec units do not occupy any disk blocks. ’

- All code parts have the same general format illustrated in Figure 3. Each code

- part centains code for that segment’s outer block, as well as the code for each
of the (non~segment) procedures within that segment. Following code for
various procedures associated with the segment is the procedure dictiomary at:
the high address iddicated by cthe CODELENG field of the assoclated entry in the
segment dictionary in bdlock O of the codefile. This procedure dictionary grows
down; the code starts at the first byte of the block <pecified in the CODEADDR
field of the segment dictionary and grows up.-

Each procedure in a code part is assigned a procedure number starting at ! for
the outer block (the main program or sagment procedure) and ranging as high as
160. All references to a procedure are made via its number. Translation from-
a procedure’s oumber to the location of that procedure’s code in. the code
segment 1s accomplished via the procedure dictionary at the end of the segment. .
This diecticnary is an array indexed by the procedure number. Each array entry
is a self-relactive pointer to the code for the corresponding procedure. [Since
the procedure dictionary starts at the high end ‘of a code segment and works
down toward lower addresses, the term "self relative pointer" could be
ambiguocus: it could be positive or negative depending on interpretation!. In
all chat follows, a self ralative pointer is taken to :be the absolute distance
(in bytes, a positive integer number) between the low order byte of the pointer
and.the low order byte of the word to which it points.] In other words, you
subtract the pointer from its locaticn to find the word pointed to.

Since zero is not a valid procedure mmber, the zero-th entry of the dictiomary

is used to store the segment number of the code segment in the low order
(even) byte and the number of procedures in that code segment in the high order
(odd) byte. The segment number corresponds to the value in the SEGNUM field of

the segment dicticmary entry.

There are currently two forms of code contained in procedures: P-code and
assembly language (or TLA for "The Last Assembler", the familiar name of the
assembler. currently in use in the Apple Pascal system). Each procedure’s code

~

Page 7

section.consists of .Lwo-parts: .-the.procedure code itself (in the-lower -porzion
of cthe section growing up toward higher addresses) and a table of attributes of
the procedure pointed to by the entry in the procedure dictionary. This table
of attributes is loosely known as the Jump Table (JTAB), a term more properly
used to refer only to a portion of the table in P-code procedures. The forzar
of the attribute table for a TLA procedure is very different from that for a
P-code procedure. These formats are described in the following two sections.

While the compiler and the assembler produce "pure'" P-code or TLA code
sections, it is possible to produce segments with mixed procedure code type
using the Linker. 1In this case the MIYPE £ield in the segment dictiomary is
set to the value for assembly language code, because the code for that segment
is now machine specific. The interpreter is able to determine the type of code
of a particular procedure via informatiom contained in the procedure’s
actribute table as is discussed below.

P-CODE PROCEDURE ATTRIBUTE TABLES

The format of a P-code attribute table is i{llustrated in Figure 4. The
contents of the P-code attribute table are:

PROCEDURE NUMBER: Low order, even byte of the word pointed to by the

segment dictiomary entry. Refers to the number given this procedure in the
procedure dictiomary of the parent code segment.

LEX LEVEL: High order, odd byte of the same word. Specifies the absolute
lexical nesting level for the procedure.

ENTER IC: A self-relative poincer (again, a positive number, pointing back)
to the first p—code instruction to be executed for the procedure.

EXIT IC: A self-relative pointer to the beginning of the block of p-code
instructions which mist be executed to terminace the procedure properly.

PARAMETER SIZE: The number of wdrds of paramecers passed to.a procedure
from its caller.

DATA SIZE: The size of the procedure’s activation record in bytes,

exéluding the Markstack and PARAMETER SIZE. The activation record includes
variables and temporary space used by the procedure.

Between these attributes and the procedure code there may be an optiomal
section called the "jump table™. Its entries are addresses within the

procedure code (as self-ralative pointers). During execution, the JTAB svstem
register points to the attributes and jump table section of the currencly
executing procedure (points to the byte containing the procedure number).

In executing jumps in P-code, a jump opcode has a single byte operand. This is

a signed offset: the high order byte is taken to be the sign extension of bit
7. 1If the offset is non-negative (a short forward jump), it is added to the

Page 8

interprecer program countar, IPC. (A value of zero for. the jump.offsat .makes

" any jump a two-byte NOP.) If it is negative (a backward or long forward jump),
then the operand DIV 2 is used as a word offset into JTAB to find a

- self-relative pointer, and the instruction program counter is then set to the byte
address (JTAB"(operand DIV 2]) =- contents of (JTAB(operand DIV 2]).’

ASSEMBLY LANGUAGE (TLA) PROCEDURE ATTRIBUTE TABLES

The format of a JTAB for an assembly procedure is very different from that for
a P-code procedure. It is illustrated in Figure 3.

The highest word in the JTAB in an assembly procedure always has a zero in its
PROCEDURE NUMBER field. In what was the LEX LEVEL field of a P-code procadure
JTAB (the high order byte) is either a zero (indicating that BASE RELATIVE
relocation is to be relative to the host program activation record) or a
non=-zero unumber (indicating the number of the segment relative to which BASE
RELATIVE relocacion should take place.) In the case of INTRINSIC unics withous

explicitly specified data segments, the number placed in this field is 1. When
the interpreter encounters a zero in the procedure number £ield as it loads the

‘segmen:, it realizes it must fix up raferences in the TLA code according to
information contained in the rest of the attribute table.

The second highest word of the attribute table is, as before, the ENTER

IC: the self-relative pointer to the first instruction to be executed for this
procedure. Following this are fbur relocation tablec used by the interpreter
at fix-up tinme.

Working down from the high address start of the JTAB we encounter in order the
BASE RELATIVE, SEGMENT RELATIVE; SELF RELATIVE, and INTERPRETER RELATIVE
relocation tables. The format of all of these tables is the same: the highest
address word of each table specifies the number of entries (possibly zero)

which follow (at lower diskette addresses) in the table. Then follows that

many single-word entries, which are self relative pointers to locations in the .
code which must be "fixed up" by the addition of the appropriate relative
relocation conmstant known to the interprater at load time.

In the case of the BASE RELATIVE relcocation table, the value contained in the
inocerprecer’s BASE pseudo=-register is added if the LEX LEVEL (high order) byte
‘of the procedure’s attribute table is zero; if the byte is nomn-zero, the
relocations will be relative to the segment whose segment number is contained
in the field. ' The BASE register is a pointer to. the activation recerd of the
most recently invoked base procedure (laxical level 0). Global (lex level Q)
variables. are accessed by indexing off BASE. The TLA .PUBLIC and .PRIVATE
constructs define those entities whose use results in entries into .this table.

In the case of the SEGMENT RELATIVE table, the value of the address of the
lowest byte in the segment is added. The TLA .REF and .DEF are che relevant
construccs.

SELF RELATIVE items have the procedure address (i.e., the address of the lowest
byte in the procedure) added.

Page §

INTERPRETER RELATIVE items -access the Pascal interpreter procedures or
variables. They should never be used.

LINKER INFORMATION

following the code part of a segment there may be Linker information. The
starting location of linker informaticn is not included in the segment
dictionary as was the case with the starting location of the interface and code
parts. It must be inferred. Linker information items may be present for
unlinked code segments (i.e., a segment containing unresolved external
references) as well as for segments coantaining items which zmay be referenced
from other segments (e.g., .PROC and .FUNC elements in assembly language
programs which may be accessed as EXTERNAL PROCEDURES and FUNCTIONS.) The
Linker information begins at the first block boundary following the last block
of code for a segment. It is described in decail below. The linker
information 1s a series of racords, one for each unit, reutine or variable
which is raferenced but not defined in the sourca as well as records for items
defined to be accessible from other modules. There are records for the
following types of items:

litypes =

{0} (EOFMARK, ({end=of link-information marker}

{External reference types: designaces fields to be updated by the
linker}

{1} UNITREF, {references to invisibly used units— i.e., a reference iz
one unit to amother unit. Used in the case of ome noa—-iptrinsic
unit using another nom=intrinsic unic.}

{2} GLOBREF, {references to extermal global addresses: =zesults from a
+REF construct in an assembly language program.)

{3} PUBLRET, {references to a variable in the global data segment of the host
program: results from a .PUBLIC in assembly language code or use
of variables declared in the INTERFACE part of regular umits. (They
ares storad In another segment in intrinsic units— the-data segment
of the unit.) '

{4} PRIVREF, {references to variables.of an assembly language routine or
regular unit to be stored in the host program’s global data segment
and yver be Inaccessible to the host program. Space is allocated by
the Linker. Generated by .PRIVATE in assembly language. 4Also,
generated by use of global variables declared in the IMPLEMENTATION
part of regular unics. (In intrinsic units, these are alsc stored
in the data segment of the unit.).

{5} CONSTREF, {references to a globally declared comstant in the host
progran. Generated by .CONST in assecdly language.

Page 10

“{defining types: vgi&es linker values to fix references}

{6}

(1o}

{11}
{12}

{13}

{la}

GLOBDEF, ({Global address locationm. Generated by .DEF (and .PROC and
.FUNC) in assembly language} :

PUBLDEF, (A variable locatiocn in the host program. Generated by VAR
declaration in Pascal}

(B Sana)

CONSTDEF, {A host program constant definition. Generatad by CONSTANT
in Pascal.}

{procedure/function information:
Assembler to Pascal and Pascal to Pascal interfaces}

AXTPROC, References to procedure declared to be exrernal in
Pasecal: generated by PROCEDURE...EXTERNAL}

EXTFUNC, { References to function declared to be externmal in
Pascal: generated by FUNCTION...EXTERNAL}

SEPPROC, {Sepa}a:e Procedure definition to be linked into Pascal:
generated by .PROC in assembly language.}

SEPFUNC, {Separate Function definition to be linked into Pascal:
‘generated by .FUNC in assembly language.}

SEPPREF, {Not currently used. Was once used for refarences to
procedures in a "separate unit", a concept which has been removed
from the current implementation.}-

SEPFREF, {Not currentcly used. Was once used for references to

functions in a "separate unit", a comncept wnich has been removed
from the current implemencacion.}

~ The exact format of data in the linker informatiom block is dependent on the
type of entity. They are described by the following record.

OPFORMAT = (WORD,BYTE,BIG);
LIENTRY = RECORD

NAME: PACEED ARRAY{0..7] OF CHAR; { The name of the symbol. }
CASE LITYPE: LITYPES OF

GLOBRET,
PUBLREF,
PRIVREF,

CONSTREF,
UNITREF,

SEPPREF, (Not currently used}
SEPFREF: (Not currently used}

(FORMAT: OPFORMAT; {The format of the operand represented by

Page 1l

the named (and currently undefined). symbol. May.be 3IG, BYTZ
or WORD. (See page 229 of the 'Pascal Operating System
Manual".)}

NREFS: INTEGER; {The number of references to this symbol in the
compiled code segment. There will be this number of pointars
after this record into the code segment. These specify :the
addresses of references to the symbol.}

NWORDS: LCRANGE; {whera LCRANGE is l..MAXLC, currencly MaAXINT.
This field is meaningful only in the case of a PRIVREF cype
in which case it is the size of the privates in words.)

GLOBDEF:

(HOMEPROC: PROCRANGE; {which procedure the global definition
appears in.}

ICOFFSET: ICRANGE); {The byte offset of the occurence in
assembly language. IC stands for instruction count.}

PUBLDEF:

(BASEOFFSET: LCRANGE); {compiler assigned word offset into host
program data Segment.)}

CONSTDEF:
(CONSTVAL: INTEGER); {User’s defined value}
EXTPROC, EXTFUNC, SEPPROC, SEPFUNC:

(SRCPROC: PROCRANGE; (PROCRANGE = l..MAXPROC. MAXPROC is
currently [160. This field is the procadure number of this
procedure definition in its source segment.}

NPARAMS: INTEGER); {Number of parameters expected (really
number of words of parameters expected).}

- EOFMARK:

(NEXTRASELC: LCRANGE; ({Private variable allocation

informacion=~ amount of space the host used in its data area.
Meaningful only for host segments.} N

PRIVDATASEG: SEGNUMBER); {Data segment number associated with
intrinsic unit code segment. Otherwise not used.}

If the LITYPE is one of the first case variants, then following this portion of
the record is a list of pointers inte the code segment. Each of these pointers
is the absolute bvte address within the code segment of the reference to the
variable, UNIT or routine named in the LIENTRY. This pointer list is contained
in eight-word records, but only the first ((NREF-1) MOD 8)+! words of the las:
record are valid.

Page 12

APPENDIX: SUMMARY OF IMPORTANT RECORD DEFINITIONS

I. SEGMENWT DICTIONARY: BLOCK ZERO OF A CODEFILE
RECORD

DISKINFO: ARRAY([0..15] OF
REZCORD
CODELENG, CODEADDR: INTEGER
END; .

SEGNAME: ARRAY(O..l5] OF PACKED 4RRAY(0..7] OF CHAR;

SEGKIND: ARRAY [0..l5] OF
(LINKED,
HOSTSEG,
SEGPROC,
UNITSEG,
SEPRTSEG,
UNLINKED~INTRINS,
LINKED=INTRINS,
DATASEG);

TEXTADDR: ARRAY(O0..l15] OF INTEGER;

SEGINFO: PACRED ARRAY[O.;lS] OF
PACRED RECORD

SEGNUM: 0..255
MTIPE: 0..15;
UNUSED: 0..l3;

VERSION: Q..7
END;

INTRINS-SEGS: {ON THE][} SET OQF 0..31;
{ON TEE ///} SET OF 0..63;

INT=-NAM~CHECRSUM: {Only on the ///}
PACXKED ARRAY{0..63] OF 0..255;

{These words are not used on the]J[; they must be zeroced.}
{UNUSED JUNK (FILLED WITE ZEROES) FOLLOWED BY}

COMMENT: PACKED ARRAY (0..79] OF CHAR
{the text following a Comment ccmpiler option, starcing in byte 432 of

the header}

END;

Page 13

II. LINKER INFORMATION

The linker information is a series of records, one for each unit,

routine or variable which is referenced but not defined in the source as well
as records for items defined to be accessible from other modules. There are
records for the following types of items:

litypes =

(EOFMARK, ({end-of link=information marker)}

UNITREF, {references to invisibly used umits.}

GLOBREF, {references to external global addresses.}

PUBLREF, {references to a variable in the global data sagment of the
host program.}

PRIVREF, ({references to variables of an assembly language routine Zo
be stored in the host program’s global data segment and vet be
inaccessible to the host program.}

CONSTREF, {references to a globally declared constant in the host
program.} .

GLOBDEF, ({Global address location.}

PUBLDEF, {A variable location in the host program.}

CONSTDEF, {A host program constant definitionm.}

EXTPROC, { References to procedurs declared to be extermal in
Pascal.}

EXTFUNC, { References to function declared to be exrtermnal in
Pascal.}

SEPPROC, {Separate Procgdure definition to be linked into Pascal.}

SEPFUNC, {Separate Function definition to b linked into Pascal.}

SEPPREF, {Not currently used.}

SEPFREF); (Not currently used.}

The exact format of data in the linker informacion block is dependent on the
type of entity. They are described by the following record.

LIENTRY = RECORD
NAME: PACKED ARRAY(0..7] OF CHAR; { The pame of the symbol. }
CASE LITYPE: LITYPES OF

GLOBREF,
PUBLREF,
PRIVREF,
CONSTREF,
UNITREF,

SEPPREF, {Not currently used}
SEPFREF: {Not currently used}

(FORMAT: OPFORMAT; {The format of the operand represented by
the named (and currently undefined) syabol. Mav be 3IG, BYTE
or WORD.)}

.

NREFS: INTEGER; {The number of references t¢ this svmbol in the

Page 14

..cohpiled code segment. .There will be this number of.pointars

after this record into the code segment. These specify the
addresses of references to the symbol.}

NWORDS: LCRANGE; {where LCRANGE is l..MAXLC, currently MAX INT.
This field is mwmeaningful only in the case of a PRIVREF type
in which case it is the size of the privates in words.}

GLOBDET:

(HOMEPROC: PROCRANGE; {which procedure the global definition
appears in.}

ICOFFSET: ICRANGE); (The byte offset of the occurence in
assembly language. IC stands for instruction count.)

PUBLDET:

(BASEOFFSET: LCRANGE); {compiler assigned word offset into host
program data segment.}

CONSTDEF:
(CONSTVAL: INTEGER); (User’s definmed value}
EXTPROC, EXTFUNC, SEPPROC {not usad}, SEPFUNC {not used}:

(SRCPROC: PROCRANGE; {(PROCRANGE = l..M2XPROC. MAXPROC is
currently 160. .This field is cthe procedure number of this
procedure definition in its source segment.)

NPARAMS: INTEGER); {Number of parameters expected (really
number of words of parameters expected).}

EQFMARK:

(NEXTBASELC: LCRANGE; ({Private variable allocation
information— amount of space the host used in its data area.
Meaningful only for host segments.}

PRIVDATASEG: SEGNUMBER); {Data segment number associated with
intrinsic unit code segment. Otherwise not used.}

Page 15

First Code

FIGURE 0Q:

e

TAE CODEFILE

ON DISKETTE:

A TYPICAL CODEFILE

Second Code

n+1
(see Figure 1) |[byte 0
Block O N Segment
(256 words) | Dictiomary
byte 510
n+1
f
Block 1 Interface
Part
Block 2
Block 3
Block 4 Code Part
Segmen
~Bloeck 35
Block 6
Block 7
Block 8 Linker
Information
Block 9
_
Code Parc
Block 10
Segment _—— -
Block 11 Linker
| Information

Only Unit code segments have the
Interface Parc.

Interface, Code, and Linker \
parts start on block boundaries.

| CcopELENG (0) "1
DISK INFO . {
CODEADDR (13) : 30
A CODELENG (15 31
[s () i cam (0) 12
33
SEGNAME; . -
Name i1s truncated 34
if greater tham 8 CHAR (7) 35
characters; padded 4
with spaces if less 92
than 8 charactars
93
94
. 95
C 193 192
SEG KIND 3 |__SEGRDMD (0) | 96
SECKIND (15) 111
225 224
TEXTADDR: |__TExTapnR (0) | 112
Block Address of .
interface part L TEXTADDR

text for units.

(1) | 127

TP

ooy b b e
SEGNTM 4} 128

SEGNAE (0)

A -

-

- ——-—SEGNAME (13)

LV | |
ON_TIT g oN__/// .

15' I R rfo« iro 144 lsx Pl U bbb ']0 144

S=SEGS | 44 : 16{145 31 16(145
§ 47 32{146

Y/ /LA 1ee o1 sal147

: |
CERSTM (1) CERSTM (0) 148
: INT~NAM~CEXRS?

teeccsecternceos

T

[T (63 e (6D | | 179

VL

V7777 7777777777777

CHAR (O)J.‘le

COMMENT: | CEAR (1)
80 characters from
comment compiler [CEAR (79)

CHAR (78) |253

‘option

180 j
UNUSZD
215

Page n
{2 blocks)

Page n +1

Page n + 2

'Valid data in each block of a text file end with an ASCII 13,ASCII null

| Tocerface
const

procedure B;

Block 2

Block 2 1

Block 2(n + 1)

Standard textfile page
format (stored in TEXTADDR

ictionary)

ﬁiﬂ?a A€ QEMTAT R

const

procadure A:

garbage

Interface ?ar
of Codefile

.élock bl

Block m + 1

procedure 3B;

SOURCE TEXT

character sequence.

Block 2(n + 2)+ 1

: Block 2(n + 1)+1 X
" copied intdet
. Block 2(n + 2) e ™
I&Elemiagiii: - " | lmplementation
. L (unit info)

Standard textfile format

except unused bl
omitted.
(umit info P,L,

ock mav be

and E

characters referred to in

the text.) ‘

INTERTACE .SECTION

OF CQDEFILE

LOW AD? A

l
I
l
I

OPTIONAL
JUMP TABLE

DATA SIZE IN BYTES

PARAMETER SIZZ IN BYTZS

EIT IC

ENTER IC

LEX LEVEL| PROC #

o+ 1

'HIGE ADDRESSES

!
m’ ’
n

Self relazive
pointers co cocec

FIGURE 5: TLA ASSDMEBLY LANGUAGE PROCZIDURE ATTRIZUTZ TABLZ

INTERPRETER
RELATIVE
RELOCATION TABLZ

SELF-RELATIVE
RELOCTION
TABLE

SZGMENT
RELATIVE
ELOCATION TABLE

BAST RELATIVE
RELOCATION
TABLE

LOW

DD

N

N

N

HIGH ADDRESSZS

TSgTS
: Q WORDS
- o SELF-RELATIVE
. POINTZRS
¢ : -
ENTRIZS = (0)
: | » womDs
: SELF-RELATIVE]
: POINTERS
ENTRIES = (B)
: | M womDs
: SELF-RELATIVE
: PTRS.
ENTRIZS = (M) n
: N WORDS
f ;g;;-RELA 9 To start of
:) procedure code
ENTRIES = (N)
ENTZR IC -—J!——
RELOC.SEG.NO.| PROC. NUM.
0): 8] a 0
n-+1 n

2LULA JLafl (LoTmTarneg in

Codeaddér Fialsd
of Segment
OTHER Dicciomary)
PROCEDURES
CODE
1!'1'L"'¥"Yn
JTAB 4
ATTRIBUTE TABLE
PYOCTIITRE 4N N
OTEER PROCEDURES
o) Because of nesting, procedures
ggggg:nc | ‘need not be in aav obvious
ordar on the diskette.
.vbe several
.ocks long) CODE
ideleng stored
. segment dictionaryg v
JTAB A
ATTRIBUTE TABLE
PROCEDURE #1 <+
— A
PTR_TO PROC #N s (
- : Procedure
PTR TO PROC 41 ~—— Dictionary
Number of Segment ‘
v‘. Denmadirae Ny ren by . - v
] o+l Byte n | Need not end on block
} ; boundary
| :
| .
|
! x
]
HIGH ADDRESSES Followed bv linker informazion

or by next segment, if anv.

APPLE COMPUTER, INC.
20525 Mariani Avenue
Cupertino, CA 95014

PASCAL TECHNICAL NOTE #20
APPLE II PASCAL 1.2
VOLUME MANAGER UNIT TECHNICAL SPECIFICATION
(January 1984)

For further information contact:

PCS Developer Technical Support
M/S 22=W, Phone (408) 996=1010

Disclaimer of All Warranties and Liabilities

Apple Computer, Inc., @akes no warranties, efither express or implied, with
respect to this documentation or with respect to the software described in
this documentation, {ts quality, performance, merchantability, or fitness for

any particular purpose. Apple Computer, Inc. software is sold or licensed
"as 1s"., The entire risk as to its quality and performance 1is with the

vendor. Should the programs prove defective folowing their purchase, the
vendor (and not Apple Computer, Inc., i1its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or correction and
any incidental or consequential damages. In no event will Apple Computer,
Inc. be liable for direct, indirect, incidental, or consequential damages
resulting from any defect in the software, even if Apple Computer, Inc. has
been advised of the possibility of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This document
may not, in whole or part, be copled, photocopied, reproduced, translated or
reduced to any electronic medium or machine readable form without prior
consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue

Cupertino, CA 95014
(408) 996=1010

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

VOLUME MANAGER TECHNICAL SPECIFICATION

INTRODUCTION

Apple // Pascal release l.2 only supports the UCSD file format, With the
Introduction of the Profile for use with the Apple //, the ProDOS operating
system has been chosen as the operating system for the support of large mass
storage devices. Clearly, the UCSD file format and thus the use of Pascal
with a Profile i{s severely limited (i.e. non=existent) unless there is some
means for Pascal to share the resources of the Profile with ProDOS.

The Pascal Profile Manager 13 a collective term for a set of programs
that allow Pascal to share the Profile with ProDOS. These programs supply
both user and programatic means to allocate and deallocate Pascal space on the
Profile and to assign UCSD file format volumes (known as pseudo-volumes) to
the Pascal area of the disk. These pseudo-volumes act analogously to the
standard UCSD volumes that currently are found on floppiles.

The Volume Manager Unit is a programatic means by which an application
program can take advantage of the Profile for the storing of both data and
code files. Use of the Volume Manager Unit assumes that the end-user has the
PPM program and has already created a Pascal Area on his/her Profile. This
unit allows a program to create and manage pseudo-volumes on a Profile. Its
functions are: '

a. Create a Pascal pseudo—-volume,

b. Delete a Pascal pseudo=-volume.

¢. Assign a pseudo-volume for use.

d. Release a psedo-volume from use.

e, Set or clear writae-protection for a pseudo=volume.

f. "Rrunch" the Pascal region of the Profile to give
space back to ProDOS. ' '

g. Modify the name and/or description field of a pseudo-
volume

h. Select the Profile drive to act upon

i. Get the current contents of the Pascal area volume
directory

j+ Get the current contents of the Profile driver
status record

k. Volume Display and Error Reporting

PASCAL USAGE OF THE PROFILE
1. The Pascal Area

The Pascal area of the disk 1s a contiguous set of blocks that occupies
the highest end of the disk, i.e. highest block number down to that block
whose number 1is equal to highest block number minus the total number of blocks
that that the Pascal region occupiles. This area is not static but expands and
contracts as pseudo-volumes are created or deleted and the region is krunched.
To insure that Pascal can freely expand, it 1s a “requirement" that the blocks
just below the Pascal region be available and that they be contiguous.
Currently a problem may arise if ProDOS has fragmented the disk such that

COPYRIGHT 1984 APPLE COMPUTER, INC Page 2

-- VOLUME MANAGER TECHNICAL SPECIFICATION

there may be enough logical space for Pascal but not enough contiguous
physical space.

The Pascal area is divided into two areas. The first is the Pascal
volume directory that specifies the currently allocated Pascal pseudo—volumes
in the Pascal area. The second i3 the pseudo=volumes themselves, each of
which having its own volume directory (UCSD format) and its accompanying
files,

2. Modifications to the Prodos Directory

The PPM accesses the ProDOS volume directory when it initializes the
Profile for use by Pascal. It makes two changes to the directory contents.

The first change 1s a file entry that specifies the Pagcal area on the
disk. This file entry 1s placed in the first available entry slot in the
ProDOS volume directory. An error will occur if there is no available slot to
put this entry.

Once this slot has been made available, PPM will initialize it with a
file entry with the following contents:

Stype = 4 this is a ProDOS foreign file structure

name length = 10

file name = 'PASCAL.AREA'

filq_type = OEFH this 1s a special type tu denote the Pascal area

key_pointer = first block used (in this case the second to the
last block on the disk)

blocks_used = 2

header_pointer = 2

access = 0 (backup bit is not set)

All other fields are set to Q. PPM will look for this entry (primarily
the name 'PASCAL.AREA') in the ProDOS directory to determine if the disk has
been initialized for Pascal use.

The file entry for the Pascal area increments the number of files in the
ProDOS directory and the key pointer for this file now points to TOTAL BLOCKS
- 2. Thus the Pascal area occupies the last two blocks available on the
Profile. Blocks used in the file entry is set to 2. When the Pascal area

expands or contracts, the key pointer and blocks_used values are updated °
accordingly. With any access to this file entry (i.e. if the Pascal area is
expanded or contracted by adding or deleting pseudo=volumes) the backup bit
will not be set. However, a ProDOS based Backup program can explicitly backup
the Pascal area as a whole., At any time-that it cannot expand due to ProDOS
using the required blocks, an error is reported. Becauge ProDOS can fragment
its area on the Profile, {t is quite possible for Pascal to be unable to
expand, though there is logically enough room on the disk to do so.

Currently, the only means to correct this' is to have the user do the
following:

a. backup the Pascal region

b. backup the ProDOS region
¢. reformat the disk

COPYRIGHT 1984 APPLE COMPUTER, INC Page 3

VOLUME MANAGER TECHNICAL SPECIFICATION

d. restore the ProDOS region
e, restore the Pascal region
f. get back to real work

3. Volume Directory Format

The Pascal volume directory contains two separate but contiguous data
structures that specify the contents of the Pascal area on the Profile.
The volume directory occuples 2 blocks to support 31 pseudo=volumes. It is
found.at the physical block specified in the ProDOS volume directory as the
value of KEY POINTER, i.e. it occupiles the first block in the area pointed to
by this value. To access the Pascal area volume directory requires reading
the ProDOS volume header via a UNITREAD of block 2, getting the value of
KEY_POINTER and using this in a UNITREAD of block number KEY_POINTER. The
volume manager maintains a 1K buffer to read in this directory. It is
important to define the directory data structures in the volume manager as
contiguous to insure that the.-data read in is interpreted correctly.

The first portion of the volume directory is the actual directory for the
pseudo—~volumes. It is an array with the following declaration:

TYPE RTYPE = (HEADER, REGULAR)

VAR VDIR: ARRAY [0..31] OF
PACKED RECORD
CASE RTYPE OF
HEADER: (PSEUDO_DEVICE_ LENGTH:INTEGER;
CUR NUM VOLS: INTEGER'
PPM NAME: STRING(3]);
REGULAR: (START:INTEGER;
LENGTH: INTEGER;
DEFAULT_UNIT:0.255;
FILLER:0..127;
WP:BOOLEAN;
OLDDRIVERADDR: INTEGER
END;

The HEADER specifies information about the Pascal area. It specifies the
size in blocks in PSEUDO_DEVICE_LENGTH,- the number of currently allocated
pseudo-volumes in CUR_] NUM | VOLs, Tand a special validity check value in
PPM NAME, which is a Tthree character string: containing the value 'PPM', The
header informacion is accessed via a reference to VDIR(O]. The REGULAR entry
specifies information for each pseudo-volume. START 1is the starting block
address for the pseudo~ volume and LENGTH is the length- of the pseudo-volume
in blocks. DEFAULT UNIT specifies the default Pascal unit number that this
pseudo-volume should be assigned to upon booting the systems This value {s
set by the volume manager either by the user or an application program and
remains valid {f it i3 not released. If the system is shut down, the pseudo-
volume will remain assigned and will be active once the system s rebooted,
WP is a Boolean that specifies {f the pseudo-volume is write- protected.
OLDDRIVERADDR holds the address of this unit's (if assigned) previous driver
address. It 1s used when normal floppy unit numbers are assigned to pseudo-
volumes so that when released the floppies can be activated again. Each

COPYRIGHT 1984 APPLE COMPUTER, INC Page 4

~VOLUME .MANAGER.TECHNICAL SPECIFICATION

REGULAR entry 1is accessed via an index (from 1 to 31). This index value is
thus associated with a pseudo-volume. All references to pseudo—~ volumes in
the volume manager are made with these indexes.

Immediately following the VDIR array is an array of description
fields for each pseudo~volume:

VDESC: ARRAY [0..31] OF STRING{15]

The description field is used to differentiate pseudo=volumes with the
same name, It {s set when the pseudo-volume i3 created. This array is
accessed with the same index as VDIR,

The volume directory does not maintain the names of the pseudo- volumes.
These are found in the directories in each pseudo=volume., When the volume
manager i{s activated, it reads each pseudo=volume directory to construct an
array of the pseudo—volume names:

VNAMES: ARRAY (0..31] OF STRING(7]

Each pseudo=volume name 1s stored here so that the volume manager can use

it in {ts display of pseudo-volumes. The name 1s set when the pseudo-volume
is created and can be changed by the Pascal filer. The names in this array are
accesged via the same index as VDIR. This array is set up when the volume
manager 1s initialized and after there is a delete of a pseudo-volume.
Creating a pseudo=volume will add to the array at the end.

4., Pascal Pseudo-Volume Format

Each Pascal Pseudo-volume i{s a standard UCSD format volume. Block O and !
of the pseudo—volume -are reserved for.bootstrap loaders (which in this case
are irrelevent!). The directory for the volume is in blocks 2 through 5 of
the pseudo=volume. When a pseudo=volume is created the directory for that
pseudo— volume is initialized with the following values:

dfirstblock = 0 first logical block of the volume

dlastblock =6 first available block after the directory

dvid = name of the volume used in create

deovblk = gize of volume specified in create

dnumfiles = 0 no files yet

dloadtime = set to current system date

dlastboor = 0

The Pascal Tech Note #4 describes the format for the UCSD directory.

Files within this subdirectory are allocated via the standard Pascal I/0
routines In a contiguous manner.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 5

VOLUME MANAGER TECHNICAL SPECIFICATION

S. Volume Name Format

A valid Pascal UCSD format volume name may be up to seven characters in
length and can include any printable ASCII character except ' ', '=m' '§',
'?7', and ','. When ever a user is prompted to enter a volume name, they may
enter it in either upper or lower case, however, all lower case letters will
be forced to upper case before this volume name 1s used. For example, 1f the
user enters 'death' as a volume name, it will be uppercased to 'DEATH'.

6. System Limitations
l. Number of Profiles Supported

The Profile driver will currently support only three
Profiles, because a Profile interface card can only be
plugged into slots 4, 5, or 7 in an Apple //.

The unit numbers used by the Pascal system to refer to
the Profiles must be in the range 128 to 143, If they are
not, the volume manager will not be able to find them and
an error (No Profiles on the system) will result.

2. Number of Pseudo=volumes per Profile Supported

The number of Pascal Pseudo-volumes supported per
Profile is limited to 31. This is due to the limitation
as to the 'size of the Pascal area Volume dicectory. The
volume directory 1s accessed by the Profile driver at
boot time in order to assign the default pseudo-volumes,
Extending the number of pseudo=volumes supported will
require that the driver be changed in order to handle
a larger volume directory. Currently the volume directory
18 256 bytaes.

3. Number of Pseudo=volumes Selected

The Profile driver will allow up to 30 pseudo=volumes
to be mounted at any one time. This limit is imposed by

the Pascal system as to its number of allowed units. It is
reflected in the driver in the data structure STATUS RECORD.

To increase this number requires “a change to the Pascal system
and to both the Profile Driver and SYSTEM.ATTACH.
4, Pasgcal Blocked Device Volumes versus User Devices

The Pascal supports the following device numbers

as "blocked devices". This implies that they may be
accessed like floppies via RESET, REWRITE, READLN,

etC.
Blocked Device Unit Numbers

4, 5, 9 - 20

The following unit numbers are for "User devices'". They

COPYRIGHT 1984 APPLE COMPUTER, INC Page 6

VOLUME MANAGER TECHNICALISPECIFICATION

can only be accessed via UNITREAD and UNITWRITE, which implies
that Pascal files are not supported for these devices.

User Device Unit Numbers
128 - 143

Thus this system will only support l4 blocked devices on-line
at any time. The other 16 volumes are only useful for programs
that do their own physical I/0 to these volumes. Any floppies
attached to the gystem will use some of the blocked devive
unit numbers which leaves fewer of these for pseudo-volumes on
the Profile., A user may assign the normal floppie device number
to pseudo-volumes, but this will effectively make these floppiles
inaccessible for use until the pseudo-volumes are released.

S. Volume Name Conflicts

This design allows a user to designate pseudo-volumes
with the same name on a single Profile. Many applications
may require pseudo=volumes that have the gsame name, {.e.
DATA. 1In order to support this requirement, we must allow
multiple pseudo-volumes with the same name, however, there
must be a way to differentiate them both for the user using

the Volume Manager Program and for an application program
assigning and releasing pseudo-volumes programmatically.

To do this,. each pseudo=volume entry in the volume directory
has an assoclated description field:which is 15 characters
in length. This is much the same as extending the volume
name by 15 characters. .

In order to have pseudo=-volumes with the -same name on
a single Proflle, they must have different description
fields., For example,

name description
DATA QUICKFILE
DATA PFSREPORT
DATA MY LIFE STORY

When a pseudo-volume.is created this field is specified.
When ever a specific pseudo-volume is to be referenced
by name, the description field contents are used to
differentiate between those with the same name. A user
will simply point to the pseudo=volume via cursor
motion, using the description field contents displayed
as a mnemonic device helping he/she to know which volume
is which. A program must pass the expected description
contents to the volume manager so it can decide which

1s which. The rules for finding pseudo-volumes are:

l. If there i{s only one pseudo-volume with the
the name requested then act on that pseudo-volume.

-

COPYRIGHT 1984 APPLE COMPUTER, INC Page

VOLUME MANAGER TECHNICAL SPECIFICATION

2. 1If there are more than one pseudo-volume with the
name requested, then match description fields,
return the one matched. If no description content
is supplied, return an error.

The volume manager will not allow a user or a program to
create pseudo=volumes which cannot be differentiated.

For new applications, it will be importamt to document
how to create and copy their floppy volumes into pseudo=volumes.
In this case, the description field will be used by users when
hand-assigning Pascal unit numbers prior to executiom of the
application. Applications that use the volume manager
unit can specify this description itself and when assigning
unit numbers it can use it to find its own pseudo-volumes.

6., Unit number Conflicts = #4 and #12

Pascal normally allocates its blocked device unit numbers
(4, 5, 9 =123 13 = 20 are new with Pascal 1.2) to floppies.
Unit #4 is normally the floppy drive used to boot. the system,
It {3 alkso by definition, the Pascal system disk which can
be referenced via '*', It i3 possible to assign this (and any
other unit number) to a pseudo=volume. If a user assigns what
is normally a floppy drive unit number to & pseudo=-volume, they
have effectively made that floppy unusable until such time as
they release the unit number.

If unit #4 is assigned to a pseudo-volums, the volume
manager will then assign unit #12 to the device that was
asgigned to unit #4. In the usual case, this will be the
original boot floppy drive.. By doing so, ‘this floppy drive
will remain accessible. If unit #4 is assigned and unit
#12 is currently not assigned, then unit #12 will be assigned
automatically to the device .that i3 normally assigned to be
unit #4. Conversely, when unit #4 is released, unit #12 which
has been re—assigned will be put back to its original (default)
device. If unit #12 i{s currently assigned (to a pseudo-volume)
1t will be released and assigned to the normal unit #4 floppy
drive. It this case when unit #4 is released, unit #12 will
be released from the floppy drive unit, BUT it will NOT be
reassigned to its previously assigned pseudo-volume.

This scheme has been adopted because unit #12 is normally
assigned to the sixth floppy drive device, which normally does
not exist. It will be common practice to assign unit #4 to
a pseudo-volume in order to use it as the system "disk" on
the Profile. Re—assignment of unit #12 when it has been
released from the normal unit #4 floppy drive will only
take place {f unit #12 was previously assigned to a device,
which implies that it has its own driver. Assignment of
unit #12 to a pseudo-volume can not be restored.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 8

VOLUME MANAGER TECHNICAL SPECIFICATION

NOTE: 1If a user assigns unit #4 to a pseudo=volume (which
causes unit #12 to be assigned to the boot floppy device) and
then assigns unit #12 to a pseudo=-volume, this action will make
the boot floppy device- inaccessible until unit #4 is released.

IMPORTANT NOTE: Assigning a pseudo-volume to unit #4 will
immnediately release the current unit #4, making it unavailable
for use. This may have serious effects. If a program is runaing
that has been invoked from unit #4 (for example, the PPM/volume
manager program) and a pseudo=volume is assigned to unit #4,
the Pascal operating system will request that the user put in
the disk that is in the normal unit #4 device when they exit
the program. This {s because the system requires the program
to be on-line to exit and because the program has been put
off-1ine by the assignment of unit #4, The only recourse is
for the user to re-boot the system. Assignment of unit #4
should be done with some thought. Also, 1f the user intends
to place his/her system volume (Pascal development system)
in a pseudo-volume and assign this pseudo-volume to unit #4,
they must insure that the files for the Pascal operating
system occupy the same logical blocks in the pseudo-volume as
they occupy on the boot diskette.

If the user assigns. a unit number that corresponds to a device

that has been configured into the system via ATTACH, that
device will become unavailable. Any product that assumes

a unit number for a device should warn the user not to assign
that unit number to a pseudo-volume when that device must be used.

7. Default Assigning of Pseudo=volumes

The volume directory maintains a mapping of -pseudo=volumes to their
currently assigned Pascal unit numbers. This assumes that a Pascal area has
been initializad, pseudo-volumes have been: created in it, and some number of
them have been assigned to unit numbers and have not been officially released,
i.e. the system has been shutdown without ever releasing these pseudo=-
volumes. Whenever the system is booted, ‘the Profile driver when activated

will read the volume directory from the Profile to determine if and what
pseudo=volumes are currently assigned. It will prompt the user

Assign volumes to their default unit number? (Y/N)
and if the user types 'Y' the driver will update its status record to
effectively assign these pseudo-volumes to their unit numbers. If the user
types 'N' they will not be assigned and will not be accessible.
8. Profile Driver Status Record

The Profile driver maintains a status record that maps Pascal pseudo-
volumes to Pascal unit numbers, When a pseudo-volume is assigned, the status

record 1is updated to reflect the assignment. The status record is an array
that 13 mapped Iinto the standard Pascal unit numbers via the mapping

COPYRIGHT 1984 APPLE COMPUTER, INC Page 9

VOLUME MANAGER TECHNICAL SPECIFICATION

PASCAL UNIT NUMBER INDEX
4 1
5 2
9 3
20 14
128 15
143 30

The format of the status record is shown below:

STATUS_RECORD = ARRAY [1..30] OF

PACKED RECORD
DRIVE: 0..7;
DFMT_DRIVE: 0..7;
FILLl: 0..255;
WRITE_PROTECT: BOOLEAN;
PRESENT: BOOLEAN;
START: INTEGER;
LGTH: INTEGER;

END;

When a pseudo=volume is assigned/released, write—protected, and at boot

time this status record is updated. Each entry in the status record
corresponds to a Pascal Unit number. The field PRESENT, if a |, connotes that
this unit number 1s assigned. The field DRIVE specifies the Profile drive on
which the pseudo-volume resides, START gives the physical block number of the
starting block of the pseudo=volume, and LGTH is the length of the pseudo-
volume in blocks. WRITE PROTECT, if a 1, implies that this pseudo-volume is
write-protected. DFMT_DRIVE 1is used to assign the last used drive when the
volume manager program/unit is restarted, When the system i3 booted the
default mount drive (DFMT DRIVE) is set to O. ILf the next drive command or
SELECT_DRIVE procedure is called, this value is changed to reflect the new
drive and stored in the Profile driver. When the volume manager is exited and
then at some point re-invoked, 1t will read this value from the driver and use
it as the current drive. ~I1f the system is shutdown, this value will revert to
0. This data structure is not intended to be accessed by any program other
than the volume manager and the Profile driver itself.

9. Use of the Profile Driver

Both the PPM and the volume manager assume that there is a Profile driver
attached and that the name of this driver is 'PROFILE'. At initialization
time for both these programs, if no Profile driver is found (identified by its
name 'PROFILE') then an error message (s issued:

ERROR: There is no Profile driver available for this Pascal systenm

and the program will, terminate.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 10

+,VOLUME MANAGER .TECHNICAL SPECIFICATION

The Profile Driver is supplied as the file ATTACH.DRIVERS and its

associated data. file is ATTACH.DATA.

unit #128.

THE VOLUME DISPLAY

This driver is configured to be

The volume display occupies the major portion of the gcreen and is used
to display the pseudo=volumes available for use on the currently selected

Profile drive.

This display has two uses:

l. Display the pseudo=volumes available

2. Serve as the means to select a pseudo=volume upon
which to apply one of the actions in the volume
manager command line.

The format for the the volume display is shown below with
example pseudo=volumes: -

Profile drive: O

WP Name

* DATA
DATA

LETTERS
PASSYS
PASDEVO
BOB

- YHVH1
AP
GL
AR
<{none>
TOOLS
TEXT

YETI
PICTURE

* 'RESUME

Description

QUICKFILE
DBMSTUFF

PASCALSYS
SOME TOOLS
OUR SAVIOR
STARK FIST
APPLEACCOUNT
APPLEACCOUNT
APPLEACCOUNT
PFSDATAVOL
MORE TOOLS
DOCUMENTS

TURTLEGRAPHICS

FUTURES

Unit
#9

#13
#a
#5

#15
16

#19

&l‘g

Name Description

ACCOUNT PFSREPORT
DATA PFSFILE

FUN SOME GAMES
MOREFUN NOT A GAME

COPYRIGHT 1984 APPLE COMPUTER, INC

Unit
#134

Page 11!

VOLUME MANAGER TECHNICAL SPECIFICATION

This format will allow up to 31 pseudo-volumes to be displayed at one
time. If there 18 less than 17 pseudo-volumes to be displayed, the right hand
column header is suppressed.

The first line shows which Profile drive is active by giving the drive
number (in this case 0). As other drives are selected, this number will
change.

The fields in the display are described below:

WP = this i3 the write-protect attribute for the pseudo-
volume. If it 1s write-—protected, a '*' will be
displayed in this columm.

NAME - this is the name of the pseudo=volume. It can be
up to 7 characters in length. Multiple pseudo-
volumes can have the same name if and only if
their description fields are differemt. It is

possibla for a pseudo-volume to not have a name,
i.e. some applications use the entire volume for

data wiping out the directory. If no name is
found the string '"<none>" 1is displayed.

DESCRIPTION = this is the description field for the pseudo-
volume that helps to both differentiate it
from others with the same name and also
serve. as a reminder to the user what the
contents of that pseudo-volume are.

UNIT - i{f the pseudo=volume is currently mounted then its
Pascal unit number will be displayed, else this
field will be blank.

SELECTING A VOLUME

When an action that affects an individual pseudo-volume {3 selected from
the prompt line, the characters '-=>' will appear next to the first pseudo-
volume displayed. By using the up or down arrow keys (as defined by the
Pascal system and machine in use) the user can move the poilnter from one
pseudo-volume to another. UP will move the cursor up on the screen and DOWN
will move it down. The pseudo=-volumes are 'numbered' from top to bottom with
the first column 'numbered' from 1 to 16 and the second column 'numbered' from
17 to 32. UP moves down the 'numbers' and DOWN moves up the numbers!! If more
than 32 pseudo-volumes are allowed in the display then multiple screen pages
are used to display the pseudo— volumes. Movement between screen pages is
done using the UP and DOWN arrow keys and a to be determined modifier key.

For a standard Apple // system, CTRL-0 i3 defined be UP and CTRL-L is
defined to be DOWN. This is the convention followed by Pascal on the Apple
//. For the //e the up—-arrow and down—arrow keys are respectively UP and
DOWN.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 12

Once the pointer has been moved to the desired pseudo=- volume, typing a

VOLUME MANAGER TECHNICAL SPECIFICATION

RIGHT ARROW will select that pseudo-volume for the action specified in
responce to the prompt line. When a pseudo— volume 1s selected, it will be

highlighted.

The volume manager may ask for further prompting/information

once RIGHT ARROW has been typed. When prompted, typing ESCAPE will cancel
both pseudo-volume salection and the action selected from the prompt line.

The right—-arrow key on both the Apple // and the //e corresponds to

RIGHT ARROW.

THE VOLUME MANAGER UNIT SPECIFICATION

l. Introduction

The Volume Manager Unit (VOLUME_MANAGER) is a programatic interface, to

allow developers to write programs that can manage Pascal pseudo=-volumes on a

Profile., It supplies the following generic capabilities through lower level

procedure calls:

ae

be

d.

e.

g

h.

1.

Create a Pascal pseudo-volume

Delete a Pascal pseudo=volume (this is not a
recommended practice for application programs
to do.)

Assign a Pascal Unit number to a pseudo-volume
to make it available for use

Release a Pascal Unit number from a pseudo-volume

Set the write—protection attribute for a pseudo-volume

Krunch the Pascal region to give space on the Profile
back to ProDOS (this is also not a recommended practice
for applications to perform. This ability will be built
in to the Delete call as well as being a stand alone
procedure.)

Modify the name and/or -description field of a pseudo~-
volume.

Select the Current Profile drive on which to perform
the above actions (an application program would not
normally have. to do this except to search for a pseudo~-
volume that it needs to assign.) .

Get the contents of the Pascal area volume directory. This
i{s for information purposes only. A program cannot change

its contents.

Get the contents of the status record in the Profile
driver. Again this is for information purposes only.

COPYRIGHT 1984 APPLE COMPUTER, INC Page

13

VOLUME MANAGER TECHNICAL SPECIFICATION
k. Utilize the volume display (section 4.4.2 and 4.4.3)
to display and select pseudo-volumes.
1. Error reporting.

The user has the option to do their own screen management for input
and/or error reporting.

An application program cannot initialize a Pascal region on a Profila,
This must be done via the Pascal Profile Manager by the end-user,
Applications that require this action will need to document this requirement
so that the user of the application can correctly set up the Profile for use.

The volume manager unit is a REGULAR unit and must be linked to a host
program.

2. Volume Manager Unit Interface

l. Constants

MAX_VOLS

This {s the maximum number of pseudo-volumes that
can be allocated in the Pascal area on a Profile. This
number 1s 31.

MAX_DRIVE

This 1s the highest drive number for use in
raferencing the Profile drives. This number {is
currently 7, but only drives 0, 1, 2 are supported.
VDIR_SIZE

This is the size of the volume directory in
blocks. For 31 pseudo-volumes {ts value is.2.

MAXDUNIT

This constant represents the highest unit number
for blocked devices which 1is 20,

2. Types
UNIT_RANGE

This is the range of unit numbers supported by
the Pascal system. The range is 0 to 255.

RTYPE
This 1s used to differentiate the two types of

record fields in the volume directory. ' The two
types are HEADER which refers to the header information

COPYRIGHT 1984 APPLE COMPUTER, INC Page 1

- VOLUME MANAGER TECHNICAL SPECIFICATION

in the volume directory and REGULAR which refers to the
entry used for each pseudo-volume in the directory.

DRIVE_RANGE

This is the range of values for drive numbers used
to reference Profile drives. The range is 0 to MAX DRIVE.

STAT_REC

This 1is the declaration for the data structure
STATUS_RECORD that is found in the Profile driver. It
maintains information about the currently assigned
Pascal unit numbers, Its format ig:

STAT_REC = ARRAY [l .. 30] oF

PACKED RECORD
DRIVE: O .. 7;
DFMT DRIVE: 0 .. 7;
FILLl: 0 .. 255;
WRITE_PROTECT: BOOLEAN;
PRESENT: BCOLEAN;
START: 'INTEGER;
LGTH: INTEGER;

END;

This structure 1s described above.

VDIR_STRUCT

This {s the format for the volume directory. Its
structure {g:

VDIR_STRUCT = ARRAY (O .. MAX_VOLS] OF
PACKED RECORD
CASE RTYPE OF
HEADER: (PSEUDO_DEVICE_ LENGTH: INTEGER;

CUR NUM VOLS: INTEGER
PPM NAME:STRING(3]);

REGULAR: (START:INTEGER;
_LENGTH: INTEGER;
DEFAULT_UNIT:UNIT_RANGE;
FILLER:0 .. 127;
WP : BOOLEAN;
OLDDRIVERADDR: INTEGER)

END;
This data structure is fully dgsctibed abave,
DESC_ARRAY

This array holds the description fields for each

pseudo=volume. It is important that any program that
gets the volume directory contents must also declare

COPYRIGHT 1984 APPLE COMPUTER, INC Page

15

VOLUME MANAGER TECHNICAL SPECIFICATION

this data structure contiguous to the volume directory
data structure. Its format is:

DESC_ARRAY: ARRAY [0 .. MAX VOLS] OF STRING(1S]
N_ARRAY

This array will hold the names of the pseudo=volumes.
It also must be declared if the application program intends
to get the volume directory contents. It does not have
to be declared in any special place however., Its format
is:

N_ARRAY: ARRAY (0 .. MAX VOLS] OF STRING(7]

STRING7

This is a string of length 7. It should be used
to declare any variable that is to hold a pseudo-
volume name.

STRING1S5

This is a string of length 15. It should be used
to declare any variable that us to hold a description
field. '

BLOCK_TYPE

This is a 512 element array of bytes that is used
to hold blocks of data read in from a disk. It is
primarily used for low-level routines and is not necessary
for application programs.

3. Variables
VALID DRIVE

This {s a set that holds the valid drive numbers
for all the available Profile drives. Its format is

VALID DRIVE: SET OF DRIVE_RANGE

This variable {s initialized when the volume manager is
activated. If a drive number is in VALID DRIVES it does
not imply that this drive has a Pascal area. 1t only
implies that this drive 1s active and that it has a
ProDOS directory. An application program should use
PASCAL_DRIVES to determine if this drive has a valid
Pascal area.

PASCAL_DRIVES

This is the set that specifies all the available

COPYRIGHT 1984 APPLE COMPUTER, INC Page 16

VOLUME MANAGER TECHNICAL SPECIFICATION

Profiles that have Pascal areas. All of the volume
manager unlt functions can only be applied to Profiles
that are specified in this set., Any application must
check the drive number against this set prior to
making any calls to the volume manager unit. Since
SELECT_DRIVE must be called prior to making any other
calls, 1t will check the drive number against this

set and return an error 1f it is not in the set. A
call to INIT VM will put together both VALID DRIVE
and PASCAL DRIVES. The format for this set is

PASCAL_DRIVES: SET OF DRIVE_RANGE
MY_UNIT

This is the unit number by which the Pascal system
refers to the Profile driver. It {3 an integer.

ERR_LINE

This variable holds the line number on which errors
are reported. Its value defaults to 3. An application
program can change this value. It is only used when
ERR_FMT (gee below) is TRUE.

DLSPLAY ERR

This boolean variable is used to control whether
or not the volume manager willl report errors to the
screen., If TRUE, then errors will be reported, else
they will not be reported.

ERR_FMT

If this boolean variable is TRUE then errors will
be reported on ERR LINE, else they will be reported on
the current line of the display.

VM_ERROR

This integer variable will contain an error code
1f an error has occurred om a call to the volume
manager, If it is 0, then no error has occurred,
VM_IO_ERROR

This integer variable will contain the value of

IORESULT after any call to the volume manager. If it
is 0 then no error has occurred.

CUR_DRIVE

This {s the current drive number for the currently

COPYRIGHT 1984 APPLE COMPUTER, INC Page

17

VOLUME MANAGER TECHNICAL SPECIFICATION

accessible Profile unto which volume manager actions
can occur.

CUR_INDEX

This is the index of the currently selected pseudo-
volume on the current drive., It is only set via the
volume selection routine SEL_VOLUME.

VDIR_BYTES

This is the size of the volume directory plus the
description array in bytes. It is used in reading
and writing the contents from and to the Profile. It
is initialized by the volume manager unit.

VDIR

This is the current copy of the volume directory
of the currently selected drive. It is initialized
by SELECT_DRIVE.
VDESC

This is the current copy of the array of descriptions
that corresponds to the pseudo-volumes of the currently
selected drive. It is initialized by SELECT_DRIVE.

VNAMES

This is the curremt array of volume names for the
pseudo-volumes of the currently selected drive. It is
initialized by SELECT_DRIVE.

STATUS_REC

This is the current copy of the status record from
the Profile driver. It is initialized by INIT WM.

4, Procedures and Functions
CREATE_VOLUME
Call format:
INDEX := CREATE_VOLUME(NAME, DESC, SIZE)
where NAME is a 7 byte string that will be
the name of the volume, DESC is a 15 byte
string that denotes the description field

(this may be null), and SIZE which i{s an
integer that denotes the number of blocks

COPYRIGHT 1984 APPLE COMPUTER, INC Page

VOLUME MANAGER TECHNICAL SPECIFICATION

this pseudo-volume is to occupy. INDEX
is a user—supplied integer to hold the index
value that is returmned. '

CREATE_VOLUME will create a pseudo=volume

on the currently selected Profile drive.

It will be assigned a name, its description
field will be specified, and it will be SIZE
blocks in length. This function will then
return an index value that must be used

in any other call to act on this pseudo=volume.
It 1s up to the calling program to save this
index value. €¢It can be found however through
a VOLUME_ INDEX call described below.) If an
error occurs, INDEX will be set to 0. Use of
this function will change the index wvalues that
correspond to the pseudo=volumes on the Profile.

Errors reported:

a. Not enough room = there is not enough room
in the Pascal region to allocate a pseudo-
volume of this size or the Pascal region
cannot expand into the ProDOS area. A
Krunch may alleviate this problem.

be Directory full = there is no more room in
the volume directory to allocate this
pseudo=volume.

c, ‘Name conflict = a pseudo=volume with this
name already exists and the description
field does mnot differentiate them. This
can be solved either by specifying the
description field or changing it.

d. Illegal volume ‘name
e. Volume size must be greater than 6 blocks.
DELETE_VOLUME
Call format:

DELETE_VOLUME (INDEX, KRUNCH _FLAG)

where INDEX {s an index into the volume
directory that specifies which volume
to act upon and KRUNCH FLAG is a Boolean.

DELETE_VOLUME will delete the pseudo-volume
specified by INDEX, which corresponds to
a pseudo-volume (either through a create or
VOLUME_INDEX call) only Lf it contains to

COPYRIGHT 1984 APPLE COMPUTER, INC Page

VOLUME MANAGER TECHNICAL SPECIFICATION

files (if so an error occurs). If KRUNCH_FLAG

is set to TRUE, the volume manager will

then krunch the Pascal region, else it will

not. This procedure follows the name matching
convention specified above. Use of this procedure
will cause a change in the indexes used to specify
pseudo-volumes. If this procedure 13 used, an
application program should update {ts own copy of
the indexes prior to making any calls that use

an index.

Errors reported:

a. No such volume = a volume with the INDEX
passed was not found.

b. Write=protect error = if the pseudo-volume
is write-protected it cannot be deleted

¢s. Volume has files cannot delate.
ASSIGN_VOLUME
Call format:
ASSIGN_VOLUME(INDEX, UNIT_NUMBER;

where INDEX is an integer and UNIT NUMBER is an integer
in the range 4, 5, 9 - 20, 128 - 143,

This procedure will égsign the Pascal unit aumber
(UNIT_NUMBER) to the pseudo-volume specified by

INDEX. The unit number must be: in the

correct range. This action will make the pseudo-volume
accessible through the normal Pascal I/0 routines.

If this unit number 1s already assigned, the current
devive (or volume) will be released from this

unit number and.the new one will be assigned.

Errors reported:

a. No such volume:~ a volume with the index
passed was not found.

b. Illegal Unit Number - the unit number
passed to thils procedure was out of
range.

c. Cannot assgsign Profile driver unit aumber.

RELEASE VOLUME

Call format:

COPYRIGHT 1984 APPLE COMPUTER, INC Page 20

VOLUME MANAGER TECHNICAL SPECIFICATION

RELEASE_VOLUME (UNIT_NUMBER)

where UNIT NUMBER is an integer in the range
4, 5, 9 - 20, 128 - 143,

This procedure will release the pseudo-volume
assigned to the Pascal unit number (UNIT_ NUMBER).
Doing so will make this pseudo=volume inaccessible
to Pascal I/0 calls.

Errors reported:

"a. Not assigned = this unit is currently not
assigned.

b. Illegal Unit Number = the unit number passed
i3 not in the legal range.

WP_VOLUME
Call formac:
WP_VOLUME (INDEX, WR_FLAG)

where INDEX is an integer and WP_FLAG {s a
Boolean.

WB_VDLUEE will set or unset the write-protect
attribute of the volume specified by INDEX.

If WP_FLAG {s TRUE then it will be write=protected
else it will be unwrite-protected.

Errors reported:

a. No such volume - there is no volume specified
by this index

KRUNCH_AREA
Call format:
KRUNCH_AREA

This procedure will krunch the Pascal region of
the currently active Profile.

SELECT_DRIVE
Call format:
SELECT_DRIVE(DRIVE_NUMBER)
where DRIVE NUMBER is an integer in the range

0 to 7.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 21

VOLUME MANAGER TECHNICAL SPECIFICATION

SELECT DRIVE will select a Profile for the
Volume-kanager to act upon. The available
set of Profile drives is given in the set
PASCAL_DRIVES found in the global variables.
All volume manager calls are specific to 2
single Profile. To switch Profiles requires
this call.

Errors reported:

a. Drive not active = this drive 1is not
available for use.

b. Illegal drive number = the drive number
passed 13 out of range.

c. No Pascal area on drive.

MODIFY VOLUME

Call format:
MODIFY_VOLUME (INDEX, NAME, DESCRIPTION)

where NAME {s a 7 character string and DESCRIPTION
is a 15 character string, INDEX is an integer

This procedure will modify the name and/or the
description field of'a pseudo=volume specified

by INDEX, ' ‘Either string passed may be null. This

will leave the current contents unchanged. Errors that
can occur are:

a. No such volume - there is no such volume
specified by this index

b. Illegal volume name
c. Write protect error

d. Name .conflict

VOLUME_INDEX

Call formact:
INDEX := VOLUME_}NDEX(NAME, DESCRIPTION)

where NAME {3 7 byte string, DESCRIPTION
is a 15 byte string, and INDEX is an integer.

VOLUME_INDEX will look up a volume in the
volume directory and return its index, which

COPYRIGHT 1984 APPLE COMPUTER, INC

VOLUME MANAGER TECHNICAL SPECIFICATION

is then used to perform any volume manager

action on that volume. This routine will

follow the volume name matching conventions
specified above. This call will usually
proceed. any other volume manager call.

Use of these indexes can be made easier (f the
calling program maintains a mapping between pseudo-
volume names and their indicies once this call has
been made. After the deletion of pseudo-volume,
however, the application cannot assume that the
indexes will remain the same.

Errors reported:

a. No such volume ='a volume with this name
cannot be found.

GET_VIDR
Call format:
GEI_YDIR(VOL_DIRECTORY, NAME ARRAY, DRIVE_NUMBER)

where VOL DIRECTORY {s of type VDIR_STRUCT (defined
in Volume manager interface sectiom) and

NAME ARRAY 1is of type N_ARRAY (also defined in the
interface section. DRIVE ._NUMBER is an integer in
the range 0 to 7.

This. procedure will returnm the contents of the volume
directory on the Profile drive designated by
DRIVE_NUMBER. The contents are returned in the user
supplied data structure VOL DIRECTORY which is
declared to be of type VDIR " STRUCT. The names of the
pseudo=~volumes are returned in NAME ARRAY.

It is important to-declare in the application program
the following data structures in this order and
contiguous:

VOL_DIRECTORY: VDIR_ STRUCT;
DESCRIPTIONS: DESC_ ARRAY;

because this call will £1ill both these data structures.
Errors reported:

a., Illegal drive number - must be {n the range
0 to 7 .

b. Invalid drive = this drive 1is not available

c. No Pascal area on this drive - this Profile
does not contailn a Pascal area

COPYRIGHT 1984 APPLE COMPUTER, LNC Page

VOLUME MANAGER TECHNICAL SPECIFICATION

GET_STATREC
Call format:
GET_ﬁTATREC(STATUS_RECORD)

where STATUS RECORD is of type STAT_REC (defined
in the interface section of the unit.)

This procedure will return the contents of the
status record foound in the Profile driver. This
contains information about the currently assigned
Pascal unit numbers.

Errors reported:

a. No Profile driver = there {3 no Profile
driver attached

INIT_WM
Call format:
INIT W™

This procedure will initialize the volume manager
unit., It sets various global variables, identifies
the Profile driver and {ts unit number, and sets
the value for CUR DRIVE. It DOES NOT initialize
the volume directory or status record data structures.
The caller must immediately call SELECT DRIVE with
an appropriate drive number to initialize these
data structures prior to making any other calls

to the volume manager unit. If the volume manager
unit . {s configured such that it is swapped in and
out of memory (NOLOAD option) then this procedure
must be called whenever the volume manager unit

is swapped back in followed by a call to

SELECT DRIVE. This procedure sets up the sets
VALID DRIVE and PASCAL_DRIVES.

Errors reported:
a. No profile driver attached - this i{s essentially
a fatal error since no actions can occur without
a profile.
WP_DISPLAY

Call format:

WP_DISPLAY(INDEX, WP)

COPYRIGHT 1984 APPLE COMPUTER, INC Page 24

VOLUME MANAGER TECHNICAL SPECIFICATION

where INDEX is an integer and WP is a Boolean.

An application may have the volume manager unit
display the volume selection screen (shown above)
This procedure will update the write-=

protect fleld in the display that corresponds

to the pseudo-volume specified by INDEX. If
WP i3 true a '*' will be placed in the columm

or {f it is false a ' ' will be placed there.

Errors reported:

a. No such volume = this index value does not
correspond to an existing pseudo=volume.

NAME_DISPLAY
Call format:
NAME_DISPLAY(INDEX, NAME)

where INDEX i3 an integer and NAME {s a seven
character string.

An application may have the volume manager unit
display the volume selection screen (shown above)

This procedure will update the name
field for the pseudo—volume specified by INDEX
with the name passed in NAME.

Errors reported:

a. No guch volume - this index value does not
correspond to an existing pseudo-volume,

DESC_DISPLAY
Call format:
DESC_DISPLAY(INDEX, DESC)

where INDEX is an integer and DESC is a 15 character
string.

An application may have the volume manager unit
display the volume selection screen (shown above)
This procedure will update the description

field for the pseudo-volume specified by INDEX
with the string passed in DESC.

Errors reported:
a. No guch volume - this index value does not

correspond to an existing pseudo-volume.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 25

VOLUME MANAGER TECHNICAL SPECIFICATION

UNIT_DISPLAY
Call format:
UNIT_DISPLAY(INDEX, UNIT_ NUM)
where INDEX and UNIT_NUM are integers.

An application may have the volume manager unit
display the volume selection screen (shown above)
This procedure will update the unit

number display for the pseudo-volume gpecified

by INDEX. If UNIT NUM is a valid UCSD unit number
it will update the display to show the number,
else it will set the unit number display to
blanks (meaning that this pseudo=volume is

not assigned.) When a pseudo-volume is

released, the display can be updated by calling
this procedure with UNIT_NUM equal to O.

Errors reported:

a. No such volume = this index value does not
correspond to an existing pseudo=volume.

VOL_DISPLAY
Call format:
VOL_DISPLAY(INDEX)
where INDEX is an integer.
An application may have the volume manager unit
display the volume selection screen (shown above)
This procedure will update all the
information (write_protect, name, descriptiom,

and unit number) for the pseudo-volume specified
by INDEX.

Errors reported:

a. No such volume - this index value does not
correspond to an existing pseudo~volume.

TITLE_DISPLAY
Call format:
TITLE _DISPLAY
An application may have the volume manager unit

display the volume selection screen (shown above)

COPYRIGHT 1984 APPLE COMPUTER, INC Page 26

VOLUME MANAGER TECHNICAL SPECIFICATION

This procedure displays the column headings for the
volume display.

SCREEN_DISPLAY
Call format:
SCREEN_DISPLAY

An application may have the volume manager unit
display the volume selection screen (shown above)
This procedure will put the complete

volume display on the screen for the currently
selected Profile. It requires that SELECT_DRIVE
has been called. After any create or delete of

a pseudo=-volume, this procedure should be

called to update the completa volume display.

SEL_VOLUME

Call format:

INDEX := SEL_VOLUME
where INDEX is an integer.

An application may have the volume manager unit
display the volume selection screen (shown above)
If the volume display 1is used, this

routine ‘can be c¢alled to have a user select

a pseudo-volume from the display as described
inthe gection above. The pseudo~volume selected
is specified by the value returmed in INDEX.

If INDEX is O this specifies that the user has
aborted the selection process and that NO
pseudo=volume has been selected.

REPORT_ERROR
Call format:

REPORT_ERROR

An application may choose to have the volume manager
unit report any errors that may have occurred to
the screen. If DISPLAY ERR is true, this procedure
will report an error message to the screen. If
ERR_FMT is true, the error messages will be
displayed on line 3 else they will be displayed

at the current position of the cursor. The error
displayed will be based on the value of VM_ERROR

or VM_IO _ERROR with VM ERROR having the highest
precedence, If both these values are 0 (no error)
then no error message will be displayed. After

COPYRIGHT 1984 APPLE COMPUTER, INC Page 27

VOLUME MANAGER TECHNICAL SPECIFICATION

a volume manager routine has been called, an
application program can then call REPORT_ERROR
to report any errors that may have occurred.

S_CLEARSCREEN
Call format:
S_CLEARSCREEN -

This procedure will clear the screen. It is supplied
as a low—-level screen management procedure.

S_CLEARLINE
Call format:
S_CLEARLINE

This procedure will clear the current line (i.a.
the line in which the cursor currently lies.)
It assumes that the cursor is in column O,

USING THE VOLUME MANAGER UNIT
1. Introduction

This section reviews in detail the way an application writer will use the
Volume Manager Unit. Details for the procedure and functiomn calls are given
above. The ‘actions that can be performed with this unit are shown below:

a. Creating A Pascal Pseudo-volume

b. Deleting A Pascal Pseudo=volume

c. Assigning A Pascal Pseudo-volume

d. Releasing A Pascal Pseudo-volume

e, Setting the Write-protection of a Pascal Pseudo-volume
f. Krunching the Pascal region of the Profile

g. Modify the name/description fleld of a pseudo=volume
h. Selecting the Profile Drive to Use

i. Getting the Index for a Pseudo=volume

j. Getting the Pascal area Volume Directory

k. Getring the Profile Driver Status Record

1. Screen management routines

m. Error reporting

Each of these actions {3 performed on the current drive selected, thus it
is important for the user to know which drive they are performing these
actions.

All existing pseudo-volumes are referenced via their volume directory

index. This value can be obtained either when a program calls the volume
manager to create a pseudo-volume or through a function call to the volume

COPYRIGHT 1984 APPLE COMPUTER, INC Page 28

-VOLUME MANAGER.TECHNICAL SPECIFICATION

manager given a pseudo= volume's name and description field. Also, a function
is supplied that will allow an application program to use the human interface
found in the volume manager programe.

2. Data Structures

The data structures supplied in the interface section can be divided into
3 areas:

a. Profile information

b. Pseudo=volume directory information

c. Control of display and error reporting
2.1 Profile Information

The volume manager unit maintains.a certain data
structures that describe the state of the Profile
driver. These are:

VALID DRIVES = the set of all available Profile
drive numbers (does not imply that these drives
have Pagcal areas)

PASCAL DRIVES - the set of all Profiles with Pascal
areas

CUR_DRIVE = the currently selected Profile drive
number

STATUS_REC ~ the Profile driver status record
which maps pseudo~volumes to Pascal unit numbers
making them available for use

2.2 Pseudo=volume Directory Information

Once a Profile drive has been selected by a call to
SELECT_DRIVE, the volume manager unit will maintain

directory information for the pseudo-volumes on that
Profile. This information is kept in the following
data structures:

VDIR - this 1s the actual volume directory for the
Pagscal area on this Profile

VDESC - this is the array which holds the description
fields for the pseudo=volumes

YNAMES - this i{s the array which holds the volume names
for the pseudo—-volumes

The volume manager unit will update both these data structures
and their counterparts on the drive itself after any change

COPYRIGHT 1984 APPLE COMPUTER, INC Page 29

..VOLUME MANAGER TECHNICAL.SPECIFICATION

i3 made by a call to the volume manager.
2.3 Control of Display and Error Reporting

Use of the volume manager unit's display routines
1s based on the setting of some control flags:

DISPLAY ERR = if TRUE the volume manager unit will
report errors to the screen on the line specified
by ERR_LINE (normally set to 3)

ERR_LINE - the line on which errors are reported

ERR_FMT ~ if TRUE report errors om ERR_LINE else
report them at the current location of the cursor

When errors occur in the volume manager unit, two
variables are set to reflect the error conditionm:

Vi_ERROR = this holds an integer that denotes the
error that has occurred

VM_IO_ERROR - if an I/0 error occurs then this
variable will have the value of IORESULT.

3. Creating A Pascal Pseudo=volume

To create a Pascal pseudo=volume requires a call of the
form:

INDEX := CREATE_yOLUHE(NAME, DESC, SIZE)

This will create a pseudo=volume on the currently selected Profile with
the name NAME, its description field will be set to the string passed {n DESC,
and it will be SIZE blocks in length. The index returned should be stored in
the calling program, for it must be used for all other calls that will assign,
delete, etec. this pseudo-volume. The index can also be obtained by a call to
VOLUME_INDEX using the same name and description field. This call can return
3 possgible errors, . either to the calling program or by reporting them to the
screen (if so desired.)

4, Deleting. A Pascal Pseudo-volume

This 1s not a recommended practice for application programs to do. The
end-user should only delete pseudo- volumes via the volume manager program
(from the PPM). If an application needs to delete a pseudo=volume, it is done
through the call

DELETE_VOLUME (INDEX, KRUNCH_FLAC)

The index corresponds to a pseudo-volume that {s obtained either through
a CREATE_VOLUME or VOLUME_INDEX call. After a pseudo-volume has been deleted,
the Pascal region can be krunched if the KRUNCH_FLAG i{s set to TRUE. This
call will return an ervor {f there {s no volume that corresponds to that index

COPYRIGHT 1984 APPLE COMPUTER, INC Page 30

.VOLUME MANAGER TECHNICAL.SPECIFICATION

or {f the volume is write-protected.
S. Assigning A Pascal Pseudo-volume

For a program to use a pseudo=volume as a Pascal volume, the pseudo=-

volume must be assigned to a Pascal unit number. To do so requires a call of
the form

ASSIGN_VOLUME(INDEX, UNIT_ NUMBER)

The index value specifies the pseudo=volume to assign with the Pascal
unit number passed via UNIT _NUMBER. An error will occur if there is no
corresponding pseudo=volume or if the UNIT NUMBER value is not in the correct
range of Pascal unit numbers (4, 5, 9 - 20, 128 = 143).

6. Raleasing A Pascal Pseudo=volume

To release a pseudo=volume from its assigned Pascal unit number, requires
a call of the form:

RELEASE_VOLUME (UNIT_NUMBER)

where UNIT NUMBER corresponds to the Pascal unit number that has been
assigned. It is recommended that any application that assigns unit numbers

will also release them before completion of execution. This will free the
user from having to hand-release these pseudo-vclumes before executing another

program. This call can return two errors, one of which if the unit is not
currently assigned or 1f the unit number i3 not in the correct range.
7. Setting the Write-protection of a Pascal Pseudo-volume

To gset or clear the write—protect attribute of pseudo~ volume, make the
call

WP_VOLUME (INDEX, WP_FLAG)
INDEX selects the volume and if WP_FLAG i{s true it will be write~
protected, else the write-protect attribute will be cleared. An error will
occur if the 1s no volume that corresponds to the index passed.
8. Krunching the Pascal Region of the Profile
This is not a recommended practice for application programs.. The only
time it may be necessary is if when a create of volume is attempted and there
is not enough room for the volume a call to KRUNCH AREA may free up enough
space for: the volume., The call 1s simply
KRUNCH_AREA
9. Modify the name/description field of a Pseudo-volume
An application can change the name and/or the description field of a

pseudo=volume. This 1s not a recommended practice. Calling
MODIFY_YOLUME(INDEX, NAME, DESCRIPTION) will change the specified values.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 3l

VOLUME MANAGER TECHNICAL SPECIFICATION

Either the NAME or DESCRIPTION parameter may be null, to not chgnge the field.
10. Selecting the Profile Drive to Use

All volume manager actions are performed on the currently selected
Profile drive, Each Profile drive is assigned a drive number (in the range 0
to 7). The default Profile is drive O, To select a Profile, the application
program should check the set PASCAL DRIVES in the volume manager interface to
determine which drives are active. PASCAL DRIVES is set up when the volume
manager is initialized. Any currently active Profile drives will be placed in
it.” If a user turns off a Profile after PASCAL DRIVES is set, then any action
to that Profile will result in an I/0 error. For example,

IFP O IN PASCAL DRIVES THEN SELECT_DRIVE(O)

SELECT_DRIVE will return an error if the drive is not active, i.e. if it
is not in PASCAL DRIVES or if an illegal drive number (out of range) is
passed.

ll. Getting the Index of a Pseudo=volume

In order to act upon a pseudo=volume, you require the index that
corresponds to that pseudo-volume. To get the index requires a call

INDEX := VOLUME_INDEX(NAME, DESCRIPTION)'

This function will return the index that corresponds to the pseudo-~volume
whoge name and description field match the values passed. If an error occurs
it will return a value of 0 to INDEX. The rules for matching are:

a, if there is only one pseudo-volume with the name NAME
then return its index

b. if there are more than one pseudo=volume with the same

name, then match description fields. If there 1is no
match then return an error. If there i3 a clear
match then return the index.

¢c. if no name 1s matched then return an error.
12. Getting the Pascal Area Volume Directory
Normally, an application program will not have to know about the contents
of the Pascal area volume directory. In such cases as it may, this procedure
1s supplied to allow a program to inspect the contents (but it may not change
them.) The program needs to declare the following data structures in its
global data section in the following order and format:
VAR
VOLUME_DIRECTORY: VDIR_STRUCT;

DESCRIPTIONS: DESC_ARRAY;
NAME_ARRAY: N_ARRAY;

COPYRIGHT 1984 APPLE COMPUTER, INC Page 32

VOLUME MANAGER TECHNICAL SPECIFICATION

‘Calling GET_VDIR will transfer the information into these data
structures., Care must be made that the programmmer does not put any other
data structures amidst these for they will be wiped out! Use of this
procedure will not set CUR_DRIVE to this drive_number.

13. Getting the Profile Driver Status Record

Using GET_STATREC is also not intended for the usual use of the volume
manager unit. Again, this only supplies information and the user cannot
change the contents. The program must declare the data structure
STATUS_RECORD shown below in its global data area:

VAR
STATUS_RECORD: STAT REC;
l4. Error Handling

After any call to the volume manager unit, there is a possibility that an
error occurred. This i3 registered in the VMERROR variable found in the
volume manager interface. After any call, this variable should be checked to
see if an error has occurred. Any I/0 errors are noted in the variable
VM_IO _ERROR. It should also be checked. The error values are shown below for
VMERROR :

0 - No error

1 = No such pseudo=volume

2 - Not enough room to allocate pseudo=-volume
3 = Volume directory full

4 - Name confliect

S = Illegal unit number

6 = Pseudo~volume not assigned
7 = Profile Drive not active

8 - Illegal drive number

9 - Illegal volume name

10 - Write Protect error

11

No Pascal Area on this Profile

12 No Profile driver attached

13 - Volume size must be greater than 6 blocks

COPYRIGHT 1984 APPLE COMPUTER, INC Page 33

VOLUME MANAGER TECHNICAL SPECIFICATION

14

ProDOS directory is full
15 = Pseudo-volume contains files cannot delete

16 - Cannot assign unit number used for Profile driver

17

The ProDOS directory has a ProDOS file called
PASCAL.AREA

VM_IO_ERROR will contain the standard IORESULT value for any 1/0 errors
that may have occurred. Use of these two variables parallels the use of
IORESULT in Pascal programs. After a call has been made to the volume
manager, the application should ‘check VM ERROR and VM_IO_ERROR, to determine
the success of the call.

The application program has the choice whether or not 1t wishes to
report any errors that may occur while using the volume manager unit. Also,
it can allow the volume manager unit to report the errors. Two variables
found in the interface control error reporting. They are:

DISPLAY ERROR = if TRUE then the volume manager will
report errors to the console, else no error messages
will be displayed

ERR_FMT = i{f TRUE and if DISPLAY ERROR is TRUE then all
error messages will be displayed on lizna ERR _LINE which

{s set to 3, by default, of the console, else 1f ‘ERR ._FMT

is FALSE and DISPLAY ERKOR is TRUE then error messages will
be displayed on the current line of the console, i.e. at
the current cursor position

ERR_LINE - this variable specifies omn which line to report
errors. It is set to line 3 by default. An application
program can change this value to suit its needs. 1t is
only used if ERR _FMT is set TRUE.

The volume manager supplies an error reporting procedure
REPORT_ERROR, that will print an error message based on the
current values of VMERROR or VM_IO _ERROR. An application
program can call this procedure to report any errors. This
procedure will report errors given the settings of the above
flags.

1S, Managing the Screen Display

For the most part, the application program i3 expected to manage {ts own
screen display a propos to its purposes. The volume manager unit supplies the
routines necessary to use the volume display shown in the section above.
After an an application has performed a SELECT_DRIVE it can display the
available pseudo-volumes on that drive by calling SCREEN_DISPLAY. Various
fields within that display can be updated after any volume manager unit call
following the protocols given below:

After the creation of a pseudo-volume:

COPYRIGHT 1984 APPLE COMPUTER, INC Page 34

VOLUME MANAGER TECENICAL SPECIFICATION

call SCREEN DISPLAY
After the deletion of a pseudo-volume:
call SCREEN_ DISPLAY
After assigning a pseudo-volume:
call SCREEN_DISPLAY
After releasing a pseudo-volume:
call UNIT DISPLAY with the index of the

pseudo=volume that has been released with
a unit number of O

After clearing or setting of write_protection:

call WP_DISPLAY with the index of the
pseudo-volume and a boolean where TRUE
means write-protection has been set and
FALSE means write=protection has been
cleared

After krunching:
no update to the screen is necessary
After modifying the name or descriptionm field:
call either/both NAME DISPLAY and/or
DESC_DISPLAY with the index of the pseudo-volume
and the new value for that field
After selecting a Profile drive:
call SCREEN_DISPLAY
To have the user select a pseudo=volume:
once SCREEN DISPLAY has been called, call
SEL_VOLUME to have the user select a pseudo-
volume, this call will return its index
An application can use the volume manager unit's error
reporting mechanism if it so chooses. T1If it chooses to do it
itself, the variables VM _ERROR and VM_IO ERROR are available to
the application program to use to determine what if any error
has occured and to report it in its own manner,

Swapping the Volume Manager Unit In and Out of Memory

When an application program that uses the volume manager unit i{s loaded,

COPYRIGHT 1984 APPLE COMPUTER, INC Page 35

VOLUME MANAGER TECHNICAL SPECIFICATION

the initial{zation code for the unit 1s executed. This code will set up
VALID DRIVES and some intermal variables used by the volume manager unit, To

conserve
resident
prior to
will set

space in an application, this unit can be NOLOADed so that it {ig
only when required. If this is done a call to INIT VM must be made
using any other functions in the volume manager unit. This call

up these variables again.

COPYRIGHT 1984 APPLE COMPUTER, INC Page 36

	partie05_01
	partie05_02
	partie05_03
	partie05_04
	partie05_05
	partie05_06
	partie05_07
	partie05_08
	partie05_09

