APPLE//e TECHNOTE #1

Revision of notes on the Apple//e Dec 82%*
5=July 84

This technote explains the difference between the Apple//e and Apple] [+.
It also provides a quick reference for the softswitches and makes some
programming suggestions,

For further information contact:
PCS Developer Technical Support
M/S 22w. Phone (408) 996~1010

Disclaimer of all Warranties and Liabilities

Apple Computer, Inc. makes no warranties, either express or implied, with
respect to this documentation or with respect to the software described in

. this documentation, its quality, performance, merchantability, or fitness for
' any particular purpose. Apple Computer, Inc. software is licensed "as is".
The entire risk as to its quality and performance is with the vendor. Should
- the programs prove defective folowing thelr purchase, the vendor (and not
Apple Computer, Inc., its distributor, or its retailer) assumes the entire
cost of all necessary servicing, repair, or correction and any incidental or
consequential damages. In no event will Apple Computer, Inc. be liable for
direct, indirect, incidental, or consequential damages resulting from any
defect in the software, even if Apple Computer, Inc. has been advised of the
possibility of such damages. Some states do not allow the exclusion or
limitation of implied warranties or 1liability for incidental or consequential
damages, so the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This document may
not, in whole or part, be copied, photocopied, reproduced, translated or
reduced to any electronic medium or machine readable form without prior
consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

Notice

Apple Computer, Inc. reserves the right to make improvements in the product
described in this document at any time and without notice.

TECHNICAL OVERVIEW OF THE APPLE Ile

This document is designed for software developers who have some
familiarity with the Apple II. Its function is to provide a quick overview of
technical information that may affect software design and to a lesser extent
hardware design. It 1s by no means a complete description of the Apple IIe as
the manuals provided with the product serve this purpose, An effort has been
made to extract from the manuals Information that is not obvious. An effort
has also been made to point out potential problems resulting from the new
design and, where appropriate, to give suggestions om how to avoid the problems.

GENERAL:

l. Full ASCII keyboard with auto-repeat feature, alpha lock and Apple
keys. ’

2, Custom-ICs are used for memory management and I/0 control thereby
reducing chip count.

3. The language card and slot 0 have been replaced by built in (look alike)
RAM called bank-switched memory.

4. An additional slot has been added. It is called the auxiliary slot.
This slot has several functions:
a. It 1s used for testing and diagnostics.
b. It serves as the slot for the 80 column card (logically it is mapped
as being in slot 3 = $C300).
c. It serves as the slot for the 80 column / 64K ram card.

5. The back panel 1s designed for direct mounting of DB-9, DB-19 and DB-25
connectors. This feature allows peripherals to be attached to. the back
of the Apple IIe rather than to the peripheral cards.

6. It looks like an Apple II.

7. In addition to an introductory booklet,the APPLE IIe OWNER’S manual,
there is an APPLE ITe 80-COLUMN TEXT CARD manual, an EXTENDED 80-
COLUMN TEXT CARD SUPPLEMENT, and an APPLE IIe REFERENCE manual. Also new
revisions of the APPLESOFT TUTORIAL, DOS and APPLESOFT REFERENCE manuals
have been written. Additional documentation such as A GUIDE TO THE NEW
FEATURES OF THE APPLE Ile COMPUTER and Technical Support handouts
have been developed.

8. "Applesoft has not been changed‘at all, Integer BASIC can still be used;
it must be loaded into the bank-switched memory (language card).

9. The Autostart ROM has been replaced by a new ROM capable of supporting
80 columns. The autostart entry points have been maintained.

10. The Apple IIe with 1its auxiliary card functions like an Apple II plus
with a language card, upper and lowercase capability and an 80 column
card. This means that software and hardware which would operate

KEYBOARD:

1.

2.

3.

TECHNICAL OVERVIEW OF THE APPLE Ile PAGE 3

improperly in 'an Apple II plus equipped with these features will
probably operate improperly in an Apple IlIe. NOTE: the Apple IIe will
shift to upper case only 1f the Alpha Lock key 1s pressed down,

All ASCII code-generating keys will start repeating if held down for
more than half a second.

ae

b.

If another key is momentarily pressed while a key is repeating, the
new key will begin to repeat.

Since the escape key repeats, care must be taken when using it. In a
series of escapes every other escape cancels the effect of the
previous escape.

ASCII codes

e

b.

Co

The delete key issues the ASCII code 127 (DEL). In immediate mode a
checkerboard is displayed to signify that this key has been pressed.
Up arrow key code is 11, down arrow key code is 10, tab key code is
9.

Pascal 1.1 was designed to funcion with the Apple II keyboard. It
therefore has some keyboard related differences when run on the Apple
Ile. For example, if the up arrow key is pressed while running
Pascal 1.1 without the 80 column firmware active a [will be
displayed. Another such difference results in the user needing to
press shift=2 in order to generate the @ sign. On the Apple II the
@ key was obtained by pressing shift-p,.

NOTE: BASIC still adds 128 to its ASCII codes to signify a keypress.

Open & Closed Apple keys

ae
b.

Coe

d.

They do not modify ‘or generate ASCII codes.,
They cannot be detected by looking at $C000 the normal keypress method.
They are connected directly to the game push buttons. Their key press
can be detected by looking for a game push button being pressed.
Their presence means there are always game push buttons. This will
cause problems for games. that determine that there are game
paddles by the presence of push buttons. 1If a joy stick is connected
to the Apple IIe and it has a way of locking down one of the buttons
or if it is of the Atari type, which has reverse polarity, then when
the computer is turned on or control-reset is pressed the computer
detects what appears to be an Apple key being pressed and so.goes
through diagnostics each time reset is pressed.
In combination with control=reset
1. Open Apple does a cold start after scrambling several bytes of
RAM. This combination of key presses replaces the ‘give up and
start all over again ’ key (power switch). It can also substitute
for PR#6 with the added advantage that 1f 80 column firmware
is active it will be properly disconnected. PR#6 disconnects
the 80 column firmware but leaves the 80 column hardware enabled
resulting in improper functioning of the text screen.
2. Closed Apple sends the computer through an onboard diagnostics
test used during production testing. This 1is only a partial

4,

Se

6.

7

9.

TECHNICAL OVERVIEW OF THE APPLE Ile PAGE 4

diagnostic,
3+ Pressing both Apple keys results in the diagnostic test being
run with output to the speaker.

NOTE: After the diagnostics test has successfully been completed

the rather non-informative message "kernel OK" is given. This
message means that the diagnostics are completed and that no problems
were found., Press reset to reboot the system.

The Caps lock key must be down to create the upper case letters

needed for BASIC and DOS commands. BASIC permits lower case letters
within quotes. When 80 column firmware is active a restrict mode may
be selected that will automatically shift anything outside double
quotation marks to upper case. Restrict mode i3 entered by typing PR#3
then escape™followed by R.

The ARROW keys in combination with ESCAPE function in the same way as I,J,
K & M« NOTE:. If you want to use an ARROW key to copy something from the
screen after ‘escaping’ to that line press some other key to deactivate
the escape mode prior to using the arrow key otherwise you will just
continue escaping and will not do any copying.

The shift key mod may be duplicated by soldering a 500 ohm resister
across the logic board connector at X6..
NOTE: the warranty is voided by doing this. .

Integer BASIC was not designed to recognize the full set of ASCII
characters so some of the keys on the Apple IIe that are not on the
Apple II plus may do strange things. Integer BASIC will recognize normal
lower case characters but treat them as upper case., Integer and
Applesoft BASIC running in bank-switched memory can be made to recognize
lower case as explained below.

Pressing reset on an Apple Ile does a full 64K reset where the Apple II
resets only the lower 48K. This is most noticable by Pascal users who
have only one disk drive since they must press reset part of the way
through boot-up which then starts the booting process over again. In
general a program which runs in the bank-switched orauxiliary memory
should set up reset jump vectors which bank in the appropriate memory
before jumping back into the program. These jump vectors need to be in
the lower 48K of main memory.

Pressing reset sets the monitor routines to- display video in NORMAL
mode, A reset does not inform Applesoft that it should be displaying in
NORMAL mode and so it continues to fiddle with the output characters’
ASCII code. On the Apple II plus this situation was not detectable.

On an Apple Ile the effects of this can be detected. From immediate
mode type FLASH then press reset. If you then try to print something

to the screen or make a listing some characters are not displayed
correctly - (numbers become lowercase letters). Giving any of the
following commands corrects the situation: NORMAL, INVERSE, FLASH.

VIDEO OUTPUT:

1.

2.

7.

8.

TECHNICAL OVERVIEW OF THE APPLE Ile PAGE 5

When you boot the Apple IIe via PR#n, DOS 3.3 does not initialize the 80
column firmware nor turn the card on or off., If the 80 column firmware
was active when the disk was booted then after booting, the 80 column
hardware is still on but the firmware is not. This makes for garbage on
the screen. Using control-Open Apple-Reset rather than PR#6 prevents
this. Programs that use 80 columms should turn 80 columns off (PRINT
CHR$(21)) at the end of the program. To ensure that your program will
not be clobbered by this half ‘in and half out situation your program
needs to completely turn all of the 80 column card on or off. This is
how. First determine the configuration of the computer by using the
identification routines. If the computer is an Apple Ile with an 80
column card then do a PR#3 to turn the card on and then if you don’t
want 80 columns issue the command PRINT CHR$(21) to turn it off.

NOTE: other 80 column cards on the Apple II or Apple IIe using DOS will

have similar problems.

To turn the card on from BASIC the command PR#3 must be typed in or the
program must issue PRINT CHRS$(4);"PR#3". Pascal programs will
automatically turn the card on.. Runtime Pascal programs may be designed
to prevent this from, happening. From the monitor type C300G to turn the
card on. Assembly language requires a JMP to $C300. Issuing these
commands when there 18 no card in slot 3 or the auxiliary slot will

do undetermined things. The Apple IIe will usually reboot the disk drive
rather than hang like in the Apple II plus but anything may happen.
Reminder issuing a PR#3 to turn on the 80 column card is like issuing a
PR#1 to turn on a printer. These commands only set software pointers and
the periperal is not actually initialized until the first character is
sent to the peripheral., For this reason any screen setting such as

VTAB issued after PR#3 but before a PRINT command will be ineffective
since it will be changed when the:peripheral 1is initialized.

Presence of the 80-column card in the video expansion slot can be
determined by writing to a screen location on the card and then checking
to see that the value found at that location is the value written., 1.e.
RAM exists at that locatiomn.

The Apple IIe can be identified by a six at $FBB3 (64435). Licensed

developers can. obtain full identification routines from Apple’s PCS
Technical Support Group.

80 column features are controlled from programs by printing control
characters. For example, PRINT CHR$(21) deactivates the 80 column
card if one exists., It does nothing 1if there is no card.

80 column features are controlled from immediate mode by using escape
sequences., For example, typing the escape key (don’t hold it down)
followed by control-Q deactivates the 80 column card.

If 80 column firmware 1s active it can display either 40 or 80 column
text.

The cursor may be used to identify the status of the computer.

10.

11.

12,

13.

14.

15.

16.

17.

TECHNICAL OVERVIEW OF THE APPLE Ile PAGE 6

a., BLINKING CURSOR means autostart ROM is active. This will happen 1if
an image of autostart ROM has been placed in the bank-switched memory
(language card) and control has been turned over to it.

b. FLASHING CHECKER BOARD CURSOR means the new monitor firmware is
active and that the 80 column features are inactive,

c. SOLID INVERSE SPACE CURSOR (40 or 80 column width) means the 80
column features and the new monitor ROM are both active.

d. INVERSE PLUS SIGN CURSOR (40 or 80 column width) means the 80
column features and the new monitor ROM are both active and the
escape key has been pressed.

The ‘other half’ of the 80 column screen is located in 1K of RAM omn

the 80 column or extended 80 column card. The address range of this RAM
is from $400 to -$7FF (text page one). Data being displayed from this
‘other half’ is shuffled in with data from text page one on the main
board and shrunk by the I/0 control chip to produce the 80 column screen.
Data from the main board is displayed as the odd columns while data

from the ‘other half’ =the 80 column card- is displayed as the even
columns. Display columns are numbered starting from one.

A vertical blanking signal is available at $C019 to helpvgraphics
animators. Vertical blanking takes approximately 4 milliseconds.
Updating of screen characters or switching of pages during vertical

blanking prevents the displaying of graphics while the graphics is being
updated.

The auxiliary slot for the 80 column card has the same memory mapping
as slot 3. Therefore, the 80 column card is treated like a peripheral.

If the 80 column firmware is inactive and reset 1s pressed while running
in autostart ROM on the language card (either Integer or Applesoft BASIC),

the computer returns control to that language (i.e., the language card)
without change==DOS does 1it.

Reset deactivates the 80 column card firmware and hardware.

Using commas to tab while in Applesoft does not work with 80 columns.

You can tab with 80 columns by poking 36,n where.n is the column you want
to tab to. Poking 36,n will also work for 40 column display as long as

n is < 40. Poking 36 with a number >39 probably will cause the program
to crash i1f displaying in 40 columns.

If Integer or Applesoft BASIC is running in the bank-switched memory
(language card) with the autostart ROM then they will not accept lower
case characters. If you want to be able to accept lower case characters
then type PR#3 to activate the 80 column firmware. This will replace
the autostart ROM by the new ROM. The card may then be deactivated

with an escape control-Q and the new monitor ROM will continue to accept
lower case.

The 80 column display running under the new ROM is markedly slower then
40 columns under autostart ROM.

Scrolling windows can be set up anywhere on the 80 column screen. The

18.

19.

20.

21.

TECHNICAL OVERVIEW OF THE APPLE Ile PAGE 7

width of a scrolling window is limited to an even number. If an

attempt 1s made to set up a odd-numbered window width the width is reduced
by one. Therefore, if an attempt 1s made to set a window width equal

31 by placing the number 31 in the location $33 the actual window width
will be 30.

There are two built in character sets.

as The standard character set displays uppercase characters in NORMAL,
INVERSE, and FLASH as is the case with the Apple IT plus. It will
also display lower case NORMAL characters, NOTE: do not use lowercase
normal characters in programs you want to run on an Apple II plus
since 1t cannot display lower case characters.

b. The alternate set provides for upper and lower case in both normal
and inverse.

¢c. Atempting to display lower case inverse characters without having
the 80 column firmware switched in will not work. Even 1if the

alternate character set is banked in these characters will be
displayed as special characters.

d. When the 80 column firmware is activated the alternate character
set 13 used. This means that software designed to be used with 80
columns must be designed for the alternate character set. Attempting
to switch to the standard character set while 80 column firmware is
active will result in some of the characters being misinterpreted
by Applesoft, '

e. Since both character sets are designed to display the underline
character and the descenders of lower case letters, all the
characters have been moved up one row of dots. This may cause
gome visually unpleasant lettering on the top row of a text display
which uses inverse video. This can be corrected by placing. one
row of inverse blanks above the first line of print,.

Unlike the Apple II plus the Apple IIe’s GETLINE routine is affected by the
INVERSE FLAG (location $32) setting. On the Apple II plus all BASIC input
or Assembly language input using GETLINE is displayed in normal mode.

On the Apple IIe input will be displayed in accordance with the value

in location $32-(inverse, normal, flash). This is most noticable while

in immediate mode. Typing the BASIC command INVERSE results in future
keypresses being displayed in inverse. HOME and clear-to-the-end-of-line
gives inverse blanks.

When displaying in 80 columms, 1f you look at CH (36) you will find it

= (0 even if the cursor is not at the left edge of the screen. ..This

is done to fool BASIC which knows only about 40 columns. and to provide
windows. Some other 80 column boards set this location to 40. Placing a
value into 1403 ($57B) performs an HTAB to that value.

Some of the I/0 Scratchpad RAM Addresses located in the text screen
buffer are used by the 80 column firmware. These are used in accord with
the protocol for their use but some programs may have used these areas
incorrectly and will have problems. The most common abuse of these
protocols is when a lo-res picture 1s BLOADED into $400-$7FF. When this
is done the values in the scratchpad area are changed to match what they

VIDEO

l.

3.

6.

TECHNICAL OVERVIEW OF THE APPLE Ile PAGE 8

were when the picture was saved. In the past the most common result

is that the disk drive ‘grinds’ since the read head gets lost. A similar
“loss of control’ will happen to any peripheral including the 80 column
card. Since slot 3 in the Apple IIe is dedicated to the 80 column
firmware it uses one scratchpad area dedicated to slot 3 even if there

is no 80 column card. Therefore, any BLOADIing into the area $400 to

$7FF will affect the operation of the output routines, possibly crashing
the program. The solution is to BLOAD the picture into a buffer and then
move all but the scratchpad area into the screen buffer., A simpler
solution, but one that may crash the program if an interrupt occurs
during loading, is to save the scratchpad data then restore it after
loading the picture, From machine language you could disable interrupts
during this operation.

SOFT SWITCHES:

ALT. CHAR SET = This switch sets up the alternate character set., This
switch should be used with care by BASIC programmers as previously
pointed out.

80 STORE - If 80 store is active then the PAGE2/NOT PAGE2 switch serves as
a bank switching switch rather then video display switch., This 1is true

of the hi res pages also if the extended 80-column card is present, This
switch should be used only by experienced programmers.

80 COLUMNS - This switch 1s designed to assist assembly language
programmers who are using their own screen writing routines. This switch
turng only the disply hardware on and not the firmware. Programs which
use the monitor I/0°routines COUT & RDKEY cannot use this switch .alone
but must use it in combination with PR#3. This 1is true for both BASIC
and the Monitor,

TEXT/GRAPHICS, MIXED/NOT MIXED, PAGE2/NOT PAGE2 and HIRES/NOT HIRES

serve the same function as in the Apple II plus. The PAGE2/NOT PAGE2
switch serves the additional function of bank switcher as mentioned above.
The state of these switches may be found by reading status bytes.

VERTICAL BLANKING can be read to determine correct display timing for
animated graphics.

Two soft switches affect the input/output memory space ($Cl00 to $C7FF).
a., The SLOTC3ROM switch 1s used to select between the space alocated to
slot 3 and built in ROM alocated to controling Apple’s 80-column

cards.

l. When the computer is reset or turned on it checks for a card in
the auxiliary slot. "If it finds one the SLOTC3ROM switch is
turned off. This banks in the built in C3xx ROM. . NOTE: this
does not turn on the 80=column card. It simply provides the
card with the ROM it will need if a PR#3 or equivalent command is
glven.,

2. This switch may be turned off -~built in ROM banked in~ and the
80-column ROM used even if there is no 80=column card. To get
into this mode turn off the switch (POKE 49162,0) and give the

7

8.

TECHNICAL OVERVIEW OF THE APPLE ITe PAGE 9

PRINT ‘chr$(4);"PR#3" command., Without a card, 80 columns cannot
be displayed but features such as upercase restrict are
available,
bs The SLOTCXROM switch is used to select between the space alocated to

slots 1 through 7 and built in ROM alocated to controling Apple’s

80=column card and the built in diagnostics.

l. If the SLOTCXROM switch is on then the 80 column firmware is
mapped in even if the SLOTC#ROM switch is off.

2. The SLOTCXROM is turned on when one or both of the Apple keys 1is
pressed during reset,

The state of the soft switches may be found by reading the appropriate .
memory locations. With the exception of the SLOTCXROM switch i1f the value
read is >127 then the switch 1is on.

When Pascal 1.1 is initialized it turns on the following soft switches:
HIRES, TEXT, NOT-MIXED & NOT-PAGE2. If the 80-column firmware is turned
on then 80 STORE is turned on. Since it is not intuitive that the
HIRES switch 1s on even when the program does not use hires and that

80 STORE is on even when not storing things in memory some unexpected
things may happen. The unexpected events have most impact on programs
directly writing to the text screen and programs using the auxiliary
memory. Note that if your program turms off the 80 STORE switch it must

turn it back on before it tries to use the 80=column firmware to display
80=-column text.

MEMORY MAPPING & ADDRESSING:

l.

5.

The memory mapping of the Apple Ile matches the Apple II plus with a
language card. Soft switches and the new monitor firmware may be used to
bank in additional ROM and RAM.

Like the 6502 in the Apple II plus, the 6502A used in the Apple IIe
activates the address bus twice during successive clock.cycles during an
indexed store operation., This may cause a device that toggles each: time
it is addressed to end up back where it started. In these cases. read
operations should be used rather than stores,

The $DO0OQ to $FFFF memory space functions in a method identical to . the
language card on the Apple II plus but since it is built in 1t is
referred to as bank-switched memory.

Pressing reset switches out bank-switched memory. If operating under
DOS 3.3, DOS will switch back to bank-switched memory.

While in 80 columns the 1K of auxiliary RAM being used i1s from $400 to
$7FF. The 80 column text card with 1K of RAM uses sparse memory mapping.
this means that writing to the location $CO0 or $800 on the card is the
same as writing to the location $400.

AUXILIARY RAM:

1.

1K of additional RAM exists on the standard 80-=column card in address

2,

3.

4

5.

6.

TECHNICAL OVERVIEW OF TBE APPLE Ile PAGE 10

space $400-$7FF, 64K of additional RAM exists on the extended
80=column card in address space $0000 = $FFFF. This additional RAM is
banked in by addressing (writing to) soft switches. To determine if
main memory or auxiliary memory is banked in look at the appropriate
status bytes,

The following softswitch pairs switch between main RAM and auxiliary RAM

in the specified ways:

a. RAMRD - The setting of this switch affects which bank of memory is
being read i1f the read operation is between memory locations $200
and $BFFF. .

be RAMWRT - The setting of this switch affects which bank of memory is
being written to if the write operation is between $200 and $BFFF,

Ce ALTZP - The setting of this switch pair affects which bank of memory
is being written to and read from if the read or write operation is
to a memory location between $0 and §1FF or between $DO00 and S$SFFFF.

d. B8O0STORE -~ This switch pair in combination with the PAGE2, HIRES and
TEXT switch pairs determine in a complex way what display memory is
being written to and read from. In general it changes the other
switch pairs’ functions from screen switching to bank selection.
The memory being affected is the same as would be affected by the
screen switching,

Switching auxiliary memory does not affect the bank-switched memory
(language card)3$D000 - S$FFFF settings. If main board ROM is banked in
and then auxiliary memory is switched in, the main board ROM is still
active, If bank~switched memory 1s active and aux mem is switched in
then the bank-switched memory in the auxiliary memory will be active,

The auxiliary memory provides storage and program expansion
capabilities for BASIC, PASCAL and Machine language programs. Machine
language programs can very effectivly use. the extra memory since .the
program itself can run in the extra memory if need be., - BASIC can: use
the extra memory to store machine language routines. and pictures. - Pascal
can use the extra memory to store machine language procedures, - Both
BASIC and Pascal programs are limited to using the standard memory areas
since they are unaware of the extra memory. With care BASIC programs
could be CHAINED using the extra memory rather than a disk. Alsoy,.
several programs could be in the computer at once with the posibility of
one being ‘in BASIC and the other in Pascal,

Programs using DOS would need to do all their input and output from
either the main memory or the auxiliary memory but not from both unless
a copy of DOS were placed in both banks and then both were kept informed
of such events as switching the output device. If programs in auxiliary
memory need to produce input or output which 1s not a DOS command they
may use the routines COUT! and REYIN which do not go through DOS. Great
care should be used since 80STORE may need to be used to affect where
the output goes.

If you write data into the $400 to $7FF space in auxiliary memory and the
computer is displaying 80 columns then your data will appear on the
screen.

TECHNICAL OVERVIEW OF THE APPLE Ile PAGE 11

7. The routine AUXMOVE moves a block of data from anywhere in the memory

area $200 to $BFFF., Data may be moved from auxiliary memory to main
memory or from main memory to auxiliary memory. ’

8. The routine XFER transfers program control from a machine language
program in main memory to one in auxiliary memory or the other way around.

INPUT /OUTPUT:

l. Sending control to a slot which does not have any device connected to it
congtitutes a NO=-NO. In the Apple II plus this NO=NO usually resulted in
the computer stopping dead. 1In the Apple IIe this NO-NO usually results
in the disk booting.

2. The SLOTC3ROM soft switch pair selects between internmal ROM at $C300
(the 80 column firmware) and slot three,

3. The SLOTCXROM soft switch pair selects between intermal ROM from $C100

to $C7FF used by the built in diagnostics and 80 column firmware, and
slots one through seven,

4, Very large peripheral cards which stick out the back of the computer
will not be able to do so because of the new back panel,

5. Cards which depend on ‘piggy backing’ to IC sockets to obtain additional
signals will probably no longer function properly since the main board
1s re-designed.

6. The Apple Ile’s 80 column card is a peripheral. As is the case with
the Apple I1I:'plus, two peripherals cannot receive input or send output
at the same ‘time., ' This means that the 80 column firmware must be made
inactive before using an output device such as a printer or MODEM and
will need to be reactivated when returning to 80 columns. Some software
such as the Pascal BI0S does this automatically.

7. There are two locations on the Apple Ile designed for plugging 1in game
paddles, One 1is a DB-9 connector on the back panel and the other is
the same as on the Apple II plus. A game paddle or joy stick may be
connected to one or the other location but not to both at the same time,

PASCAL 1.1

As explained earlier the Pascal system and the 80 column firmware when running
under Pascal set several soft switches which may create unexpected

situations because their settings are not intuitive. Namely, Pascal turns

on the HIRES switch during initialization and the 80 column firmware turns

on the 80STORE soft switch. As a result of these gettings the following
unexpected situations may occur,

l. If an Assembly language Pascal procedure 1s designed to store and
retrieve data and it tries to do so from locations $2000 to $4000 in
the auxiliary memory it will not do so properly. This is because the
HIRES switch 1s on along with 80STORE and it overrides the RAMRD and

2e

TECHNICAL OVERVIEW OF THE APPLE Ile PAGE 12

RAMWRT switches. If HIRES is switched off then this area may be used.

If a program turns on the PAGE2 soft gwitch the program may self
destruct. If HIRES and 80STORE are still on when PAGE2 is

turned on, any data being sent to or retrieved from the $2000 to
$4000 memory space will be sending and retrieving from the auxiliary
memory space rather than the expected main RAM. If the 80 column
card does not have auxiliary memory then the data is coming from and
going to thin air. Since the Pascal. heap in larger programs will
grow into this space the program self destructs., If you must have the
PAGE2 switch on then turn off one of the other two switches. NOTE:
Pascal does not use the PAGE2 switch to display text or graphics but
through trickery it can be turned omn.

BACX PANEL:

1.

The back panel 1s designed to support the ﬁounting of DB9, DBI19 and
DB25 connectors. - Cables from peripheral cards run to these connectors.
External cables then run from these connectors to the peripheral.

The four DB19 mounting holes are reserved for disk drive connections.

The Apple Ile’s accessory kit contains materials for attaching cables
designed for the Apple II plus.

Peripherals which use more than 25 lines will need to use two or more
of the DB connectors to route their wires through the back panel.

HARDWARE:

1.

2.
3.

4.

The Apple Ile uses the 6502A but it still runs at one MHZ.

There 1s a 470 ohm resistor on both the open apple and closed apple key.
These resistors are on the keyboard.

The Apple IIe’s data bus is now buffered and may cause timming differences
in connection with using the DMA line.

The shift-key mod- used in the Apple II+ to simulate upper case can be
simulated in the Apple//e by soldering the solder blob found on the
main board at location X-6.

INTERRUPTS:

When an interrupt occurs the Apple IIle saves the status of the text page
(pagel or 2) and SLOTCXROM switches, then sets the page to page 1 and
SLOTCXROM to Slot ROM. After the interrupt has been handled these two
switch settings are restored.

DOCUMENTATION ERRATA:

1.

1.

2.

TECHNICAL OVERVIEW OF THE APPLE Ile PAGE 13

To connect the game input switches (push buttons) to other hardware use
aprox. 500 ohm pull-down resistor connected to ground and a momentary-
contact switch to +5V.

The MOVE routine in the Apple IIe is the same as in the Apple II plus
and therefor the ‘Y’ register should be set to 0 before calling it.

The SLOTCXROM switches are reversed.. The slot ROM i3 selected by

writing to 49158 ($C006). The internal ROM is selected by writing to
49159 ($C007).

ADDENDUM TO TECHNICAL OVERVIEW OF THE APPLE//e

An unusual condition appears on the text screen using an Apple//e when a
text display 1s switched from inverse to normal or normal to inverse.
This only takes place 1f the change is being made while printing to the
bottom line of a scrolling window. If going from normal to inverse the
text appears in inverse but the right end of the line is black which is
just like on the Apple][+. If going from inverse to normal the text
appears in normal but the right end of the line is white. This condition
happens because when the screen is scrolled after the printing of the
last line, the new bottom line 1s filled with blanks in the current mode
(inverse or normal). This cleans off the old text on that line in
preperation for printing text on the line. The screen display is then
switched to the new mode and the last line is printed. This condition
can be corrected if you must change text modes on a scrolling window.

To do this end the last print statement with a semicolon to suppress the
scrolling. Follow this by the change of mode and a print statement
without any text.

If the HOME command is given on an Apple//e while the text mode is in
inverse the whole screen becomes white., On the Apple] [+ the screen
would clear to black..

TECHNICAL OVERVIEW OF THE APPLE Ile PAGE 14

3. The following is a list of all the special use locations in memory locations
$C000 through $COFF. Note that in some cases different switches are
activated depending upon if they are read from (PEEK, LDA) or written to
(POKE, STA). If reading a value can indicate the state of a soft switch,
the state having the symbol (*) is the state which will return a value
greater than 128 ($7F).

LOCATION EFFECT OF READING EFFECT OF WRITTING

49152 ($C000) get keyboard input pgl&2 sw show diff txt & gr buff
49153 ($cC001) pgl&2 sw bank swich txt & gr buff
49154 ($C€002) read from main memory -

49155 ($C003) read from auxiliary memory

49156 (8C004) write to main memory

49157 ($C005) write to auxiliary memory

49158 ($C006) select card ROM all slots

49159 ($C007) select internal ROM $Cl100~-$CFFF
49160 (S$C008) read & write main stack,z-pg.,LC
49161 ($C009) read & write alt. stack,z-pg.,LC
49162 ($C004) select internal ROM $C300-$C3FF
49163 (S$CO0B) select card ROM slot three

49164 ($C00C) turn 80=-column display off

49165 ($CO0D) turn 80=-column display on

49166 (SCOOE) select Apple][char. set

49167 ($COOF) select new full upper & lower char. set
49168 ($C010) clear the keyboard strobe clear the keyboard strobe

49169 (sCO1l) indicates if LC first 4K bank one or (*)bank two 1is in
49170 (8C012) indicates if Autostart ROM or (*)LC is banked in
49171 ($0013) indicates if main or (*)aux RAM is being read from ($200-$BFFF)
49172 (§C014) indicates 1f main or (*)aux RAM 1s being written to ($200-$BFFF)
49173 (s$CO15) indicates i1f card or (*)internal ROM being read ($ClO00-$CFFF)
49174 ($C016) 1indicates if main stack,z-pg.,LC or (*)aux stack,z-pg.,LC
49175 ($C017) indicates if internal or (*)card ROM being read ($C300~$C3FF)
49176 ($C018) indicates 1f storing to main or (*)aux text & graphics buffers
49177 (8C019) indicates if vertical blanking or {(*)not vertical blanking
49178 ($C01A) indicates 1if displaying graphics or (*)text
49179 ($CO1B) indicates if displaying full page graphics or (*)mixed txt & gr
49180 ($C01C) indicates if displaying page 1 or (*)page 2
49181 (s$C01D) indicates if displaying in lo-res or: (*)hi-res

49182 ($COL1E) indicates if using Apple][char set or (*)alterpate char set
49183 ($CO1F) indicates 1f displaying in 40 columns or (*)80=columns
49184 (8€C020) toggle cassette output switch

49200 ($C030) toggle speaker

49216 ($C040) utility strobe single pulse

49232
49233
49234
49235
49236
49237
49238
49239
49240
49241
49242
49243
49244
49245
49246
49247
49248
49249
49250
49251
49252
49253
49254
49255

($€050)
($cos1)
($C052)
($€053)
($C054)
(sC055)
($C056)
($C057)
($C058)
($C059)
($C054)
($C05B)
($C05C)
($CO5D)
($COSE)
($COSF)
($C060)
($co61)
($C062)
($C063)
($C064)
(3€065)
($C066)
(sC067)

($C070)

($C080)
($cosl)
($co82)
(sc083)
($C084)
($C085)
($C086)
($C087)
($C088)
($€089)
($CO8A)
($C08B)
($co8cC)
($C08D)
($CO8E)
($CO8F)
($€090)
($C0A0)
($COBO)
(s$€0CO)
($CODO)
($COEO)

turns
turns
turns
turns

TECHNICAL OVERVIEW OF THE APPLE Ile

graphics mode on

text mode o
mixed mode
mixed mode

turns
n turns
of £ turns
on turns

display from page 1 buffer
display from page 2 buffer
display graphics
display graphics

turn
turn
turn
turn
turn
turn
turn
turn

annunciator
annunciator
annunciator
annunciator
annunciator
annunciator
annunciator
annunciator

PAGE 15

graphics mode on
text mode on

mixed mode
mixed mode

of £
on

display from page 1 buffer
display from page 2 buffer
display graphics
display graphics

as lo=-res.

as hi-res

0 off turn
0 on turn
1 off turn
1 on turn
2 off turn
2 on turn
3 off turn
3 on turn

annunciator
annunciator
annunciator
annunciator
annunciator
annunciator
annunciator
annunclator

indicates
indicates
indicates
indicates
indicates
indicates
indicates
indicates

if
if
if
if
if
if
if
if

cassette input toggle has no bit or (*)has a bit
push button O (open apple) is up or (*)down
push button 1 (closed apple) is up or (*)down
up or (*)down

game
game
game
game
game
game
game

push button 2 is
controller 0 has
controller ! has
controller 2 has
controller 3 has

timed out
timed out
timed out
timed out

or
or
or
or

as lo-res
as hi-res
0 off
on
off
on
of f
on
off
on

WWMRRN O

(*)not
(*)not
(*)not
(*)not

game controller strobe

select
select
select
select
select
select
select
select
select
select
select
select
select
select
gselect
select

49311 ($CO9F)
49327 ($COAF)
49343 ($COBF)
49359 ($COCF)
49376 ($CODF)
49391 ($COEF)

RAM
ROM
ROM
RAM
RAM
ROM
ROM
RAM
RAM
ROM
ROM
RAM
RAM
ROM
ROM
RAM

game controller strobe

read bank 2. ' Write~protect RAM.

read. Two or more successive reads write-enables RAM. bank 2
read. Write protect: RAM

read bank 2. Two or more successive reads write—enables RAM ba
read bank 2, - Write—protect RAM,

read. Two or more successive reads write-enables RAM. bank 2
read. Write protect RAM

read bank 2. Two or more successive reads write—enables P ba
read bank 1. Write—protect RAM. :
read. Two or more successive reads write-enables RAM. bank 1
read. Write protect: RAM

read bank l.. Two.or more successive reads write-enables RAM ba
read bank 1. Write—protect RAM.

read. Two or more successive reads write-enables RAM. bank 1
read, Write protect RAM

read bank 1. Two or more successive reads write—enables RAM ba
slot 1 device select
gslot 2 device select
slot 3 device select
slot 4 device select
slot 5 device select
slot 6 device select

TECHNICAL OVERVIEW OF THE APPLE Ile PAGE 16
49392 ($COFO) = 49407 ($COFF) slot 7 device select
APPLE//e HARDWARE AND SOFTWARE GUIDE LINES
The following are some suggestions for writing programs for the Apple Ile.

TERAL:

le Apple has developed interface routines which are designed to help
profesional and amateur programmers write ‘friendly’ interfaces for their
programs. These routines also help the programmer avoid some pitfalls
asgociated with using 80-columns. These routines are part of the Applesoft
Extension Package. It can be found on the disk supplied with the Apple//e
Applesoft Tutorial and Reference Manual., Appendix E of the new ‘Applesoft
Tutorial explains how to use this and other supplied routines. A 6502
Machine Language version of these routines will be available soomn.

. Apple has made every effort to maintain the subroutine entry points in
j the Autostart ROM when the Apple//e ROM was written and will continue to
do so in future revisions. This implies that if you use only the entry
points supported in the Apple II or Apple//e Reference Manuals your
programs should not need to be modified for future revisions. - It also
implies that if you enter at other locations or if you do such activities
as check-summing the ROM, your product may need to be reved when the ROM
is reved. :
‘ogrammers be forwarned
..pple gives no assurance that any locations within the 80=column firmware
($C100-$CFFF) will be maintained. Therefore, programmers should not
attempt to ‘patch into’ any of these routines. The 80=column firmware also
uses several ‘scratch pad’ locations. At this time the only such
location which will be maintained between revisions is location 1403
(557B) which gives the current horizontal cursor. location for 80 columns.

Jo Use the procedures outlined in the IDENTIFICATION ROUTINES document to
recognise the hardware that is available. These routines are available
to licensed software developers from PCS Marketing Technical Support.

"TWARE SPECIFIC:

le Before using a peripheral for output be sure the 80 column firmware is
inactive.

!« Do not require the use of the reset key during program operation unless
you are not concerned that the bank-switched RAM will be switched out.

}o If your software turned on the 80 column firmware be sure it turns 1t
off before ending.

te

lLouNLUAL UVEKV LEW .UY THE APPLE Ile PAGE 17

Do not check for the absence of game control paddles by having your
program ‘look’ to see if both game buttons have been pressed. An
alternate method is to timeout the paddles for, say, twice as long as

- the normal count of 256; if the 558 timer chip still doesn’t timeout,

7.

9.

10.

L1l

13

L4

15.

there must not be any paddles.

Make sure that an 80 column card exists prior to trying to turn it on
since not doing this will lead to unpredictable results,

If your program requires DOS or BASIC commands to be typed be sure to
instruct the end user to use upper case letters or better still use
your program to shift input to upper case.

Applesoft BASIC was designed to produce flashing characters. Because of
this, incorrect characters appear when lowercase inverse or flashing
characters are displayed by an Applesoft program using the standard 40
column displaye. If an Applesoft program first determines that the 80
column card 1s there it may correctly display the lowercase inverse
characters by turning on the carde A full set of lowercase flashing
characters :1s not available.

If your program expects certain string inmput design it to accept both
upper and: lower cases

Never have your. program issue the PR#0 or IN#0 commands while the 80
column card is active,

A program running under DOS should turn the 80 column card on by the
command - PRINT CHR$(4);"PR#3".

If your program is generating animated graphics you might want to use
the vertical blanking signal to prevent ‘blinking’.

The 80 COL soft switch $CO0D (49165) should not be used if monitor input
/ output routines are used.

If your BASIC / Assembly Language software boots to run, include in your
documentation the need to boot by pressing control — open apple - reset
rather than by entering a PR#. This 'is to ensure that the hardware and
firmware are in sync. An alternative if you are willing to put up with
a momentary flash accross the screen is to have your greeting program’s
first actions be the following. First, it should determine if an 80
column card is in the system. If .one is, then turn the firmware on
using the PR#3 command. . Finally, if you do not want the card on you

may turn it off with a Print CHR$(21) command.

If your program is a BASIC program and it uses 80 columns then do ot
use commas to do tabbing. Instead use POKES to 1403. For example
POKE 1403,10 TABS to the 10th. column.

If your program has 80 column firmware active (either 80 or 40 columns
displayed) and you want to send output to a printer or-other output
device you must turn off the 80 columm firmware before you turn on

TECHNICAL OVERVIEW OF THE APPLE IIe PAGE 18

the other device. The following 1s an example: Use Home to clear the
screen. Turn off the 80 column firmware by issuing a control character
to the screen(PRINT CHR$(21) =-control=U). Turn on the printer. When
orinting 1s completed or you want an intermediate message on the screen
urn the printer off with a PRINT CHR$(4)"PR#0" & PRINT CHRS(4)"IN#0".
Then turn the 80 column firmware. back .on with a PRINT CHR$(4);"PR#3".
If you must have a message on the screen durning printing then place the
message on the screen (40 columns) after the 80 column firmware is turned
off but before turning on the printer. NOTE: the PR#0 and IN#0 is not
required by Apple’s card but may be by other cards.

6. If the 80 column firmware 1s active the BASIC GET command and the monitor
KEYIN routine will immediatly execute the escape keypress and so escape
codes are not available. Therefore, do not use these ’‘GET’ commands when
escape sequences are required and the 80 column firmware is active.An
Assembly Language or BASIC routine which properly get input by looking at
49152 ($C000) can be used to detect an escape key being pressed.

7. If your program uses a reset trap or in some way is designed to recover
from a reset and it uses the bank-switched memory (language card) it must
turn the bank-switched memory back on. This would be done by having your
reset jump vector point to a reset routine placed somewhere in the the
lower 48K of memory. This routine would need to turn the bank-switched
memory back on before jumping back into the program.

IDWARE:

l« Don’t use any of the four DBl9 slots in the back panel since these are
tveserved for disk drivese.

2. Cables. should connect to the card at the keyboard end of the card since
this gives the user more freedom in selecting the slot into which the card
is to be installed. It also prevents cable cramping.

3. Cables should use DB9 or DB25 connectors.

‘e Cards which require ‘piggy backing’ into IC sockets may become obsoleted
by this and future revisions of the main board.

5 Do not require cards to be placed in slot three if they are intended to
be used in systems having the 80 column card.

’s Cables using DB-25 conmnectors for parallel I/0 devices should block
pin seven. This convention should be followed to- prevent damage
should the connector be accidently pluged into a serial device. Serial
devices use this pin for ground.

7o Cards should be identifiable according to the protocol outlined in Pascal’s
ATTACH document which 1s excerpt here,

Pascal 1.l uses four firmware bytes to identify the peripheral card.
Both the identifying bytes and the branch table are near the
beginning of the $Cs00 ROM space. The identifiers are listed in

TECHNICAL OVERVIEW OF THE APPLE IIe PAGE 19

Table 1.
Address Value
$Cs05 $38
$Cs07 $18
$Cs0B $01 (the Generic Signature of new FW cards)
$Cs0C $ci (the Device Signature; see below)

Table 1. Bytes Used for Device Identification

The first digit, ¢, of the Device Signature byte identifies the device
clags as listed in Table 2.

Digit Class

$0 reserved

$l printer

32 joystick or other X-Y input device
$3 serial or parallel I/0 card

84 modem

$5 sound or speech device

$6 clock

§7 mass storage device

$8 80~column card

$9 network or bus interface

SA special purpose (none of the above)
$B-F reserved for future expansion

Table 2. Device Class Digit

The second digit, 1, of the Device Signature byte 1s a unique
identifier for the card, assigned by Apple Technical Support.

NOTE: Our 80 column card identifier is $88

APPLE //e TECHNOTE #3

Original Version
Published by Softalk Magazine
Sept. 1983

This article describes the double hi-resclution display mode which is
available in the Apple //c and the Appie //e (with the Extended
80-column card). Double Hi-res graphics provides twice the horizontal
resolution and more colors than the standard high-resolution mode. On a
monochrome monitor double hi-res displays S40 horizontal by 192 vertical
pixels, while on a color monitor, 146 colors are available.

For further information contact:
PCS Developer Technical Support
M/S 22-W. Phone (408) 994-1010

Disclaimer of all Warranties and Liabilities

Apple Computer, Inc. makes no warranties, either express or implied,
with respect to this documentation or with respect to the software
described in this documentation, its quality, performance,
merchantability, or fitness for any particular purpose. Apple Computer,
Inc., software is licensed "as is"., The entire risk as to its quality
and performance is with the vendor. Should the programs prove defective
folowing their purchase, the vendor (and not Apple Computer, Inc., its
distributor, or its retailer) assumes the entire cost of all necessary
servicing, repair, or correction and any incidental or consequential
damages. In no event will Apple Computer, Inc. be liable for direct,
indirect, incidental, or consequential damages resulting from any defect
in the software, even if Apple Computer, Inc. has been advised of the
possibility of such damages. Some states do not allow the excliusion or
limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation may not apply to vou,

This documentation is copyrighted. All rights are reserved. This
document may not, in whole or part, be copied, photocopied, reproduced,
transiated or reduced to any electronic medium or machine readable form
without prior consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20323 Mariani Avenue
Cupertina, CA 93014

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

PB

DOUBLE HI-RES ON THE APPLE //e

"What _is It?

The double high—resolution display mode that is available
for the Apple //e provides twice the horizontal resclution
of the standard high-resclution mode. On a standard
black-and-white video monitor, standard hi-res displays 280
columns and 192 rows of picture elements (pixels); the
double hi=-res mode displays 340x192 pixels. On a colior
moni tor, the standard hi-res mode displays up to 140 columns
of colors, each color being selected from the group of six
colors available, with certain limitations., Double hi-res
displays 140 columns of color, for which all 14 of the
low-resolution colors are available,

Table 1. Comparison of Standard and Double Hi-Res Graphics

Black/White Color
Standard 280 x 192 pixels) 140 columns
Hi -Res" 6 colors
Double S40 x 192 pixels 140 columns
Hi-Res 16 colors

How Do I Insgtall It?

Installation of the double hi-res mode on your Apple //e

depends on the following three conditions, discussed in
detail below:

 1. Presence of a Revision B motherboard

2. Installation of an extended 80=-column text card
wi th jumper

3. A video monitor with a bandwidth of at least {4 MHz

First, your Apple //e must have a Revision B (“Rev=-B")
motherboard. To find out whether your //e“s motherboard is
a Rev-B board, check the part number on the edge of the
board nearest the backpanel, above the slots. . If the board
is a Rev-B board, the part number will be 820-004&4-8.
(Double hi-res does not work on systems containing a Rev-A
motherboard.) If your //e’s motherboard is not a Reuv-B

board, and if you want to obtain one, contact vour local
Apple dealer,.

The second condition for installing double hi-res on your

/78 is that your //e must have an extended 80-column text

card installed. This card must be installed with a jumper
connecting the two Molex—-type pins on the board.

WARNING: If your //e is a -Rev-A machine, do NOT insert into
it an extended 80—-column card with the jumper connection
mentioned above. The system will not work at all if you do.

The last requirement for operation in double hi-res mode is
that your video monitor must have a bandwidth of at least 14
MHz. This bancdwidth is necessary because a television set

that requires a modulator will not reproduce some characters
or graphic elements clearly, due to the high speed at which
the computer sends out dots in this mode. Because most of

the video moni tors having a bandwidth of up to 14 MHz are
black—and-white, the workKing examples in this article do not
apply to color monitors, If you have a video monitor,
please use it =-— instead of a television gset -- to display
the following examples. '

Your Turn to be Creative =— or, Uolunteers, Anycne?

At this writing, no programs exist that support double
hi-res graphics. Moreover, none of the standard hi-res
commands (such as HPLOT) work properly in double hi-res

mode. Until such routines are available, users must write
their own. If you’ve gotten this far, and want to continue,
you’ll probably already have used the system monitor, and
vyou’ll probably need very few explanations. If not, pliease

refer to the dApple_//e_Reference_Manuald and then return to
double hi-res operations,

Before going into the subtleties of double hi-res, you
shouid be acquainted with standard hi-res functions. I[If you
aren’t, obtain the Apple //e Reference Manual (Part Number
A2ZL2003) or the Apple 1[Reference Manual (which, however,
is out of print), and please read the sections on
high-resoclution graphics before proceeding with the hands-on
practice explained below,.

You can find ancther good explanation of these features in
the Apple J[Graphics column by Ken Williams, in Softline
magazine. We suggest that you start with Volume 1|, Number |
(September 1981), avaitable from Softalk Publishing, Inc.
The early columns are especially useful.

The tutorial that occupies the rest of this article assumes
you are workKing at your Apple //e as you read. The second
part of the lesson demonstrates the double hi-res mode;

therefore, before embarking on the second part, you should

install a jumpered extended 80-column card in your Rev-8
Apple /e,

Hands=0n Practice with Standard Hi-Res

The Apple //e hi-res graphics display is bit-mapped. In
other words, each dot on the screen corresponds to a bit in
the Apple //e’3s memory. For a real-life example of

bi t-mapping, perform the following procedure, according to
the instructions given below. (The symbol “<cr’>" indicates
a carriage return.)

1. Boot the system, using the DOS system master diskette.

2, UWhen the prompt ("1")> appears, preés the RESET Key.

3. Engaqge the CAPS LOCK Key, and type HGR(cr>. (This
instruction should clear the top of the screen.)

4, Type CALL -131 <cr>. (The system is now in the monitor
mode, and the prompt should appear as an asterisk (%).)

S. Trpe 2100:! <cr>. One single dot should appear in the
upper left-hand corner of the screen,

Congratulations! You have just plotted your first hi-res
pixel, (Not an astonishing feat, but you have to start
somewhere.,,)

With a black—-and-white monitor, the bits in memory have a
simple correspondence with the dots (pixels) on the screen.
A dot of light appears if the corresponding bit is set (has
a value of 1), but remains invisible if the bit is off (has
a value of zero). (The dot appears white on a ;
biack—-and-white monitor, and green on a green-scgreen
monitor, such as Apple’s Monitor ///. For simplicity, we
shall refer to an invisible dot as a "black" ‘dot or pixelw.)
Two visible dots lecated next to each other appear as a
single wide dot, and many adjacent dots appear ras a line.
To obtain a display of another dot and a line, follow the
steps listed below:

1. Type 2080:40 <cr>. A dot should appear above and to the
right of the dot you produced in the last exercise.

2. Type 2180:7F <cr>. A small horizontal line should
appear below the first dot you produced.

From Bits and Byrtes to Pixels
The seven low—=order bits in each display byte control seven
adjacent dots in a row. A group of 40 consecutive Bytes in

memory controls a row of 280 dots (7 dots per byte,
multiplied by 40 bytes), In the screen display, the
least-significant bit of each byte appears as the leftmost
pixel in a group of 7 pixels. The second-least-significant
bit corresponds to the pixel directly to the right of the
pixel previously displayed, and 80 on. To watch this
procedure in action, follow the steps listed below. The
dots will appear in the middle of your screen.

1. Type 2028:1 <Lcrd.,
2. Type 2828:2 <cr>.

3. Type 3028:4 <cr>.

The three bits you specified’in this exercise correspond to
three pixels that are displaved one after another, from left
to right. ’ :

The most-significant bit in each byte does not correspond to
a pixel. Instead, this bit is used to shift the positions

of the other seven bits in the byte. For a demonstration of
this feature, follow the steps listed below:

. Trpe 2030:8 <cr>.
2. Type 2830:8 <cr>.
3. Type 3050:8 <cr>.

.You’ll notice .that the dots align themselveg vertically,
Now :

4. Type 2450:88 <cr>.

The new dot (that is, the one that corresponds to the bit
you just specified) does not line up with the dots you
displayed earlier. Instead, it appears to be shifted one
"hal f-dot® to the right. ‘

3. To demonstrate that this dot really is a "new" dot, and
not just the "old" dot shifted by one dot position, type
2050:18 <ecr>, 2850:18 <cr>.

You‘ll notice that the dot mentioned under Step 4 above (the
dot that was not aligned with the other seven dots) is
straddled by the dots above and below it. (The use of
magnifying lenses is permitted.)

Shifting the pixel one “"half-dot", by setting the hiagh,
most-significant bit is most often used for color displays.
When the high bit of a brte is set, to qgenerate this shifted

dot (which is also called the “half-dot shift"), then all
the dots for that byte will be shifted one half dot, The
hal f-dot shift does not exist in the double hi-res mode for
the Apple //e.

The following figure shows the memory map for the standard
hi-res graphics mode:

\

\ HORIZONTAL OFFSET
BASEN\

_$00

$2000 |

$2080 |

$2100

32180

$22001

.
0
- bd) -

$2280!

$23001

333801

$20281

320481

$21A8 |

322281

$22A481

82328!

323481

2203501

$2000!

$2130

$2100

$223901

$22D0 1

$23301

| !
! !
| |
| !
| !
!]
| |
] !
| I
l |
I !
$2128]1 | I
I I
| |
I |
| !
! |
| |
] |
! |
! |
I |
I |
! !
I I

!
! |
I I
I !
| !
! I
| I
| !
| |
! !
I |
I ..
I | ,
| I
I I
| |
I I
I |
| |
I I
|]
| I
| |
| I
! !

$23001
Standard Hi-res Memory Map

The following figure shows the box subdivisions for the
memory map shown in the figure above:

(~~~~~~~~~N~~~~~~~~~~~~~~~~~~~~~~~~~~)

(QFFSET | BIT

(FROM é S 4 3 2 {
(BASE
(+20000
(+30400
(+$0800

u 0
I LSB
|
|
|

(+$0C00_|
!

n
l
!

(+$1000
(+$14400
(+418040
(+$1C00
(

fadada do £ X o 20 X 2o B g F X T T 2 LT L 2 Lo fada g dododo do o d

| I | I l [
! | | | I |
| l | I | !
I | I ! I |
| I I | ! |
|] | ! ! I
| | I I I !
| i | | | |

A W A W A W W s N s W

For example, the first memory address of eacﬁ screen line
for the first few lines is as shown below:

$2000
$2400
$2800
$2C00
$3000
$3400
$3800
$3C00
$2080
$2480, etc.

Each of the 24 “boxes’ contains 8 screen lines for a total
of 192 vertical lines per screen. Each of the 40 ‘box’ per
“line contains 7 pixels for a total of 280 pixels

" horizontally across each line.

The Intricacies of Double Hi-Res

Because the double hi-resciution graphics mode provides
twice the horizontal dot density as standard hi-res graphics
does, double hi-res requires twice as much memory as
standard hi-res does. [f you spent many hours memorizing
the standard hi-res memory map, don’t despair. Double
hi-res still uses the hi-res graphics page (but only to
represent half the picture, so to speak). In the double
hi=-res mode, the hi-res graphics page is compressed to fit
into half of the display. The other half of the display is
stored in memory (called the "auxiliary" or "aux" memory) on
the Extended 80-Column card. (This article refers to the
standard hi-res graphics page, which resides in main memory,
as the "motherbocard” or “MB" memory.)

The auxiliary memory uses the same addresses used by the

standard hi-res graphics page (Page |, $2000 through $3RFF).
The hi-res graphics page stored in auxiliary memory s Known
as "hi-res page 1X." The graphics pages in auxiliary memory

are bank-switched memory, which you can switch in by
activating some of the soft switches. <(Adventurous readers
may want to skip ahead to "Using the Auxiliary Memory,"
which appears later in this article.) ’

The memory mapping for the hi-res graphics display is
analogous to the technique used for the 80-coiumn display.
The double hi-res display interleaves bytes from the two
different memory pages (auxiliary and motherboard). Seven
bits from a byte in the auxiliary memory bankK are displayed
firat, followed by seven bits from the corresponding byte on
the motherboard. The bits are shifted out the same way as
in standard hi-res (least—-significant bit first). In double
hi-res, the most significant bit of each byte is ignored;
thus, no half-dot shift can occur. (Thig featumre is
important, as you’ll see when we examine double hi-res in
color.)

The memory map for double hi-res appears below:

|30 31 $2 $3 | | 325 | 324 |

[
~

!
1 |
1AUX]T MBIAQUX! MBI AUX

AUX! MBI _AUX! MBI AUX! MBI AUX! MBI AUX

i 4
Lved

y— micaausmcmren: na —a — —

$2000

$20801

$21001

|
l
I

$21801

$2200

$22801

SRR

$23001

|
I
!
|
I
!
|
]
I
|
|
!

$21281
$2148|
$22281
$2248|
$23281
32348
$20501
32000
$21501
$21001

|
| I |
! | |
I | |
! I I
I I I
| J !
| l I
! l I
| | I
! I I
| I I
| ! I
| I I
| l I
! ! !
! | |
! ! |
] ! I
| | I
I I |
I I |
| I I
| I |
I I |

!

|
! ! }

! |
I ! I

l I
! | |
| | |
i l |
! | |
| I |
I | |
| I |
! I !
I | |
| | |
I ! |
I | l
! | !
I l !
| ! !
I | !
| | |
|] |
! | |
I | !

Double Hi-res Memory Map

Where each box is subdivided exactly the same way it is 1n
the standard hi-res mode.

Obtaining a Double—Hi~Res Display
To display the double hi-res mode, set the following sott
swi tches: '

In Monitor In Appleso+t
Read PEEK
HI-RES $C0S7 49239
GR $C030 49232
AN3 | $COSE 49244
MIXED $COS3 49235
In Monitof In Applesoft
Write POKE
80CoL $C00D 49145,0

Annunciator 3 (AN3) must be turned off to get into doubie
hi-res mode. You turn it off by reading location 49244
(BCOSE hex). Note that whenever you press CTRL-RESET, AN3
is turned onj therefore, each time you press CTRL-RESET, vyou
must turn AN3 off again.

[f you are using MIXED mode, then the bottom four lines on
the screen will display text. If you have not turned on the
80-column card, then every second character in the-bottom
four lines of text will be a random character. (The reason
is that although the hardware displays 80 columns of
characters, the firmware only updates the 40~column screen,
which consists of the characters in the odd—-numbered
columns. The characters in even-—numbered columns then
consist of random characters taken from text page {X in the
auxil-iary memory.)

To remove the “even" characters from the bottom four lines
on the screen, type PR#3(CR)> from basic (type 3°P from the
monitor), This procedure clears the memory locations on
page 11X,

Using the Auxiliary Memory

The auxiliary memory consists of several different sections,
which you can select by using the soft switches listed
below. A pair of memory locations is dedicated to each
switch. (One location turns the switch on; the other turns
it off.) You activate a switch by writing to the
appropriate memory location. The WRITE instruction itsel+f
is what activates the switch; therefore, it doesn’t matter
what data you write to the memory location. The soft
switches apre:

From Moni tor From Applesoft

Write POKE
S80STORE off: $C000 49132,0
on: $C001 49133,0
RAMRD otf: $C002 49134,0
on: $C003 49135,0
RAMWRT off: $C004 49134,0
on: $C003 49157,0
PAGEZ2 of+f: $C054 49234,0
on: $C033 49237,0
HIRES off: $C034 49238,0
on: $C0S7 4923%9,0

A routine called AUXMOVE, located in the monitor ROM of the
Apple //e, is also very handy, as we’ll see below. AUXMOVE
is located at address C311.

Accessing memory on the auxiliary card with the soft
swi tches has the following characteristics. Memory maps,
which help clarify the descriptions, are on the next page.

1>, To activate the PAGEZ and HIRES switches, you need only
read (PEEK) from the corresponding memory locations
(instead of writing to them, as you do for the other
three switches),

2). The PAGE2 switch normally selects the display page, in
either graphics or text mode, from either Page | or Page
2 of the motherboard memory. However, it does so only
when the S80STORE switch is OFF. B

3. 1I¥ the B0STORE switch is ON, then the function of the
PAGE2 swi-tch changes. -When 80STORE is ON, then PAGEZ2
switches in the text page, locations $400-7FF, from
auxiliary memory (text page 1X), instead of switching
the display screen to the alternate video page (Page 2
on the motherboard). When 80STORE is ON, the PAGEZ2
switch determines which memory bank (auxiliary or
motherboard) is used during -any access to-addresses 3400
through 7FF. When the B80STORE switch is ON, it has
priority over all. other switches.

4>, [If the S80STORE switch is ON, then the PAGE2 switch only
swi tches in the graphics page (X from the auxiliary
memory if the HIRES switch is also ON. <(Note that this
circumstance is slightly different from that described
in Item 3 above.) When 80STORE is ON, and if the HIRES
switch is also ON, then the PAGE2 switch selects the

MAIM MEMORY

AUXILIARY HEMORY

=

BFFF !tgi§~;

L

& v-oqY
peoy V12
- oot
,.a-i - |
e ad B |
w)
e Trr R

e 4%

HiI-REB
BRAPHICS
PAGE 4

HI-RES
ERAPHICS
PABE IX

D DT D D P (D D WD SED IR P In WGP«

TEXT
PAGE 2K |

TEXT .
PAGE IX |

! ALT BTACK

1 25RO BAgEl

B9GTORE

|OFF | o¥ i

PABE_2 X __| off
HIAER x

Actie
Memofy

. X
RAMRD/RAMRT | OFE JoeF | |

MAIN MEMORY

AUXILIARY M

.JRY

BFFF

i |
i i
i i
i i
| i
5FFF 1 HI-RE8 |
! BRAPHICS |
! PABE 2 |
&pep | j-
3FFF | HI-REB |
| BRAPHICB |
i PAGE 1
%_Zﬂnﬂ_¥] i 3
i i] 5 -
§ § vuk'l
i | 1284
BFF § 7B !] &
! PABE 2 1 i
goe | | w88 220
7FF | TBXT § 1 1
I PABE § = {
400 | | i &
| i ! -1
| TR
§FF I ALT BTACKI
i & i

! ZERO PABEI

gogIoRE __ 10f°

| | {
PARE_2 | IS | | i
HIRES X 1 { i
RAMRD/RAMMRT 1 0W 1|] 1

TRIN MEMURY
4

AUXILIARY MEMORY

FFFF -
DFFF 13 1
__boge
BFFF 1]
| i
I '
i i
|
SFFF | HI-RE®
| BRAPHICS |
I PABE 2 |
4900 |
3FFF | HI-RES
| BRAPHICS |
| PAGE L |

IFF

A CTIvE

MC moky

HAIN MEMORY AUXILIARY I0RY
FFFF p &43] i
;i; i i
B o
“DFFF 1,4 Togrld) i |
:' i} ‘ﬁ Ry 181 i i
D008 zzf ke B) |
BFFF 1]
{ !
i !
i ! ot {1141
i] 3 Lieial
SFFF | HI-RES | .
| BRAPHICS | F
! PABE 2 1 E% Q%
L } jiemtivy
THIE ! KWI-RES 1
ki | BRAPHICS |
3 - | PABE IX |
3z ~L i l

i i
i i
| {
BFF | TEXT §
| PABE 2 1§
) %EE)
= PAGE v ¢

ALY BTACKI
P&
|_ZERG PABEL

B98]0RE oy | | 1
PAGE 2 Jofr | I l
HIRES lor | I 1
RAHBD/RAMYRT | 0N |] |

MAIN MEMORY AUXILIARY HEHURY

3 u

| i

| |

i i

| ! i

| 1 i

I |

I I

I |

| i
808TURE N .
PAGE_2 o [g At
HIRES DEf 4 Memoly
RAMRO/RART * o€ I 1

HAIN MEMORY

o —n o D o -

AUXILIARY MEMORY

|

BRAPHECS

HI-RES
PABE 2X

o o — - -y -

| GRAPHICSB |

{ PABE I

._2000

e D

LT STACKI
& i

ERD PAGE(-

GOBIORE - 19Y |- 1 i
PABE_2 I N N |
HIRES e | i]
RAMRD/°AM4RT | ¢if 1§ i

memory Bbank (auxiliary or motherboard) for accesses to a
memory location within the range $2000 through 3FFF. If¥
the HIRES aswitch is OFF, then any access to an memory
location within the range 32000 through 3FFF uses the
motherboard memory, regardless of the state of the PAGEZ
swi tch.,

S. If the B80STORE switch is OFF, and if the RAMRD and
RAMWRT swi tches are ON, then any reading or writing to
address space 3200-8BFFF gains access to the auxiliary
memory. If only one of the switches, for example RAMRD,

is set then only the appropriate operation, in this case
a read, will be performed on the auxiliary memory, while
a write operation will access only the motherboard

memory. If only RAMWRT is set then all write operations
access the auxiliary memory. When The S0STORE switch is
ON it has higher priority than the RAMRD and RAMWRT

swi tches,

Shortcuts: Writing to Auxiliary Memgory from the Kevboard
First, press CTRL-RESET. Next, type <CALL -=1351!> (to get
into the moniter). Then type the following hexadecimal
addresses to turn on the double hi-res mode: '

cos? (for Hi-res)

Co03g (for Graphics)

co33 (for Mixed mode)

COSE Turns off AN3 for double hi-res
cooD:0 Turns on the 80COL- switch

This procedure usually causes the display of a random-dot
pattern at the top of the screen, while the bottom four
lines on the screen contain text, To clear the screen,
follow the steps listed below:

1). Tyrpe 3DOG to return to BASIC.

2). Type HGR to clear half of the screen. (The characters
you type will probably appear in alternating columns.
This is not a cause for alarm; as noted above, the
firmware simply thinks you are worKing with a 40-column
dizplay.) Remember that hi-res graphics commands don’t
kKnow about the half of the screen stored on page (X in

the auxiliary memory. Therefore, only page | (that ic,
the first half) of the graphics page on the motherboard
is cleared. As a result, in the the screen display,

only alternate 7-bit columns appear cleared.

On the other hand, if all of the screen columns were cleared
after the HGR command, then chances are good that you’re not
in double hi-res mode. If your screen was cleared then to

de termine which mode you‘re in, type the following
instructions:

cAaLL -151 backKk into moni tor
2000 :FF

2001 <2000.2027M

I+ a solid line appears across the top of the screen, you’re
not in double hi-res mode. <(The line that appears should be
a dashed or intermittent line: = = = = = = = = across the
screen.) If you’re not in double hi-res mode, then make
sure that you do have a Rev, B motherboard, and that the two
Molex—-type pins on the Extended 80-Column card are shorted:
toge ther with the jumper block. Then re-type the
instructions listed above.

1¥f you’re staring at a half-cleared screen, you can clear
the non-blankK columns by writing zeros to addresses $2000
through 3FFF on graphics page (X of auxiliary memory. To do
so, simply turn on the 80STORE switch, turn on the PAGE2
switch, and then write to locations $2000, 32001, $2002, and
50 on up through 3FFF. Howewer: this procedure will not
work if you try it from the monitor! The reason is that
each time you invoke a monitor routine, the routine sets the
PAGE2 switch back to page | so that it can display the most
recent command that you entered. When you try to write to
$2000, ete. on the auxiliary card, instead it will write to
the motherboard memory.

Another way toc obtain the desired resgult is to use the

moni tor’s USER command, which forces a jump to memory
location $3F8,. You can place a JMP instruction starting at
this memory location, so that the program will jump to a
routine that writes into hi-res page 1X. Fortunately, the
moni tor already contains such a routine: AUXMOUVE.

Using AUXMOUVE

You use the AUXMOVE routine to move data blocKs between main
and auxiliary memory. But the task still remains of setting
up the routine so that it Knows which data to write, and
where to write it. To use this routine, some byte pairs in
the zero page must be set up with the data blockK addresses,
and the carry bit must be fixed to indicate the direction of
the move. You may not be surprised to learn that the byte
pairs in the zero page used by AUXMOVE are also the
scratch-pad reqisters used by the moniter during instruction
execution., The result is that while you type the addresses
for the monitor’s move command, those addresses are being
stored in the byte pairs used by AUXMOQUE. Thereafter, vou

can call the AUXMOVE command directly, using the USER
(CTRL~-Y) command.

In practice, then, enter the following instructions:

€006:0 (turns on the 80-Column ROM,
which contains the AUXMOVE
routine)

co0g:0 (reason explained below)

3F8: 4C 11 C3 (the jump to AUXMOVE)

2000<2000 .3FFF Y (where "*Y" jndicates that you

should type CTRL-Y.)
The syntax for this USER (CTRL-Y) command is:

{AUXdest<{{MBstart).(MBend2*Y Copies the values in the
range MBstart to MBend in the
motherboard memory into the
auxiliary memory beqginning at
AUXdest, This command is
analogous to the MOUE
command.

You can use this procedure to transfer any block of data
from the motherboard memory to hi-res page {X. Working
directly from the Keyboard, you can use a data block

" transferred this way to fill in any part of a double hi-res
screen image. The image to be stored in hi-res page !X
(that is, the image that will be displayved in the

even~numbered columns of the double hi-res picture) must
firet be stored in the motherboard memory. You can then use
the CTRL-Y command to transfer the ‘image to hi-res page .1X,

The AUXMOVE routine uses the RAMRD and RAMWRT switches to
transfer the data blocks. Because the 80STORE swi tch
overrides the RAMRD and RAMWRT switches, the 80STORE switch
must be turned off —-— otherwise it would Keep the transfer
from occurring properly (hence the write to $C000 above).

If the 80STORE and HIRES switches are ON and PAGE2Z is off,
when you execute AUXMOVE, then any access to an address
located within the range - from $2000 to $3FFF inclusive would
use the motherboard memory, regardless of how RAMRD and
RAMWRT are set. Entering the command C000:0 turns of+f
80STORE, thus letting -the RAMRD and RAMWRT switches control
the memory banking.

The CTRL-Y trick described above only works for transferring
data blocks from the main (motherboard) memory to auxiliary
memory (because the monitor always enters the AUXMOUVE
routine with the carry bit set)., To move data blocks from

the auxiliary memory to the main memory, you must enter
AUXMCOVE with the carry bit clear. You can use the routine
listed below to transfer data blocks in either direction:

301:AD 0 3 (loads the contents of address $300into
the accumulator)

304:24a (rotates the most—-significant bit into the
carry flag)

303:4C 1t C3 (jump to 2C311 <AUXMOVE>)

3F8:4C 1 3 (gets the CNTRL-Y command to jump to

address $301)

Before using this routine, you must modify memary location
$300, depending on the direction in which you want to
transfer the data blocks., If the transfer is from the
auxiliary memory to the motherboard, you must clear location
$300 to zero. If the transfer is from the motherboard to
the auxiliary memory, you must set location $300 to $FF.

TJwo Double Hi-Res Pages

So far, we’ve only discussed using graphics pages | and X
to display double hi-res pictures. But -- analogous to the
standard hi-res pages ! and 2 -- two double hi-res pages
exist: pages ! and I{X, at locations $2000 through 3FFF, and
pages 2 and 2X, at locations $4000. through 3FFF.The only
trick in displarying the second double hi-res page is that
you must turn off the 80STORE switch. If the 80STORE switch
is ON, then only the first page (1 and 1X) is displared. Go
ahead and try it:

Coo0g:0 to turn off the S0STORE switch
coss to turn on the PAGE2 switch
The screen will fill up with another display of random bits.

Clear the screen using the instructions listed above (in the
section entitled "Using AUXMOVE"). However, this time, use
addresses 34000 through SFFF instead. (Don’t be alarmed by
the fact that the figures you‘re typing aren’t displayed on
the screen. They¥‘re being “"displayed” on text Page 1.>

4000:0

4001 <4000 .3FFFM

4000¢4000.5SFFF Y

You’ll be delighted to learn that you can also use this
trick to display two 80=column text screens. The only
problem here ig that the 80-column +firmware continually
turns on the B80STORE switch, which prevents the displar of
the second 80-coliumn screen. However, if you write your own
80—-column display driver, then you can use both of the
80-column screens.

Color Madness

It should come as no surprise that color-display techniques
in double hi-res are different from color-display techniqgues
in standard hi-res. This is because the "half-dot shift"
doesn’t exist in double hi-res mode.

Instead of going into a disquisition on how a TV set decodes
and displays a color signal, 1711 simply explain how to
generate color in double hi-res mode. In the following
examples, the term "color monitor"” refers to either an NTSC
moni tor or a color television set. Both work; however, the
displays will be much harder to see on the color TVU.The
generation of color in double hi-res demands sacrifices., A
J340x192-dot display is not possible in color. Instead, the
horizontal resclution decreases by a factor of four (to 140
dots across the screen)., Just as with a 'black—and-white
monitor, a simple correspondence exists between memory and
the pixels on the screen. The difference is that four bits
are required to determine each color pixel. These four bits
represent 14 different combinations: one for each of the
colors available in double hi-res. (These are the same
colors that are available in the low—-resoclution mode.)

Let’s start by exploring the pattern that must be stored in
memory to draw a singie colored line across the screen.
Start by pressing RESET; then load the program "COLOR TEST®
from the DOS 3.3 sample programs disk (with the old Apple
1{+ DOS system master use the program “COLOR DEMOSOFT") .
Use this program to adjust the colors displayed by your
moni tor. After you’ve adjusted the colors, exit from the
color—-demo program. -

The instructions that appear below are divided into groups

separated by blank lines. Because it’s very difficult <and,
on a TV set, almost impossible) to read the characters

vyou’‘re typing in as they appear on the screen, face it: you
will makKe typing errors., If the instructions appear not to

work, then start again from the beginning of a group of
instructions.

caLt, -—-151 (to get into the Monitor routine/program)
Cco0Sa (This set of instructions puts the

Ccos? computer into double hi-res mode.)

COSE

£00D:0

2000:0 (This set of instructions clears firct

2001<2000 . 3FFFM one half of the screen, and then the

3F8: 4C 1t C3 other half of the screen.)

20002000, 3FFF*Y

2100:1t 4 (2 red dots appear on top left of screen)

2102<2100.2124M (A dashed red line appears across screen)
2180:8 22 (Two green dots appear near bottom left)
152<2130,2175M (Dashed green]line appears across screen)

2100<2150.2177°Y (Fills in the red line)

In contrast to conditions in standard hi-res, no half-dot
shift occurs, and the most-significant bit of each byte is
not used.

As noted above, four bits determine a color. You can
*paint" a single—color line across the screen simply by
repeating a four-bit pattern across the sgreen, But it is
much easier to write a whole byte rather than just change
four bits at a time. Since only 7 bits of each byte are
displayed (as noted earlier in our discussion of
black—-and—-white double hi-res) and the pattern is four bits
wide, it repeats itself every 28 bits or four brtes. Use
the instructions listed below to draw a line of any color
across the screen by repeating a four byte pattern for the
color as shown_ in Table [II below.

2200: mbi mb (Colored dots appear at the left edge)
2202<2200.,222éM (A dashed, colored line appears)

2250 ayxli éux2
22502230, 227 &M

2200¢ 0.2274°Y (Fills in line, using the selected color)

[see Table III on next pagel

TABLE [1l. The Sixteen Colors

REPEATED BINARY

COLOR aux! mbl aux2 mb2 PATTERN
BLACK] 00 00 00 0g0a0g0
MAGENTA 08 11 22 44 000t
BROWN 44 08 11 22 0010
ORANGE 4C 19 33 Y- ago11
DARK GREEN 22 44 g8 11 gl1oo0
GREY! 2A 35 28 38 Q101
GREEN &4 4C 19 33 o110
YELLOW 4E 3D 3B 7’7 o111
DARK BLUE 11 22 44 08 1000
VIOLET 19 33 éé “4cC 1001
GREY2 39 2A 33 24 1010
PINK SD 3B 77 SE 1011
MEDIUM BLUE 33 Y-} 4C 12 1100
LIGHT BLUE 3B 77 éE SD 1101
AQUA 7’7 4E SD 3B 1110
WHITE 7F 7F 7F 7F 111!

——— —— —

In this table, "aux!" indicates the first, fifth, ninth,
thirteenth; etc. byte of each line (i.e., every fourth byte,
starting with the first byte). The heading "mbl!" indicates
the second, sixth, tenth, fourteenth, etc. brte of each line
(i.e,, every fourth byte, starting with the second byte).
The "aux2" and "mb2" headings indicate every fourth byte,
starting with the third and fourth bytes of each line,
respectively. "Aux!" and "aux2* are always stored in
auxiliary memory, while "mbl" and "mb2" are always stored in
the motherboard memory.

As you’ll infer from Table IIl, the absolute position of a
byte also determines the color displayed. If you write an
*8" into the first brte at the far left side of the screen
(i.e., in the "aux!" column), then a red dot is displared,
But if you write an "8" ‘into the third byte at the left side
of the screen (the "aux2" column), then a dark green dot is
displayed., Remember -— the color monitor decides which
color to display based on the relative position of the bits
on each line ¢i.e., on how far the bits are from the left
edge of the screen).

So far, so good. But suppose you want to display more than
one color on a single line., It’s easy: Jjust change the
four-bit pattern that is stored in memory. For example, if
you want the left half of the line to be red, and the right
half to be purple, then store the "red" pattern (8, 1!, 22,
44) in the first 40 bytes of the line, and then store the

"purple” pattern (19,33,44,4C> in the second 40 brtes of the
line. Table IIl is a useful reference tool for switching
from one color to another, provided you makKe the chanqe on a
brte boundary. In other words, you must start a new color
at the same point in the pattern at which the oid color
ended. For example, if the old color stops after you write
a brte from the “mbl" column, then you should start the new
color by storing the next byte in memory with a byte from
the "aux2" column. This procedure is illustrated below:

2028:11 44 11 44 11 44 {1 77 3D 77 3D 77 SD
(creates a dashed line that.is red, then yellow)

2128: 8 22 8 22 8 22 8 22 4E 3B SE 3B SE

2028<2128.2134"Y (fills in the rest of the colors)

Switghing Colors in Mid=Brte

If you want a line to change color in the middle of a byte,
you’ll have to re—calcuylate the column, based on the
information in Table III. Suppose you want toc divide the
screen into three vertical sections, each a different color.
The left-hand third of the screen ends in the middle of the
27th character from the left edge -- that is, in an "aux2'
column of the color table. (Dividing 27 by 4 gives a
remainder of 3, which indicates the third column, or
*aux2".) Your pattern should change from the first color to
the second color after the 3th bit of the 27th byte. You
can change the color in the middle of a byte by selecting
the appropriate bytes from the "“aux2" column of Table lII,
and-concatenating two bits for the second color with five
bits for the first color.

However, because the bits from each byte are shifted out in
order from least significant to most significant, the two
most significant bits (in this case I mean bits 5 and §,
because bit 7 is unused) for the second color are
concatenated with the five ‘least significant bits for the
first color. For instance, if you want the color to change
from orange (the firat color) to green (the second colar),
then you must append the two most significant bits (3. and &
of "green® to the five least significant bites (0-4) of
“orange." In Table III, the "aux2" column byte for green is
19, ‘and the two most significant bits are both clear. The
“aux2" column byte for orange is 33, and the five least
significant bits are equal to 100{{. The new byte
calculated from appending green (00) to orange (10011
yields 13 (0010011). Therefore, the first 26 byte of the
line come from the table values for orange; the 27th byte is
13, and the next 246 bytes come from the table values for
green,

2300: 19 & (puts orange line on screen)
2302<2300.2310M

The double hires screen has 140 columns, numbered 0 through
139, and 192 rows, numbered 0 to 19!{. Just like the standard
hi-res screen, the origin is in the upper left corner, while
the point 139,191 is in the bottom right corner,

The color codes are the same as for lo-res graphics:

Q:black
{:magenta
2:dark blue
3:violet
4:dark green
S:greyi
S:medium blue
7:light blue
8:brown
$:0range
10:grey2
11:pink
12:green
13:yel low
14:aqua
{S:white

Some exercises you may want to try include painting the left
half of the screen with grey!l and the right half with grey2

to see if they are different or moving a colored ball on

di fferent colored background. For the adventerous type, you

may want to rewrite brickout (super brickout).

The following program shows off double hi-res. It starts
with the color bar demo, except in this case the color bars
can be much narrocwer than was possible in low resolution
graphics. The next screen shows a simple picture of an
orange line drawn diagonally on a green background. These
two colors are also available in standard hi-res, but as
you’l]l see in the next picture there are certain)
limitations.

[[RUN DEMG11]

In double hi-res the most significant bit is not used, and
any color can appear next to any other color, anywhere on
the screen (though "fringing" can occur where the colors
Join). In standard hi-res the most significant bit of each
byte limits that byte to four of the six colors, 1¥ the MSB
is set than than the only colors displayed by that byte are
white, black, blue, and orange. Therefore since green and
orange can‘t be displayed in the same byte, the whole byte
becomes orange, and the stair step line appears.

By the way, if Annunciator 3 (AN3) is turned off when a
Jumpered extended 80-column card is present, then the mocst
significant bit of standard hi—-res isn‘t used either. This

means that any standard hi-res picture will display only
black, white, violet or green. I[f the picture contains bilue
or orange, then those colors will be converted to violet or
green. Go ahead and try it: pull out a game that uses all
four colors, turn the AN3 of+ with PEEK (49246), and then,

wi thout pressing RESET (since that sets AN3 on), run the
program (RUN HELLQO sometimes works).

Now you‘ve got the tools and the rules to the double hi-res
mode. A2 you can see double hi-res has more color with
higher resolution than standard hi-res. You can even deveiop
games that do fancy animation or szcroll orange objects
across green bacKgrounds. In black and white, word
processing programs that use different fonts or proportional
character sets can be developed. Have fun playing with the

this new mode and I hope [‘]] see some of your programs
soon., :

[[I‘’ve got two more demo programs if there is room:l]

RUN DQUBLENET (Remember Brians’s theme)
BRUN @&IX

‘APPLE //e¢ TECHNOTE #4

Revision of RDY TECHNOTE 1-April 83#%
1-July 84

This article describes an input signal into the 43502 microprocessor
called the RDY line. The RDY line allows a peripheral card to halt the
microprocessor with the output address Ilines reflecting the current
address being fetched. If a peripheral device can not get data on the
bus fast enough to meet the set up time of the 4502 then the peripheral
card can pull the RDY line low and tell the 4502 to wait. This allows
the peripheral device enough time to get the proper data on the bus.
This article describes the timing for as event such as this.,

For further information contact:
PCS Developer Technical Support
M/S 22-W. Phone (408) 9946-1010

Disclaimer of all Warranties and Liabilities

Apple Computer, Inc. makes no warranties, either express or implied,
with respect to this documentation or with respect to the software
described in this documentation, its quality, operformance,
merchantability, or fitness for any particular purpose. Apple Computer,
Inc. software is licensed "as is". The entire risk as to its quality
and performance is with the vendor., Should the programs prove defective
folowing their purchase, the vendor (and not Apple Computer, Inc., its
distributor, or its retailer) assumes the entire cost of all necessary
servicing, repair, or correction and any incidental or consequential
damages. In no event will Apple Computer, Inc, be liable for direct,
indirect, incidental, or consequential damages resulting from any defect
in the software, even if Apple Computer, Inc. has been advised of the
possibility of such damages. Some states do not allow the exclusion or
limitation. of implied warranties or liability for incidental or
consequential damages, so the above limitation may not apply to you.

This documentation is copyrighted, All rights are reserved. This
document may not, in whole or part, be copied, photocopied, reproduced,
translated or reduced to any electronic medium or machine readable form
without prior consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

PB

Peter Baum ' Apple Computer July 1, 1784
203525 Mariani Ave M.S. 22-W Copyright 1982
Cuperting, Ca. 95014

Using the RDY Line on the Apple //e and Apple 1[+

Though the &502 was one of the first commercially successful
microprocessors sold, the designers had forsight to include
some very useful functions. Because many early peripherals
products were very slow devicee a microprocessor could not
read from the device directly. To connect these slow devices
onto the Apple peripheral bus, so that the 4502 can read
data from them, requires either buffering the device or
slowing down the processor. Though most people would try to
buffer the device, sometimes it is not feasible. For
example, the 2 ms, access time of a l-megabit CMOS ROM makKes
buffering a nightmare, since both the address and data bus
have to be buffered. When buffering isn‘t possible then a
peripheral device can pull the RDY line to slow down the
processor long enough to read a byte, This technique can be
used by slow devices to communicate with the &4502.

The RDY line allows a peripheral card to halt the
microprocessor with the output address lines reflecting the
current address being fetched., If a peripheral device can
not get data on the bus fast enough to meet the set up time
of the 6502 then the peripheral card can pull the RDY line
low and tell the 4502 to wait. This can not be done during a
4502 write cycle because the 4502 will not hold up.

In order for the 4502 to read a valid data byte from a
peripheral card, the card has about 800 ns. from the time
the addresses are valid to put the data on the bus. The data
must be set up on the bus within approximately 400 ns. from
the time that the 1/0 STROBE, 1/0 SELECT, or DEVICE SELECT
signal on the peripheral slot goes true. I+f a device pulls
the RDY line low for one cycle then the device will have 1.4
usec., instead of the 400 ns., to put out valid data. The
RDY line can be pulied low for more than one cycle; in fact,
there is no limit. A device that takes 100 us. to send data
can Jjust hold the RDY line low for 100 cycles. Hence, this
technique will allow any slower device to get on the bus and
send data to the 4502,

The RDY line is typically pulled low during 01, but the
specification sheets for the 4502 show that it can be pulled
anytime before the last 200 ns. of 02. The 02 line is not
used by the Apple, but is an unused output from the &4502. It
is basically the same as the 0o line with a little delay.
Before I explain when to use (or not use in some cases) the
RDY line, let us first look at some timing diagrams of the
Apple system.

The timing diagram on the next page shows the relationship
be tween the 4502 and Apple //e and Apple J[+. The timing
specifications have been adjusted to reflect the cignals as
they are seen from the peripheral siots. For example the
6302 (1 MHZ.) specification quaranteecs that the address bus
will be valid within 225 ns. from 02 out. But the peripheral
slots do not see these address lines directly; Incstead the
address lines go thru a buffer and then out to the
peripheral slots., This adds a maximum delay of {3 ns, in the
Apple 1[I and 18 ns. in the Apple //e. The timing diagrams
will show, in the case of an Apple 1[, that the address bus
will be valid to the peripheral slots within 238 ns,.
(225+13) of 02 falling edge.

The major differences in timing between the Apple 1[+ and
the Apple //e are due to the processor. The Apple 1[uses a
{1 MHZ. 4502, while the Apple //e uses a 465024, which is a 2
MHZ., part. This does not mean that the system clock in the
Apple.//e runs any faster, only that the 45024 is capable of
running faster, This results in better timing margine. For
example, the address and data busses are set up faster in
the Apple //e by the 65024 than the 4502 sets them up in the
Apple J[. (This was done because the custom chips in the
Apple //e are slower than the discrete logic in the Apple 1L
and the 4502A was needed to compensate for thisy.

A peripheral:-card which use¢ the RDY tine can only be used
under certain circumstances. Because pulling the RDY line
low halts the processor, any program with a software timing
loop will not worK properlty. These programs assume that each
instruction will take a fixed amount of time, which is not
true when the processor stops in the middle of an ;
instruction. An Apple][disk is an example of a peripheral

which requires timing loops and won’t run properly if the
RDY tine is used.

JIMING SIGNALS AS SEEN FROM PERIPHERAL SLOTS

Apple 0o |

! cpuy phase

Apple 01 i

video phase !

Q3 I
1T02~!

02 out |
of 43502 %

e ———————. '

ITO2+1

1T02-1

Tads

I Trwh!

R/W & ADDR
as seen from slots

valid addresses

><

N
N\

I Tdevsel ~|

DEVICE SELECT
as seen from slots

ITdevsel+|

ITiosel-|

1/0 SELECT
as seen from slots

|ITiosel+|

|

ITiostb~|

1/0 STROBE
as seen from slots

DATA

ITiostb+|

I Tdesu!lThr!

/

from slots

AN

valid AN

/

Trs

RDY

\/ don‘t change state\/

N\

N\

- 02 is an output signal
Apple. It is a delayed 0Oo.

from the 4502 which is not used by the

FIGURE 1!

TIMING SPECIFICATIONS FOR FIGURE !

(all times in ns.’

Apple 1T Apple //e

1 MHZ. &502 2 MHZ. é302A
Symbol min. max . min. max .
TOoOZ2- # 15 S0+20 <¢LsS08> 15 50+5 (S02)
"TO2+ # 30 80+15 (LS08) 30 80+5 (S02>
Tads 225+1{3 (8T?7) 140+18 (LSz244)
Trwh 30 30
Tdevsel - ?4 (3 x LS138) &5 (LS154+L8138)
Tiosel - 64 (2 x LS138) 38 (LL.s138)
Tiostb- 32 (Lsi138’ 1S5 (LSs1G)
Tdevsel+ 18 (LS138) 30 (Lsi54>
Tiosel+ 36 (2 x LS138) 18 (LS138)
Tiostb+ 18 (LS138) 15 (LS1O»
Tdsu 100+17 (8T28) * S0+{2 (LS245)
Thr 10 10
Trs = 200 200

1

* The RDY line must never change states within Trs to end of 02.

- load = 100 pf.

"

The RFI versions of the Apple 1l[+, revisions A through D
motherboards, use an 8304 instead an 8T28.

There are three different types of numbers listed above. If a number
is standing by itself then it is just the corresponding 6502 or &302¢
specification. If a number is followed by parenthesis then it
represents the delay, produced by TTL gates, between the &502 and the
peripheral slots. The characters in the parenthesis denote the part
number(s) of the part(s) which generated the delay. These parts are
typically 74’ series TTL except for the 8T28 and 8T97. If there are
two numbers in a column with a “+* then the first number signitfies the
4502 specification and the second the TTL delay, with the '
corresponding part number. Most of the TTL delay times are from the
Texas Instrument data books. The 4502 specifications are from the
Synertek &502 data sheet and from Synertek application note ANZ2 -
SY4500.

WHEN THE RDY LINE CAN BE CHANGED AND WHEN IT CAN‘T

As can be seen from these diagrams, the RDY line should not be gated
with the 0o trailing edge since this happens around the same time as
the falling edge of 02, This would violate the Trs specification and
probably force the 4502 to perform erratically., Gating the RDY line
with the trailing edge of Q3 during 0o might work, but this could
leave as little as 25 ns. for the signal to be valid. In other words
Q3 must enable the RDY line low within 25 ns. of Q3 changing states.
1f this output cannot be guaranteed stable, then the RDY line might
violate the Trs specification.

The safest time to pull the RDY line is using the 0o rising edge, but
this edge occurs before I1/0 SELECT, 1/0 STROBE, or DEVICE SELECT is
enabled. Therefore this scheme will not work if any of these three
enables is used by the peripheral card. For example, many peripheral
cards use. memory mapped [I/0 to transfer data, with the cards registers
designed to reside in the DEVICE SELECT memory space. Location COnO
(where n = 8 + slot number of peripheral card) might hold the status
of the card, and location COn! might be used to read a device such as
a disk or an A/D converter, The card uses the DEVICE SELECT signal,
pin 41 an the slot, and the 4 low order address lines to determine if
the 4502 wants to read the status register or read from the A/D
converter. Typically, the status register can put its data on the bus
within 200 ns., easily meeting the set-up réquirements of the &502.
But the A/D converter might take at least 100 us. before it can
respond with data. The RDY line must be pulled low to allow time for
the A/D converter to set up the data bus. Notice that the peripheral
card doesn’t Know that it should pull the RDY line low until after the
JEVICE SELECT signal has gone low. This signal doesn’t go lTow until
after 0o goes high, 2o the 0o rising edge can’t be used to enable the
RDY line for this peripheral card. ‘

There are a few ways around this problem.: One solution would be to
decode the COn0 address on the peripheral card and not use DEVICE
SELECT. This also requires either putting user selectable switches on
the card for setting the slot number, or maKing the card slot
dependent. Another solution is to pull the RDY line low using one of
the first three edges, trailing orleading; of the 7M'clock. These
edges occur- at 70, 140, and 210 ' ns. into 0o and are trailing, leading,
then trailing edges, respectively. The best solution is to use the
DEVICE SELECT signal to enable the RDY line. The following timing
diagram should help.

0o [[| I | b
Q3 [[! [| | | 1 I | 1
DEVICE | I | | | [

SELECT

ADDRESS write cycle /_\/ valid 4502 halts w/addresses & N\
R/W® _ don’t pull RDY AN R/W*)Vine valid here /
RDY YOOCOCCKX I LTI TT LT l TNRNENEN |

| |
DON’T CHANGE RDY LINE AT THESE TIMES

DON‘T PULL RDY DURING WRITE CYCLES

Because there is no acknowledge response from the 43502, the peripheral
card must do some . of its own houseKeeping and check if a write cycle
is taking place. On write cycles the 4302 will not halt, but continue
running until the next read cycle. After a slow peripheral pulls the
RDY line and before it tries to get on the bus, it must make sure the
4502 is not in the middle of a write cycle., Otherwise there will be a
bus crash, as both the . peripheral card and 4302 try to drive the bus.
One simple way to prevent this bus crash from occuring is to maKe. sure
the peripheral card doesn’t pull the RDY line low during a write
cvcle., This can be guaranteed by checking the R/W* line when:0o0 qoes
high or DEVICE SELECT qgoes low. The R/W* line will be stable by this
time,

RELEASING THE RDY LINE

When the RDY line is released the 4502 will continue the cycle that
was originally halted and allow the 4502 to read the data bus. Data
will be read on the next trailing edge of 02 by the 4502, as long as

RDY doesn‘t change within Trs of the end of 02. When the peripheral
device has set the data bus up with the correct data it can releace
the RDY line to compliete the read cycle. Releasing the RDY line has
exactly the same constraints as pulling the line; Do not change RDY
within 200 ns. of the end of 02.

The RDY line can be released before data has been set up, if the data
will be valid within specification., This means that RDY can be
released in the middle of 0! if the data bus will be valid 117 ns.

before 02 trailing edge, for the Apple 1[(42 ns. for the Apple /Je).

SLOW WRITES

Since the &502 can’t be halted during write cycles, if a device
requires longer than one cyclie to receive data then the data must be
buffered. Here is an example of how to accomplish this:

_ N
DATA BUS > > To slow peripheral
/ 7/

PNWOIMT N

DEVICE SELECT or
| INXFER (read when ready by slow device)

170 SELECT or

10 STROBE

NOTE: It is very easy to overrun the slow peripheral using this
scheme, since it only buffers one byte at a time, Don’t send data
twice to the buffer within the maximum allowed time between slow
peripheral reads.

APPLE //e TECHNOTE #5
S5-JAN 84

One of the new features of the Apple //e is the ability to add more
memory or overide existing memory from a peripheral card. This feature,
which uses the INH (inhibit) line on the peripheral slots, has been
expanded from its ariginal purpose on the Appie 1[+ of disabling the
onboard ROM and allowing the language card (RAM) toc reside in the same
address space., The Apple //e allows any part of memory to be replaced by
memory on a peripheral card, This articie explains how a peripheral card
should use the INH iine,

For further information contact:
PCS Developer Technical Support
M/S 22-W. Phone (408) 996-1010

Disciaimer of all Warranties and Liabiiities

Apple Computer, Inc. maKes no warranties, either express or implied,
with respect to this documentation or with respect to the software

described in this documentation, its gquality, performance,
merchantability, or fitness for any particular purpose, Apple Computer,
Inc., software is licensed "as is". The entire risk as tc its quality

and performance is with the vendor., Shouid the programs prove defective
folowing their purchase, tne vendor (and not Apple Computer, Inc., ites
distributor, or its retailer) assumes the entire cost of ail necessary
servicing, repair, or correctiorn anc any incidental or consequential
damages. . In no event will Apple Computer, Inc, be liabie for direct,
indirect, incidental, or consequent:al damages resulting from any defect
in the.software, even if Appie Computer, Inc, has been acvised of the
possibility of such damages. Some states do nct allow the exclusicn or
Timitation of implied warranties or liability <for incidentai or
consequential damages, so the above limitation may not apply to you,

This documentation is copyrighted, All rights are reservec. This
document may not, in whole or part, be copied, photocopied, reproduced,
translated or reduced to any . electronic medium or machine readabie form
without prior consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

Notice

Apple Computer, Inc. reserves the right to makKe improvements in the
product described in this document at any time and without notice,

PB

Peter Baum Applie Computer Jan. 5, 19£4
Developer Technical Support 20525 Mariani Copyright1%83
M.S. 22-W Cupertino, Ca. 95014

Using the INH 1ine on the Apple /e

One of the new features of the Apple “/e is the ability to add mcre
memory or overide existing memory from a peripheral card. This
feature, which uses the INH (inhibit) 1ine on the peripheral slots,
has been expanded from its driginal purpose on the Apple J[+ of
dicabling the onboard ROM and allowing the language card (RAM) to
reside in the same address space. The Apple /7e aliowe any part of
memory to be replaced by memaory 2rn a peripheral card,

USES

Present!y, only a few peripheral devices use the INH line in the //e
for memory expansion. One type of card uses INH for RAM expanz an by
switching in extra language cards, while another claces of carde ucses
it to extend the built-in 80-coiumn ROM code by replacing it with
their own ROM code. Other cardes use INH so that they carn have more
than one stackK and zeroc page. Future peripheral cards can take
advantage of the INH line to do even fancier memory expansion, csuch as
keeping multiplie programs running in memory at the same time.

More memory, either ROM or RAM, can be added by mapping the memocry
into the same address space as existing memory. The processor can then
select which memory, the onboard or the additional, it wante to use oy
setting a register (or softswitch)>., This technique of switching
different blocks of memory into the same address space is called bank
switching. An example of thie technique for extending memory is found
in the Apple 1L+ language card and in the bank 'switched memory aon the
sre.

HOW IT WORKS

When the INH line, pin 3%Z in slote 1-7, is pulied low, all memory on
the motherboard and in the auxiliary slot is disabled C(including
memory on the 80-column and extended 80-column cards).: This allowe a
peripheral card, in slots =7, to enable it s memory onto the bus.,

When the é502 reads a byte from memory the data typically comes +rom
one of three places: motherboard ROM, motherboard RAM, or RAM on one

of the 80-column carde in the auxiliary slot, When the INH line is
pulled Tow, all of the above mentioned ROM anD RAM ic disabled and
will not drive the data bus. This allows the peripheral slcots to drive
the bus by enabling data onto it. The &502 will then read data from

the peripheral card incstead of a location on the moatherboard or
auxiliary slot.

During a 4502 write cycle, if the INH line is pulled low, then
motherboard and auxiliary card RAM are both disabled. A peripheral
card can then read a byte off the data bus and store it away.

IMPLEMENTATION

Because pulling the INH line low disables all of memory, the
peripheral card must be very careful when it does this. If only a
small piece of memory is to be banked into a specific address space,
then the INH line should only be pulled on memory references to that
addrecs space., QOtherwice the motherboard memory will be disabled and
the processor wiil read/write to the wrong memory and the program
won‘t work properlyn For example, if a peripheral card wants to
repiace the zero page with memory on the card, then the INH line
should be pulled Tow anly on references to the address space between
$0 and $FF. I1f the INH linpe is pulled during a processor instruction
fetch from the monitor ROM at $FB80C, the 4502 will read the wrong
instruction (or a floating busg) and probably crash the program,

Pulling the INH line at specific addrecses is called select decoding.
The hardware on the peripheral card does this by checking the address
bus of the &502Z, and if the address falls in the correct range the
card pulls the INH line low. In the eariier example of a new zero
page, if the addrecs bus was in the range $0-%$FF the card would pull
INH low,

DIFFERENCES: //e vs. 10+

On the Apple 1[+, select decoding was not necessarily needed becauce
the INH itine oniy affected the ROM and not the RAM. I+f the Appie [+
peripheral card wanted to bankK in extra language cards at 4he
addresses $D00C-$FFFF then it could puil the INH Line and Keep !t iow
during any memory access. This would Juet disable the cnboard ROM and
not any other memory accesses such as zero page or stack. This same
card would not work in the /7e, since the next instruction fetch to
RAM after pulling INH low would read a floating bus because alil the
memory would be disahbled,

ANOTHER FEATURE

For thos=e of you who love to muck around in the guts of the Apple /e
one more feature has been added to the INH function. The INH iine wiil
also overide DMA accesses to memory on the motherboard. This means
that if a peripheral card uses DMA to read or write to memory, another
peripheral card could pull the INH line and process the DMA access. An
example of this would be a co-processor card using the memory on a RAM
card in another slot., Rather than have the co-processor write to the
memory on the motherboard and then have the 4502 write to the RAM
card, the co-processor can write to an address that the RAM card
recognizes. The RAM card could then pull the INH line and it would be
free to read or write the data bue. This technique could also be used
by a co-processor to write directly to a printer card in another siot,

TIMING

The peripheral card must wait for the address bue to settle, which
occurs a maximum of 190 ns, after the falling edge of 0o, before
pulling the INH 1ine. (The &3502A maximum address setup time ic 140 ns.
from 02, with a worst case 45024 skew of 50 ns, from 0o to 02.) To
guarantee that the RAM is disabled and a write doeen”t accidentally
take place to the motherboard, the INH line must be pulled low within
330 ns. of 0o,

01 } VIDEDS { |
Co I] CPU i
a2 f i Z80 ne i 210 me | i |
N

addr VAN

| <=190ns—->1

->1 14Q <~

INH N i N valid N,

/ N 7N\ g

(17 (ZD

(1> The INH line can be pulied high at this time.
(2> The INH line can be pulled low {or high) after the addreczes are
valid at 190ns, but before 3230 ns. (from Qo).

CIRCUITS

A simple example of a circuit that can be used toc implement the INH
function is shown below.

}
AlS —-——--m——— | select |
Ald ————m———— | decode |
. , I logic i i I
J i I D 7 Q! INH® J[1-7132
Al mmmmme— e | I PULLINH*® i 4 [
| L J
I] S i
Q8-—-———— | dQm=—m—m e > 3 |
b/ f_ 7 !
0p—~=—— e e |G 9 |
}

AN APPLICATION

The following circuit can be used to replace the code in the
monitor ROM, from lccation $FC00 to $FFFF, with custom code. Any time
the address space between $FCO00-%$FFFF ics accessed the INH line is
pulled iow, the motherboard memory ic¢ disabied, and the circuit’s 1K
RAM IS enabled insteadj. Part of this feature can be disakled and the
motherboard memory can be read by Keeping the switch connected to +35
volts (READDIS). Whenever the system writes to any location in the
address space $FCO0-¢$FFFF, the circuit will disable any RAM on the
motherboard and instead write into the K RAM,

Here is a series of commands that can be used with the circuit tc
replace the reset vector at $FFFC and $FFFD. & new recet routine can
be written that will print the screen or save the status of all the
registers whenever the reset Key is pressed.

Start the system with the circuit’s switch connected to +5
(READDIS). This will enable the system to read the monitor ROM
during power up, before the 1K RAM has been initialized.

Get into the monitor by typing CALL -131. The system prompt
should now be a %7,

Copy the monitor ROM into the 1K RAM with the command
FCOOKFCOO.FFFFM <CR>

Change the reset vector so that it jumps to location $300 with
this command, FFFC:0 <(CR>. Copy »our new reset routine into
memory starting at location $300.

Set the switch to ground (READEN) so that all future read
accesses to $FCOO0-$FFFF will read the 1K RAM.

For example if these instructions are stored in memory starting at
focation 300, then when reset is pressed the system will clear the
screen and then continue execution in the monitor (prompt="%"),

$300:20 S8 FC JSR HOME (clearc screen)
$303:4C &5 FF JMP to MON (resume execution in monitor)

One of the problems with this circuit is that it also overrides any
accesses to the language card. Therefore any program that uses the
tanguage card will not work with this circuit., The circuit doesn’t

Keep track of which memary is enabied, ROM or ianquage card RAM, in
the £FCOQ0-$FFFF cpace,

APPLE //e TECHNOTE #¢$

é—May 84

This article describes the paddle circuit used in the Apple // family of
computers., The article starts with a simple description of the circuit
used and then takes the reader through a thorough exampie of a typical

paddle read routine, Finally, a few of the anomalies of the paddle
circuit are discussed.

For further information contact:
PCS Developer Technical Support
M/S 22-W. Phone (408> 994-1010

Disclaimer of all Warranties and Liabilities

Apple Computer, Inc., maKes no warranties, either express or implied,
with respect to this documentation or with respect to the software
described in this documentation, its quality, performance,
merchantability, or fitness for any particular purpose. Apple Computer,
Inc, software is licensed "as is". The entire risk as to its quality
and performance is with the vendor. Should the programs prove defective
folowing their purchase, the vendor (and not Apple Computer, Inc., its
distributor, or its retailer) assumes the entire cost of all necessary
servicing, repair, or correction and any incidental or consequential
damages. In no event will Apple Computer, Inc. be liable for direct,
indirect, incidental, or consequential damages resulting from any_defect
in the software, even if Apple Computer, Inc, has been advised of the
possibility of such damages. Some states do not allow the exclusion or
limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This
document may not, in whole or part, be copied, photocopied, reproduced,
transiated or reduced to any electronic medium or machine readable form
without prior consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice,

P8

Peter Baum Apple Computer May &, 1984
203525 Mariani Ave. MS 22-W Copyright 1984
Cupertino, Ca. 95014

A Treatise on the Apple Paddles/Joysticks

This article describes the paddle circuit used in the Apple //
family of computers. The article starts with a simple
description of the circuit used and then takes the reader
through a thorough example of a typical paddle read routine.
Finally, a few of the anomalies of the paddle circuit are
discussed.

Circuit Description

The value of the Apple paddles (or jorstick) is determined by a
software timing loop reading a change of state in a timing
circuit, The paddles consist of a variable resistor (from 0-150K
ohms) which makes up part of the timing circuit. There is a
routine in the Monitor ROM, called PREAD, which counts the time
until a state change occurs in the paddle circuit. This time is
translated into a value between 0 and 2585,

The block diagram below shows the paddle circuit for the Apple
J[+, Apple //c and the Apple //e. The large block on the left
illustrates part of the circuitry inside the 558 timer chip. The
558 chip aonsists of four of these blocks, with all four paddle
triggers lines shorted together on the motherboard and activated
by the soft switch at $C070. The outputs of the 3558 chip run
into a multiplexor, which places the appropriate signal onto the
high bit of the data bus when a paddle softswitch address in the
range $C044-7 is read. The Apple //c uses a 55& timer rather
than the 558 chip and only supports two paddles, 0 and 1.

The 100 ohm resistor and .022 microfarad capacitor are on the
motherboard, with the variable resistor in the paddle. Each of
the four paddle inputs have their -own capacitor and resistor,
Since these components can vary by as much as S/ from Apple to
Apple, this circuit is not a very exact analog to digital
converter. If a paddle is moved from one Apple to another
without changing the resistance (turning the Knob), the paddle
read routine will probably calculate a different value for each
machine. About the only feature of the paddle read routine that
a programmer can depend on is that the value returned will rise
if the paddle resistance increases (or fall if the resistance
.decreases),

The paddle timing circuit on the Apple 1[+ and Apple //c is
slightly different than the one on the Apple //e. On the Apple
//e the 100 ohm fixed resistor is between the transistor and the
capacitor, while the variable resistor in the paddle is
connected directly to the capacitor. On the Apple 1[+ and //c
the capacitor is connected directliy to the transistor and the
fixed resistor is in series with paddle resistor.

..... ;................................E;.F:;.é...-.Fi..l.i.;.e..;:.......................-g ‘ PHDDLE

RESET

JSET %uﬂfwﬁﬁfh o

. EaeauEI
: FLIP- é ~ |
%%SP FLOF T §

TRIGGER __;{:;ﬂé OUTRUT
($CB79) T s0a

Paddle Circuit for Apple 1[+, //c and //e Showing 558 Timer

An Example of Typical Paddle Read Routine

The timing circuit works by discharging a capacitor through a
transistor, then shutting the transistor off and letting the
paddle charge the capacitor by supplying current through the
variable resistor. The rate at which the capacitor charges is a
function of the variable resistance; the lower the paddle
resistance the greater the current and the faster the capacitor
charges. When the capacitor reaches a predetermined value it
changes the state of a flip-flop. The paddle read routine counts
the time it takes for the capacitor to rise and change the
flip-flop.

Let’s step through an example of a typical paddle read
operation. For now we’ll assume the capacitor has already been
discharged and in a few pages I’11 explain when this assumption
can be made and when it can’t. ‘

The software starts by reading the softswitch at location $C070,
which strobes the trigger lines on the 558 timer. This causes
two events to occur, the output signal (which is read at
$C064-$C087 for paddie 0-3, respectively) goes high and the
transistor turns of<f.

The software, after initially strobing the trigger line,
executes a timing loop which reads the state of the output
signal. When the output signal changes from high to low the the
software jumps out of the timing loop and returns a value
indicating the time. The monitor PREAD routine consists of a {1
usec. loop and will return a value between 0 and 255. (NOTE: The
firmware listing is wrong and says the loop is 12 Usec.). The
timing loop returns 255 if the circuit takes longer than 2.82
msec. for the state change to occur.

* PADDLE READ ROUTINE
* ENTER WITH PADDLE NUMBER (0-3> IN X-REG

FBIE:AD 70 CO0 PREAD 4 LDA PTRIG . 3TRIGGER PADDLES

FB21:A0 00 2 LDY #HO s INIT COUNTER

FB23:EA 2 NOP ; COMPENSATE FOR 1ST COUNT
FB24:EA 2 NOP

FB25:BD 64 CO0 PREAD2 4 LDA PADDLO,X ;COUNT EVERY 11 USEC.
FB28:10 04 2 BPL RTS2D s BRANCH WHEN TIMED OUT
FB2A:C8 2 INY ;s INCREMENT COUNTER
FB2B:D0 F8 3 BNE PREAD2 s CONTINUE COUNTING
FB2D:88 DEY ; COUNTER OVERFLOWED
FB2E:40 RTS s RETURN W/VALUE 0-255

Inside the 558 timer chip, when the trigger is strobed low, the
comparator that feeds the set input of the flip-flop is
triggered, which in turn sets the output of the SS8 timer. At
the same time the transistor, which has held the capacitor near
ground by sinkKing current from it, is shut off. The capacitor

can now charge up using the current supplied by the paddle. The
smaller the paddle’s resistance the more current the paddlie will
supply and the faster the capacitor charges. After some time,
the capacitor will charge to the threshold value of 3.3 volts,
which is set by the voltage divider network in the 55& timer,
and the comparator that feeds the reset input on the flip—flop
will trigger. This sets the output signal ($C0&4x)> of the 558

timer low, which indicates to the software that the circuit has
timed out.

TRIGGER $C070 | __|

FEEDBACK TO o=’ I
RESET COMP o= N\

QUTPUT | |

| {==TIMING VALUE-->]

0-2.82 MILLISECONDS
Resetting the flip—flop turns the transistor on, which
discharges the capacitor very quickly (normally less than 250

ns). That paddle can then be read again.

A Closer Look at the Hardware

The First Anocmaly

Notice that the last sentence states that the paddle can be read
again and not the paddies. If another paddle is read immediately
after the first, it may yield the wrong value. To show this I71]

step through an example of reading a second paddle immediately
after finishing the first,

In this example 1711 assume that the first paddle has been cset
with a very low resistance, while the second paddle has a high
resistance. The first paddlie will time out very quickly and
return with a small value, while the second paddle will take
longer and yield a larger vaiue.

We start reading the paddles by testing the paddle outputs to
see if they’re low, which indicates that the capacitor has been
discharged. Assuming that the outputs are low, the next step is
to trigger the S58 timer ($C070), which turns off the transistor
and allows the capacitors to charge. Since all of the trigger
input lines are shorted together all four of the capacitors will
charge up, but at different rates since the paddle resistances
have been set to different values. The voltage on the capacitor

for the first paddle will reach the threshold voltage very
quickKly since the paddle resicstance has been set low, and
therefore the timing loop will time out quickly.

At this point the capacitor for the second paddle is still
charging and has not reached the threshold value yet, since the
paddle resistance was set to a high value. The transistor for
the second paddle is still turned off due to the initial trigger
used for reading paddle one., This means that the capacitor for
the second paddle has not been discharged.

Any attempts at reading the second paddle now will only yield
false results. The capacitor is partly charged and therefore
will reach the threshold value much faster than if the capacitor
had been completely discharged. If the timing loop is used it
will return with a smaller value than it would if the capacitor
had been completely discharged. Notice that retriggering
(reading location $C070) the 558 timer will not help, since that
only Keeps the transistor turned off and doesn’t help discharge
the capacitor. The only way for the capacitor to discharge is to
let the circuit timeout completely by letting the capacitor
charge until it resets the flip=fiop.

To read the second paddie the capacitor must first be
discharged, which is only done when the threshold value is
reached and the 558 timer flip—flop is reset, The only way to
guarantee that the capacitor is discharged is if the transistor
is on., This condition is met when the paddle output is low.
Therefore start every paddle read either by waiting for at least
3 ms., before strobing the trigger input or testing to make sure
that the paddle output is low.,

If after 4 ms. the paddie output is not low then there is a good
chance that there is no paddle connected. It may also indicate
that a peripheral with a larger maximum value resistor than the
150K ohms used by the Apple paddles is attached. Some peripheral
devices use this technique of a larger variable resistor so that
more than 256 points of resolution can be determined. Of course
this requires a custom software driver and the Monitor PREAD
routine can’t be used.

The Apple //e Anomaly

The problem with Apple //e paddlie input is that the capacitor
may not be discharged by the transistor. Typically, the
transistor will discharge the capacitor in less than 250 ns. on
the Apple 1[+. But on the Apple //e if the paddle resistance is
very low then the paddle may supply encugh current to always
Keep the capacitor charged.

Becauce the fixed resistor (100 ohms) on the Apple //e
motherboard is between the capacitor and the transistor, there
will be a voltage drop across the resistor i¥ the capacitor
stays charged. When the transistor is shut off by the trigqger

strobe, this voltage drop will disappear and the capacitor,
which may be near the threshold voltage, will trigger the reset
comparator earlier than it would if the capacitor had been
discharged completely., The net affect of this is that the
paddles will read zerc on the Apple //e When they would read a
small value on the Apple 1[+ or //c.

Other circuits which expect the capacitor to discharge
completely may not work properiy. A circuit which attempts to
simulate a paddle through active components such as a digital to
analog converter may be able to source enough current that the
capacitor never discharges and the paddlie always reads zero,

Hopefully, this article has given the reader a good feel for the
paddle circuitry and the routines which determine the paddle
values. To reinforce the material covered you should try writing
your own paddle read routine. For example, yYou could write a
read routine that would read two paddlies at once. The software
loop will not have the 1! usec. resolution of the PREAD routine,
but you‘ll find it stills works just fine. Happy programming!

APPLE //e TECHNOTE #7

3-April 84

This article describes three different types of interfaces, serial,
parallel, and IEEE-488, that are cuyrrently used to connect a printing
device to an Apple //. The interface cards available from Apple and the
protocol to connect to an Apple printer are briefly described. Pin out
configuration and switch settings for these interfaces cards and
printers is also included.

For further information contact:

PCS Developer Technical Support

M/S 22-W, Phone (408) 994-1010

Disclaimer of all Warranties and Liabilities

Apple Computer, Inc. makKes no warranties, either express or implied,
with respect to this documentation or with respect to the software
described in this documentation, its quality, performance,
merchantability, or fitness for any particular purpose. Apple Computer,
Inc. software is licensed "as is", The entire risk as to its quality
and performance is with the vendor., Should the programs prove defective
folowing their purchase, the vendor {and not Apple Computer, Inc., its
distributor, or its retailer) assumes the entire cost of all necessary
servicing, repair, or correction and any incidental or consequential
damages. In no event will Apple Computer, Inc. be liable for direct,
indirect, incidental, or consequentic! damages resulting from any defect
in the software, even if Apple Computer, Inc. has been advised of the
possibility of such damages. Some states do not allow the. exclusion or
limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved, This
document may not, in whole or part, be copied, photocopied, reproduced,
translated or reduced to any electronic medium or machine readable form
without prior consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 93014

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

PB

Peter Baum Apr. '3, 1984
Apple Computer Copyright 1934
20325 Mariani Ave.

Cupertino, Ca. 95014

Connecting a Printer to an Apple //

This article describes three different types of interfaces,
serial, parallel, and IEEE-488, that are currently used to
connect a printing device to an Apple //. The interface
cards available from Apple and the protocol to connect to an
Apple printer are briefly described. Pin out configuration
and switch settings for these interfaces cards and printers
is also included.

Serial

Currently, Apple sells a card, called the Super Serial Card
(88C>, that can be used to connect an Apple printer to an
Apple // (Apple sells a dot-matrix printer, called the
Imagewriter, a daisy—wheel printer, and a plotter, which all
use a serial interface). The SSC replaces both the
Communications card and the Hi-speed Serial card. The SSC
supports the firmware (Pascal 1.1) protocol except for the
optional control and interrupt handling routines, For more
information on the firmware protocols see Appendix A of the
Super Serial Card manual (Part # A2L0044).

If the SSC is to be connected to an Imagewriter printer then
the switches should be set as follows:

SsC Imaqgewriter
I 1234547 1224547 modem I ! 87854321
| ON s v |DB-25 DB-2510N .
FQFF ,,, , s ys terminal |= == {QFF sres
| - swWi sW2 ! (590-0037> | SW1
I | I
I I ! 4321
! I I ON .
I OFF ,,
I

/

switch is in up (cltosed/on) position
switch is in down (open/off) position |
The jumper block should point toward terminal

’
v

Note: Switch 1-5 on the printer must be in the on (up)
position for the printer to work with the Apple /e,

These switch settings set the serial interface to uce %400
baud printer mode with 8 data bits, one stop bit, no delay
after carriaqge return (CR), 80 column line width, nao echo to
screen, and automatic line feed sent after CR.

The Apple part number for a cable that connects the S8C to an
Imagewriter is S5%90-0037. This cable consists of two male
DB-25 connectors with pins 1-8, 12, 13, 19, 20, 23 wired pin
to pin and shielded.

The SSC has a 1U-pin header on it, but comes with a cable
which connects the header .to a female DB-25 connector. The
OB-25 can be configured as either a modem (DCE) or as &
terminal (DTE) using a Jjumper block (in the tatter case the
Jumper blocK acts as a modem eliminator). Though the pin out
configuration of the DB-25 connector is well defined, there
is no standard use of the handshake signals., Different
printers will use the handshake lines for different
functions. The following table shows the pincut for the DB-23
on the SSC, Consult the printer manual for more specific
information on which signals are used.

{10=pin Female DB-25 pinout
Header Signal Name Terminal Madem notes
i Frame Ground (FRMGND> 1 1
2 Transmit Data (TxD)> 3 2
3 Receive Data (RxD> 2 3
4 Request To Send (RTS) 8 4
S Clear To Send (CTS> 8 S
é Data Set Ready (DSR) 20 é
8 Signal Ground (SGLGND> 7 7
10 Data Carrier Detect (DCD» 4,5 8 *]
7 Secondary Clear to Send (SCTS) 1?% 19 *®2
? Data Terminal Ready (DTR) é 20
notes: 1IN
|) 14
#1 - only if SWI-7 is closed (on) with SSC I
*¥2 - only if S8W2-7 is closed (on) with SSC P DB-25
It
} > 25
13 1/
To illustrate an example of a serial interface, I711 use the

Imagewriter printer, Here is the pinout and interface
specification:

Pin no. Symbol Descripition Direction
) FG Frame Ground
2 TxD Send Data Qutput
3 RxD Receive Data Input
) RTS Request to Send Qutput
7 S6 Signal Ground
14 FAULT Fault OQutput
20 DTR Data Terminal Ready Output

Functional Description:

FG = Brounding line for circuit protection

TxD = Serial transmission line from printer to computer
RxD = Serial transmission line from computer to printer
RTS = True when printer is turned on ,

Fault = False when printer deselected; true when selected
DTR = True if printer on and ready to receive

The printer uses a hardware handshaking scheme, called the
Data Transfer Ready protocol, to receive data. Whenewver the
capacity of the input buffer is less than 30 characters, the
printer sends a busy signal by setting the DTR line false,.
The computer must stop transmission within the next 27
characters or the printer will ignore the excess data. The
DTR line is also set false when the printer is deselected,
and when it receives a DC3 character. The DTR line is true
whenever there is room for at least 100 characters in the
input buffer, when the printer is turned on, selected, and
has received a DCl character,

Parallel

Apple currently ships a parallel card, called appropriately
the Parallel Interface Card (PIC), which can be used to
connect a parallel printer to an Apple // (Apple used to sell
a dot-matrix printer called the DMP, but has discontinued
shipping any printers with a parallel interface). The PIC
replaces the Parallel Printer Interface Card and the
Centronics Interface Card. The PIC doesn‘t support the
firmware protocol, so Pascal identifies the card as a printer
card (described in Pascal protocole),

Most commonly used printers will operate properly if the
switches on the PIC are set as follows:

| 1234547 |
I ON o |
i I
This sets the parallel interface to transfer data using a i

microsecond strobe puise of negative polarity when sending
data, while receiving a negative acknowledqge signal, with
interrupts disabled. o

The PIC has a 246-pin header, but comes with a cable which
connects the header toc a female DB-25. The Parallel Printer
Card and the Centronics Card ucsed a 20-pin header. Most
parallel printers (%204) use a ‘microribbon 36 as the
connector. The pinout varies from printer to printer, but the
following table covers most printers (Apple DMP, Epson). For
other printers refer to page 7 of the Parallel Intertace Card
manual (Part # A2L0045).

PIC Printer 246-pin bB-25 3é-pin 20-pin

Function -Function ‘ header conn. microribbon header
Ground Ground 3 2 1% 1
Ground Ground 22 24 18 20
Ground Ground 7 ' 4
Ground Ground 14 20
ACK Acknowl edge é 16 10 2
Strobe Strobe 4 1S 1 8
DG O Data 1 ? 3 2 10
DO 1 Data 2 11 é 3 11
DO 2 Data 3 15 8 4 12
PO 3 Data 4 18 22 S 13
DO 4 Data S5 20 23 é 14
DO S Data & 21 11 7 15
DO 4 Data 7 23 12 8 16
DO 7 Data 8 (H2) 25 13 ? 17
DI 3 Fault 24 25 32 é
DI 4 Busy 2 14 i1 7
DI § Paper out 12 19 12 ?
DI & Select 16 21 13 18
DI 7 Enable 10 18 35 19
CH#1)D 7

A on ~

Apple internal part # | P i
for cable tuiviver e S%20-004%9B 5%0-0042B

(#1) - Pin 7 is blocked on the female DB-25.connector and
omitted on the maie DB-25 connector to prevent the
insertion of serial connectors into parallel ports,

(#2) - This may be asgssigned a “hard’ value for some printers
to distinguish between graphics and normal character
sets.

Functional Description of Siqgnal for Typical Printer

Strobe = Printer clocks data in on falling edge .

ACK = Set low by printer to indicate it has procecsed
last character and is ready for another

Fault = Set low if printer detects fault condition

Busy = Set high by printer to indicate not ready

Paper out= Used by printer to indicate out of paper

Select = Qutput from printer, set high if printer selected

Enable = Set high by printer to indicate printer active

Since the PIC can also be used to input parallel data and
doesn’t act as only a printer card, it is no longer referred
to as a printer card, but instead as a general purpose
parallel card.

IEEE~-488

Though moset printing instruments on the market today use
either a serial or parallel interface, another standard
interface, IEEE-488, is also available. These devices can be
connected to the Apple // through the Apple IEEE-488
Interface Card. Currently Apple doesn‘t =ell any printer
devices that use the IEEE-488 interface, but other companies
suppliy them. One of the advantages of the IEEE-488 bus over
ei ther the parallel or serijal (RS-232) busses is that more
than one type of printer can be attached to the bus at the
same time. This means that both a fast dot-matrix and a daisy
wheel printer can be hooked to the Apple with only one
peripheral card.

The IEEE-488 bus standard is a well defined 8-bit parallel,
byte serial, asynchronous data transfer interface. The
standard has been thoroughly documented with the most
complete description available from the Institute of
Electrical and Electronic Engineers (IEEE) in New York,.
Standard cables are manufactured by many companies, and
usually advertised as either [EEE-488, General Purpose
Interface Bus (GPIB), or Hewlett-Packard Interface Bus (HPIB)
cables.

The IEEE-488 card doesn’t support the firmware protocols, so
an assembly language driver must be used to access the card
from Pascal (See Appendix F of the IEEE-488 Interface User’s
Guide, part number A2Z2L0037).

Appendix A

Product Order Part #
Super Serial Card AZB0044
SSC to Imagewriter Accessory Kit # A2C0352
SSC to Imagewriter external Cable 590-0037
Imagewri ter AYM0303
Apple Daisy Wheel Printer (DWP) A3MO02S
SSC to Apple DWP Accessory Kit * A2C035!1
ARpple Color Platter AYMO302
SSC to Color Plotter Accessory Kit #* A200302
Parallel Card AZB0O0OZ21
IEEE-4838 Interface Card A2BO0O1S
SS8C manual A21.0044
Parallel Interface Card manual A2L.0045
ProD0S Technical Reference Manual A2W0010
Apple //e Reference Manual A2L.2005
Apple //e Design Guidelines A2F2114

¥ The accessory Kit includes a cable and manuals

- Apple][Monitor Entry Points
2 August 1984

This document lists all supported entry points 1in the Apple][
family $F800 Monitor ROM., This is NOT a programming guide. Since
each member of the Apple][family has variations in the
implementation of the Monitor, it is the individual programmer’s
responsibility to d1dentify the machine type and take appropriate
action when calling these routines. The only purpose of this
document is to reassure software developers that the entry points
for these routines will remain intact and that there 1s no
committment to keep any other Monitor code in the same locations.

Disclaimer of all Warranties and Liabilities

Apple Computer, Inc. makes no warranties either express or implied,
with respect to this documentation or with respect to the software
described in this documentation, 1its quality, performance,
merchantability, or fitness for any particular purposz. Apple
Computer, Inc., software is licensed "as 1s'". The entire risk as to
i1ts quality and performance is with the vendor. Should the programs
prove defective following their purchase, the vendor (and not Apple
Computer, Inc,.,, 1its distributor, or retailer) assumes the entire cost
of all necessary damages. In no event will Apple Computer, Inc. be
liable for direct, indirect, incidental, or consequential damages
resulting from any defect in the software, even i1f Apple Computer,
Inc. has been advised of the possibility of such damages. Some
states do not allow the exclusion or limitation of implied
warranties or liability for incidental of consequential damages, so
the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This
document may mnot, in whole or part, be copied, photocopied,
reproduced, translated or reduced to any electronic medium or

machine readable form without prior consent, in writing, from Apple
Computer, Inc.

Copyright 1984 by Apple Computer, Inc.

20525 Mariani Avenue
Cupertino, California 95014

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

CJS

Apple][Monitor Entry Points Page

$F800 PLOT Plot on the low-resolution screen
PLOT puts a single block of the color value set by SETCOL on the
low-resolution display screen. The block’s vertical position is passed in
the accumulator, its horizontal position in the Y register., PLOT returns
with the accumulator scrambled, but X and Y intact.

$F819 HL INE Draw a horizontal line of blocks

HLINE draws a horizontal line of blocks of the color set by SETCOL
on the low-resolution graphics display. Call BLINE with the vertical
coordinate of the line in the accumulator, the leftmost horizontal
coordinate in the Y register, and the rightmost horizontal coordinate in
location $2C. HLINE returns with A and Y scrambled, X intact.

$F828 VLINF Draw a vertical line of blocks

VLINE draws a verticle line of blocks of the color set by SETCOL
on the low-resolution display. You should call VLINF with the horizontal
coordinate of the line in the Y register, the top vertical coordinate in the

accumulator, and the bottom vertical coordinate in location $2LC. VLINE will
return with the accumulator scrambled.

$F832 CLRSCR Clear the low-resolution screen
CLRSCR clears the low-resolution graphics display to black. If
CLRSCR is called while the video display is in text mode, it fills the
screen with inverse at-sign (@) characters. CLRSCR destroys the contents of
A and Y.

$F836 CLRTOP Clear the low-resolution screen

CLRTOP is the same as CLRSCR, except that 1t clears ' only the top
40 rows of the low-resolution display. (Mixed-mode)

SF847 GBASCALC Calculate base address for low resolution graphics
GBASCALC calculates the base address of the line on which a
particular pixel is to be plotted. The accumulator is scrambled.

S$F85F NXTCOL Increment color by 3
NXTCOL adds 3 to the current color (set by SETCOL) used for low-
resolution graphics. The accumulator is scrambled,

SF864 SETCOL Set low-resolution graphics color

SETCOL sets the color used for plotting in low-resolution graphics to
the value passed in the low nybble of accumulator. The colors and their
values are listed in the technical reference manual, The accumulator is
scrambled.

$F871 SCRN Read the low-resolution graphics screen

SCRN returns the color value of a single block on the low
resolution graphics display., Call it with the vertical position of the
block in the accumulator and horizontal position in the Y register. Call it
as you would call PLOT (above). The color of the block will be returned in
accumulator. No other registers are changed.

Apple][Monitor Entry Points . Page

SF88E INSDS2 Set-up indexes for opcode in A register
INSDS2 expects to find the opcode in the accumulator. It then
sets up formats, modes, and indexes into the mnemonic table. Upon entry,
the X register must be zero., Upon exit the accumulator and X register are
scrambled. Coe :

$F8DO INSTDSP Display disassembled instruction
INSTDSP disassembles and displays one instruction pointed to by
the program counter (PCL-PCH). None of the registers are preserved.

$F940 PRNTYX Print contents of Y and X registers as hex
PRNTYX prints the contents of the Y and X registers as a four-
digit hexadecimal value. The Y register contains the first byte output,
the X register contains the second. On return, the contents of the
accumulator are scrambled,

$F941 PRNTAX Print A and X in hexadecimal
PRNTAX prints the contents of the A and X registers as a four-
digit hexadecimal value. The accumulator contains the first byte output,
the X register contains the second. On return, the contents of the
accumulator are scrambled.

$F944 PRNTX Print contents of X register as hex

PRNTX prints the contents of the X register as a two digit
hexadecimal value. On return, the contents of the accumulator, are
scrambled.

$F948 PRBLNK Print 3 spaces

PRBLNK outputs three blank spaces to the standard output device,
On return, the accumulator usually ccatains $AQ0, the X register contains O,

SF94A PRBL2 Print many blank spaces
PRBL2 outputs from 1 to 256 blanks to the standard output device.
Upon entry, the X register should contain the number of blanks to be output.

If X=$00, then PRBL2 will output 256 blanks. On return, the accumulator
usually contains $A0, the X register contains 0.

$F953 PCADJ Adjust program counter
PCADJ increments the program counter by 1, 2, or 3 depending on
the LENGTH byte stored at $2F, O = 1 byte, 1 = 2 bytes, 2 = 3 bytes. All
registers are scrambled.

SFALQ IRQ IRO handler

IRQ first determines if the interrupt request was from a BRK
instruction, If not, control 1is sent to IRQLOC ($3FE). The accumulator is
stored (at $45 with the][,][+, and original //e monitors and pushed on the
stack with the "ICON" //e, and //c monitors). When the $O3FE interrupt
handler terminates with an RTI, all registers are restored. (Generally
called by operating system, not user.)

3

Apple][Monitor Entry Points Page

SFA4C BREAK BRK handler
BREAK saves the registers and JMPs to BRKV ($3F0).

SFA62 RESET Hardware reset handler
RESET sets normal video out and keyboard in, re-initialize system,
set and clear various annunciators (depending on system type), clear
keyboard, and falls through to NEWMON.

SFAA6 PWRUP System cold start
PWRUP prints system type at top of screen, sets page 3 vectors
equal to cold start of current BASIC. It then falls through to SLOOP.

SFABA SLOOP Disk controller slot search loop
SLOOP is the disk controller search loop, It searches for a disk
controller beginning at the peripheral ROM space pointed to by $00-$01. If
a disk controller is found, it JMPs to the ROM code. Otherwise, it cold-
starts BASIC. (Required to support the ProFile card boot code.)

SFAD7 REGDSP Display contents of registers
REGDSP sets location A3 ($40-$41) equal to $0045, then displays
the contents of the registers (from locations $45 thru $49) with labels.
(Setting A3 prepares the user for modifying memory beginning at $45.) The
accumulator and X register are not preserved.

SFB19 RTBL Register names table
RTBL contains the ASCII codes for "AXYPS" (hi-bit set), the names
of the registers.

SFBIE PREAD Read a hand controller
PREAD returns a number that represents the position of a hand
control, You pass the number of the hand control in the X register. If
this number is not valid (not equal to 0, 1, 2, or 3), stange things may
happen. PREAD returns with a number from $00 to $FF in the Y register.
The accumulator is scrambled,

$FB2F INIT Initialize system
Clears $48, the 6502 status register save locations, and sets
softswitches to LO-RES, PAGE 1, TEXT, then falls through to SETTXT.

$FB39 SETTXT Set text mode
SETTXT sets text mode and LDA #0 to set window top thenm JMPs to
SETWND.

$FB4O SETGR Set graphics mode
SETGR sets mixed graphics mode and clears the graphics portion of
the screen then LDA #20 to set window top and falls through to SETWND.

SFB4B - SETWND Set text window
SETWND sets a full width text window with the window top set to
the value in the accumulator and bottom set to the bottom of the screen.
It then VTABs to line 23.

Apple]{ Monitor Entry ?oints Pége

SFBSB TABV Vertical tab
TABV merely stores the value in the accumulator in location CV
($25) and calls VTAB ($FC22).

$FB60 APPLEII Print machine type
APPLEII clears the screen and prints the machine type centered at
the top of the screen. A and Y are scrambled.

SFB6F SETPWRC Create power-up byte
SETPWRC calculates the "funny" complement of the high byte of the
RESET vector and stores it at PWREDUP ($3F5).

$FB78 VIDWAIT Check for a pause (CONTROL-S)

VIDWAIT checks the keyboard for a CONTROL-S if it is called with
an $8D in the accumulator. If a CONTROL-S is found, it falls through to
KBDWAIT. If not, control is sent on to VIDOUT where the character is
printed and the cursor advanced.

$FB88 KBDWAIT Wait for keypress
KBDWAIT waits for a keypress. The keyboard is cleared unless the
keypress is a control~-C then control is sent on to VIDOUT where the
character is printer and the cursor advanced.

SFBB3 VERSION Monitor ROM identification byte
VERSION is a byte used to aid in identifying which monitor ROM is
installed.

$FBCO ZIDBYTE Monitor ROM sub-identification byte

This byte provides more detailed identification of the monitor
ROM.
S$FBCl BASCALC Text base address calculator

BASCALC calculates the base address of the line for the next text

character on the forty column screen., The value 1s stored at BASH and BASL
($28-529).

SFBDD BELLI ' Beep the speaker
BELLl toggles the speaker on and off at 1000 hz rate for 0.l sec.

SFBFO STORADV Place a printable character on the screen

STORADV stores the value in the accumulator at the next position
in the text buffer and falls through to ADVANCE.

- SFBF4 ADVANCE Increment the cursor position
ADVANCE advances the cursor by one position. If the cursor is
at the window limit it branches to CR.

SFBFD VIDOUT Place a character on the screen

VIDOUT sends printable characters to STORADV. Return, linefeed,
forward and reverse space, etc., are vectored to appropriate special
routines. (NOTE: This routine does not work in 80-columns on][,][+, and
original //e.)

Apple][Monitor Entry Points Page

SFC10 BS Back~-space

BS decrements the cursor one position., If the cursor is at the
beginning of the window, the horizontal cursor position is set to the right
edge of the window and the routine falls through to UP. (NOTE: 40-columns
only.)

SFClA Up Move up a line
UP decrements the cursor vertical location by one line unless the
cursor is currently on the first line. (NOTE: 40-columns only.)

$FC22 VTAB Vertical tab
VTIAB loads the value at CV ($25) into the accumulator and falls
through to VTABZ. (NOTE: This routine does not update OQURCV in 80=columns.)

SFC24 VTABZ Vertical tab (alternate entry)

VTABZ uses the value in the accumulator to update the base address
used for storing values in the text screen buffer.

S$FC42 CLREOP Clear to end of page
CLREOP clears the text window from the cursor position to the
bottom of the window. CLREOP destroys the contents of A and Y.

SFC58 HOME Home cursor and clear
HOME clears the current window and places the cursor in the home
position: the upper left corner of the screen,

SFC62 CR Begin-'a new line
CR sets the cursor horizontal position back to the left edge of

the window and increments the cursor vertical position. It then falls
through to LF. (NOTE: 40-columns only.)

SFC66 LF Line~feed

If the cursor vertical position is not past the bottom line, the
base address is updated, otherwise the routine falls through to SCROLL.
(NOTE: 40-columns only,)

$FC70 SCROLL Scroll the screen

SCROLL moves all characters up one position within the current
text window.

$FCIC CLRFOL Clear to end of line
CLREOL clears a text line from the cursor position to the right
edge of the window., CLREOL destroys the contents of A and Y.

SFC9E CLEOLZ Clear to end of line
CLEOLZ clears a text line to the right of the window, starting at
the location given by base address BASL indexed by the contents of the Y
register, CLFOLZ destroys the contents of A and Y.

Apple][Monitor Entry Points Page

7

SFCA8 WAIT Delay

' WAIT delays for a specific amount of time, then returns to the
program that called it. The amount of delay is specified by the contents of
the accumulator, With A the contents of the accumulator, the delay is
1/2(26+27A4+5A%2) microseconds.. WAIT returns with the accumulator zeroed and
the X and Y registers undisturbed.

SFCB4 NXTA4 Increment pointer A4

NXTA4 increments the 16 bit pointer, A4 ($42-$43) and then falls
through to NXTAl.

$FCBA NXTAl Compare Al with A2 and increment Al
NXTAl does a 16 bit compare of Al ($3C-$3D) with A2 ($3E-$3F) and
then increments pointer Al,

$FCC9 HEADR Write a header to cassette tape (][,]{+, //e only)
BEADR writes a header to cassette tape.

SFDOC RDKEY Get an input character
RDKEY is the character input subroutine. It places an appropriate
cursor on the display at the cursor position and jumps to the subroutine
whose address 1s stored in KSW (locations $38-$39), usually the standard
input subroutine KEYIN, which returns with a character in the accumulator,

SFDI1B KEYIN Read the keyboard
KEYIN is the keyboard input subroutine, It reads the Apple’s
keyboard, waits for a keypress, and randomizes the random number seed at
$4E-$4F., When a key 1s pressed, KEYIN removed the cursor from the display
and returns with the keycode in the accumulator. (NOTE: On //e with 80-
columns, it interprets escape codes aad forward arrows,)

$FD35 RDCHAR Get an input character or FSC code
RDCHAR is an alternate input subroutine that gets characters from
the standard input subroutine, and also intreprets the escape codes listed
in the technical reference manual,

SFD67 GETLNZ Get an input line

GETLNZ is an alternate entry point for GETLN that sends a carriage
return to the standard output, then continues into GETLN.

$FD6A GETLN Get an input line with prompt
GETLN is the standard input subroutine for entire lines of
characters, as described in the various. technical reference manuals. Your

program calls GETLN with the prompt character in location $33; GETLN then
falls through to GETLNO.

SFD6C GETLNO Get an input line with prompt (alternate entry)

GETLNO outputs the contents of the accumulator as the prompt. The
routine will return with the input line in the input buffer ($200~$2FF) and
the X register holding the length of the input line. If the user cancels
the input line, either with too many backspaces or a CONTROL-X, then the
contents of PROMPT ($33) will be issued as the prompt when it gets another
line,

Apple][Monitor Entry Points Page 8

SFD6F GETLNI1 Get an input line, no prompt

GETLNl is an alternate entry point for GETLN that does not issue a
prompt before 1t accepts the input line. If, however, the input line is
cancelled, with too long a line, with too many backspaces or with a CONTROL-X,

then GETLNl will issue the contents of PROMPT ($33) as a prompt when it gets
another line.

$FD8B CROUT1 RETURN with clear to end-of~-line
CROUT] clears the screen from the current cursor position to the
edge of the text window, then falls through to CROUT.

SFD8E CROUT Carriage return output
CROUT sends a RETURN character to the current output device.

$FD92 PRAL Print RETURN and Al in HEX
PRAl sends out a RETURN character followed by the contents of the
16 bit pointer, Al ($3C-$3D) in hex follwed by a hyphen.

SFDDA PRBYTE Print a hexadecimal byte

PRBYTE outputs the contents of the accumulator in hexadecimal on
the current output device. The contents of the accumulator are scrambled.

SFDE3 PRHEX Print a hexadecimal digit

PRHEX prints the lower nybble of the accumulator as a single
hexadecimal value., On return, the contents of the accumulator are scrambled.

S$FDED couT Qutput a character
COUT calls the current output subroutine. The character to be
output should be in the accumulator. COUT calls the subroutine whose

address is stored in CSW (locations $36 and $37), which is usually the
standard character output COUTI.

SFDFQ CoUT1 Output. to screen
COUT]l displays the character in the accumulator on the Apple’s-
screen at the current output cursor position and advances the output cursor.
It places the character using the setting of the Normal/Inverse location.
It handles the control charcters [RETURN], linefeed, backspace, and bell.
It returns with all registers intact.

S$FE2C MOVE Move a block of memory

MOVE copies the contents of memory from one range of locations to
another. This subroutine is the same as the MOVE commands in the Monitor,
except it takes its arguments from pairs of locations in memory, low=-byte
first., The destination address must be 1in A4 ($42-$43), the starting source
address in Al ($3C-$3D), and the ending source address in A2 ($3E-$3F) when
your program calls MOVE,

Apple][Monitor Entry Points Page

SFESE LIST Disassemble and 1list 20 instructions
LIST will disassemble and list to the current output device, 20

assembly language instructions beginning at the location pointed to by Al
($3C-$3D).

SFEB0 SETINV Set inverse text mode
SETINV sets INVFLG so that subsequent text output to the screen
will appear in inverse mode,

SFE84 SETNORM Set normal text mode
SETNORM sets INVFLG such that subsequent text output to the screen
will appear in normal mode.

$FE89 SETKBD Re-set input to keyboard
SETKBD re-sets the the input hooks ($38-$39) to point to the
Keyboard.

SFE8B INPORT Re-set input to a slot
INPORT re-sets the input hooks ($38-$39) to point to the ROM space
reserved for a perphireal card (or port) in the slot (or port) designated
by the value in the accumulator. (NOTE: In new //e and //c monitor, does a
quit if the video firmware was on.)

$FF93 SETVID Re-set output to screen
SETVID re-sets the output hooks ($36=~$37) to the screen display
routines.

SFE95 OUTPORT Re~set output to a slot

OUTPORT re-sets the output hooks (§36=$37) to point to the ROM
space reserved for a peripheral card {or port) in the slot (or port)
designated by the value in the accumulator.

SFEB6 GO Begin code execution
GO begins execution of the code pointed to by Al (83C-$3D).

SFECD WRITE Write a record on a cassette tape (][,][+, and //e only)
WRITE converts the data in a range of memory to a series of tones
at the cassette output port., Before calling WRITE, the address of the first
data byte must be in Al ($3C-$3D) and the address of the last byte in A2
($3E-$3F), The subroutine writes .a ten-second continuous tone as a header,
then writes the data followed by a one byte checksum.

SFEFD READ Read data from a cassette tape (][,][+, and //e only)
READ reads a series of tones at the cassette input port, converts
them to bytes, and stores the data in a specified range of memory locations.
Before calling READ, the address of the first byte must be in Al ($3C-$3D)
and the address of the last byte in A2 ($3E~$3F).

$FF2D PRERR Print ERR
PRERR sends the word ERR, and falls through to BFLL. On return,
the accumulator contains $87.

Apple][Monitor Entry Points Page 10

SFF3A BELL Output a bell character

BFLL writes a bell [CONTROL]-G character to the current output
device, It leaves the accumulator holding $87.

SFF3F RESTORE Restore all registers
RESTORE loads the 6502’s internal registers with the contents of
memory locations $45 through $48, as saved by BREAK.

SFF4A SAVE Save all registers
SAVE stores the contents of the 6502°s internal registers in locations
$45 through $49 in the order A, X, Y, P, S. The contents of A and X are
changed and the decimal mode is cleared.

S$FF58 = $60 Known RTS instruction (IORTS)
This byte must always contain $60.,

S$FF65 MON Standard Monitor entry with beep
MON beeps the speaker and falls through to MONZ.

SFF69 MONZ Standard Monitor entry point (CALL =-151)
MONZ displays the "*" prompt and sends control to GETLNZ.

SFF8A DIG Shift hex digit into A2

DIG shifts an ASCII representation of a hex digit in the
accumulatpr into A2 ($3E-$3F).

SFFaA7 GETNUM Transfer hex input into A2
GETNUM scans input buffer starting at position Y., Shifts hex
digits into A2 ($3E-$3F). Stops when non-hex digit encountered.

SFFAD NXTCHR Translate next character

NXTCHR is the loop used by GETNUM to parse each character in the
input buffer and convert it to a value in A2 ($3E-$3F). hy

SFFFA NMI Non-maskable interrupt vector
NMI is a two byte pointer to the non-maskable interrupt handler.

SFFFC RESET Reset vector
RESET is a two byte pointer to the RESET handler routine.

SFFFE IRQVECT IRQ vector
IRQVECT is a two byte pointer to the interrupt request handler,

2350: 4C 33
2352<2350 , 2340M
2300<2350,2360"Y

230D: 33 4C 33 4C 33 4C 33 4C (puts gréen line next to it)
233D: 13 &8 19 48 1P &4 19 34 (note first byte)

230D<238D.2363"Y

There you have it: a basic explanation of how double hi-res
works -— except for one or two anocmalies. The first anomaly
is that NTSC monitors have a limited display range. The
second anocmaly shows one of the features of double hi-res
veraus a limitation of standard hi-res, ’

An NTSC color monitor decides what coior to display based on
its "view" of four bit "windows” in each line, starting from
the left edge of the screen. The monitor looks at the first
four bits, determines which color is called for, and then
shifts one bit to the right and determines the color for
this new four-bit window. But remember the color depends not
only on the pattern, but also the positon of the pattern. To
compensate for relative position from the left edge of the
screen, the monitor Keeps track of where on each line each
of these window starts. (For those of you of the technical
persuasion, this is dome through the use of the color burst
signal, which is a 3.38 MHz. clock),.

Try this example:
2000:0 Clears screen

2001 <2000 . 3FFFM
2000<2000.3FFF"Y

2001 : 88 Draws orange box in uppper left
2401 : 46

2801 : 44
2C01:46
3001 :46

2050:33 Draws blue box below and
3402<2050.20350"Y to the right of the orange
3802<2050.2050"Y

3C02<2080,2050°Y

Notice that if the blue box was drawn at the top of the
screen, next to the orange box, they would overlap. Yet, the
boxes were drawn on two different columns, orange on mb2 and
blue on aux!. This can be explained by the previous
paragraph, -and the sliding windows., The monitor will detect
the pattern for orange slightly after the mb2 column, while
the pattern for blue shows up before column auxl.

orange pattern:

gaooo00i0110011 10000000 looK at four-bit windows and vou’ll see
aux2 | mb2 | auxt an arange pattern agverlaps on both sides

[f a pattern is repeated on a line, this overlap doesn’t
cause a problem, since the same color just overlaps itself.
But watch what happens when a new pattern is started next to
a different pattern:

3002<2050,20380°Y Puts blue pattern next to orange
2C02<2050.,2030°Y
2802<2030.2050"Y

Where the blue overlaps the orange, you’ll see a white dot,
This is because one of the four-bit windows the moni tor sees
is all 178, If two colors are placed right next to each
other, the monitor will sometimes display a third color, or
fringe, right at the boundary. "Fringing" is especially
noticeable when there are a lot of narrow columns of
different colors next to each other. (Next time you run
COLOR TEST take a l1ookK at the boundaries between the
colors).

orange blue
0000000/0110011111001100 note the four {’s in a row
aux2 | mb2 | auxl at the boundary between

orange and biue

THE DOUBLE HI-RES ROUTINES

.The second anomaly presents a good lead in to the last part
of this series, the double hi-res routines, which plot
lines. These routines work like the atandard hi-res
Applesoft commands, HGR, HCOLOR , and HPLOT, except they use
the Applesoft ampersand function.

({At this point BRUN COLOR DBL HIRESII

There are four ampersand functions:

&H Clears double hi-res screen

&Cn Sets the double hires color to n

&Px,» Plots a point at x,y

&Lx,» Draws a line from the last point to x,y

TEXT Returns to 40-column text mode
POKE 49144,0 :
PCKE 49247,0

	partie06_01
	partie06_02
	partie06_03
	partie06_04
	partie06_05
	partie06_06

