Apple //c Technical Note #1

Revision of Apple //c Technical Note #1, 8 February 1984*
25 February 1984

There are differences between how the mouse works on the Apple //e and
how it works on the Apple //c. This technical note explains what is
causing these differences and how to write programs that work the same
on both machines.

For further information contact:
PCS Developer Technical Support
M/S 22-W, Phone (408) 996-1010

Disclaimer of all Warranties and Liabilities

s e et e By B G e i

Apple Computer, Inc. makes no warranties either express or implied,
with respect to this documentation or with respect to the software
described in this documentation, its quality, performance,
merchantability, or fitness for any particular purpose., Apple
Computer, Inc. software is licensed "as 1s'". The entire risk as to
its quality and performance 1is with the vendor. Should the programs
prove defective following their purchase, the vendor (and not Apple
Computer, Inc., its distributor, or retailer) assumes the entire
cost of all necessary damages. In no event will Apple Computer, Inc.
be liable for direct, indirect, incidental, or consequential damages
resulting from any defect in the software, even if Apple Computer,
Inc. has been advised of the possibility of such damages. Some
states do mnot allow the exclusion or limitation of dimplied
warranties or liability for incidental of consequential damages, so
the above limitationf my not apply to you.

This documentation 1s copyrighted. All rights are reserved. This
document may not, in whole or part, be copied, photocopied,
reproduced, translated or reduced to any electronic medium or
machine readable form without prior consent, in writing, from Apple
Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, California 95014

Notice

Apple Computer, Inc, reserves the right to make improvements in the
product described in this document at any time and without notice.

* A clarification of the effects disabling interrupts has on mouse
data has been added

BG

Apple //c Technical Note #1 ' Page # 2

INTRODUCTION

As advertised, i1f you use the mouse firmware routines such as
SETMOUSE to control the mouse then these routines will perform the
same function in the Apple //c as they do in the Apple //e. This does
not mean that a program which uses the mouse will behave the same in
both computers., There are two reasons for this. One is that if a
program has not properly set the environment prior to calling these
routines it 1s possible for the program to work in one machine and not
in the other. The second reason is that there are differences 1in the
machines and although the ROM rouines perform the same functions there
may be noticable differences in the ’‘behaviour’ of the mouse., This
technical note will explain the fundamental differences between the
way the mice in the two machines work., It will then point out
precautions that need to be taken to make sure that your machine
language program will work on both machines. With the exception of
mouse movement scaling described below BASIC and Pascal programs do
not need to be concerned about setting the proper environment,

The Apple //e mouse card has a microprocessor on it which
constantly polls the mouse to get status and position information.
This data is then kept on the card and i1s available whenever the
program requests it through the READMOUSE routine. If the mouse is in
passive mode this information will be ‘picked up’ by the main program
whenever it gets around to it. The SETMOUSE routine can set the mouse
card to issue interrupts under certain conditions. When the mouse
card determines that such conditions exist it 1ssues an interrupt.
This stops the main computer and goes to what ever interrupt handling
routine has been set up. This routines will then read the information
from where the card processor saved it and puts it in the screen
holes. When using a mouse on an Apple with a mouse card your program
1s only interrupted 1if your program has requested it. And the data in
the screen holes 1is being changed only when the program’s interrupt’
handler or polling routine has called READMOUSE. Also enabling and
inhibiting interrupts does not affect the updating of mouse
information by the card’s microprocessor.,

The Apple //c mouse does not have a card microprocessor and so
mouse Information is collected by interrupting the Apple //c’s
microprocessor. When the interrupt happens the firmware captures it
and processes 1t which includes updating the screen holes. The
interrupt 1is passed on only if SETMOUSF set up the conditions to do
so. However, having the mouse interrupt the computer’s mlcroprocessor
means that your program 1s being constantly interrupted., This will
affect program timming, It alsoc means that the screen holes are
constantly being updated with X and Y information even in passive mode
since this information must be kept somewhere and there 1s no card to
keep 1t on. Also, if you have disabled interrupts then the mouse can
never interrupt the processor and so the X adn Y values are never
updated and calling READMOUSE will indicate that there has been no
mouse movement,

Apple //c Technical Note #1 b Page # 3

Since the Apple //c is constantly being interrupted while the

mouse 1is on, the program’s performance may be affected. To minimize
this affect the Apple //c responds one~half as frequently to mouse

movements as does the mouse card. The noticable result of this is

that the mouse must be moved twice as far to create the same effect,
If you want the same behaviour on both machines then multiply the

Apple //c X and Y values by two and clamping to 1/2 the //e value
before using them.

With the exception of having to double the Apple //c mouse movement
your program can lgnore which machine it 1s running on by following
the precautions listed below. If you are working from BASIC or Pascal
these conditions are taken care of for you.

THE FOLLOWING CONDITIONS MUST BE TAKEN INTO ACCOUNT BY MACHINE

LANGUAGE PROGRAMMERS IF THE PROGRAM IS TOP RUN SIMILARLY IN ALL THF
APPLE // FAMILY OF COMPUTERS:

* Do not disable interrupts unless you must., Then be sure to
re-enable them.

* Disable interrupts when calling any mouse routine (SEI).

* Do not re-enable interrupts (CLI) or (PLP if previously had done
a PHP) after READMOUSE until X & Y data have been removed from
the screen holes.

* Be sure to disable interrupts (SFI) before placing position
information in the screen holes (POSMOUSE or CLAMPMOUSE).

* Fnter all mouse routines (not required for SERVEMOUSF) with the X
register set to $Cn and Y register set to $n0 where n = slot
number,

* Some programs may need to turn off interrupts for purposes other

then reading the mouse. This is sometimes done on the Apple //e
to keep from having to handle interrupts while in auxiliary
memory. If interrupts are turned off and then back on, the first
call to READMOUSE may give incorrect: values. Subsequent calls to
READMOUSE will return correct values until interrupts are turned
off and on again. Turning off interrupts for mouse calls does
not create this problem. If you are watching numbers coming form
the mouse while moving it in a direction that would increase
values you might see the following: 6, 7, 8, 9, 8, 9, 10. 1In
practice this momentary ‘glitch’ in the stream of mouse data has
little importance and would probably only be noticed by a
programmer testing his/her program - no one’s hand is that
steady. If you must keep this ‘glitch’ from happening then do
not keep interrupts off for more then 40 microseconds or be sure
that at least one mouse interrupts has taken place since
interupts were turned back on.

Apple //c Technical Note #2

Using 40 Column text with Double High Resolution Graphics
22 March 1984

This technical note describes how to properly handle the 40 column
screen while using double high-resolution graphics on the Apple //c.

Disclaimer of all Warranties and Liabilities

e s T G e e S ey S (e (e, S e S . Gy, e SR S i e S e e T P Pt e s B e e i e T S . o . e S

Apple Computer, Inc. makes no warranties either express or implied,
with respect to this documentation or with respect to the software
described in this documentation, its quality, performance,
merchantability, or fitness for any particular purpose. Apple
Computer, Inc. software is licensed '"as 1s'", The entire risk as to
1ts quality and performance is with the vendor. Should the programs
prove defective following their purchase, the vendor (and not Apple
Computer, Inc., 1ts distributor, or retailer) assumes the entire
cost of all necessary damages. In no event will Apple Computer, Inc,
be liable for direct, indirect, incldental, or consequential damages
resulting from any defect in the software, even 1f Apple Computer,
Inc. has been advised of the possibility of such damages. Some
states do not allow the exclusion or limitation of implied
warranties or liability for incidental of consequential damages, so
the above limitation may not apply to you.

This documentation 1s copyrighted. All rights are reserved. This
document may not, in whole or part, be copied, photocopied,
reproduced, translated or reduced to any electronic medium or
machine readable form without prior consent, in writing, from Apple
Computer, Inc.

Copyright 1984 by Apple Computer, Inc.

20525 Mariani Avenue
Cupertino, California 95014

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

CJs

Apple //c Technical Note # 2 Page 2

Many developers using double high resolution (dbl-hi-res) graphics
may wish to use 40 column text displays so that the text can be read
on a television set, There are a couple of possibilities:

l.) You can define your own dbl-hi-res character set with any size
characters you desire and then plot them on the dbl-hi-res screen.

2.) You can print text to the Apple //c text screen and toggle the
screen on to display it.

To use the second method, however, does require some special
considerations.,

The firmware in the Apple //c implements the scroll routine
differently that the Apple //e 80 column firmware. The Apple //c
scroll routine continues to use the window parameters when scrolling,
but uses the 80COL softswitch to determine 1f 1t should scroll the 80
or 40 column screen, Since the firmware has initialized a 40-column
window, the scroll routines will move only the first 40 columns. But,
the 80COL flag has been turned on for dbl-hi-res! Therefore, the
scrolling routine takes every even column from auxiliary memory and
every odd column from main memory. As a result, only the first 40
columns get scrolled, 20 columns from auxiliary memory and 20 columns
from main memory.

One possible solution to the problem is to write your own scroll
routines. Another might be to write to the screen so that scrolling
will not occur., But these is yet another solution. Turn on the full
80 column mode with a "PR#3" or the equivalent., Now print your text
to COUT in the normal manner being careful not to exceed 40 characters
per line. The 80 column firmware will scroll everything properly.When
you are ready to display text, send a CONTRQL-Q through COUT to switch
to 40 columns, When you are ready to return to dbl-hi~res mode, send
a CONTROL-R to COUT.

When making this switch, a momentary "glitch' may occur. If you
send the CONTROL-Q to COUT while still in graphics mode the screen
will go to regular "single' hi-res mode before finally going to text
mode, If you switch to text mode first, the text will be in 80 column
mode (with 40 columns displayed on the left half of the screen) before
ultimately going to 40 column mode. The same potential glitch may
occur goint back to dbl-hi-res. The "glitch" will be only momentary
and may not present any problem for you. If it does, you may wish to
make your change-over coincide with the video’s verticle blanking
interval. (See the Apple //c Reference Manual.)

NOTE: There is no way to display 4 lines of 40 column text at
the bottom of the dbl-hi-res screen in mixed mode since the 80 column

hardware must be active while dbl-hi-res is being displayed.

Apple //c Technical Note #3

e (o e . . e O S B B S o S e B i . S i D i iy . b B

Foreign Language Keyboard Layouts
1 March 1984

There are differences between the keyboard layout on the North
American Apple //c and Apple //c’s in other coutries. This technical
note documents the layouts, along with the ASCII codes for each key,
for the French, Italian, German, and United Kingdom systems,

For further information contact:

PCS Developer Technical Support
M/S 22-W Phone (408) 996-1010

Disclaimer of all Warranties and Liabilities

Apple Computer, Inc. makes no warranties either express or implied,
with respect to this documentation or with respect to the software
described in this documentation, its quality, performance,
merchantability, or fitness for any particular purpose. Apple
Computer, Inc. - software is licensed "as is", The entire risk as to
its quality and performance is with the vendor. Should the programs
prove defective following their purchase, the vendor (and not Apple
Computer, Inc., its-distributor, or retailer) assumes the entire cost
of all necessary damages. In no event will Apple Computer, Inc. be
liable for direct, indirect, incidental, or consequential damages
resulting from any defect in the software, even if Apple Computer,
Inc. has been advised of the possibility of such damages. Some
states do not allow the exc¢lusion or limitation of implied
warranties or liability for incidental of consequential damages, so
the above limitation may not apply to you,

This documentation is copyrighted. All rights are reserved. This
document may not, in whole or part, be copied, photocopied,
reproduced, translated or reduced to any electronic medium or
machine readable form without prior consent, in writing, from Apple
Computer, Inc,

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue ‘
Cupertino, California 95014

Notice

— e e o et e

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice.

PB

Apple //c
Standard France Keyboard Layout

October 24, 1983

\mnnunmng
WESSSSSY3855

) I Jo Lo Lo fs s

Notes: 1) Uses "Shift lock” insteed of “Caps lock" -- All keys are shifted.
2) When "shift Lock" is depressed, “Shift® keys unshift all keys.

File:

FRENCHUC
Report: ROMCODE

Row Key# Rom Ad Char C-S Code C-S Char C Code C Char S Code S Char

Page !
FEB 3, 196~
Code

VMUV LWLWLLWWWWLWWWLWWLWLCLWRRRNPD PP RNENDRNDRNDR P I e e b ot et et bt st et st o

01
02
03
04
05
06
07
08
09
10
11
12
13
14
16
17
18
19
20
21
22
23
24
25
26
27
28
31
32
33
34
35
36
37
38
39
40
41
41A
42
43A
44
45
46
47
48
49

:50

51
52
53
58
60
61

000
004
008
00cC
010
018
014
olcC
020
024
0COo
0c4
0BC
130
028
02C
030
034
038
040
03C
044
048
04C
OE4
OE8
OEC
0350
058
054
060
064
05C
068
06C
074
070
114
OB8
108
0EO
078
07cC
080
084
088
08C
090
094
098
09cC
110
138
13C

ESC

ESC
Us

DEL
HT

SOH
SUB
ENQ
DC2
DC4

NAK
HT
ST
DLE
RS

DC1
DC3
EOT
ACK
BEL
BS

LF

FF
CR

CR

DEL
ETB
CAN
ETX
SYN
STX

e we w

SP
BS
NAK

cr

1B
26
7B
22
27
28
1D
7D
21
1C
00
1B
1F
7F
09
0l
1A
05
12
14
19
15
09
OF
10
1E
24
11
13
04
06
07
08
0Aa
0B
0c
0D
iC
60
0D
7E
17
18
03
16
02
OE
2C
3B
34
3D
20
08
15

SC

E
1
2
3
4
5
GS
7

8
FS
NUL
ESC
Us
DEL
HT
SOH
SUB
ENQ
DC2
DC4
EM
NAK
HT
SI
DLE
RS
*
pCl
DC3
EOT
ACK
BEL
BS
LF
VT
FF
CR

CR
DEL
ETB
CAN
ETX
SYN

1B
31
32
33
34
35
1D
37
38
1C
00
1B
1F
7F
09
01
1A
05
12
14
19
15
09
OF
10
1E
2A
11
13
04
06
07
08
0A
OB
0cC
0D
25
23
0D
7E
17
18
03
16

02

OE
3F
2E
2F
2B
20
08
15

ESC

H AU J0KR MAG.O<WL 30 0 e g 0N

’

=

3 od<nNn XEANAND

z83

(LN

c/

1B
26
7B
22
27
28
5D
7D
21
5¢C
40
29
2D
7F
09
61
7A
65
72
74
79
75
69
6F
70
SE
24
71
73
64
66
67
68
6A
6B
6C
6D
7C
60
oD
3c
77
78
63
76
62
6E
2C
3B
3A
3D
20
08
15

w
(@]

MOG3N > 5 gl CWOVWONOWULEWN - I
t

MR LCTDOTDMOLO *

PY

P ZWCIOXEVDO

SP
BS
NAK

e

1B
31
32
33
34
35
36
37
38
39
30
5B
5F
7F
09
41
S5A
45
52
54
59
55
49
4F
50
7E
24
51
53

<44

46
47
48
4A
4B
4e
4D
25
23
0D
3E
57
58
43
56
42
4E
3F
2E
2F
2B
20
08
15

File: FRENCHUC Page 2
Report: ROMCODE FEB 3, 1984
Row Key# Rom Ad Char C-S Code C-S Char C Code C Char S Code S Char Code

5 62 134 LF 0A LF 0A LF 0A LF 0A
5 63 10C VT 0B VT 0B VT 0B VT 0B

File:

FRENCHLC
Report: ROMCODE

Row Key# Rom Ad Char C-S Code C-S Char C Code C Char S Code S Char

Page .
FEB 3, 198:x
Code

ol
02
03
04
05
06
07
08
09
10
11
12
13
14
16
17
18
19
20
21
22
23
24
25
26
27
28
31
32
33
34
35
36
37
38
39
40
41
41A
42
43A
b4
45
46
47
48
49
50
51
52
53
58
60
61

MUV LOLLLWLWLWLWWWWWWWRRRRPR RN RNNRNRR R = e b b e bt s bt bt bt s e s

200
204
208
20¢C
210
218
214
21C
220
224
2C0
2C4
2BC
330
228
22¢C
230
234
238
240
23¢
244
248
24C
2E4
2E8
2EC
250
258
254
260
264
25C
268
26C
274
270
314
2B8
308
2E0
278
27¢C
280
284
288
28C
290
294
298
29C
310
338
33C

wn
(@]

W~ WM~
[,]

&a
|

ESC
Us
DEL
HT
SOH
SUB
ENQ
DC2
DC4
EM
NAK
HT
SI
DLE
RS

DCI
DC3
EOT
ACK
BEL
BS
LF
VT
FF
CR

CR

ETB
CAN
ETX
SYN
STX

1B
31
32
33
34
35
1D
37
38
I1C
00
1B
1F
7F
09
0l
14
05
12
14
19
15
09
OF
10
lE
24
11
13
04
06
07
08
0A
0B
0c
0b
25
23
0D
3E
17
18
03
16
02
OE
3F
2E
2F
2B
20
08
15

ESC
&

ESC
Us

DEL
HT

SOH
SUB
ENQ
DC2
DC4

NaK
HT
ST
DLE
RS

DCl
DC3
EOT
ACK
BEL
BS
LF
VT
FF
CR

CR

ETB
CAN
ETX
SYN
STX
S0

Sp
BS
NAK

cr

1B
26
7B
22
27
28
1D
7D
21
I1C
00
1B
IF
7F
09
01
1A
05
12
14
19
15
09
OF
10
1E
24
11
13
04
06
07
08
0A
0B
0C
0D
7C
60
0D
3c
17
18
03
16
02
OE
2C
3B
3A
3D
20
08
15

v
O.

CwVwoOoO~NOOTWVPSWLWN M

NIRRT ODMONO F YO HCOSKIOEN >f§ gl
=

=
T

PZW<COMXEIVO

Sp
BS
NAK

1B
31
32
33
34
35
36
37
38
39
30
5B
SF
7F
09
41
5A
45
52
54
59
55
49
4F
50
7E
2A
51
53
44
46
47
48
4A
4B
4C
4D
25
23
0D
3E
57
58
43
56
42
4E
3F
2E
2F
2B
20
08
15

ESC

& /
e

"

1

(

nto M7 n

B g

3V O W it D NI

B Xl 0 O ®.0ow

e’

’

R

SJod<n ¥ E AN

SP
BS
NAK

1B
26
7B
22
27
28
5D
7D
21
5¢C
40
29
2D
7F
09
61
7A
65
72
74
79
75
69
6F
70
5E
24
71
73
64
66
67
68
6A
6B
6C
6D
7C
60
0D
3C
77
78
63
76
62
6E
2C
3B
3A
3D
20
08
15

File: FRENCHLC Page .
Report: ROMCODE FEB 3, 198-
Row Key# Rom Ad Char C-S Code C-S Char C Code C Char S Code S Char Code

5 62 334 LF 0A LF 0A LF 0A LF 0A
5 63 30¢C VT 0B VT 0B vT 0B VT 0B

Apple //c

Standard German Keyboard Layout

e o L L Ll LD L[L fe [fowe
’—’{‘LLLELIZIULIOIPIUI.:I

L Ll de do Lo Lo b Lo fo b o]
LLIXLIVIBLJIII_ %

O & anRee

Super][German Keyboard ROM Map =— Alpha Lock

Key Matrix ROM Cntl/Shft Control Shift Normal

Num. Cap Number Addr. Char Code Char Code Char Code Char Code
01 ESC 00 000: ESC 1B ESC 1B ESC 1B ESC 1B
02 1! 01 004 r21 1 31 121 1 31
03 2" 02 008: "oo22 2 32 n"oo22 2 32
04 3§ 03 00C: NUL 00 - NUL 00 5 40 3 33
05 4§ 04 010: $ 24 4 34 $ 24 4 34
07 6& 05 0l4: & 26 6 36 & 26 6 36
06 5% 06 018: Z 25 5 35 Z 25 5 135
08 7/ 07 olcC: / 2F 7 37 / 2F 7 37
09 8¢ 08 020: (28 8 38 (28 8 38
10 9) 09 024) 29 9 -39) 29 9 39
16 TAB 10 028: HT 09 HT 09 HT 09 HT 09
17 Q 11 02C: pDCl 1l DCl 11 qQ 51 Q51
18 W 12 030: ETB 17 ETB 17 W 57 W 57
19 E 13 034 ENQ 05 ENQ 05 E 45 E 45
20 R 14 038: DC2 12 pDC2 12 R 52 R 52
22 2 15 03C: SUB 1A SUB 1A Z S5A Z SA
21 T 16 040: DC4 14 DC4 14 T 54 T 5S4
23. U 17 0b4: NAK 15 NAK 15 U 55 U 55
26 1 18 048: HT 09 HT 09 I 49 1 49
25 0 19 04C: SI OF SI OF 0 4F 0 4F
31 A 20 050: SOH 0l SOH 01 A 41 A 41
33 D 21 054 EOT 04 EOT 04 D 44 D 44
32 s 22 058 DC3 13 DC3 13 S 53 S 53
36 H 23 05C: BS 08 BS 08 H 48 H 48
34 F 24 060: ACK 06 ACK 06 F 46 F 46
35 G 25 064 BEL 07 BEL 07 G 47 G 47
37 J 26 068: LF- 0A LF O0A J 4A J 4A
38 X, 27 06C: VT OB VT OB K, 4B K 4B
40 0 28 070: FS 1IC FS IC 0 5¢C 0 scC
39 L 29 074 FF 0C FF 0C L 4C L 4cC
4h Y 30 078: EM 19 EM 19 Y 59 Y 59
45 X 31 07C: CAN 18 CAN 18 X 58 X 58
46 C 32 080: ETX 03 ETX 03 C 43 C 43
47 v 33 084: SYN 16 SYN 16 Vo 56 vV 56
48 B 34 088: STX 02 STX 02 B 42 3 42
49 N 35 08C: S0 OE SO OE N 4E N 4E
50 M 36 090: CR 0D CR 0D M 4D M 4D
51, 37 094 :) , 2C ;3B , 2C
52 . 38 098: i JA . 2E : 3A . 2E
53 - 9 09C: Us IF us IF SF - 2D
El 40 0A0 ; / 2F / 2F 7 2F / 2F
E2 41 0A4 BS 08 BS 08 BS 08 BS 08
E3 42 0A8: 0 30 0 30 0 30 0 30
E4 43 0AC: 1 31 1 - 31 1 3 1 31
ES 44 0BO: 2 32 2 32 2 32 2 32
E6 45 0B4: 333 333 3033 333
29 #* 46 OB8: RS IE RS IE ~ S5E 23
13 47 OBC: ‘60 Y ‘60 t27
11 0= 48 0CO: = 3D 0 30 = 3D 0 30
12 27 49 0C4: 7 3F (3 7t ? 3F (z E
E7 50 0C8: Y 29) 29)y 29) 29
E8 51 occ: ESC 1B ESC 1B ESC 1B £SC 1B

Page 2

E9

E10

Ell

El12

56 <>
26 P,,
27 U
28 4%
E13

El4

- E15

El6

E17

E18

42 RETURN
63 wup
58 space
41 A
E19

E20

E21

E22

E23

E24

14 delete
62 down
60 left
61 right

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

0D0:
0D4:
0D8:
0DC:
QEQ:
OE&4:
QOE8:
OEC:
OF0:
OF4:
OF8:
QOFC:
100:
104
108:
10C:
110:
114:
118:
11C:
120:
124
128:
12C:
130
134:
138:
13C:

ner'wv Nosunm
2]

Q9

E oo

39 +. 0o

(S ;)
§ ~rd-wanrd
a

w

5

’
DEL
LF
BS
NAK

34
35
36
37
3E
10
1D
2A
2A
15
38
39
2E
2B
0D
0B
20
1B
3F
20
28
2D
0D
2C
7F
0A
08
15

Fill all unused locations with AO.

Page 3

=1

2=/
+ O AN

E*

38+ oo

1 W\

| ~rg~Ww3rgd
(@]

75}

53

’
DEL
LF
BS
NAK

34
35
36
37
3C
10
1D
2B
2A
15
38
39
2E
2B
0D
0B
20
IB
3F
20
28
2D
0D
2C
7F
0A
08
15

oV N0y WD

I+, m>a>§ * * .

n <
SO
*

>

B ~%-

’
DEL
LF
BS
NAK

34
35
36
37
3E
50
5D
2A
2A

- 15

38
39
2E
2B
0D
0B
20
5B
3F
20
28
2D
0D
2C
¥
0A
08
15

m<19+. socoE:(-}-q.*u/\\xc\u\J.\

U

°

B ~8-

b
DEL
LF
BS
NAK

34
35
36
37
3C
50
5D
2B
2A
15
38
39
2E
2B
0D
0B
20
5B
3F
20
28
2D
0D
2C
7F
0A
08
15

Super }[German Keyboard ROM Map == Upper/Lower Case

Key Matrix ROM Cntl/Shft Control Shift Normal
Num. Cap Number Addr. Char Code Char Code Char Code Char Code
01 ESC 00 200 ESC 1B ESC 1B ESC 1B ESC 1B
02 1! 01 204 121 1 31 121 1 31
03 2" 02 208: "2 2 32 "2 2 32
04 3§ 03 20C: NUL 00 NUL 00 § 4o 3033
05 48 04 . 210: $ 24 4 34 s 24 4 34
07 6& 05 214 & 26 6 36 & 26 6 36
06 5% 06 218: % 25 5 35 z 25 5 35
08 7/ 07 21C: / 2F 7 37 / 2F 7 37
09 .8¢(08 220: (28 8 38 (28 8 38
10 9) 09 224) 29 9 39) 29 9 39
16 TAB 10 228: HT 09 HT 09 HT 09 09
17 Q 11 22C: bci 11 pDCl 11 Q 51 ~oe. 71
18 W 12 230 STB 17 ETB 17 W 57 w 77
19 E 13 234 ENQ 05 ENQ 05 E 45 e 65
200 R 14 238: DC2 12 DC2 12 R 52 r 72
22 Z 15 23C: SUB 1A SUB 1A Z SA z TA
21 T 16 240 DC4 14 DC4 14 T 54 t 74
23 U 17 244 NAK 15 NAK 15 U 55 u 75
26 1 18 248 HT 09 HT 09 I 49 1 69
25 0 19 24C: SI OF SI OF 0 4F o 6F
31 A 20 250 SOH 01 SOH 01 A 41 a 61
33 D 21 2541 EOT 04 EOT 04 D 44 d 64
32 s 22 258: DC3 13 DC3 13 S 53 s 73
36 H 23 25C: BS 08 BS 08 H 48 h 68
3 F 24 260 ACK 06 ACK 06 F 46 £ 66
35 G 25 264 BEL 07 BEL 07 G 47 g 67
37 26 268: LF 0A LF OA J 4A i 6A
38 K, 27 26C: VT 0B VT OB K, 4B k 6B
40 o 28 270: FS IC FS IC 0 5C o 7C
39 L 29 274 FF 0OC FF 0C L 4cC 1 6C
4h Y 30 278: EM 19 EM 19 Y 59 y 79
45 X 31 27C: CAN 18 CAN 18 X 58 x 78
46 C 32 280: ETX 03 ETX 03 C 43 c 63
47 v 33 284 SYN 16 SYN 16 vV 56 v 76
48 B 34 288 STX 02 STX 02 B 42 b 62
49 N 35 28C: SO OE SO OE N 4E n 6E
50 M 36 290: CR 0D CR 0D M 4D m 6D
51 3 37 294: : 3B , 2C ; 3B ,o2C
52 . 38 298: ! 3A . 2E : 3A . YA
53 - 39 29C: Us IF Us IF 5F - 2D
El 40 240 / 2F / 2F 7 2F / 2F
E2 41 244: BS 08 BS 08 BS 08 BS 08
E3 42 248 0 30 0 30 0 30 0 30
E4 43 2AC: 1 31 1 31 1 31 1 31
ES 44 2B0: 2 32 2 32 2 32 2 3
E6 45 2B4: 3033 3 33 333 3033
29 #° 46 2B8: RS IE RS IE *~ SE # 23
13 47 2BC: ‘60 ‘27 60 27
11 0= 48 2C0: = 3D 0 30 = 3D 0 30
12 B2 49 2C4: 7 IF @ 7E ? 3F B 7E
E7 50 2C8:) 29) 29) 29) 29

S ESC 1B ESC 1B ESC LB

E8 51 2CC: ESC 1B

Page 4

E9

E10

Ell

El12

56 <>
26 P
27 u
28 4%
E13

El4

E1l5

El6

El7

E18

42 RETURN
63 wup

58 space
41 a3 A
El9

E20

E21

E22

E23

E24

14 delete
62 down
60 left
61 right

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

2D0:
2D4:
2D8:
2DC:
2E0:
2E4
2E8:
2EC:
2F0:
2F4
2F8:
2FC:
300:
304
308:
30C:
310:
314:
318:
31C:
320:
324:
328:
32¢C:
330:
334:
338:
33¢C:

[7, 3 o EAVARN e NV, I N
t=1

[E=)

9 |,~.$.QEEEQ:§§34-. W>a>§ * ¥
O

b
DEL
LF
BS
NAK

34
35
36

3E
10
1D
2A
2A
15
38
39
2E
2B
0D
0B
20
1B
3F
20
28
2D
0D
2C
7F
0A
08
15

F1ll all unused locations with AO.

Page S

t

Qg
*t+ A~V

H1~%-08533+. 0w
(@]

b
DEL
LF
BS
NAK

34
35
36
37
3C
10
1D
2B
2A
15
38
39
2E
2B
0D
0B
20
1B
3F
20
28
2D
0D
2C
7F
0A
08
15

JOV N Oy

-

z:(-
RS

L)

9 IA%«: ,259-}'- O o

’
DEL
LF
BS
NAK

3%
35
36
37
3E
50
5D
2A
2A
15
38
39
2E
2B
0D
0B
20
5B
3F
20
28
2D
0D
2C
7F
A
08
15

'"dv—i9+-ooo§x~+ T AN W
[+34

0 <

Py

B ~"-

’
DEL
LF
BS
NAK

34
35
36
37
3C
70
7D
2B
2A
15
38
39
2E
2B
0D
0B
20
7B
3F
20
28
2D
0D
2C
7F
0A
08
15

Apple //c

Standard UK Keyboard Layout

Octover 24, 1983

ABSIABDDRDNAR
CLLLLLLLLLEIT L
e LLLLLELLILLL.
e LT e Ll LT T

2z) [Jo Jelo i Jo)

Notes: Per Neil Davison (October 18, 1983)
Use no symbols on keycaps; instead use:
“snift”
“retum*®
"caps lock”

Super][British Keyboard ROM Map == Alpha Lock

Key Matrix ROM Catl/Shft Control Shift Normal
Num. Cap Number Addr. Char Code Char Code Char Code Char Code
01 ESC 00 000: ESC 1B ESC 1B ESC 1B ESC 1B
02 1! 0l 004: 121 1 31 ! 21 1 31
03 2@ 02 008: NUL 00 NUL 00 @ 40 2 32
04 3% 03 00C: £ 23 3 33 £ 23 3 33
05 4% 04 010: $ 24 A $ 24 4 34
07 6& 05 Olé4: RS LE RS 1E ~ SE 6 36
06 5% 06 018: %25 5 35 Z 25 5 135
08 7& 07 olC: & 26 7 37 & 26 7 37
09 8* 08 020: * QA 8 38 * 2A 8 38
10 9¢ 09 024 (28 9" 139 (28 9 39
16 TAB 10 028: HT 09 HT 09 HT 09 HT 09
17 Q 11 02C: DCl 11 DCl 11 Q 51 Q 51
18 W 12 030: ETB 17 ETB 17 w57 W 57
19 E 13 034: ENQ 05 ENQ 05 E 45 E 45
20 R 14 038: DC2 12 pDC2 12 R 52 R 52
22 Y 15 03C: EM 19 EM 19 Y 59 Y 59
21 T 16 040 DC4 14 DC4 14 T 54 T 54
23 U 17 044 : NAK 15 NAK 15 U 55 U 55
24 1 18 048: HT 09 HT 09 I 49 I 49
25 0 19 04C: SI OF SI OF 0 4F 0 4F
31 A 20 050: SOH 01 SOH 0l A 41 A 4]
33 D 21 054 EOT 04 EOT 04 D 44 D 44
32 S 22 058: DC3 13 DC3 13 S 53 s 53
36 H 23 05C: BS 08 BS 08 H 48 H 48
34 F 24 060: ACK 06 ACK 06 F 46 F 46
35 G 25 064 BEL 07 BEL 07 G 47 G 47
37 J 26 068: LF 0A LF 0A J 4A J b4A
38 K 27 06C: VT OB VT OB K 4B K 4B
40 ;e 28 070: : 3A ; 3B : JA ; 3B
39 L 29 074: FF 0C FF 0OC L 4C L 4C
46z 30 078: SUB 1A SUB 1A Z S5A Z SA
45 X 31 07¢C: CAN 18 CAN 18 X 58 X 58
46 C 32 080: ETX 03 ETX 03 C 43 C 43
47 v 33 084: SYN 16 SYN 16 v 56 vV 56
48 B 34 088: STX 02 STX 02 B 42 B 42
49 N 35 08C: SO OE SO OE N 4E N 4E
50 M 36 090: CR OD CR OD M 4D M 4D
51 ,< 37 094: < 3C , 2cC < 3C , 2C
52 > 38 098: > 3E . 2E > 3E . 2E
53 /7 39 09cC: 7 3F / 2F 7 3F / 2F
El 40 0AO: / 2F / 2F / 2F / 2F
E2 41 0AL: BS 08 BS 08 BS 08 BS 08
E3 42 0A8: 0 30 0 30 0 30 0 30
E4 43 0AC: 1 31 1 31 1 31 1 31
ES VA 0BO: 2 32 2 32 2 32 2 3
E6 45 OB4; 3 33 3 33 3 33 3 33
29 = 46 OB8: - JE ‘60 ~ 7E R0
13 =+ 47 OBC: + 2B = 3D + 2B = 3D
11 0) 48 0COo: y 29 0 30 y 29 0 30
12 - 49 0C4: Us IF Us IF 5F - 2D
E7 50 0C8:) 29) 29 Y29) 29
E8 51 0CC: ESC 1B ESC 1B ESC LB ESC 1B

Page 2

E9
E10
Ell
El12
56\
26
27
28
E13
El4
El5
El6
E17
E18
42 RETURN
63 up

58 space
l‘l LAl
E19

E20

E21

E22

E23

E24

14 delete
62 down
60 left
61 right

S~ g —

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
17
78
79

0DO:
0D4 :
0D8:
ODC:
QOEO:
OE4:
QE8:
QEC:
0FO0:
OF4 ¢
OF8:
QFC:
100:
104:
108:
10C:
110:
114:
118:
11C:
120
124
128:
12C:
130:
134:
138
13C:

~N o

rxj
w

DLE
ESC

l/\%-o :%394-' \OOOE&-S

53

]
DEL
LF
BS
NAK

34
35
36
37
1C
10
1B
1D
2A
15
38
39
2E
2B
0D
0B
20
22
3F
20
28
2D
0D
2C
7F
0A
08
15

F11l all unused locations with AO.

Page 3

l/\%)-\’ ~%§9+o xoooE *

53

?
DEL
LF
BS
NAK

34
35
36
37
1C
10
1B
1D
2A
15
38
39
2E
2B
0D
0B
20
27
3F
20
28
2D
0D
2C
1F
0A
08
15

:QSQ.}.. \omi B e g — 2 O U

B ~% -

’
DEL
LF
BS
NAK

34
35
36
37
7C
50
7B
7D
2A
15
38
39
2E
2B
0D
0B
20
22
3F
20
28
2D
0B
2C
7F
0A
08
15

w (n<:9 2
i~ ~d A +-\ooo;x-—-r——-ru/\ncnmb

53

b
DEL
LF
BS
NAK

34
35
36
37
5C
50
5B
5D
2A
15
38
39
2E
2B
0D
0B
20
27
3F
20
28
2D
0D
2C
7F
0A
08
15

Key

Num. Cap

01
02
03
04
05
07
06
08
09
10
16
17
18
19
20
22
21
23
24
25
31
33
32
36
34
35
37
38
40
39
44
45
46
47
48
49
S0
51
52
53
El
E2
E3
E4
ES
E6
29
13
11
12
E7
E8

ESC
1!
2@
3%
4$
6&
5%
7&
8%
9¢(
TAB

XZW<OXNDODy RLOT" DT VOPOHCCHCXOM®MEO

=t
0)

Super][British Keyboard ROM Map =—— Upper/Lower Case

Matrix
Number

00
0l
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

ROM
Addr.

200:
004:
008:
00cC:
010:
014
0ls:
QlcC:
020:
024:
228:
22C:
230:
234:
238:
03cC:
240:
244
248
24C:
250:
254
258:
25C:
260:
264
268:
26C:
070:
2741
278:
27C:
280:
284
288:
28C:
290:
094:
098:
09cC:
2A0:
2A4 ¢
2A8:
2AC:
2B0:
2B4:
OBS8:
OBC:
0CO:
OCé4:
2C8:
2CC:

Cntl/Shft
Char Code
ESC 1B
! 21
NUL 00
¥ 23
$ 24
RS lE
b4 25
& 26
* 2A
(28
HT 09
DCl 11
ETB 17
ENQ 05
DC2 12
EM 19
DC& 14
NAK 15
HT 09
ST OF
SOH 01
EOT 04
pDC3 13
BS 08
ACK 06
BEL 07
LF 0A
VT 0B
: 3A
FF ocC
SUB 1A
CAN 18
ETX 03
SYN 16
STX 02
S0 0E
CR 0D
< 3c
> 3E
? F
/ 2F
BS 08
0 30
1 31
2 32
3 33
~ 7E
+ 2B
) 29
us IF
) 29
ESC 1B

Page 4

Control
Char Code
ESC 1B
1 31
NUL 00
3 33
4 34
RS 1E
5 35
7 37
8 38
9 39
HT 09
DC1 11
ETB 17
ENQ 05
pDC2 12
EM 19
DC4 14
NAK 15
HT 09
SI OF
SOH 0l
EOT 04
DC3 13
BS 08
ACK 06
BEL 07
LF 0A
VT 0B
; B
FF 0cC
SUB 1A
CAN 18
ETX 03
SYN 16
STX 02
S0 0E
CR 0D
, 2C
. 2E
/ 2F
/ 2F
BS 08
0 30
1 31
2 32
3 33
' 60
= 3D
0 30
Us IF
) 29
ESC 1B

Char Code

Shift

=1
[75]
Q

£

'.?.Zw<:O><Nr"-NQC)’QZU)U}OHGHFCWNSOE’*Q”N PU}?K@’"‘

e LN = O NSV A

U3 |

1B
21
40
23
24
5E
25
26
24
28
09
51
57
45
52
59
54
55
49
4F
41
44
53
48
46
47
4A
4B
3A
4c
5A
58
43
56
42
4E
4D
3C
IE
IF
2F
08
30

31

32
33
7E
2B
29
5F
29
LB

Normal
Char Code

E

WO~~~V NP~ W

5

o

I N = O U~ v 3 3 T AN X N ptwe XTI MO OD O HC ¢ 1 D E.Q

W~ i O

@]

1B
31
32
33
34
36
35
37
38
39
09
71
77
65
72
79
74
75
69
6F
61
64
73
68
66
67
6A
6B
3B
6C
527A
78
63
76
62
6E
6D
2C
2E
2F
2F
08
30
31
32
33
60
3D
30
2D
29
L3

E9
El10
Ell
El12
56 \
26
27
28
E13
Eld4
El5
El6
E17
E18
42 RETURN
63 up

58 space
41 (B 1]
El19

E20

E21

E22

E23

E24

14 delete
62 down
60 left
61 right

——
Y ——

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69

70
71
72
73
74
75
76
77
78
79

2D0:
2D4 ¢

2D8:

2DC:
0EO:
OE4:
QES8:
QEC:
2F0:
2F4
2F8:
2FC:
300:
304
308:
30C:
310:
314:
318:
31C:
320:
324
328:
32C:
330:
334
338:
33cC:

~Novwn &

FS
DLE
ESC
GS

NAK

:%§9+~ o ®©

wn
i~ -9

CR

’
DEL
LF
BS
NAK

34
35
36
37
1C
10
1B
1D
2A
15
38
39
2E
2B
0D
0B
20
22
3F
20
28
2D
0D
2C
7F
oA
08
15

F1ill all unused locations with AO.

Page 5

NAK

Ul<:g+. © ®

w
il ~md > ~mdH

53

’
DEL
LF
BS
NAK

34
35
36
37
1C
10
1B
1D
2A
15
38
39
2E
2B
0D
0B
20
27
3F
20
28
2D
0D
2C
7F
oA
08
15

m<g =
R I | +‘~ooo;x---»~ru—\:c\uu4.\

B~

’
DEL
LF
BS
NAK

34
35
36
37
7C
50
7B
7D
2A
15
38
39
2E
2B
0D
0B
20
22
3F
20
28

2D

0D
2C
7F
0A
08
15

wm m<9 =z
i ~rd -2 ~r 3 + o xooo;x-w-—-tz/\:c\mp

2

b
DEL
LF
BS
NAK

34
35
36
37
5C
70
5B
5D
2A
15
38
39
2E
2B
oD
0B
20
27
3F
20
28
2D
0D
2C
7F
oA
08
15

Apple //c
Standard Italy Keyboard Layout

October 24, 1983

™.

T E) Lo
SLILELLLILLIEL
e LT LELLT

T LR LELL

o) [Jo I Im

Notes: 1) Uses “Shift lock™ not “Caps Lock™ -- All keys are shifted.
2) Altermnate character set is U.S. but kbd layout is identical to the
Itallan --"only characters which are not common to both
character sets change.
3) The following characters change to their US equivalents:

=
H
HH
*::ﬁ
g

Hex Italian Us Hex Italian s
23 £ # 60 a)
ag § @ 78 a {
58 ° (7C 0 l
5C G \ 70 e }
5D é] 7E i i

File: ITALIANUC Pa~s -
Report: ROMCODE DEC 1.
Row Key# Rom Ad Char C-S Code C-8 Char C Code C Char § Code S Char Code

—— e —— — - e vy s o T e o —— - —

1 01 000 ESC 1B ESC 18 ESC 1B ESC 1B
1 02 004 1 31 1 31 1 31 1 31
1 03 o008 2 32 2 32 2 32 2 32
1 04 00C 3 33 3 a3 3 as 3 33
1 0% 010 4 34 4 as .4 34 4 34
1 07 014 6 36 & 36 6 36 6 36
1 o0& 018 FS 1C FS 1C s 35 s 35
1 08 o01C 7 37 7 az 7 37 7 37
1 09 020 8 as 8 as 8 38 8 ez
1 10 024 3. a9 9 39 % 39 9 39
2 16 028 HT 09 HT 09 HT 0% HT 09
2 17 0=C DC1 11 DC1 11 Q 51 Q 51
2 18 030 SUB 1A SUB 1A z 5A z 54
2 19 034 ENG 05 ENG 05 E 45 E 45
2 =20 038 pc2 12 DC2 12 R 82 R 52
2 22 03¢ EM 19 EM 19 Y 57 % 59
2 21 040 DC4 14 DC4 14 T 54 T 54
2 23 04 NAK 13 NAK . 15 U 55 U 55
2 24 048 HT 0% HT 09 I 49 1 49
2 25 04C sI OF 51 OF 0 aF 0 4F
2 31 050 SOH 0t SOH ot A 41 A 41
2 33 054 EQT 04 EOT 04 D 44 D 44
3 32 o058 DC3 13 DC3 13 8 53 S 53
3 36 05C BS 08 BS 08 H 48 H 48
3 34 060 ACK o0& ACK 06 F 46 F 44
3 35 044 BEL. 07 BEL 07 e 47 e 47
3 37 068 LF 0A LF 0A J 44 J 4A
2 38 06C vT o):! VT oB K 4B K 4B -
3 40 070 CR oD CR oD M 4p M 4D
3 39 074 FF oc FF oc L 4ac L 4C
4 44 078 ETB 17 ETB 17 W 57 W 57
4 45 07C CAN 18 CAN 18 X 58 X 58
4 46 080 ETX 03 ETX 03 c 43 c 43
4 47 084 SYN 16 SYN 16 v 56 v 56
4 48 o088 STX 02 STX 02 B 42 B 42
4 49 o08C S0 OE sQ - OE N 4E N 4€
4 S0 090 ? 3F ? aF ? aF ? aF
4 51 094 . 2E . 2E . 2E . 2E
4 52 098 / oF / 2F / oF / 2F
4 82 09¢C ! 21 ! 21 ' 21 ! 21
3 41A 0B8 NUL. 00 ESC 1B ° SB ° 5B
1 13 0BC + 2B + 2B + 2B + 2B
1 1t 0cCo GS 1D GS 1D 0 30 0 30
1 12 oc4 us 1F us 1F _ 5F - SF
4 43A OEO > 3E > 3E > 3E > 3E
2 26 OE4 DLE 10 DLE 10 P 50 P 50
2 27 oEe RS 1€ RS 1E ~ 5E ~ SE
2 28 OEC » 2A % 2A * 24 * 24
2 42 108 CR oD CR oD CR oD CR oD
5 &3 10C VT oB VT B VT OB yT 0B

File: ITALIANUC Page
Repoart: ROMCODE ' DEC 1, -*
Row Key# Rom Ad Char C-S Code C-S Char C Code C Char § Code S Char Code

S S8 110 SP 20 SP 20 sP 20 SP 20
- 41 114 “ 295 % 25 “ 25 % a5

14 130 DEL 7F DEL 7F DEL 7F DEL 7F
S o 134 LF 0A LF 0A LF 0A LF OA
S &60 138 BS o8 BS 08 BS 08 BS o8
S 61 13C NAK 15 NAK 15 NAK 15 NAK 15

File: ITALIANLC) Page
Report: ROMCODE DEC 1, 1
Row Key# Rom Ad Char C-S Code C—-S5 Char C Code C Char S Code S Char Cade

e — -—

1 01 =200 ESC 1B ESC 1B ESC 1B ESC - 1B
1 02 204 1 31 % 26 1 31 % 26
1 03 208 2 az " 22 2 32 " 22
1 04 20C 3 33 ‘ 27 3 33 ‘ 27
1 0S 210 4 34 (28 4 34 (28
1 07 214 b 36 M 7D 6 34 M 7D
1 06 218 FS 1¢ FS 1C 5 3s ¢ 5C
1 08 21c 7 a7) 29 7 37) 29
1 09 220 8 3s 3 23 8 38 3 23
1 10 224 9 39 a 78 9 39 3 7B
2 16 228 HT 09 HT 0% HT 09 HT 09
2 17 22¢ DCi 11 DC1 11 Q 81 q 71
2 18 230 SUB 1A SUB 1A z 54 z 7A
2 19 234 ENG oS ENG 0s E 4% e &5
2 20 238 DC2 12 DC2 12 R 52 r 72
2 22 23¢ EM 19 EM 19 Y 59 y 79
2 21 240 DC4 14 DC4 14 T 54 £ 74
2 23 244 NAK 19 NAK 1 U ss u 75
2 24 248 HT 09 HT 09 I 49 i 69
2 2% 24cC SI oF sI OF 0 4F 0 &F
3 31 2so. SOH o1 SOH o1 A a1 a b1
3 33 254 EOT 04 EOT 04 D 44 d b4
3 32 2%8 DC3 13 DC3 13 s 53 s 73
3 36 2%C BS 08 BS o8 H a8 h 68
3 34 240 ACK 06 ACK 06 F 44 £ bb
3 335 264 BEL 07 BEL 07 G 47 g &7
3 37 268 LF 0A LF 0A J 4A J oA
3 38 264C VT OB vT 0B K 4B k 4B
3 40 270 .CR oD CR oD M 4D m &D
3 39 274 FF oc FF oc L 4c 1 &C
4 44 278 ETB 17 ETB 17 W s7 L w 77
4 45 27C CAN 18 CAN 18 X 58 x 78
4 44 280 ETX 03 ETX 03 o 43 c &3
4 47 284 SYN 16 SYN 16 v 56 v 76
4 48 288 STX 02 STX 02 B 42 b &2
4 4% 28C so OE S0 OE N 4E n bE
4 50 290 ? 3F , 2¢ ? 3F) 2C
4 31 294 . 2E i 3B . 2E i 3B
4 S22 298 / 2F : 3A / 2F : 3A
4 33 2% | 21 3 7C ! 21) 7¢C
3 41A 288 ESC 1B NUL 00 ° 53) 40
1 13 2BC + 2B = 3D + 28 =, 3D
{ 11 2co ¢S 1D ¢S 1D @ 30 e 5D
1 12 2c4 us 1F us iF _ 5F - 2D
4 43A 2EO > 3E < 3¢ > 3E < 3¢
2 26 2E4 DLE 10 DLE 10 P 50 N 70
2 27 2EB RS 1E RS {E ~ sE h 7€
2 28 2EC * 24 $ 24 * 24 3 24
3 42 308 CR oD CR oD CR oD CR oD
S &3 30C yT OB vT OB VT 0B T OB

File: ITALIANLC Pag.
Report: ROMCODE . DEC 1,
-Row Key# Rom Ad Char C-5 Code C-5 Char C Code C Char S Caode § Char Code

— — o

s 88 310 SP 20 SP 20 8P 20 SP 20
g 41 314 % 25 U &0 % 29 O 60
. 14 330 DEL 7F DEL 7F DEL 7F DEL 7F
S 62 334 LF 0A LF 0A LF 0A LF 0A
5 &0 338 BS o8 BS 08 BS 08 BS 08
5 61 33c NAK 15 NAK 15 NAK 15 NAK 15

Apple //c Technical Note #4

Corrected DVORAK Keyboard Layout

P 4y 2 1 & % 1 o 4 1 & % F C 0> 0 C Y
esc } 1 1 2 1 3 I 4 1 S 4+ & 1 7 1 8 1 ¢ 1 0 1 t©t 1 1 |1 delete
< | [! I i | | | | | [!
I ? 1 < vt > v P VY 4+ F + 6 I C + R 1 L I : o+ |
tab A s . tp b ¥y ¥ £ 1 g I < I r 1 1 | 1 o= 1 N\
! ! | 1 ! | [| | | | I |
I A 0O } E ¢+ U 1P 1T t D I H I T I N I S t _ | return
contrel I a ! o | e I u | i I I h I t ¥ n t s | - |
| | I i I I | | | ! | |
P 1 e 1 J I K I X 1t B I M 1 W v 1 zZ | !
shift P21 g 0§ 1 K I x 1 b I m] w v | z. | shift |
! I i ! | | | | I | |
capsl ~ 1 I 1 | i P
|
|

| 1
Taeck! ~ | i | | I <=~ 1 ==> 1 |
| i | G | éb

This ie the Dvorak Keyboard layout as implemented on the Apple //c computer when
the keyboard switch is depressed. There has only been one version of the Keyboard
layout R¥1. All Apple //c’s, pre—release and final producticn machines, have the
above larout and no other. The pre-release documentation was in error as is the
final Apple //c Reference Manual.

Appile lic Deita Guide

Table of Contents

Introduction

OCOWOOOWMOOMMMBNNNNNODOOOINEDEWLN

Categories
Equations '
External Physical
Keyboard
Back Panel
Intermal Physicai
Slots/No Slots
Game /O and Other Connectors
Power Supply
Disk Drive
- Speaker
Input and QOutput
Keyboard Character Sets
Dispiay Character Sets
Display Modes
Cassette /O
Disk /O
Game /O
Mouse Input
Hardware in General
Type of CPU
Amount and Address Ranges of RAM
Amount and Address Ranges of ROM
Power Supplies
Firmware in General
Monitor
Video Firmware
Diagnostic Firmware

Table of Contents

12 Slot/Port Firmware
12 Software in General
12 Languages

13 Operating Systems
13 Hardware Specifics
13 Use of ICs

14 Hardware Locations

Monitor Entry Point Labels 23
Machine Identification 33
Apple lic Applesoft Firmware 37
Differences

Interrupt Handling on the 41
Applie llic

41 What Is an Interrupt?

41 Interrupts on the Apple lic Computer

42 Interrupt-Handling on the 65C02

42 The interrupt Vector at SFFFE

43 The Built-in Interrupt Handler

44 Saving the Memory Configuration

45 Managing the Memory Configuration

45 User's Interrupt Handler at S3FE

46 Sources of Interrupts

47 Firmware-Handling of Interrupts

47 Firmware for Mouse and Vertical Blanking
47 Firmware for Keyboard Interrupts

48 Using Externai Interrupts Through Firmware
48 Firmware for Serial Interrupts

49 A Loophole in the Firmware

m Table of Contents

Apple lic Firmware 51

51 Video Firmware
81 40 Columns Versus 80 Columns
51 Diagnostics
65C02 Microprocessor
Window Widths
Mouse Firmware
Mouse Character Set
Using the Mouse as Paddles
Using the Mouse From BASIC
The Built-in Printer Firmware
Printer Firmware Commands
The Built-in Communications Firmware
Communications Firmware Commands

AGGRLERBRN

Table of Contents

Introduction

This document compares the Apple lic to the Appie lle, but it also
reiterates most of differences between the Apple lle and the
Appie Il Plus that were originaily noted in the Guide to the New
Features of the Apple Ile (Apple Product Number A2F2114). In
addition, it points out differences between the Apple Il and Il Plus.

This draft does not include a list of the keyboard and vidso
character sets and. other large tables of information. Uniess
otherwise noted, this information can be found in the Apple lle
Reference Manua. '

The keyboard and ¢haracter set differences between different
countries’ models of the Apple llc are the same as for the lle. The
Internationai-Supplement to the Appie-lle Owner’s Manual (Part
number- 030-0525) contains tables and illustrations describing
these differances. Nots, however, that the Appie-lic has NTSC
video circuitry inside the case for -all countries; axternal PAL (and
presumably SECAM) video adapters will get their signals from the
video expansion connector.

introduction M

Categories

The characteristics that vary from one machine to another fall
under a handful of categories, starting with concrete physical
elements and ending with more abstract and technical items:

e Egquations

each machine equals its predecessor plus or minus certain
overall characteristics —merely an overview

External physical

keyboard layout and front of machine
sides (yes, sides)

top (removable or no)

back panel

Internal physical

slots/no slots

game I/Q, aux video pins, LEDs, etc.
power supply

disk drive -

speaker

Input and output

keyboard character sets
display character sets
display modes

cassette I/0

disk 1/O

game /O

mouse input

Hardware in general

type of central processing unit
amount and address ranges of RAM
amount and address ranges or ROM
power supplies

|ntroduction

® Firmware in general

monitor

video firmware
diagnostic firmware
slot/port firmware

e Software in general

languages
operating systems

o Hardware specifics

important RAM locations

hardware locations

important ROM locations

use of ICs (customs, hybrids, sockets)
signals availabie to the outside world

13 quations

These equations are merely an overview of what each model of
Apple |l is with respect to its predecessor. The remainder of this
guide spells out these differences in detail.

“Notar: Thesakquabons:aream:tem cf functmnal eqmvalence,
nat:strict equality..Far: sxample, i

Apple-ile = Appie il Plus + Language Card

does:not:mean: there: | is.an: actual language-card. or slat—just
- that: the: one-machine: functions. as:if it were the other with such
,a.s:cazdfm::a’::,slot;.. '

There is a related document (a Configuration Guide) that
describes how to configure an Apple lle to make it {aimost)
equivalent to an Apple lic..

Appte Il Plus = Apple Il + Autostart ROM + Applesoft firmware
+ 48K RAM standard

Apple i - Integer BASIC firmware - Qld Monitor
ROM

Equations 13

Appla lis = Apple il Plus + language card + additional 16K
RAM + 80-column firmware + built-in diagnosacs
+ full ASCIl keyboard + intemal power-on light
+ FCC EMC approval + improved back panel +
9-pin back panel game connector + auxiliary siot
(with possibility of 80-column card + extra 64K
RAM)

Apple il Plus - siot 0

Appile ilc a Apple lle + extended 80-column text card +
40/80 column switch + language switch + disk
light + disk controiler port + disk drive + mouse
port + senal prnnter port + senal communicaton
port + built-in port firmware + video expansion
connsctor

Appie lle - removabie cover - slots 1 t0 7 -
auxiliary slot - internal power-on light - cassette 1/Q
connectors - internal game /0 connector (hence
no game output) - RF modulator connector -
auxiliary video pin - diagnostic firmware -
miniassembler - monitor cassatte support

B4 External Physical

The Apple Il and Il Plus were identical in external appearance. The
Apple ile and Apple lic differ from the eariier machines in their
keyboard layouts and back paneis.

Keyboard

The Appie Il and !l Plus have identical 52-key keyboards. The
Apple lle and Apple lic keyboards have the same 63-key, full
ASCI! keyboard [ayouts, with new and repositioned keys and
characters compared to the Apple Il and Il Plus. While the Apple I
and Il Plus have a REPT key, the Apple lle and lic have an
auto-repeat feature built into each character key.

The Apple lic has additional switches near its keyboard: one for
changing between 40-column and 80-coiumn displays, the other
for selecting keyboard layouts (Sholes versus Dvorak on USA
models) or keyboard layout and character set (on international
models).

The power-on light pasition differs for the Apple I/l Plus, Apple lle
and Apple lic. The RESET key also appears in different positions,

Introduction

Some Apple Il and Il Plusses have a slide switch inside the case,
near the edge of the cover, for seiecting whether or not RESET

has to be accompanied by CONTROL to work. On the Apple lle

and Apple lic, there is no choice; CONTROL-RESET works, and
RESET alone does not. '

Some notable differences in key captions:

Appia ||
 Apple it +

Earnly liet

Later liet
Europe lle

ESCAPE

ESC
ESC
ESC

Esc

Esc

CONTROL SHIFT CAPS DELETE RETURN RESET Cther

o Locx
——CTRE~" -SHIFT na va RETURN RESET REPT
CTRL SHIFT na va RETURN RESET REPT
CONTROL SHIFT CAPS DELETE RETURN RESET Apple keys
LOCK
Control Shift Caps Lock Delete Retumn Resat Apple keys
Control ! b Delete - Resst Appis keys

' +Early Appie lle's had “two-shot” injection-moided keys (until

about June, 1983). After that, manufacturing switched over to a
“sublimation” process for applying captions to keys, and changed
the captions.

Back Panel

The Appie Il and Il Plus have three deep notches and two shallow
ones on their back panels. The Apple lle has a metal back pansi
with 12 numbered rectangular openings with pop-out inserts.

The Apple I, Il Plus, and lle have a video-output phono jack and
mini-phono jacks for cassette input and cassette output. The
Apple lle has a DB-3 game input connector that the Appie Il and II
Plus do not have.

The Apple llc has the following back-panel connectors, movmg
from left to right as viewed from the back:

® a game input -DB-9 (like the lle) that is also for the mouse

¢ 3 5-pin DIN connector for serial input and output (Port 2)

® 3 video expansion outbut DB-18 tor RGB monitor adapter, etc.
® a video output phono jack (same as on all other Apple Il's)

e a DB-13 connector for connecting a second disk drive (like lle)

External Physical 5

® a 5-pin DIN connector for serial input and output (Port 1)

e a special recessed malie 7-pin DIN connector for 12-volt DC
power input (uniike any of the other Apple iI's)

The power switch is in the same position (left rear corner) and
same orientation (push in top to tum on) for ail Apple II's.

Internal Physical

The internal layout of the Apple lic is irrelevant to this discussion:
the user is not to open the Apple lic case.

The Apple lle internal layout differs from that of the Appie |l
and |l Plus in several general ways. There are, of course, far fewer
components:

e Component layout is different.

e There is no place for plug-in ROMs (like the Programmer's Aid
ROM).

e Cards that had a connection on the main logic board on the
and Il Plus wilknot work on the lle.

"o There is a power-on light near the back panel.

e Siot 0 is gone.

e The auxiliary slot is set away from the back panel.

Slots/No Siots

The Apple Il and Il Plus have 8 identical slots; the lle has 7
identical siots plus a 80-pin auxiliary slot for video, add-on
memory, and test cards. The Apple lic has no slots; instead, it has
built-in hardware and firmware equivalents to siots with cards in
them. These are called ports on the Apple lic.

Game /0 and Other Connectors

The Apple I, Il Plus, and lle have a 16-pin game /O connector
inside the case that supports 3 switch inputs, 4 analog (paddle)
inputs, and 4 annunciator outputs. The Apple lle and lic have a
OB-8 back-panel connector that supports the 3 switch inputs
and 4 paddle inputs (2 on'the Apple lic). The Apple lic does not
support the 4 annunciator outputs.

Introduction

Power Supply

The power supplies for the Apple I, Il Plus, and lle are basically
identical; the one for the Apple lic is quite different from the rest.
For further comparisons, see the section under “Hardware in
General.”

Disk Drive

All of the Apple Il series computers ars designed to operate with a
Disk I drive or its equivalent: 16 sectors, 35 tracks, and so on.

Speaker

The Apple lle has the same size speaker as the Il and Il Plus,
although it is face down and baffled better. The Appie lic has a
smaller speaker, and, in addition, has a 2-channel (but monaural)
mini-phone jack for headphones (which disconnects the internal
speaker when something is piugged into it) and a volume control.

Input and Qutput

This saction describes the variations in character sets and other
I/O among the Apple Il models.

Keyboard Character Sets

The Appie Il and !l Plus-keyboard character sets are the same.
They are described in the Apple /! Reference Manual.

The Apple lle and llc keyboard character sets are the same: full
ASCIl. The standard (Sholes) layout and key assignments are
described in the Apple lle Reference Manual. The Dvorak layout

and key assignments will be described in the Apple llc Reference
Manual.

l

Input and Output

<

Display Character Sets

The Apple Il and Il Plus display character sets are the same: 64
characters of uppercase ASCIl (see the Apple Il Reference
Manual). Both the Apple lle and lic make available this character
set with the addition of lowercase (called the primary set) and an
alternats: character set (which has inverse lowercase at the
expense of flashing characters). Both these sets are described in
the Apple lle Reference Manual.

Display Modes

All models have 40-column text mode, low-resolution graphics
mode, mixed low-res and 40-column text mode, and
high-resolution graphics mode. The Appie lle (Rev B motherboard)
with 80-column text card, and the Apple lic also have
double-high-resaciution graphics mode.

Cassette I/0

The Apple I, Il Plus and lle all have cassette input and output

jacks, memory lagations, and monitor support. The Apple lic does
not.

Disk 1/0

The Appte I, Il Plus, and lle can support up to 6 (4 is
recommended maximum) disk drives attached to controiler cards
plugged into slots 8, 5 and 4. The Apple lic supports its built-in
drive (treated as slot 6 drive 1) and one external disk drive (treated
as slot 6 drive 2, or as slot 7 drive 1 for external-drive startup
purposes.

Game /IO

The Appte Il, Il Plus, and lle support game input and output via a
16-pin Dual Inline Pin (DIP) connector inside the case. The

Apple lle and llc both support game 'ihput via a DB-9 connector on
their back panels. »

introduction

Mouse Input

The Apple llc provides buiit-in firmware support for a mouse

connected to the DB-9 game/mouse connector. The Appie lle will

provide interface card firmware support for a mouse connectad to
" a DB-9 connector that the user installs with the card.

Hardware in General

Type of CPU

The Apple Il and Il Plus CPU is the 6502. The Apple lle uses

a 6502A, which is capable of a faster clock speed than 1
megahertz (because it is hand-selected from 6502 production), but
in fact is not clocked faster than that in the Apple lle.

The Apple llc uses the 65C02 as its CPU: this is a redesigned
CMOS CPU that has 27 new instructions, new addressing modes,
and for some instructions a differing execution scheme. Programs

- written-for the Appie lic will run on the eariier machines only if they
do not contain instructions unique to the 65C02.

Amount and Address Ranges of RAM

Apple II's had as little as 4K of RAM at the time of purchase, but
could be upgraded to as much as 48K of RAM by replacing one or
more rows of 4 kilobit chips with the (then) newer and noticeably
costlier 16 kilobit chips. Changing a matched set of jumper blocks
completed the address mapping portion of the conversion. This
process is described in the Apple Il Reference Manual.

The Apple il Plus has 48K of RAM ($0000 through $BFFF) as a
standard feature. Addresses $C000 through SFFFF are occupied
by ROM only.

Installing an Apple Language Card in an Apple Il or Il Plus adds
the 16K of RAM from SCO000 through SFFFF.

The Apple lle has a full 64K of RAM. The top 12K addresses
overlap with the ROM addresses $D000 through $FFFF. There is
an additional area of 4K from $D000 through $DFFF. This
arrangement is equivalent to an Apple |l Plus with an Apple
Language Card installed. A program selects between the RAM and

Hardware in General I—S—

ROM address spaces and between the SDxxx banks by changing
soft switches located in memory. (This process is often cailed
“bank switching.”)

With an Apple 80-column Text Card instalied in its'auxiiiary slot, an
Apple lle has an additional 1K of RAM available, for displaying the
other 40 columns of 80-column text.

With an Apple Extended 80-Column Text Card installed in its
auxiliary slot, an Apple lle has an additional 64K of RAM available,
although no more than half of the 128K of RAM space is available
at any given time. Soft switches located in memory control these
address space selections.

The RAM in the Apple lic is equivalent to the RAM in an Apple lle
with an Extended 80-column Card (in other words,
with 84K + 84K).

Amount and Address Ranges of ROM

The Appie Il and II:Plus have from 2K to 12K of firmware in ROM.
The uppermaost addresses (8F800 through $FFFF) are always
used, while other address ranges are optional. Users can plug
their own ROMSs into the sockets provided. The ROM address
range is from $D000 through SFFFF.

The Apple lie has 16K of ROM (addresses $C100 through SFFFF;
page $CO addresses are for /O hardware). ROM addresses
$C300 through $C3FF (normally assigned:to the ROM in a card in
slot 3) and $C800 through SCFFF contain 80-column video
firmware; ROM addressas $C100 through $C2FF and $C400
through $C7FF (normally assigned to the ROM on cards in

slots 1, 2, 4, 5, 6 and 7) contain buiit-in self-test routines.

A-soft switch controls - whether the video firmware or slot 3 card
ROM is active. Invoking the self-tests with d-CONTROL-RESET
causes the self-test firmware to take over the siot ROM address
spaces. ‘

The Apple lic ROM aiso uses the 18K from $C100 through SFFFF,
and its 80-column video firmware occupies the same addresses as
on the lle. However, there are no built-in self-tests. instead,
addresses $C100 through $C2FF and $C400 through $C7FF
contain the firmware supporting the four built-in /O ports (printer,
communication, mouse, and disk).

introduction

Power Supplies

The power supplies for the Apple Il, I Plus, and lle are essentially
the same: they convert 110 VAC (220 VAC on most international
models) to the vaitages required by the circuitry. The Apple lic, on
the other hand, has an external floor transformer that converts 110
VAC (or 220 VAC) to 12 VDC (nominal); the internal power supply
then derives the required volitages.

Firmware in General

This section discusses overall blocks of firmware, not about
individual routines and their entry points. A full description of those
will appear.in the Apple llc Reference Manual.

Monitor

The Apple Il comes with the so-called Old Monitor ROM, which
would put the user into the monitor (* prompt) at startup. The
resident interpreter is for Integer BASIC, with ROM space left over
for other firmware. (such as programmer’s aids).

The Apple Il Plus, lle, and llc come with the Autostart ROM, which
tries to load software from the highest slot containing a Disk Il
controller card or its equivalent. If this attempt fails, the autostart
monitor-puts the user in the resident Applesoft interpreter

(] prompt).

Video Firmware

The video firmware for the Apple lic is identical to that for the lle.
Because the Apple lic has no slots, the 80-column video firmware
is always prasent (switched in); thers is no possibility of conflict
with firmware on a card in siot 3. Also note that there is anly one
$C800-8CFFF address space: this, too, belongs to 80-cclumn
video firmware.

Diagnostic Firmware

Apple Il and Il Plus do not have built-in diagnostics. The lle does; it
is invoked by pressing a-CONTROL-RESET. The Apple lic has a
@& key, too, but no buiit-in diagnostics.

Firmware in General (171

Slot/Port Firmware

The Apple lic is the only Apple Il of the four that has built-in
firmware for slots other than “slot 3" (80-column video). In fact,
the Apple llc has hardware, firmware and back-panel connectors
that provide the equivalent of:

® a subsat of Super Serial Card hardware and firmware,
preconfigured for a 1200-baud (maybe 8600-baud) printer in
siot 1, with a 5-pin DIN back-panel connector;

e 3 subset of Super Serial Card hardware and firmware,
preconfigured for a 300-baud modem in slot 2, with a 5-pin DIN
back-panel connector;

® mouse-interface hardwars, firmware in “siot 4" addresses, and
a DB-9 back-pane! connector shared with-game input;

® an snhanced set of disk ¢ontroller card hardware and firmware,
designed to run the built-in drive as Siot 8 Crive 1 (and its
gquivalents in other operating systems), and the external drive
as. Slot 6 Drive 2, or even as Slot 7 Drive 1 (PR #7) for system
startup from the external drive.

These equivalents- of slot-card-firmware-connector are called
ports 1, 2, 4, 6 and 7, respectively. By extension, the 80-column
video firmware can be called port 3, but only with caution. The
Appie lle and lic Reference Manuals discuss how to turn the
80-column firmware on. and off correctly.

Software in General

This section points out differences to watch out for with respect to
programming languages and operating systems that can (or can't)
run on the four machines.

Languages

The Apple lic does not support Pascal 1.0 firmware (I/O) protocois,
because its required fixed entry points are impossibie to match
with the new firmware. Pascal 1.1 is more flexible, and so the
Apple lic can and does support it. Here the entry points are
addressed indirectly via a jump tabie.

12 | Introduction

The Apple llc as shipped will not support Integer BASIC because
that interprater does not work under ProDOS. To use Integer
BASIC, start the system using the DOS 3.3 Systern Master disk,
and invoke Integer BASIC from the keyboard or program.

Former cassette l/O locations now belong to the 40/80-column
switch (SC060; was cassette input) and firmware functions ($C02x;
was cassette output).

Operating Systems

"The Apple lic will be a ProDQS, rather than a DOS, machine. That
does not mean that DOS will not run on it. Rather, we will describe
ProDOS as the operating system, ship it and not DOS unless
otherwise requested.

CP/M will not currently run on the Apple Ilc because it requires
plugging a 280 card into a slot. (Slot? What slot?) Some day there

may be another way to make CP/M available, but there isn’t right
now.

Operating system cassstte /O commands will cause error
messages or unpredictable weirdness, depending on how fail-safe
the OS is.

Hardware Specifics

The specifics of firmware and I/O storage assignments will be
presented in the Apple lic Reference Manual. The sections here
discuss the use of integrated and hybrid circuits, and the
hard-wired /O locations in the $COxx address range.

Use of ICs

The lle custom chips (Memory Management Unit and Input/Qutput
Unit) replaced more than 50 chips, and added the functionality of
dozens more. The lle PAL replaced severai logic chips. The

Apple lic has custom MMU and IQU chips, too, but they have
differenct “bonding options”; that is, some of the pins are attached
to different parts of the logic inside for the ile and Apple llc
versions.

In addition, the Apple llc has a custom General Logic Unit (GLU),
Timing Generator (TMQ), and Disk Controlier Unit (IWM,
Integrated Woz (or Wendell) Machine). The Apple lic has two

Hardware Specifics M3

141

hybrid units (AUD and VID) for audic and video amplification;
these save space on the PC board and consume less power that
the seperate components (“discretes”) that they replacs.

The trend as one moves from Appie Il and Il Plus to Apple lle
and llc is toward fewer and fewer chip sockets. Directly soldering
ICs to the circuit board saves money and increases reiiability.
However, certain key parts (like character generator ROMs) still
have socksts. The Apple lic, in fact, is not intended to be opened
by the user—oniy by Apple manufacturing and service—so for
most people, sockets/no sockets is not important.

Hardware Locations

The following table compares the functions that have been
hard-wired into the Apple lie and lic. Those hard-wired into the
Apple Il and It Plus are explained in the Apple Il Reference
Manual.

Introduction

Appie ila Apple lic
Ccoo0 KBD Keyboard data (0-6) & strobe (read) Same as on lle
cooo 80STORE Store in main memory (wrte) Same as on iie
Coo1 Store in aux memory (write) Same as on lle
caoo2 RAMRD Read main memory (writa) Same ason ile
coo3 Read aux memory (wnte) Same as on Hle
Coos RAMWRT Write main memory (writa) Same as on lle
Co0s Writs aux memgory (write) Same ason lle
coos SLOTCXROM Slot ROMs at Cx00 (writa) Ressrved (wrts)
coo7. : Internal ROM at CxQ0 (wnte)t Reserved (wrte)
coo8 ALTZP Main stack & zero page (write) Same as on lle
Coog Aux stack & zero page (write) Same as on lle
Co0A SLOTC3ROM Intemal ROM at C300 (write) Reserved (wrts)
' CoeB Slot ROM at C300 (write) Reserved (wrta)
cacC 80COL 80-column dispiay off (write) Same as on lle
CooD 80-column dispray on (write) Same as on lle
Co0E ALTCHARSET Alt. char. set off (writs) Same as on lle
COOF Alt. char. sat on (write) Same as on lle
Co1x KBDSTRB Clear keyboard strobe (wnits) Same as on llg
Ca10 RDAKD Any key dowm (bit 7) Same as on lle
co11 RDBANK Read bank 1,2 (bit 7 = 1 = bank 2) Same ason lle
co12 RDRAM Read RAM protectenable (C08x) Same as on lle
co13 RDRAMRD Read RAMRD switch (C002, C003) Same as on lle
Co14 RDRAMWRT Read RAMWRT switch (C004, C00S) Same as on lle
Co1s RDSLOTCXROM Read SLOTCXROM switch (C006, C007) Resat XINT (read)
Co1s RDALTZP Read ALTZP switch (C008, C009) Sams as on lie
co17 ROSLOTC3ROM Read SLOTC3ROM sween (CD0A, CO0B) Reset YINT (read)
co18 RDB0OSTORE Read swwtch (C000Q, CO0Q1) Same as on lle
Co19 RDOVBL Read vertical blanking (VBL) Resat VBLINT (read)t
ColA ROTEXT Read TEXT swich (C050, C051) Same as on lle
coi8 ROMIXED Read MIXED switch (C052, C053) Same as on lle
co1C RDPAGE2 Read PAGE2 switch (C054, C055) Same as on lle
Co1D ROHIRES Reag HIRES switch (C057, C058) . Same ason lle
CO1E RDALTCHARSET Read ALTCHARSET switch (COOE, COOF) Same as on lle
CO1F RD80OCOL Read 80CQOL switch (C00C, C0QD) Same as on lle
Co20
co21
- Co22
coz3
Co24
coas .
coz6 Same as on lle
coz7 Toggle cassatte output (read onty)
co28 Reaserved (wnte)
co29
C02A
co28
CQ2C
co20
CO2E
CO2F

1 This would be more appropriately called INTCXROM
t Use $CO07x to reset VBLINT and also trigger paddle timers

Hardware Specifics

Apple lie Appile llc

Co3o

cu3t

Cco32

coas

Cao34

Co3s

Cco36 Same as on lle

€037)=Toggle speaker (read onty)

Co3s Reserved (writa)

€039

CO3A

co3B

coac

co3Db

Co3E }

CO3F

C040 Read annunciator 0 (bit 7) Read X0/Y0 mask status (bit 7)

Co41 Read annunciator 1 (bit 7) Read VBL mask status (bit 7)

Co42 Head annunciator 2 (bit 7) Read X0 edge (1 = falling)

Cco43 Read annunciator 3 (bit 7) Read YO edge (1 = falling)

Coas Reserved

Co4s Resarvea

Co46 Reserved

co47 Reserved

Coa8 Read or write resets XINT & YINT

Co4s Read or wnte resets XINT & YINT

Co4A Read or write resats XINT & YINT

Coa8 Raad or write resets. XINT & YINT

coaC Read or write resets XINT & YINT

Co40 Read or write resets XINT & YINT

Co4E Read or write resets XINT & YINT

COo4F Read or write resets XINT & YINT

coso Text mode off Sams as.onlle

cos1 Text mode on : Same as on lle

Cos2 Mixed mode off (if text mode off) Same as on lle

C0s53 Mixed mods on (if text mods off) Same as on lle

Cos4 Page 2 off (depends on 80STORE) Same as on lle

Coss Page 2 on (depends on 80STORE) Same as on lle

coss Hi-res clear: use RAMRD and RAMWRT Same as on lle

Ccos7 Hi-res set access hi-res page Same as on lle

Ccoss8 Annunciator 0 off Disable mouss X0 & YO interruptst

Cos59 Annunciator 0 on Enabie mouse X0 & YO interruptst

CO05A Annunciator 1 oft Disable VBL interrupts®

cosa Annunciator 1 on Enable VBL interrupts”

cosc Annunciator 2 off interrupt on nsing edge of X0t

cosD Annunciator 2 on - Interrupt on falling edge of X0t

COSE Annunciator 3 off; set dbl-hi-res It IQUDIS oft: interrupt on nsing edge of YO
If IQUDIS on: set dbi-hi-res

CosF Annunciator 3 an; clear doi-hi-res If IOUDIS off: interrupt on faliing edge of YO

If IOUDIS on: clear dbi-hi-res

T IQUDIS must be off for all these to work; all are R/W reserved it
IOUDIS on.

16 Introduction

C06x
Co60

Cc081
co62
coe3
cos4
Ccoss
coss
co67
coes
cos9
COBA
cos8
cosC
. C08D
Co6E
Co6F
Co7x
Cco7o
co71
co72
CcQo73
Cco74
Cco7s
Co078
co77

Cco78
Ca79
CO7A
Cco78
ca7C
co70
CO7E

Co7F

Apple lie

Cassstts in (read)

Switch input 0 & d key

Switch input 1 & CLOSED-APPLE key
Switch input 2 (reed)t

Reead analog input 0 (bit 7)

Read anaiog input 1 (bit 7)

Read analog input 2 (bit 7)

Read anaiog input 3 (bit 7)

Analog input reset (paddie tngger)

Appla lle

Reserved (wrts)

Read 80/40 colume switch (bit 7) (1 = 40 Col {switch
dawm}) '
Same as on lle (bit 7 = 1 = pressed)
Same as on lie (bit-7 = 1 = presseq)
Read mouse switch (bit 7)

Same as on lle

Samsa as on lie

Read mousa X1 (directon) on bit 7
Read mousa Y1 (direction) on bit 7
Reserved (read)

Reserved (read)

Reserved (read)

Reserved (read)

Reserved (read)

Researved (read)

Reserved (read)

Reserved (read)

Read or write: trigger paddle timer; reset VBLINT

is text)

Read: bit 7 = IOUDIS; tngger paddie tmer; reset
VBLINT

Write: set IOUDIS (that is, disable C058-F IQU access
& enable DHIRES switch); tngger paddie timen reset
VBLINT

Read: bit 7 = DHIRES; tngger padadle tmer; reset
VBLINT

wnta: clear IOUDIS (that 1s, enable C058-F 1OU
access & disable DHIRES switch); tngger paddie tmer;

resat VBLINT

+ Commonly used as shift-key mod on I/l Plus

Hardware Specifics

Apple lie

Cco8o Protect RAM Read RAM 2nd D000 Bank
Co81 Wrte RAM Read ROM 2nd DOQO Bankt
C082 = Protect RAM Read ROM 2nd D000 Bank
cosa Writs RAM Read RAM 2nd D0O0Q Bankt
coa4 Protect RAM Read RAM 2nd D000 Bank
coas Write RAM Read ROM 2nd DOQO Bankt
cose Protect RAM Read ROM 2nd D000 Bank
cos7 Writs RAM Read RAM 2nd D000 Bankt
coss Protect RAM Read RAM st D000 Bank
cosg Write RAM Read ROM 1st D000 Bankt-
cosA Protect RAM Read ROM 1st DOQO Bank
cosB Wnite RAM Read RAM 1st DOOQ Bankt

Appie llc

Same as on lle
Same as on ile
Same as on lis
Same as on ile

Same as on lls

.Same asg on ile

Same as on lle
Same as on lle

cosC Protect RAM Read RAM 1st D000 Bank Resarved
(ofel:]a] Write Ram Read ROM 1st D000 Bankt Reserved
CO8E Protect RAM Read ROM 1st DOQO Bank Reserved
COosF Write RAM Read RAM 1st D000 Bankt Ressarved
Caogo Reserved (Senal port 1)
Coo Reserved
cog2 Reserved
cog3 Reserved
Cog4 Reserved
Cogs Ressarved
Cogs Reserved
coe7 Reserved .
Cco98 Siot 1 perphigral card /O Transmit/Receive Reg
case Status Reqgister ACIA
COgA Command Register
cogs Control Register
cosC Reserved
cQsDd Reserved
CogE } Reserved
CO9F Reserved
COAQ Raserved (Serial port 2)
COA1 \ Reserved
coAa2 Reserved
COA3 Reserved
CoA4 Resarved
CO0A5 Reserved
CoAB Reserved
COA7 Ressrved
COA8 ? Slat 2 pemhieral card 1/O TransmiyRecsive Reg
CDAS Status Regqister ACIA
CoAA Command Register
CoAB Control Register
COAC Reserved
CoAD Reserved
COAE Reserved
COAF Reserved
T Write RAM requires 2 consecutive read accesses; protect RAM
does not.
T——

181 Introduction

Apple ile

CoBo
coB1
coBs2
coBs3
coB4
coBs
coBs

coBg
CoBA
CoB8
CoBC
coBD
CoBE
CogF /
coco

coct

cocz2

coc3

Ccoc4

cocs

CoCs

cocs Slot 4 perphieral carg I/Q
CoCcs
COCA
cocs
coce
coco
CoCE
COoCF
Cobo

o2
coD2

CoD3
CoD4
CoDs
coDs
coo?
coDs Slot 5 perphieral carg /0
CoDg
CoDA
cooB
cobc
cooD

CODE /
CODF

coe?
coBs 7 Slot 3 perphieral card I/O

Appie lic

Reserved
Reserved

Hardware Specifics

[19

COEQ
COE1

COE2
COE3
COE4
COES
COES
CoE7
COES8
Coes
COEA
COEB
CoEC
CQED
COEE
COEF
COFQ
COF1

CaF2
CoF3
COF4
COFs
COF8
CoF7
COF8
COF9
COFA
CcorFB
COFC
COFD
COFE
COFF

Appie lie

Slot 6 perphierai card 110

? Slot 7 perphisral card 1/O

Apple iic

Phase 0 = Q (Disk Controiler)
Phasa 0 = 1
Phass 1 = Q
Phasa 1 = 1
Phasg 2 =
Phasa 2
Phase 3
Phasse 3
Mator off

-0 -0

201

Introduction

Monitor Entry Point Labels

This section presents a complete compilation of all $F800 Monitor
ROM labei occurrences in the varigus source file listings and the
various lists of built-in subroutines. An “X” indicates that the label
appears in the source code listing and a “supported” indicates it
was found in the list of built-in subroutines.

Sourcas for this information were:

® Apple |l Reference Manual

Page 61 --Some Uéeful‘rvfonitérxs_ubroutines
- - Page 155-- Monitor ROM Listing
- Page 136 - Autostart ROM Listing

. Apple lle Reference Manual
Appendix C - Directory of Built-in Subroutines

e Apple Il Reference Manual Addendum:Monitor ROM Listings
Page 3 - Monitor Firr;wware Listing

® Apple llc Reference Manual

Appendix C - Important Firmware Locations
C.5 Monitor Addraesses

® Apple llc Firmware Assembly List

Monitor Entry Point Labels l23°

Address Labei Apple Il Appie il Plus Appie lie Apple il

$F800 PLOT X supported X supported X X supported
$F80C RTMASK X X X X

$FBOE PLOTH X X X X

$F819 HLINE X supported X supported X supported X supported
$F81C HLINE1 X X X X

$F826 VLINEZ X X X X

$Fg28 VLINE X supported X supported X supported X supported
$FB31 RTS1 X X X X

$F832 CLRSCR X supported X supported X supported X supported
$F836 CLRTOP X supported X supported X supporter X supported
$FB38 CLRSC2 X X X X

$F83C CLRSC3 X X X X

$FBa7 GBASCALC X X X X

3FBS6 GBCALC X X X

$FBSF NEXTCOL supported supponted supported

$F8sF NXTCOL X X) X

$FBB4 SETCOL X supported X supportsd X' supported X supported
$F871 SCRN X supported X supported X supported X supported
$F879 SCRN2 X X X X

$F87F RTMSKZ X X X X

$F882 INSDSH1 X X X X

$Fe8C INSDS2 X

$F88E INSDS2 X X X

$FB97 IEVEN X

$FB98 IEVEN X X X

$FBA1 ERR) X

SFBAS ERR X X X

$F8A5 GETFMT X

$FBAQ GETFMT X X X

SFBBE MNNDX1 X X X X

$FBC2 MNNDX2 X X X X

$F8C3 MNNDX3 X X X X

$F8CD GOTONE - X

$F8DO INSTDSP X X X X

$F8D4 PRNTOP X X X X

$F8DB PRNTBL X X X X

$FBF5 NXTCOL X

$F8F5 PRMN1 X X X

SF8F9 PRMN2 X X X X

$F910 PRADR1 X - X X X

SFa14 PRADR2 X X X X

$F926 PRADR3 X X X X

-$F92A PRADR4 X X X X

$F930 PRADRS X X X X

$F938 RELADR X X X X

$F940 PRNTYX X X X X

$Fa41 PRNTAX X supported X supported X supported X supported
$F944 PRNTX X X X X

$F948 PRBLNK X supported X supported X supported X

SFO4A PRBL2 X supported X supported X supported X supported

“X" = Label appears in source iisting
“supported” = Documented as a supported built-in subroutine

241 Monitor Entry Point Labels

Address Label Apple Il Apple Il Plus Apple lie ~Appie llc

$SF84C PRBL3 X X X X
$F953 PCADJ X X X X
$F954 PCADJ2 X X X X
$F356 PCADJ3 X X X - X
SF85C PCADJ4 X X X X
$Fa81 RTS2 X X X X
$Fos2 FMT1 X X X X
$F9AS , FMT2 X X X X
$F9B4 CHAR2 X
$FoB4 CHAR1 X X X
SFIBA CHAR1 X
$F9BA CHAR2 X X X
$FaCOo MNEML X X X X
$FAQQ MNEMR X X X X
$FA40 IRQ X X X
SFA47 NEWBREAK X
SFA43 STEP
SFA4C BREAK X X X
SFA4E XQINIT
SFASS OLDBRK X X X
SFA62 RESET X X X
SFAGF INITAN X X
SFA78 Xan X
SFA7A XQz2 X
SFAB1 NEWMON X X X
SFA86 IRQ X
S§FAQ2 BREAK X
SFASB FIXSEV X X X
$FASC XBRK X
SFAA3 BEEPFIX X
SFAA3 NOFIX X X X
SFAAS XRT! X
SFAAB PWRUP X X X
SFAAG SETPG3 X X X
SFAA9 XRTS X
SFAAB SETPLP X X X
SFAAD PCINC2 X

. SFAAF PCINC3 X

* SFABS XJSR X
SFABA SLOOP X X
$FABD RESET.X
SFAC4 XJMP X
$FACS XJMPAT X
SFAC7 NXTBYT X X
SFACD NEWPCL X
SFACF NOFIX X
SFAD1 RTNJMP X
SFAD2 RTBL X
SFAD? REGDSP X X X X
SFADA RGDSP1 X X X X

“X" = Label apbears in source listing
“supported” = Documented as a supported built-in subroutine

Monitor Entry Point Labels [25°

Addreas Label Appie il Apple il Plus Appile (le Appie llc

$FAE4 RDSP1Y X X X X
SFAFD PWRCON X X X
$FAFD BRANCH X

$FBO2 RGDgP2 X
$FBOS DISKID . X X

$FBO9 TITLE X X
$FB0B NBRNCH X

$FB11 XLTBL X X

$FB11 INITBL X

$FB12 PWRUP2 X
$FB19 RTBL X X X

$FB1E PREAD X supported X supported X supported X supported
$FB25 PREAD2 X X X X
$FB2E RTS2D X X X X
$FB2F INIT X X X X
$FB39 SETTXT X X X X
$FB40 SETGR X X X X
$FB4B SETWND X X X X
$FBS9 VTAB23 X
$FB58 TABV X X X X
$FB60 APPLE!N X X X
SFB60 MULPM X

$FB63 MUL X

$FB65 STITLE X X X
$FB6S MUL2 X

$FB6D ~ MUL3 X

$FB6F SETPWRC X X X supported
$FB76 MUL4 X

SFB78 VIDWAIT X X X
$FB78 MULS X

$FB81 DiVPM X

$FB84 oiv X

$FB86 Div2 X

$FBas KBDWAIT X X X
$FB9%4 NOWAIT X X X
$FB97 ESCOLD X X

$FBOB ESCNOW X X ,
$FBAQ NEWADV X
SFBAO DIvs X

SFBA4 MD1 X

SFBAS ESCNEW X X

SFBAF MD2 X

$FBB0 NEWADV1 X
SFBB3 FBVERSION X
$FBB3 VERSION X

$FBB4 GOTOCX X .

SFBB4 DOCOUTY | X
$FBB4 MD3 X

$FBBC DCX : X
SFBCO MDRTS X

“X" = Label appears in source listing
“supported” = Documented as a supported built-in subroutine

261 Monitor Entry Point Labeis

Address Labei Appie I . Apple Il Plus Apple ile ' Apple llc

$FBC1 BASCALC X X X X
$FBDO BSCLC2 X X X X
$FBDY9 CHKBELL
$FBD9 BELL1Y X X X :
$FBOD BELL1 supported supportad supported X supported
$SFBE4 BELL2 X X X X
SFBEF RTS28 X X X X
$FBFO STORADV X X X
$FBFO STOADV X
SFBF4 ADVANCE X X X X
$FBF8 ADV2 X
SFBFC RTS3 X X X X
$FBFD VIDOUT X X X X
$SFC04 VIDOUT1 i X
$FC10 BS X X X X
- $FC1A UpP X X X X
$FC22 VTAB X X X X
$FC24 VTABZ X X X X
$FC28 RTS4 X X X X
$FC2C ESCH X X X
$FC3s NEWOPS X
$FC38 NEWOP1 X
$FC42 CLREOP X X X supported X supported
$FCasa CLREQP2 X
SFC46 CLEOP1 X X X X
$FCs8 . HOME X] X supported X supported
$FCSD CLREOP1 X
$FC82 CR X X X ‘ X
$FCB6 LF X X X X
$SFC70 SCROLL X X X X
SFC72 XGOTOCX X
SFC73 NEWCR X
$FC786 SCRL1 X X
$FC80 GETINDX X
$FC34 RDCX X
SFC8S5 CRRTS X
$FC3a6 v NEWVTAB X
$FC8C SCRL2 X X
$FC8D NEWCLREQOL X
$FC20 NEWCLEOLZ X
SFCO1 ISSLOTS X
$FC9s SCRL3 X X
$FCo9 - ‘NEWC1 X
$FCa9 ISPAGE X
$FCsC CLREOL X X X supported X supported
$SFCSE CLEOLZ X X X supported . "X supported
SFCAOD CLRLIN X
$FCAOQ CLEOL2 X X
$FCA4 CTLDO X
$FCAS8 WAIT X supported X supported X supported X supported

“X" = Label appears in source listing
“supported” = Documented as a supported built-in subroutine

Monitor Entry Point Labels [27

Address Labei Appie il Appie |l Plus Apple lle Apple ilc
$FCAQ WAIT2 X X X X
$FCAA WAIT3 X X X X
$FCB4 NXTA4 X X X X
$FCBA NXTA1 X X X X
$FCC8 RTS48 X X X X
$FCCa HEADR X X X
SFCCA COLDSTART X
$FCDO0 BLAST X
$FCDs WRBIT X X X
$FCDB ZERDLY X X X
$FCE2 ONEDLY X X X
$FCES WRTAPE X X X
. SFCE? COM1 X
$FCEC RDBYTE X X X
$FCEE RDBYT2 X X X
$FCF8 COM2 X
$FCFA RD2BIT X X X
$FCFC COM3 X
$FCFD RDBIT X X X
$FDO3 APPLE2C X
$FDQC RDKEY X supported X supported X supported X supported
$FD18 KEYINQ X
$FD1B KEYIN X supported X supported X supported X supported
$FD20 DONXTCUR X
$FD21 RDESC X
$FD21 KEYIN2 X ¢
$FD2s GOTKEY X
$FD2F ESC X X X
$FD3Ss RDCHAR X supported X supported X supported X suppaorted
$FD38 LOOKPICK X
$FD3D NQTCR X X X
$FD44 NOESCAPE X
$FD4s5 NQESCH1 X
SFD4A NQESC2 X
SFD5F NOTCR1 X X X X
$FD62 CANCEL X X X X
SFD67 GETLNZ X supported X supported X supported X supported
$FDBA GETLN X supported X supported X supported X supported
$FD6EF GETLN1 supported supported supported X: supported
SFD71 BCKSPC X X X X
$FD75 NXTCHAR X X X X
$FD7E CAPTST X X X
$FD84 ADDINP X X X X
$FD88 CROUT1 supported supported supported X supported
$FD8E CROUT X supported X supported X supported X supported
$FD92 PRA1 X X X X
$FD96 PRYX2 X X X X
SFDA3 XAMS X X X X
SFDAD MODSBCHK X X X X
$FDB3 XAM X X X X
“X" = Label appears in source listing
“supported” = Documented as a supported built-in subroutine
281 Monitor Entry Point Labels

Addreas Labei Apple It Appie Il Plus Appie |l Apple lie

$FDBS DATAQUT X X X X
$FDCs RTS4C X X X X
$FDCS XAMPM X X X X
$FDD1 ADD X X X X
$FDDA PRBYTE X supported X supported X supported X supported
$FDE3 PRHEX X supported X supportad X supparted X supported
$FDES PRHEXZ X X X X
$FDED couT X supported X supported X supported X supported
$FDFO CouT1 X supproted X supported X supported X supported
$FDF8 couTZ X X X X
$FEQO BL1 X X X X
$SFEO4 BLANK X X X X
$FEOB STOR X X X X
SFE17 RTSs X X X X
$FE18 SETMQDE X X X X
$FE1D SETMDZ X X X X
SFE20 LT X X X X
$FE22 LT2 X X X X
SFE2C MOVE X X X supported X supported
$FE36 VERIFY supported X supported
$FE36 VFY X X X
$FES8 VFYOK X X X X
$FESE LIST X X X X
$FEB3 LIST2 X X X X
$FE7S A1PC X X X X
$FE78 A1PCLP X > X X
SFE7F A1PCRTS X X X X
$FEB0 SETINV X supported X supported X supported X
$FEB4 SETNORM X supported X supported X supponed X
$FESR8 SETIFLG X X X X
$FEB9 SETKBOD X X X X
$FESB INPORT X X X X
$FEBD INPRT X X X X
$FEQ3 SETVID X X X X
$FE9S OUTPORT X X X X
$FEQ7 QUTPRT X X X X
. $FESB IOPRT X X X X
$FEA7 NOTPRTO X
$FEA7 IOPRT1 X X X
SFEA9 IOPRT2 X X X
SFEAB IOPRT2 X
SFEAF CKSUMFIX X
$FEBO XBASIC X X X X
$FEB3 BASCONT X X X X
$FEBS GO X X X X
$FEBF REGZ X X X X
$SFEC2 OPRT2 X
SFEC2 TRACE X X X
$FEC4 STEPZ X X X
SFECA USR X X X X

“X" = Label appears in source listing
“supported” = Documented as a supported built-in subroutine

Monitor Entry Point Labels 29

Address Label Appie i Appie il Plus Appla lle Apple lle

$FECD WRITE X X X supported X

$FECE DOPRO X

$FED4 WR1 X X X

$FEDE IOPRT1 X

$FEE2 DECCH X

$FEE3 CLRCH X

$FEEB WODTHCH X

$FEEC SETCUR X

$FEED WRBYTE X X X

$FEEE SETCUR1 X

$FEEF WRBYT2 X X X

$SFEF8 CRMON X X X X

$FEFD READ X X X supported X

$FEFE OPTBL X

$FFOA RD2 X X X

$FF1S INDX X

$FF16 RD3 X X X

$FF2D PRERR X supported X supported X supported X supported
SFF3A BELL X supported X supported X supported X supported
$FF3F IOREST supported supported supported supponed
$FF3F RESTORE X X X X

$FF44 RESTR1 X X X X

SFF4A IOSAVE supponted supported supported supported
$FF4A SAVE X X X

$FF4aC SAVA X X X X

$FF58 IORTS - supported ’

$FF39 OLDRTS X X X

$FF59 RESET X

$FF85 MON X X X X

$FF89 MONZ X X X X supported
SFF73 NXTTT™M X X X X

SFF7A CHRSRCH X X X X

$FFBA DIG X X X X

$FF30 NXTBIT X X X X

S$FFa8 NXTBAS X X X X

SFFA2 NXTBS2 X X X X

SFFA7 GETNUM X X X X

SFFAD NXTCHR X X X X

$FFBE TOSUB X X X X

$FFC7 ZMQODE X X X X

SFFCC CHRTBL X X X

$SFFCD CHRTBL X

SFFEQ SUBTBL X

SFFES SUBTBL X X X

$FFF7 GETHEX X

$FFFE IRQVECT X

“X" = Label appsars in source listing
“supported” = Documented as a supported built-in subroutine

301 Monitor Entry Point Labels

Machine Identification

By looking at the identification bytes in the Monitor ROM, it is
possible to identify which machine your software is running on so
that it can take advantage of the special features of that particular
machine.

The original Apple Il and Apple |l Plus used two different monitor
ROMs: the “original” monitor and the “auto-start” menitor. They
are interchangeable between the two machines. in almost every
case, it makes no difference whether your software is running on
an Apple Il or an_Apple Il Plus, since the hardware was identical,
only the Monitor and BASIC ROM sets were changed. This
section explains how to determine which Monitor RCM is present,

-and, if you need to test the BASIC ROMSs, you may look at $ECQ0
for a $4C (JMP instruction) to identify an Applesoft ROM set, or a
$20 (JSR instruction) to identify an Integer BASIC ROM set.

All other revisions of the Apple Il have Applesoft BASIC built in.
Note, however, that the Appie lIl has an Apple Il emulation mode,
which' permits it to emulate a 48K Apple Il Plus with either
Applesoft or Integer BASIC.

To identify the various Monitor ROMs, look for the following:

Machine $FBRB3J (64435) SFB1E (64286) SFBCQ (64435)
Apple |l (original $38 (586)

monitor)

Apple 1l Plus $EA (234) $AD (173)

(autostart monrtor)

Apple Ill emulaton $EA (234) . $8A (138)

mode

Apple lle $06 (6) SEA (234)
Apple Hle with 306 (6) SEQ (224)
ICON suppon

Appla ilc -$06 (6) $00 (0)

Machine Identification [E

Appie’s Developer Technical Suppaort group has routines that
identify the various versions of the Apple Il family. To obtain a
copy, write to:

Apple Computer, Inc.
Developer Technical Support
20525 Mariani Ave., MS 22-W
Cupertino, CA 95014

or phane:
(408) 554-5213

341 Machine Identification

Apple llc Applesoft Firmware Differences

The vectors for the following Applesoft key words:
e SHLOAD

e RESTORE

e STORE

e LOAD

e SAVE

have besen chang&d since they are associated with cassette tape,
which is no longer supported. The vectors now point to the

- ampersand vector so that you can write routines to intercept
control'when any of these key words appsar. If you simply leave
the ampersand vector as it is at boot-up, the commands are not
rejected with a SYNTAX ERROR, but become “do-nothing”
commands. :

Under DOS 3.3, hook your routine directly into the ampersand
hook at $3F5.

Under ProDQS, $3F5 points to the external command vector in the
BASIC.SYSTEM giobal page. You can hook your routine into the
ampersand vector, or into the external command vector in the
global page.

In either case, the pointing to the ampersand and/or external
command vectors is automatic. No ampersand prefix or “PRINT
CONTROL-D" prefix is needed.

Since the Apple llc has a true uppercase/lowercase keyboard,
Applesaft on the Appie ilc will accept and upshift lowercase
characters when input in immediate mode. No upshifting will occur

Apple lic Applesoft Firmware Differences 57_

inside of quotes, REMs, DATA statements, or while a BASIC
program is executing. All keywords and variabie names will be
uppercase only when the program is listed.

The Apple llc firmware supports MouseText. The video firmware,
when properly enabled, is abie to display a set of graphic
characters that were designed to be used with the mouse. To use
the mouse characters:

Turn on the video firmware (PR #3)

Enable mouse characters (PRINT CHR$(27) {Hex $18})

Set inverse mode (INVERSE or PRINT CHR$(15) {Hex $SOF})
Print capital letters or PRINT CHRS$(64 to 95)

Disable mouse characters (PRINT CHRS$(24) {Hex $18})

e Set normal mode (PRINT CHR$(14) {Hex $0E})

When actually in screen memory, the 32 mouse characters have
ASCIl codes 64 - 95 (840 - $5F). Inverse characters that
previously occupied that range are remapped to ASCIl codes
0-31($00 = §1F).

@ Apple lic Applesoft Firmware Differences

Interrupt Handling on the Appie lic

This document contains excerpts from the Apple lic Reference
Manual and describes the handling of IRQ interrupts. It is intended
as an overview of the interrupt capabilities of the Apple lic. It is not
intended as a programmer’s guide. The full details are in the
Apple llc Reference Manual.

What Is an Interrupt?

On a computer, an interrupt.is a signal that tells the computer to
. stop what it"is ctirrently deing and devote its attention to a more
important task.:For exampie, the. Apple lic mouse sends an
interrupt to the computer every time it moves. This is necessary
because, unless the maouse is read shortly after it moves, the
signal indicating its direction is lost.

Interrupts on the Apple lic Computer

The Appie lic built-in interrupt handler, unlike earlier systems in the
Apple It family, now saves the accumulator on the stack instsad of
in location $45. Thus, both DOS and the Monitor work with
interrupts on the Apple llc.

Interrupts are effective only if they are enabled most of the time.
Interrupts that occur while interrupts are disabled cannot be
detected. Due to the critical timing nature of disk reads and writes,
Pascal, DOS, and ProDOS turn off interrupts while performing disk
operations. Thus, it is important to remember that while a disk

drive is being accessed, all sources of IRQ interrupts are, in
effect, turned off.

Interrupt Handling on the Apple lic 141

Ll Interrupt Handling on the 65C02

From the point of view of the 65C02 in the Apple lic, there are two
possible causes of interrupts:

1. If interrupts to the 65C02 are not masked (that is, the CLI
instruction has been used), the IRQ line on the microprocessor
couid be puiled iow.

2. The processor executed a break instruction
(BRK = opcode $00)

(NOTE: The NMi line in the Apple lic is not used, thus an NM!
interrupt can never happen.)

These two options cause the 65C02 to save the current program
counter and status byte on the stack and then jump to the routine
whose address is stored in $FFFE and $FFFF. The sequence
performed by the 65C02 is:

e If IRQ, finish executing the current instruction.

® Push high byte of program counter onto stack.

® Push low byte of program counter onto stack.

® Push status byte onto stack.

® Jump to address stored in $FFFE, SFFFF [JMP (SFFFE)].

The Interrupt Vector at SFFFE

in the Apple llc computer, there are three separats regions of
memory that contain address $FFFE: the built-in ROM, the
bank-switched memory in main RAM, and the bank-switched
memory in auxiliary RAM. The vector at $FFFE in the ROM points
to the Apple lic's built-in interrupt-handling routine. Because the
interrupts in the Apple lic are complex, ‘we recommend that you
use it rather than write your own interrupt-handling routine.

When you initialize the mouse firmware or the communications
firmware, copies of the ROM’s interrupt vector are placed in the
interrupt vector’s addresses in both main and auxiliary
bank-switched memory. If you plan to use interrupts and the
bank-switched memory without the mouse or communications
firmware, you must copy the ROM's interrupt vector yourself.

42 Interrupt Handling on the Apple lic

Bl The Built-in Interrupt Handler

The built-in interrupt handler is responsibie for determining
whether a break or an interrupt occurred. lf an interrupt occurred,
the built-in handler decides whether the interrupt shouid be
handled internally, handied by the user, or simply ignored.

The built-in interrupt-handling routine records the state of the
computer’s current memory configuration. It then sets the
computer’s memory configuration to a standard state. This allows
a user’s interrupt handler to know the precise memory
configuration when it is called.

Next, the built-in interrupt handler checks to see if the interrupt
was caused by a break instruction and handles it accordingly. If it
was not a break, it looks for interrupts that it knows how to handle
(for exampie, if the interrupt was caused by the mouse, and the
mouse has been properly initialized) and handles them. Depending
on the state of the system, it either ignores other interrupts or
passes them to a user’s interrupt-handling routine whose address
is stored at $3FE and $3FF of main memary. After the user’s
handler retums (with an RTI), the buiit-in interrupt handler restores
the memory configuration, then does an RTI! to restore processing
to where it was when the interrupt occurred. Each of the steps is
explained in detail below. :

The Built-in Interrupt Handler [E

Interrupted Buiilt-in User's

Program Processor Handler Handler
Program Push Address ‘
Push Status

JMP ($FFFE) === Save old and set new
memory configuration.

If BRK then JMP
(83F0)

Our interrupt?

NQ:

Push address

Push Status

JMP (33FE) =—————=Handle interrupt

YES:
*"Handie it

Restore rnam&ry%—— RTI
configuration
Pull Status <ste————— RTI|

Program -= Pull Address

v

Saving the Memory Configuration
The buiit-in interrupt handler saves the state of the system and
sets it to a known state according to these ruies:

e If 80STORE and PAGE2 are on, then text page 1 is switched
in so that main screen holes are accessible (PAGE2 off).

e- Main memory is switched in for reading (RAMRD off).
® Main memory is switched in for writing (RAMWRT off).
e SD000-8FFF ROM is switched in for reading (RDLCRAM off).

Interrupt Handling on the Apple lic

® Main stack and zero page are switched in (ALTZP off).

e Auxiliary stack pointer is preserved, and the main stack is
restored.

Since main memory is switched in, all memory addresses used
later in this section are in main memory uniess otherwise
specified.

Managing the Memory Configuration

Because the Apple llc has two stack pages, we have adopted-a
convention that allows the system to be run with two separate
stack pointers. Two bytes in the auxiliary stack page are to be
used as storage for inactive stack pointers: $100 for the main
stack pointer when the auxiliary stack is active, and $101 for the
auxiliary stack pointer when the main stack is active.

When a program uses interrupt switches in the auxiliary stack for
the first time, it should place the value of the main stack pointer at
$100 in the auxiliary stack and initialize the auxiliary stack pointer
to $FF (the top of the stack). When it subsequently switches from
one stack to the Gther, it should save the current stack pointer
before loading the pointer for the other stack.

User’s Interrupt Handler at $3FE

The screen hole locations can be set up to indicate that the user's
interrupt handler should be called when certain interrupts occur.
To use such a routine, place the address of the routine at $3FE
and $3FF in main memory (low byte first).

The user’s interrupt handler should
e verity that the interrupt came from the expected source;
® handle the interrupt as.desired:
@ ccear the interrupt, if necessary;

e return with an RTI.

In general, there is no guaranteed response time for interrupts

because the system may be doing a disk operation that could last
for several seconds.

User's Interrupt Handler at $3FE (45

Cnce the built-in interrupt handler has been called, it takes

about 250 to 300 microsecands for it to call your interrupt handling
routine. After you routine raturns, it takes 40 fo 140 microsecends
to restore memory and return to the interrupted program.

Sources of Interrupts

The Apple lic can recaive interrupts from many different sources.
“Eachrsource is enabled and used slightly differently than the

---others;-There.are two basic classes of interrupt sources: those
associated with use of the mouse, and those associatsed with the
twa 6551 ACIA circuits.

The interrupts associated with the mouse are

® an interrupt generated when the mouse is moved in the
horizontal (X) direction

® an interrupt generated when the mouse is moved in the verticle
(Y) dirsction

‘e an interrupt generated every 1/60 second, synchronized with
the video vertieal blanking signai

e using the firmware, an interrupt generated when the mouse
button is pressed.

The interrupts associated with the ACIA’s are
® an intérrupt generated when a key is pressed

® an intarrupt generated by a device attached to the external disk
drive port :

® an interrupt generated when either ACIA has recsived a byte of
data from its port

an interrupt generated when pin 5 of either serial port changed
state

an interrupt generated when either ACIA is ready to accept
another character to be transmitted

e an interrupt generated when the keyboard strobe is cleared.

a6 | Interrupt Handling on the Apple lic

Firmware-Handling of Interrupts

The following sections present an overview of how the built-in
firmware handles interrupts.

Firmware for Mouse and Vertical Blanking

When the mouse is initialized, the interrupt vector is copied to
main and auxiliary bank-switched RAM. When the mouse is active,
possible sources of interrupts are

® mouse movement in the X direction

® mouse movement in the Y direction

e changs of state of the button

o |eading edge of the vertical blanking signal.

When an interrupt occurs, the built-in interrupt handler determines
whether that particular interrupt source was enabled by the
SETMQUSE call. If so, the user’s interrupt handler, whose
address is stored at $3FE, is called.

The interrupt haridler should first call SERVEMOUSE to determine
the source of the interrupt. If the interrupt was due to mouse

“movement or button, the interrupt handler shouid then do a call to
READMOUSE. The interrupt should then be serviced and
terminated with an RTI.

‘Remember: An mtsrruptmaybermsseddunngdzsk accesses:.

If you turn on mouse interrupts without initializing the mouse, the
built-in interrupt. handler will absorb the interrupts. If you wish to
handle mouse interrupts yourself, you must write your own
interrupt handler and place vectors to it in bank-switched RAM.
Interrupts will be ignored whenever the $0000-8FFFF ROM is
switched in.

Firmware for Keyboard Interrupts

The Apple lic is able to generate an interrupt when a key is
pressed. Keyboard interrupts are received through the ACIA for
port 2. When the user’s interrupt handler is called, it can identify
the interrupt source as the keyboard rather than the serial port.

Firmware-Handling of Interrupts

N
<

48]

The firmware is able to buffer up to 128 keystrokes. After the
buffer is full, any additional keystrokes are ignored. Because
interrupts are generated only when a key is pressed;
auto-repeated characters are not buffered.

Once keyboard buffering has been turned on, the next key should
be read by calling RDKEY ($FDOC). Pressing €-CONTROL-X
clears the buffer.

Keyboard buffering-is automatically turned on when the serial
firmware is placed in Terminal mode. Otherwise, you must tumn it
on yourself. A PR#2 or. IN#2 or the equivaient will shut off
keyboard buffering.

Using External Interrupts Through Firmware

Pin 9 of the external disk drive connector (EXTINT) can be used to
generate interrupts through the ACIA for port 1. It can be used as
a sourcs of interrupts (on a high-to-low transition) if enabied.

When the user’s interrupt handler is called, it can identify the
source of the interrupt.

p—y

Firmware for Serial Interrupts

The Apple lic is able to generate interrupts both when the ACIA
received data and when it is ready to send data. The buiit-in
interrupt handler responds to incoming data only. The firmware is
able to buffer up to 128 incoming bytes of serial data from either
serial port. After the buffer is full, data are ignored. Only one port
can be buffered at a time.

Serial buffering is automatically turned on when serial firmware is
placed in Terminal mode. Otherwise, you must turn it on yourself.
When enabled, normal reads from the serial port firmware fetch
data from the buffer rather than directly from the ACIA.

It is also possible to use the firmware to call the user interrupt
handler whenever a byte of data is read by the ACIA. In this mode,
buffering is not performed by the firmware. When thus enabled,
the user’s interrupt handler is called each time the port receives a
byte of data. The handler ¢can identify the source of the interrupt.

The serial firmware does not implement buffering for serial output.
Instead, it waits for two conditions to be true before transmitting a
character:

Interrupt Handling on the Apple lic

e The ACIA’s transmit register must be ready to accept a
character.

® The device must signal that it is 'ready to accept data.

A Loophole in the Firmware

So that programs can make use of interrupts on the AC!As without
affecting mouse interrupt handling, we ieft a time loophole in the
built-in handler. If transmit interrupts are enabled on the ACIA,
then control is passed to the user’s interrupt handler if the
interrupt is not intended for the mouse (movement, button, or
VBL).

This means that you can write more sophisticated serial
interrupt-handling routines than we could provide (such as printer
spoaling). The firmware wiil still set memory to its standard state,
handle mouse interrupts, and restore memory after your routine is
finished.

When you receive the interrupt, neither ACIA’s status register has
been read. It is your responsibility to check for interrupts on both
AClAs. You must determine which of the four interrupt sources on
each ACIA causéd the interrupt and how to handle them. The
built-in firmwars itself is an excsllent example of how_ interrupts on .
the ACIA can be handled.

Firmware-Handling of Interrupts lag

Apple llc Firmware

This section is a brief user’s guide to the firmware of the Appie lic.
It assumes that you are familiar with the use and operation of the
Apple lls, and it places emphasis on the differences between

the ile and lic.

Video Firmware

40 Columns Versus 80 Columns

The Appls Ile has two distinct video modes: Apple Il made
(checkerboard cursor) and Apple lle mode (solid cursor). The
system boots up in Apple Il mode; you switch to Apple lle mode
with the PR #3 commmand and return to Apple Il mode using
ESC CONTROQOL-Q. On the Appie lic, the commands EST 4 and
ESC 8 will also switch into Apple lie mode.

Diagnostics

The Apple lic does not have a diagnostic program as we know it in
the Appie lle. Instsad, it has a memory exerciser that exercxses all
the RAM and /O switches. To activate it, press

a-CONTROL-RESET
To reboot the system, press
CONTROL-RESET

Apple lic Firmware 51

65C02 Microprocessor

The Apple lic uses the 65C02 microprocessor, an extended
version of the 6502 chip used in the lle. If you use the Monitor
program in the Apple llc, you will find that the L command (List)
disassembles the extended instruction set provided by the §5C02.
(The ProDQOS version of EDASM supports this extended
instruction set if you use the X6502 directive.)

Window Widths

The Apple lle video firmware allows oniy even window widths and
window left edges when you are using 80-column mode. The
Apple lic video firmware allows you to use both odd and even
window widths in all situations.

521

Mouse Firmware

Mouse Character.Set

The Apple lic is endowsd with the world-famous mouse character
set. The Apple lic character ROM, when properly enabled, is able
to display a set of graphics characters that were designed to be
used with the mouse. To use the mouse characters

e Turn on the video firmware (use the PR #3 command).
e Enable mouse characters (PRINT CHRS(27) (hex $18)).
o Set inverse mode.

e Print capital letters.

e Disable mouse characters (PRINT CHR3$(24) (hex $18)).
® Set normal mode.

Apple llc Firmware

The mouse character set itself is included at the end of this
document. Here is a BASIC program that prints all the mouse
characters:

10 D$=CHRS(4)

20 PRINT DS, "PR#3*

30 INVERSE -

40 PRINT

CHRS$(27); “OABCDEFGHIJKLMNOPQRSTUVWXYZ[]~ *;CHRS(24);
50 NORMAL

The 32 mouse characters have ASCll codes 64-95 ($40-35F).

Using the Mouse as Paddles

With the Appie lic, the mouse can either be used instaad of the
paddles (not true of the lle), or as an X-Y pointing device in slot 4.
If the mouse is tumed on, the monitor ROM paddle routines will
take input from the mouse instead of from the paddles. This is
acceptable because the mouse and the paddies (and the joystick)
are all plugged into the same- port in the back of the Apple lic. For
example, a BASIC program that uses the PDL function.to read
from the paddles—works just as well reading from the mouse. Try
this:

1. Boot DOS 3.3 (the old one with LITTLE BRICK OUT on it).
2 Type Pr#4 and press RETURN to tum on the mouse.

3. Press CONTROL-A and then press RETURN to initialize the
mouss. .

4. Type Pr#0 and press RETURN to restore output to the screen.

5. Type RUN LITTLE BRICk ouT and press RETURN to run the
program,

Play LITTLE BRICK QUT using the mouse instead of the paddles.
Ignore the clicking noise when you move the mouse. This is a
diagnostic aid that tells us that the mouse is alive and squeaking.

Mouse Firmware rS?

Using the Mouse From BASIC

If you would rather use the mouse in a more conventional manner,
you can treat it as a device in siot 4. The general method is like
this:

1. Initialize the mouse by printing a 1 to it.

2. Set input to come from siot 4.

3. INPUT X, Y, and button status from the mouse.

4. When done, sst input to come from slot 0 (or 3).

Here is a BASIC program that demonstrates the use of the mouse.
it reads from the mouse and prints the current values to the
screen. When you press and then release the mouse button, the X
and Y settings are reinitialized to 0. When a (readable) key is
pressed, the program ends.

The X and Y coordinates are:initialized to 0 when you print a 1 to
the mouse firmware. They have a range from 0 to 1023. The
mouse button returns values: are: as follows:

+/«+2 = justprassed
+/-1 = stillpressed
+/- 3 = justreleased
+/- 4 = stillup

The value of the button status is normally positive. it becomes
negative if a key is pressed.

The Built-in Printer Firmware

The Apple lic printer firmware is intact and works from BASIC,
However, its ID bytes do not identify it as any existing peripheral
card. Thus, anyone (i.e. Pascal) that looks at 1D bytes will not be
able to use it. To use the seriai Dot Matrix Printer (Imagewriter)
from BASIC:

1. Set printer DIP switches like this:
DN DN DN UP DN DN DN DN
ON DN UP UP
2. Type PR#1 to direct output to the printer.
3. Subsequent output goes to the printer.

4. Type Pr#0 (Or PR#3) to redirect output to the screen.

541 Apple llc Firmware

N

By default, the printer firmware has the following settings:
e 9600 baud

e § data bits, 1 stop bit

® NO parity

e 80-column line width with no video echo

e Line feed generated after RETURN

e Delay after line feed of 250 ms (1/4 second)

e Default command character is set to CONTROL-!.

These settings can be changed as described below.

Printer Firmware Commands
Once the printer firmware has been activated (by a PR # 1), it

operates very much like the Appie Il Super Serial Card when it is
in printer mode. Refer to the Super Serial Card Manual for more
details on using the following commands. ~! means CONTROL.-I.

~|nnB Set baud rate to nn

Baud Rate

50
75
110
135
150
300
600
1200
1800
2400
3600
4800
7200
8600
19200

3
3

-t
QWOMMNOOOM A GRD -

— e b e
aphON -

The Built-in Printer Firmware

~InnD Set data format bits to nn
Data Format

3
3

8 data, 1 stop
7 data, 1 stop
6 data, 1 stop
5 data, 1 stop
8 data, 2 stop
7 data, 2 stop
6 data, 2 stop
5 data, 2 stop

A |l Enable video echo
~|K Disable linefeed after CR
~ |L Enable linefeed after CR

~InnN Disable video echo and set printer width to nn. nn is printer
width in decimal.

A InnP Set parity bits to nn

~NoO O sEWON-—2O

Parity nn
none 0.2,4,6
odd 1

even 3
MARK 5
SPACE 7

~ 12 Zap control commands
~IX Set command char to ~ X (defauit, ~)

~InnCR Set printer width (CR =carriage return). Video echo must
be disabled.

The Built-in Communcations Firmware

The Apple llc communications firmware is intact and works from
BASIC. Its ID bytes identify it as an Apple Il communications card
to most programs, and as a Super Serial Card to Access Il

Refer to the Apple Il Super Serial Card manual for a description of
the use of the communications firmware (Chapter 3,
Communications Mode).

561 Apple lic Firmware

Communications Firmware Commands

Refer to the Super Serial Card manual for more details on the use

of the following commands. * A means CONTROL-A.
~ AnnB Set baud rate to nn '
Baud Rate

50
75
110
135
150
300
600
1200
1800
2400 10
3600 11
4800 12
7200 13
9600 14
19200 15

3
3

O @O~ bW

Communicatons Firmware Commands

58]

A AnnD Set data formmat bits to nn
Data Format

8 data, 1 stop
7 data, 1 stop
8 data, 1 stop
5 data, 1 stop
8 data, 2 stop
7 data, 2 stop
6 data, 2 stop
5 data, 2 stop

~ Al Enable video echo
A AK Disable linefeed after CR
A~ AL Enable linefeed after CR

3
3

N LD -2+ OoO

~ AnnN Disable video echo and set printer width to nn. nn is
printer width in decimal.

A AnnP Set parity bits to nn

Parity nn
none 0,2,4,6
odd , 1

aven 3
MARK 5
SPACE 7

~ AQ Quit terminal modse

~ AR Reset the ACIA, IN#0, PR#0Q

~ AS Send a 233 ms break character

~ AT Enter Terminal mode

~AZ Zap control'commands'

~ AX Set command char to ~ X (defauit, ~A)

~ AnnCR Set printer width (CR = carriage raturn). Video echo
must be disabled.

Apple llc Firmware

	partie07_01
	partie07_02
	partie07_03
	partie07_04
	partie07_05
	partie07_06
	partie07_07

