Mouse Technical Note #1
15-Mar-84

This technical note explains what you need to be concerned about regaraing the
‘s interrupt environment with the mouse, regardless of whether you are using
interrupts or not.

For furtfer information contact:
PCS Developer Technical
M/S 22-8. Phone (408) 9%6-1010

Disclaimer of All karrenties and Liabilities

Apple Computer, INC. Makes NO warranties, either express or implied, with respect to
this technical note or with raspsct to the softeare cascribed in this technical note,
its quality, performance, uerma'rtaaility or fitness for any particular purpose.
Apple Computer Software is licensed “as is”. The entire risk as to its guality and
performance is with the developar. Should the program prove defective following its
use, the user (and not Apple Computer, INC., their distributors, or their retailers)
assmsmmtirecostofannecesam'yservicirg, repair or correction and any
incigental or consequential damages. In no event will Apple Computer, INC. be liable
for direct, ingirect, incidental or consequential damages resulting from any defect
in the software, even if they have been agvised of the possibility of such damages. Some
states do not allow the exculsion or limitation of implied warranties or 1iapility for
rnﬁl.dmtal or consequential damages, SO the above limitation or exclusion may not
apply to you.

This software and documentation is copyrignted. All rights are reserved. This
technical note may not, in hole or part, be copied, pnotocopied, reprocuced,
translated or recuced to any electronic medium or machine readable form without prior
‘written consent fromApple Computer, INC.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010

/g

Software developers who are writting mouse based programs in machine
language need to be concerned about the computer’s interrupt environment
even if they are using the mouse in passive mode, Listed below are
several conditions which a machine language programmer should take into
account if their programs are to run on the Apple // family of
computers.

Do not disable interrupts unless you must. Then be sure
to re-enable them.

Disable interrupts when calling any mouse nbgf: ETKSEI).

Do not re-enable interrupts (CLI) or (PLP if previously
had done a PHP) after READMOUSE until X & Y data have
been removed from the screen holes,

Be sure to disable interrupts (SEI) before placing position
information in the screen holes (POSMOUSE or CLAMPMOUSE) ./

Enter all mouse routines (not required for SERVEMOUSE)
with the X register set to $Cn and Y register set tn
$n0 where n = slot number. :

Some programs may need to turn off interrupts for purposes
other then reading the mouse. This is sometimes done on
the Apple //¢ to Keep from having to handle interrupts
are turned off and then back on, the first call to READMOUSE
may give incorrect values. Subsequent calls to READMOUSE
will return correct values until interrupts are turned off
and on again. Turning off interrupts for mouse calls does
not create this problem. If you are watching numbers
coming from the mouse while moving it in a direction that
would increase values you might see the following: 4, 7,
8, 9, 8, 9, 10. In practice, this momentary ‘glitch’ in
the stream of mouse data has little importance and would
probably only be noticed by programmer testing his/her
program - no one’s hand is that steady. If you must Keep
this “glitch’ from happening then do not Keep ‘interrupts
off for more then 40 microseconds or be sure that at least
one mouse interrupt has taken place since interrupts were
turned back on.,

HMouse Technical Note #2
15-Har-84

This technical note explains how to vary the "VBL" 1nterrupts petuween 50 HZ (Eurcpean
rate) or 60 Hz (North American rate).

For further information contact:
.PCS Developer Technical Support
M/S 22-%. Phone (408) 996-1010

Disclaimer of All Warranties and Liabilities

Apple Computer, INC. Makes NO warrantles, either express or implied, with respect to
this technical note or with respect to the software described in this technical note,
its quality, performance, mercna'\tacility, or fitness for any particular purpaose.

Apple Computer Software 1s licensed "as is”. The entire risk as to its quality and
performance is with the geveloper. Should the program prove gefective following its
use, the user (and not Apple Computer, INC., their aistributors, or their retailers)
assumes the entire cost of all necessary servicing, repair or correction and any
incidental or consequential dameges. In no event will Apple Computer, INC. be liable
for direct, indirect, inclgental or consequential damages resulting from any gefect
in the softuare, even if they have been advised of the possibility of such damages. Some
states do not allow the exculsion or limitation of implied warranties or liapility for
incigental or conseguential gameges, so the above limitation or exclusion may not
apply to you.

This software and documentation is copyrignted. All rights are reserved. This
technical note may not, in whole or part, be copied, photocopied, reproduced,
translated or reguced to any electronic megium or machine readable form without prior
written consent fromApple Computer, INC.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

(408) 996-1010

This technical note documents a previcusly undccumented call to the
AppleMousa Il firmware which allows the user to set the interrupt rate to S0 Hz,
or 60 Hz. (60 Hz is the default, and keeps the mousecard-generated "VBL"
interrupts synchronized with the actual VBL rate on a standard North American
Apple. S50 Hz is necessary for European machines. 80 Hz" and "SO Hz", as used
here, are actually shorthand for the Apple video cycle rates used in North
America and Eurcpe, respectively).

Call: TIMEDATA
Offset Leocation: SCniC
inpu't: Accumulator bit O

0 for 60 Hz
1 for S0 Hz
Note:_All other accumulator bits are reserved, and MUST be set to O.

Cutput: carry bit clear.
screenholes unchanged.

This call muat be made bafore INITMOUSE, and then followed by an
INITMOUSE call in order to be effective. If you want to change the interrupt
rats in the middle of an applicatiocn, you must call TIMEDATA, with the
appropriate value in the accumulator, and then INITMOUSE (until the INITMOUSE is
called, no interrupts will be gensrated). INITMOUSE will, of course, reset the
mouge positicn, mede, clamps, etce., back to their default values.

If TIMEDATA 13 never called, then the interrupt rate will default to €0
Hz when INITMOUSE is called.

m:'miaalludstamlymmbb\mecardforthe//eorlhani
should only be used when you know you are working with a //e or |[+.

S

Mouse Technical Note #3
15-tar-84

This technical note explains what happens when you turn the mouse on and aff through @
mode byte of the SETHOUSE routine.

For further information contact:
PCS Developer Technical Support
M/S 22-%. Phone (408) 996-1010

Disclaimer of All Warranties and Liapilities

Apple Computer, INC. Makes NO warranties, either express or implied, with respect to
this technical note or with respect to the software described in this technical note,
its quality, performancs, merchantability, or fitness for any particular purposs.
Apple Computer Software is licensed "as is". The entire risk as to its quality ar
performance 1s with the developer. Should the program prove defective following it

use, the user (and not Apple Computer, INC., their distributors, or their retailers)
assumes the entire cost of all necessary servicing, repair or correction angd any
incidental or conseguential damages. In no event will Apple Computer, INC. be liable
for direct, indirect, incidental or consequential damages resulting from any gefect
in the software, even 1f they have been advised of the possibility of such damages. Some
states ao not allow the exculsion or limitation of implied warranties or liapility for
incidental or conseguential dameges, so the above limitation or exclusion may not

apply to you.

This software and documentation 1s copyrignted. All rignhts are reserved. This
technical note may not, in whole or part, be copled, photocopied, reproduced,
translated or reguced to any electronic medium or mechine reagable form without prior
written consent fromApple Computer, INC.

Copyrignt 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

(408) $96-1010

. A)_Yhat turning the mouse "of f™ does:

B)

In the description of SETMCUSE ard the mouse mode (see AppleMouse II
Users Manual pg. 44), the low-order bit of the mouse mode is said to control
"mouse off/mouse on". This is somewhat misleading terminology. When this bit
is set to O, the mouse is off anly in the following respects:

(1) the mouse pogition is not tracked. Any mouse motion is ignored.

(2) READMOUSE calls do not update ths status byte or the screen holes (the 6502
firmware makes the REATMCUUSE command a NOP, and does not even issue the
READMOUSE commard to the 6805)

(3) dutton and movement interrupts are not generated, regardless of the other
mouse mode bits. '"Pure” VBL interrupts can still be generated, however, if
bit 3 is set.

Yhat turning the mouse "off™ doesn't do:

Other mouse functioms will comtimue to work as usual when the mouse is
"off". POSMOUSE and CLEARMOUSE will change the mouse positicn, CLAMPMOUSE will
set nsvw clamp values, etc. HIMEMOUSE i8 an odd case; itwillcha.ngethsmse
pesition as recorded in the 6805, but this change will not appear in the screen
holes until a READMOUUSE is done with ths mouse "on”. Inparticula.r:

(1) turning the mouse "off™ and "on" with the mcde byte does not reset any
mouse values, including poaition, to their defaults. Ths mcuse poaition
retains the last values it had before the mouse was tumed off, until it is
turned "on" again.

(2) a mode byte of SO8 - mouse "off™, but VBL interrupt on - will still
generate VBL interrupts.

Mouse Technical Note #4
15-ftar-84

T™is technical note explains a bug in the Mouse Firmware having to do with the way thaw
SERVEMOUSE works.

For further information contact:
PCS Developer Technical Support
M/S 22-4. Phone (408) 996-1010

Disclaimer of All warranties and Liapilities

Apple Computer, INC. Makes NO warranties, either express or implied, with respect to
this technical note or with respect to the software described in this technical note,
its quality, performence, merchentability, or fitness for any particular purpose.
Apple Computer Softuware is licensed “as is". The entire risk as to its quality and
performance is with the developer. Should the program prove defective following its
use, the user (and not Apple Computer, INC., their distributors, or their retailers,
assumes the entire cost of all necessary servicing, repair or correction and any
incidental or conseguential damages. In no event will Apple Computer, INC. be liable
for direct, indirect, incidental or consegquential dameges resulting from any defect
in the softuare, even 1f they have been agvised of the possibility of such damages. Some
states do not allow the exculsion or limitation of implied warranties or 1iability for
incidental or conseguential damages, so the above limitation or exclusion may not
apply to you.

This software and cocumentation is copyrignted. All rights are reserved. This
technical note may not, in whole or part, be copied, photocopled, repraduceq,
translated or reguced to any electronic mediumor machine readable form without prior
written consent fromApple Computer, INC.

Copyright 1984 by Apple Computer, Inc.
20525 tariani Averue
Cupertino, CA 95014

(408) 996-1010

There is a bug in the AppleMouse II 6805 firmware which may affect the
way SERVEMOUSE works in an application program. If the application program
takes more than 1 video cycle (normally, about 16 milliseconds) to respord to «
mouse—generated interrupt, then there is a chance that SERVEMOUSE will not clain
the interrupt: that is, the 6805 will return an interrupt status byte of $00
(i.e. no Mouse interrupt perding), armd the 8502 firmware will set the carry bit
(although tha interrupt will also ba cleared by the SERVEMOUSE call). This can
be confusing, and under ProDCS or Pascal it can be lethal. VWe have ldentified
the following soluticns, any one of which should work:

(I) If you are not working under an esta.blished system (like ProDOS or Pascal):

(A) den't allow unclaimed interrupts to be fatal to your application.
Ignore them.

(B) Always service mouse interrupts within 160 of a secand. If you are

forced te turn off interrupts for about that length of time or more,
first: :

use SETMOUSE to set the mouse mode to O.
call SERVEMOUSE to clear any existing mouse interrupt.

After interrupts are turned back cn, restore the mouse mode.

(II) If you are working under an established operating system, like PraDCS or
Pascal, for which unclaimed interrupts are fatal:

(A) If the mouse is the only interrupting device: write your interrupt
handler so that it claims all interrupts. That is, regardless of
whether the mcuse admits to generating the interrupt, clear the carry

bit before exiting the interrupt hardler, to let ProDOS or Pascal
know the interrupt was "serviced".

(B) If the mouse is not the only interrupting device:

(1) ¥rite the mouse interrupt handler to claim all unclaimed
interrupts, as described in (II)-(A) above, and make sure the
mouse interrupt handler is installed last - otherwise the
interrupt will never get through to any interrupt handlers whic!

Note:

(2)

Note:

(3

follow tha mousa's.

This sclution may cause curser flicker by delaying the
application's response to VEL interrupts.

or

¥rite a spuriocus interrupt handler (alsc known as a "demon™),
not asscociated with any devics, which claimm all unclaimed
interrupts (that is, clears the carry bit and then exits). For
the reascn just mentioned, this interrupt handler must be
installed last.

Under ProDCS, this cuts down the rmumbsr of interrupting devices
that can be used to 3.

Include code in every interrupt handler to check if that
interrupt handler is last. If it is, then that interrupt
hardler should claim any previcusly unclaimed interrupts, even
if its device was not generating it.

Under ProDO0S, this would permit 4 interrupting devices; but it
may be tricky to implement, and it requires identical code in
each interrupt handler which must be executed every time the
handler is called.

Note: This bug will be fixed in future versions of the mouse card (but
that's not much help, is it?). '

Mouse Technical Note #5
4=May-84

This technical note explains how you can go about checking to see if the
mouse firmware card you have identified through software is able to support
interrupts. :

For further information contact:

PCS Developer Technical Support
M/S 22-W. Phone (408) 996-1010

Disclaimer.gi All Warranties and Liabilities

Apple Computer, Inc., makes no warranties, elther express or implied, with
respect to this documentation or with respect to the software described in
' this documentation, its quality, performance, merchantability, or fitness for
any particular purpose. Apple Computer, Inc, software 1s sold or licensed
"ag 1s". The entire risk as to 1ts quality and performance is with the
vendor. Should the programs prove defective folowing their purchase, the
vendor (and not Apple Computer, Inc., its dist:ibutor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or. correction and
any incidental or consequential damages. In no event will Apple Computer,
Inc. be 1liable for direct, 1indirect, incidental, or consequential damages
resulting from any defect in the software, even if Apple Computer, Inc. has
been advised of the possibility of such damages. Some states do not allow the
exclusion or limitation of implied warranties or liability for incidental or
consequential damages, so the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This document
may not, in whole or part, be copied, photocopied, reproduced, translated or
reduced to any electronic medium or machine readable form without prior
consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.

20525 Marianl Avenue
Cupertino, CA 95014
(408) 996~1010

Notice

Apple Computer, Inc. reserves the right to make improvements in the
product described in this document at any time and without notice,

/gs

Checking To See Whether A Mouse Type Device Supports Interrupts.

After identifying a card as a mouse type device it 18 important to check if
the card supports interrupts. There 18 a convention defined in the mouse

firmware protocol that does just that. It defines location $CN1l as a flag to
indicate whether or not interrupts can be supported. The value at location

$CN1l will be a 0 if interrupts are supported. It is important to check this
byte if your program uses interrupts. The reason that you must check this is
that the device may not be a mouse at all, rather some other type of device that
is emulating a mouse, without interrupt generating capability. (This could be a
track ball, graphics tzblet, etc.) If the byte at $CN1l1 is a non zero value
then that device does not support interrupts and must be used passively,

If you are a hardware developer and would like your device to emulate a
mouse you must follow the mouse protocol as described in the AppleMouse I1I users
guide. (pg 43-49) Your device must also have the same signature.bytes as the
mouse card. These are $CNOC=$20 and CNFB=$D6. (The N in the above addresses
represents the slot nmumber that the card happens to be in at the time. So for
slot 4, SCNFB you would have $C4FB.)

Note: The use of location SCN1l 1s not described in the AppleMouse II users
guide. Having your program check this byte is highly recommended since it is
quite likely that devices which emulate the mouse will be developed, and some of
them may not support interrupts. Through this byte you have a simple ‘way to
check 1if the device supports interrupts.

MOUSE TFCHNOTE #6

Revision of general handout on the Apple//e Dec B83%
5-July 84

This technote explains changes that will be made to the Apple//e ROM

so that it will support text icons. These icons will be used by the new
‘mouse’ -interface tool kit.

For further information contact:
PCS Developer Technical Support
M/S 22w. Phone (408). 996-1010

Disclaimer of all Warranties and Liabilities

Apple Computer, Inc., makes no warranties, either express or implied, with
respect to this documentation or with respect to the software described in
this documentation, its quality, performance, merchantability, or fitness for
any particular purpose. Apple Computer, Inc. software is licensed "as is'",
The entire risk as to its quality and performance is with the vendor. Should
the programs prove defective folowing their purchase, the vendor (and not
Apple Computer, Inc., its distributor, or its retailer) assumes the entire
cost of all necessary servicing, repair, or correction and any incidental or
consequential damages. In no event will Apple Computer, Inc. be liable for
direct, indirect, incidental, or consequential damages resulting from any
defect in the software, even if Apple Computer, Inc., has been advised of the
possibility of such damages. Some states do not allow the exclusion or
limitation of Implied warranties or liability for incidental or consequential
damages, so the above limitation may not apply to you.

This documentation is copyrighted. All rights are reserved. This document may
not, in whole or part, be copied, photocopied, reproduced, translated or
reduced to any electronic medium or machine readable form without prior
consent, in writing, from Apple Computer, Inc.

Copyright 1984 by Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014

Notice

Apple Computer, Inc. reserves the right to make improvements in the product
described in this document at any time and without notice.

Dear Developers:

THIS IS TO NOTIFY YOU THAT APPLE COMPUTER WILL BE MAKING A CHANGE TO THE
CHARACTER SET IT USES IN ITS APPLE//e. THIS MAY AFFECT YOUR SOFTWARE.

This new character set will be available to the public in 1984.

WE ARE NOTIFYING YOU OF THIS CHANGE AT THIS TIME BECAUSE SOME CURRENT SOFTWARE
MAY NO LONGER FUNCTION CORRECTLY WITH TRE NEW CHARACTER SET. UNDER THE RIGHT
CONDITIONS AN INVERSE UPPERCASE LETTER WILL NOW BFE A GRAPHIC ICON.

The following will help you identify if the changes we are making will
affect you or not,

l. If your program is written entirely in BASIC or Pascal or your Assembly
Language program calls the COUT routine to put characters on the screen
you will not be affected. The only exception would be if you are using
BASIC pokes to Poke inverse upper case characters directly to the text
screen,

2. 1If your program is using the standard character set (checkerboard
cursor) you will not be affected.

3. If your program is using the alternate character set (solid cursor)
and is directly POKING (storing) values to the text display area you will
have problems 1f your character values are from 64 ($40) to 95 ($5F).
These values now display inverse uppercase characters plus some special’
characters. In the future these values will display graphic icons. To
recreate the origional displays (which include inverse uppercase plus
some special characters) use values in the range from 0 ($0) to 31 (S$1F)
rather then the values from 64 ($40) to 95 ($5F). Note that using these
lower values will work properly on the current character set,

We at Apple are excited about this new extension to the Apple//e’s
alternate character set. The new icons are similar.to those used in LISA and
will enhance the use of pointing devices such as a mouse on the Apple//e. If
used effectively, the icons, in connection with pointing devices, can
significantly simplify the human interface of your programs.

What we foresee as the ways to access these ICONS from various programming
languages are described below. We have also included a sample of the current
ICON set. More detailed and accurate information will be provided prior to
making the ICONS available,

The following method will probably be used for showing ICONS from BASIC:

1) Set up the alternate character set by POKING 49162 ($C00A) with any value
then doing a PR#3. If an 80 column card is present you may remain in 80
columns. If there is no card or you want to be in 40 columns PRINT CHRS(1l1l).
2) PRINT CHR$(27) to enable the mouse characters.

3) Use the INVERSE command to set inverse mode.

4) PRINT the appropriate capital letter for the desired ICON. See .attached

ICON chart. ‘
Disable the ICONS by PRINTing CHRS(24).

Machine Language programs are expected to follow the same procedure as
BASIC. Use calls to COUT to perform the print operations. The following is a
sample Machine Language program which will ‘print’ two ICONS followed by the
two inverse uppercase letters that have the same ASCII values.

START STA $C00A ;FLIP IN 80 COLUMN FIRMWARE
LDA #$A0 ;USE & BLANK TO
JSR $C300 s TURN ON VIDEO FIRMWARE
LDY #0 ; INIT COUNTER
LOOP LDA STR, Y :GET VALUE
JSR $FDED sSEND IT THROUGH COUT ROUTINE
INY
CPY STRLEN
BNE LOOP ;=>NOT DONE YET ;
RTS
STR DFB $1B,846,$47,518,546,347 ;ICONS ON, SHOW, ICONS OFF, SHOW
STRLEN EQU *=STR ;LENGTH OF STR :

NOTE: ‘printing’ ICONS on the text screen by directly poking or storing ICON
values into the text buffer is not supported.

The probabable method for using the ICONS from Pascal 1.1 will be as follows:

1) Output a chr(27), an escape character, to enable ICONS.
2) Output a chr (15) to turn on inverse video.

3) Output the appropriate capital letter for the desired ICON. See attached
ICON chart.

Disable the ICONS by outputting chr(24).

Pascal sample program:

program Output mouse_icon;
var cmd : packed array [O..l] of 0..255;
begin
emd [0] ¢= 27; cmd [1] := 15;
Unitwrite (1, emd, 2); {turn on ICON mode }
{code to display icons...

}
cmd [O] := 24;

Unitwrite (1, emd, 1); {turn off ICON mode }
end.

