LEARNING LISP - Contents

IEVARN TN GRS P

Thismaterial has NOT been updated from the original 1984 text which | found it completely by
accident in atarball at this address: http://venus.deis.unical.it/manualg/llisp/index.html. There are
many errors and typos, and the version of lisp (P-Lisp, which ran on the Apple 1) predates
commonlisp, and no longer exists. So | strongly encourage you not to actually use thisto learn Lisp!
-- Jeff Shrager, 20060430

Theoriginal tarball: [112 Kb]

Here'sanew tutorial introduction to L1SP (LIST Processor), the much-talked-about language of
artificial intelligence.

Whatever your computer background, this comprehensive, clear-cut primer will teach you one of the
oldest languages still in use--one that's ssimple and fun to learn. Y ou'll become familiar with:

. LISP'sbasic data structure and functions
. how to define and edit your own functions
. treesand recursion

. advanced L | SP programs

. and much more.

You'll also find concrete, elementary examples that will help you grasp more abstract ideas, plus
exercises to reinforce what you learn in each chapter. Included as a specia feature is a sample dialogue
with ELIZA, Joseph Weizenbaum's classic L | SP program.

Stop wondering what LISP is al about and what it can do for you. Let L earning L1 SP teach you
everything you need to know about alanguage that will make your computer a valuable partner in
thinking.

Gnosis, a Philadel phia-based software company, currently markets a L | SP interpreter. The interpreter, P-
L1SP, isin use by hundreds of colleges and research facilities around the world for research, artificial
intelligence devel opment, and teaching.

http://nostoc.stanford.edu/jeff/Ilisp/ (1 of 2)6/18/2008 2:20:08 PM

http://nostoc.stanford.edu/jeff/llisp/llisp.tar.gz

LEARNING LISP - Contents

Contents
Preface

Getting Started

Lists, CAR and CDR

More Lists

Atoms and Vaues

Bag of Predicates

Defining Y our Own Functions
Help Functions

How to Save the World

This Thing Caled Lambda

The Conditional

. Simple Recursion

The Lisp Editor ED

Listsas Trees

Trees and Recursion

A Style of Programming

Scope Considerations

Maps

| splay Ogrammingpray

FEXPRS: Unevaluating Functions
Control Structures

. Eval and Apply

. Properties and Lambda Expressions
Differentiating Polynomials
Simplifying Polynomials

. Efficiency and Elimination of Recursion
ELIZA

. The P-Lisp Interpreter

©oo Nk~ owDdPE

=
©

[
=

=
N

|
w

[
H

=
o1

=
o

e
o N

|
©

N
©

N
=

N
N

N
w

N
A

N
ol

N N
N o

Appendix: The Lisp Editor

index

http://nostoc.stanford.edu/jeff/Ilisp/ (2 of 2)6/18/2008 2:20:08 PM

Jeff Shrager

Jeff Shrager (jshrager@stanford.edu)

Co-Founder and Chief Technology Officer, CollabRx
Associate Professor, Stanford University, Symbolic Systems Program (consulting)

"Correlation does not prove causality,
but they are highly correlated.”

(Photo: Marty Hellman; The glider is a Stemme S10-VT)

Personal Info:

. My vita(Thisisadirect link to my publications list)
. Taks (etc) available online as powerpoint
. Supplementary materias for my papers

"The earth does not, in fact, move around the sun
any more than the sun moves around the earth.
The former point of view just simplifies the math."

| am co-founder and Chief Technology Officer of CollabRx. CollabRx is a startup that builds and
operates virtual biotechs.

http://nostoc.stanford.edu/jeff/personal/ (1 of 6)6/18/2008 2:20:15 PM

mailto:jshrager@stanford.edu
http://www.collabrx.com/
http://www.stemme.de/daten/e/index.html
http://nostoc.stanford.edu/jeff/personal/vita/vita.html
http://nostoc.stanford.edu/jeff/personal/vita/vita.html#PUBS
http://nostoc.stanford.edu/jeff/personal/talks/index.html
http://nostoc.stanford.edu/jeff/supplements/index.html
http://www.collabrx.com/

Jeff Shrager

At Stanford | teach severa courses, including In Interaction Analysis (Symbolic Systems 145) which

focuses on human learning about and interaction with complex engineered systems, and Symbolic
Biocomputing (Symbolic Systems 216) where we study Artifical Intelligence applicationsin biological
computation. (Symbolic Biocomputing is no longer offered as aformal course. Instead, the materials are
online and open source in the form of BioBike Live Tutorials.)

Various Projects:

It is not merely from the ground evidence itsalf,
but primarily through the progressive accumulation
of justified interpretations of that evidence
that sound conclusions are reached.

| am Pl on the BioBike project. (Formerly called "BioLingua") BioBike is a web-based programmable
biological knowledge-base, which went to live public alphatesting in August 2003. It is built on top of
BioLisp, which s, in turn, built on top of Common Lisp. BioBike is a complete knowledge-based
computational biology resource, enabling biologists to manipulate biological knowledge and data, and
providing a platform for computer scientists working on methods in computational biology to develop
their methods and deploy them immediately to working biologists. If you'd like to experiment with the
BioBike Multi-Cyano programmable knowledge base, drop me an email and I'll be happy to give you an
account. The documentation root for this BioBike instance is here. (I am the co-founder, editor, and

webmaster of BioLisp.org, a site dedicated to intelligent applications in BioComputing.)

Mnemotheque is a personal exploration in interactive multi-media memorial, developed by my sister,
Monique, and me in order to memorialize our family's history with The Holocaust.

Gorilla Science (Education in the Wild) is an
educational activity in which students produce

s public installations (usually posters) that explain
nfilla JUIENICP the role played by scientific principlesin every-
i A AT 0. iy e Wi |day domains. Thislinksisalarge (~3M) pdf file
i containing various of the early Gorilla Science
documents, including some of the installations designed by Mary Burns' eight graders around 1995.
(Conception: Jeff Shrager and Kevin Crowley, University of Pittsburgh Learning Research and
Development Center; Early Art: Christen Napier; K-12 Implementation: Mary Burns and the students of
Franklin Regional Junior High School in Westmoreland County, PA.) Gorilla Science is making inroads
in Pittsburgh; Check out the Explanatiods project!

http://nostoc.stanford.edu/jeff/personal/ (2 of 6)6/18/2008 2:20:15 PM

http://nostoc.stanford.edu/jeff/chi/index.html
http://www.biobike.org/
http://nostoc.stanford.edu/Docs/index.html
http://www.biolisp.org/
http://nostoc.stanford.edu/Docs/index.html
http://www.biolisp.org/
http://nostoc.stanford.edu/jeff/personal/mne/index.html
http://nostoc.stanford.edu/jeff/personal/gs/GS.PDF
http://www.napierstudios.com/index.html
http://www.explanatoids.org/

Jeff Shrager

Fun Stuff:

Check out these videos of my sister Monique's band, fmz, in their debut concert at the Havana Cafe in
Toulouse, France:

. fmz: take my mind (live)
. fmz: spin off (live)
. fmz: Death On TV (studio rock video)

Your brain...

..on Wugs!

The time has come the walrus said to talk of many things,
Of diastolic pressure and of diuretic flings,

And whether venous pressure falls with digitalization,
When the failure's on the distaff side of the circulation,
And if ethacrynic acid is the answer to our prayers,

How come we still use mor phine when the diuretic's there?
Indeed, the greatest mystery of pulmonary edema,

|s why the patients do so well without a decent schema!

-- Anon; ~1971
From alecture on accute pulmonary edema

http://nostoc.stanford.edu/jeff/personal/ (3 of 6)6/18/2008 2:20:15 PM

http://vids.myspace.com/index.cfm?fuseaction=vids.individual&videoid=1870376956
http://vids.myspace.com/index.cfm?fuseaction=vids.individual&videoid=1870522859
http://vids.myspace.com/index.cfm?fuseaction=vids.individual&videoID=1250558939

Jeff Shrager

(with apologies to Lewis Carroll)

A fun glider aerobatics video, made with Randy Gobbel, Melissa, and Rex Mayes on Feb. 14, 1989.
[~15MB]

(I recently realized that | have been involved in teaching bioinformatics for avery long time! Hereisa
paper on computational protein secondary structure prediction by some of my students from the
Pennsylvania Governor's School for the Sciences, a program for bright high school students that took

place at CMU in 1983! The program iseven in Lisp! (The paper says that you can contact me for the
code; Good luck; It's probably on mag tape someplace!))

PreCognitive Science Online (A parody of the new EJournal Cognitive Science Online)

The Arnon-Calvin Challenge: A Turing Test for Computational Systems Biology

Diary of an Insane Cell Mechanic: Between May and December of 2000, when | started fulltime at The
Carnegie, | kept a cognitive diary about what it's like to become a molecular biologist.

Filer (for Unix) isaregular expression-like meta-command creator -- a sort of combination of |s, sed and
xargs, but with asignificantly smpler pattern language. Filer is protected by the GNU Public License.

Stories: A small collection of badly written, but possibly amusing, short stories about diving, flight, the
aurora, and other random experiences.

. Natura Thing (2001) -- A safari to North Pole, Alaska to see the Aurora.
. Seeplessin the Bat House (??) -- Inwhich | join Betsy on atrek across eastern Australiain

search of bat spit.
. Reena (1989) -- A glider off-field landing and the little girl who loves birds.

. Abe (1994) -- Diving, hospitals, decompression chamber rides, and volunteer firefolk.
. Bat Girl (=1995) -- A night out in the Pennsylvania hills with a bat biologist.

. Blind Flight (1994) -- Instrument flight -- a student's-eye view.

. First Solo (~1986) -- All pilots are required to write this story! (It'sin the FARS!)

. Tracy (1991) -- A fictional daughter-to-father letter with atwist.

Quotable: (Quotes embedded in the page, above are my own.)

| said, 'How dyou do that kynd of gethering what youre going to do? Do you all set down
and pul datter or dyou jus think to gether or what?

http://nostoc.stanford.edu/jeff/personal/ (4 of 6)6/18/2008 2:20:15 PM

http://nostoc.stanford.edu/jeff/personal/Acro1.wmv
http://nostoc.stanford.edu/jeff/personal/Acro1.wmv
http://nostoc.stanford.edu/jeff/personal/etc/AvitzurEtAlPGSS83.pdf
http://nostoc.stanford.edu/jeff/personal/etc/AvitzurEtAlPGSS83.pdf
http://nostoc.stanford.edu/jeff/personal/etc/AvitzurEtAlPGSS83.pdf
http://nostoc.stanford.edu/jeff/precog
http://cogsci-online.ucsd.edu/
http://nostoc.stanford.edu/jeff/jeff/mbcs/turing.html
http://nostoc.stanford.edu/jeff/personal/diary/diary.html
http://nostoc.stanford.edu/jeff/personal/etc/filer.c
http://nostoc.stanford.edu/jeff/personal/stories/aurora/aurora.html
http://nostoc.stanford.edu/jeff/personal/stories/australia/australia.html
http://nostoc.stanford.edu/jeff/personal/stories/reena/reena.html
http://nostoc.stanford.edu/jeff/personal/stories/others/abe.txt
http://nostoc.stanford.edu/jeff/personal/stories/others/batgirl.txt
http://nostoc.stanford.edu/jeff/personal/stories/others/blindflight.txt
http://nostoc.stanford.edu/jeff/personal/stories/others/first-solo.txt
http://nostoc.stanford.edu/jeff/personal/stories/others/tracy.txt

Jeff Shrager

He said, 'We do some poasyum.'

| said, 'Whats poasyum'’

He said, 'It aint jus poasyum you all ways say some poasyum. Y ou ever seen a nes of
snakes?

| said, 'Yes!'

Hesaid, 'l never but 1 of the hevvystol me they do the same theywl get all in atangl
slyding and sqwirming and ryving to gether. Which is how we do it all the many rubbing
up to 1 another skin to skin and talking vantsit theary. Which is akynd of hy telling and
trantsing. Thats when the singing and the shouting come the many cools of Addom and
the party cools of stoan. The strong and the weak inner acting and what happent in the
cloudit chaymber.’

| said, 'I's that where the seed of the red and the seed of the black comeinto it?

He said, Y es, howd you know that?

| said, 'When you ben having your fit you ben talking vansit theary. If you cud do it then
and you can do it now may be you dont even nead to gether may be you can get them Nos.
oansome.'

-- Russell Hoban, Riddley Walker

"False facts are highly injurious to the progress of science, for they often endure long; but
false views, if supported by some evidence, do little harm, for everyone takes a salutary
pleasure in proving their falseness: and when thisis done, one path toward error is closed
and the road to truth is often at the same time opened.”

-- Charles Darwin, 1871, The Descent of Man and Salection in Relation to Sex

"I had afeeling once about Mathematics, that | saw it all---Depth beyond depth was
revealed to me---the Byss and the Abyss. | saw, as one might see the transit of Venus---or
even the Lord Mayor's Show, a quantity passing through infinity and changing its sign
from plusto minus. | saw exactly how it happened and why the tergiversation was
inevitable: and how the one step involved all the others. It was like politics. But it was
after dinner and | let it go!"

-- Winston Churchill, 1930, My Early Life: A Roving Commission

"Dopeler effect (n): The tendency of stupid ideas to seem smarter when they come at you
rapidly."

-- From a contest in The Washington Post(2001) asking readers to make up new
words that are similar to existing words ... but funnier.

"The name of the game now is'modelling." A lot of it | can't see for sour owl shit. How

http://nostoc.stanford.edu/jeff/personal/ (5 of 6)6/18/2008 2:20:15 PM

Jeff Shrager

can your write or talk authoritatively about something if you haven't seen it?"

-- Field Geologist David Love, quoted in John McPhee's Annals of the Former
World (1998)

"Creationist Method. Creationists believe that man was instantaneously created by God
based on an account in abook called 'the Bible." Several thousand years ago, a small tribe
of ignorant near-savages wrote various collections of myths, wild tales, lies, and
gibberish. Over the centuries, these stories were embroidered, garbled, mutilated, and torn
into small pieces that were then repeatedly translated into several languages successively.
The resultant text, creationists feel, is the best guide to this complex and technical subject
[how humans evolved]."

-- Tom Weller, 1985, Science Made Supid

Q
o

http://nostoc.stanford.edu/jeff/personal/ (6 of 6)6/18/2008 2:20:15 PM

http://nostoc.stanford.edu/jeff/cllib/index.html

LEARNING LISP - Preface

LEARNING LISP

Contents | Getting Started

Preface

This book isaprimer on Lisp programming. It iswritten for any student wishing to gain abasic
proficiency in Lisp, regardless of hisor her background in computing. In general, the level of discussion
Is appropriate for any high school student, college student, or computer professional. A knowledge of
elementary calculus will make some of the later examples easier to understand but is by no means
required for the rest of the book.

The book was written originally by Jeff Shrager (currently at Carnegie-Mellon University) and Steve
Bagley (currently at MIT) while they were undergraduates at the University of Pennsylvania. The Moore
School Computing Facility, in the School of Engineering and Applied Science, at the University of
Pennsylvania supplied computer time so that it could be developed online. Additional material was
contributed by Stewart Schiffman of the Gnosis staff, and by Steve Cherry, author of P-LISP, which is
the dialect of Lisp that the examplesin this book use.

WHY SHOULD YOU LEARN LISP?

Lisp isimportant. Lisp is one of the oldest languages still in active use. It was invented for and is still
used (workshipped) by computer scientistsin "artificia intelligence". Al, asitiscalled, isan area of
active computer science research. For thiswork, Lisp is indispensable.

Lisp issimple. Many computer languages force the user to deal with messy details of the computer on
which they are run. In Lisp you don't worry about the mechanism of the computer. Also, the syntax, or
format, of Lisp expressionsisregular and consistent.

Lisp isfun. Thetypes of problems usually dealt with in Lisp often include games and puzzles. Also,
Lisp sessions are completely interactive. This interaction gives the user a greater sense of control over
the machine, and makes the computer more of a"partner in thinking". Don't forget that for many years
all computer systems were "batch," which meant that jobs had to be submitted on punched cards. The
computer that P-Lisp runs on is substantially more powerful and vastly easier to use than most of those
early machines.

A SHORT HISTORY OF LISP

Lisp was developed in the late 1950s by John McCarthy at MIT to serve as an algebraic list-processing

http://nostoc.stanford.edu/jeff/Ilisp/preface.html (1 of 3)6/18/2008 2:20:17 PM

LEARNING LISP - Preface

language (L1SP-L ISt Processor) for work in the then-new field of artificial intelligence. The first work
on implementation began in 1958 and Lisp 1 was born. A second version, called Lisp 1.5, was
completed in the next few years. Lisp 1.5 is the precursor of most of the Lisp systemsin existence today.
During the 1960s several other versions were devel oped across the country for various different
machines. MacLisp from MIT, InterLisp, formerly BBN Lisp, and MTSLisp from the University of
Michigan are three currently available.

The dialect spoken in thisbook is P-Lisp. Thisis yet another Lisp system, but this one runs on the Apple
and various other microcomputer systems. Personal Lisp computers are a net innovation in the computer
world. MIT has big microcomputers that run a MacLisp derivative. Although P-Lisp isn't as powerful as
those microcomputers (primarily because the computers it runs on are much smaller), the ideal of having
your own Lisp processor remains. In particular, this version of the book goes with P-Lisp version 3.1. If
you don't have that version, some minor details will be different (for example, there may not be any
floating point arithmetic).

If you are using another dialect of Lisp, you shouldn't have too many problems. In most of the examples,
we use afairly common subset of Lisp functions.

THE STYLE OF THE BOOK

We believe learning should be fun, and this book is written with that philosophy in mind. Thus, at times,
we resort to using "cute" examples to keep you from becoming bored with dry material.

We have tried to minimize the difficulties associated with some of the more abstract conceptsin Lisp by
working up to them from elementary, concrete examples. We suggest that you carefully follow through
all the examples presented. Access to your computer is desiderable so that you may try your hand at
Lisp; nothing promotes learning like immediate feedback.

The chapters are quite short. It should be possible to read and comprehend several in one sitting. This
book was not meant to be read in one sitting, so take your time. There are afew problems at the ends of
some of the chapters. Do them if you feel like it. Some of them aren't meant for solution as much as for
thought, so if you think about them rather than actually doing them, that's sufficient.

TYPOGRAPHIC CONVENTIONS

Sometimes (especialy in longer examples) in this book you will find that lower case is used to indicate
that aline of text is being typed by the user; similarly, upper case denotes lines typed by the Lisp
system. If this convention isin use, there is one minor exception to itsrule. That is, the letter "L" will
always appear in upper case because its lower case form is the same as a one and this might be very
confusing in a program example. Unfortunately, L isvery often used in Lisp programsto mean "List".

Parenthetical remarks are going to be enclosed in square brackets["[]"] instead of the normal

http://nostoc.stanford.edu/jeff/1lisp/preface.html (2 of 3)6/18/2008 2:20:17 PM

LEARNING LISP - Preface

parentheses because Lisp makes alot of use of parentheses and things will get confused.
THE BOOK DISK

Thistexti is available with afloppy disk that contains all the functions that we use in this book. Its
purpose isto save you typing time and to give you a pre-created environment to write your programsin.
If you already know what a Lisp environment is, fine. If not, don't worry about it. It's covered later in the
book.

OVERVIEW

The format of the book is as follow: We start with a chapter of simple examplesto get you comfortable
with using the Lisp system. We then move into several chapters which introduce the basic data structure
and functions. After that, wetell you how to define and edit your own functions. We then introduce the
concept of recursion, fundamental to Lisp programming, and spend several chapters exploring different
uses of recursion. We lay out afew examples of complicated Lisp programsin detail. The last section of
the book consists of some chapters on advanced Lisp techniques, and the guts of the Lisp system itself.

Enjoy, and please feel free to let us know about any problems you have or other things you would like to
see.

Contents | Getting Started

http://nostoc.stanford.edu/jeff/1lisp/preface.html (3 of 3)6/18/2008 2:20:17 PM

LEARNING LISP - Getting Started

LEARNING LISP

Contents | Preface | Lists, CAR and CDR

Getting Started

This chapter will provide you with some experience in using the P-Lisp system. Its purposeisto help
you become familiar with the basic operation of the language.

We assume that you are sitting in front of your computer, with Lisp up and running [see the explanation
of how to do thisin the P-Lisp Manual]. Y ou should see the following at the top of the screen:

GNOSI S | NC.
P-LISP VER 3.1.2

COPYRI GHT 1982 BY STEVEN CHERRY
ALL RI GHTS RESERVED

When you see this display it means that you have successfully entered Lisp. The ":" prompt that you see
on the last line typed by the computer means that Lisp iswaiting for you to type something in. Y ou may

type in what you wish. After you hit the RETURN key Lisp will evaluate your command and display the
result. This process of "read-evaluate-print” result constitutes the core of the interactive Lisp system. We
will see more or READ-EVALUATE-PRINT much later on.

Note that if you hit RETURN several times, each time Lisp will respond with the":". You told it to do
nothing, so it did nothing and then asked for another line of input.

If we type a number, then Lisp will echo the number back. All of our inputs follow the ":" prompt; all of
Lisp's responses are preceded by two spaces.

0 3

http://nostoc.stanford.edu/jeff/llisp/1.html (1 of 6)6/18/2008 2:20:18 PM

LEARNING LISP - Getting Started

-2

Let'stry an example: adding up some numbers. To add numbersin Lisp we use the ADD function. We
add 1 and 2 by typing:

: (ADD 1 2)
3

Y eah! Lisp can add. What actually happened? Lisp typed the ":" and then we typed "(add 1 2)". Note
several things:

. Theword ADD and the numbers"1" and "2" are separated by spaces [blanks].

. We surrounded the expression with parentheses. Parentheses are an integral part of the Lisp
language, so you will soon learn to love parentheses [we hope].

. Lisp responded immediately with the answer. Lisp is an interactive system, and it will always
display the answer immediately, unlessyou tell it otherwise. Later we will see how to tell it
otherwise.

Let's try some more addition.
: (ADD 12 3
)
15
: (ADD 1)

** ERROR: TOO FEW ARGS **
ADD :: (1)

+()
NI L
: (ADD 11 8 3)

** ERROR: TOO MANY ARGS **
ADD :: (11 8 3)

http://nostoc.stanford.edu/jeff/llisp/1.html (2 of 6)6/18/2008 2:20:18 PM

LEARNING LISP- Getting Started
+()

NI L

Here we first try the same example but we have forgotten the closing parenthesis. Lisp iswaiting for that
closing parenthesis so it comes back with a":" prompt. We enter the closing parentheses, and now Lisp
is happy, so it performs the addition. In general, you may spread the input across as many lines asyou
like. Later thiswill be quite useful.

The next line shows something a little funny. We asked Lisp to add up one number. Because adding up
just one number is not particularly meaningful or useful, Lisp returns an error message that there are too
few numbersto add. Thisis quite reasonable, since you usually want to add up at least two numbers.

Note that Lisp now givesusa"+" instead of the usual ":". Don't worry about this for now, simply type
"()". Wewill deal with this mode of operation |ater.

The last line shows what happens if you try to add up three numbers--the same sort of error! Well, there
IS no penalty for mistakes [we won't tell]. It makes a little more sense to add up more than two numbers
than it did to add up just one number. We'll see much later that we can actually fix ADD ourselvesto do
this[or any other sort of behavior that we like].

Thefirst thing inapair of parentheses is the function name and the things after that are the arguments
[thus the statement "TOO FEW ARGS' in the above error report]. Thisis very important, and these two
words will be used throughout this book. In the first example above the function nameis ADD and its
argumentsare"1" and "2". ADD is said to have two arguments in this example.

Besides addition, Lisp can aso perform multiplication. The name of the multiplication function is
MULT. Let'stry it out!

: (MULT 2 3)
6
: (MULT 9 2)
18
:(MULT 1 2 3 4)

** ERROR: TOO MANY ARGS **
MILT :: (1 2 3 4)

http://nostoc.stanford.edu/jeff/llisp/1.html (3 of 6)6/18/2008 2:20:18 PM

LEARNING LISP - Getting Started
+()

NI L
D (MULT 1.2 4)

4.8
:(MULT 2 (ADD 1 2))

6
Thefirst two examples reassure us that Lisp can, in fact, multiply.

Lisp can, however, multiply only two values. If you try and multiply more than two values, you will get
aTOO MANY ARGS error. By theway, if you try and use MULT with zero or one argument, you will
get aTOO FEW ARGS error. Again, wetype"()"" to get back to the normal colon prompt.

The next example shows that Lisp will deal with non-integers. Floating point math is nice, but not
critical because, as we will soon see, Lisp's strength does not lie in arithmetic.

The last of the above linesis the most interesting. Lisp triesto perform the MULT function but finds that
in place of the second argument is a subexpression. The value of the subexpression "(add 1 2)" is, of
course, 3. Thereis now a number to take the place of the subexpression so the multiplication can
continue. Lisp now effectively sees"(mult 2 3)" which it performs.

Since thistype of operation isvery common in Lisp work, we are going to try some more exampleslike
the last one. Seeif you can figure out what is happening in each expression.

. (ADD (MULT 3 4) (MULT 2 6))
24

: (MULT (MULT (ADD 1 0) (ADD 1 1)) (MULT (ADD 2 1) (ADD 1 3)))
24

D(MULT 1 (MULT 2 (MULT 3 (MULT 4 1)))))))))))

24

One important thing to notice about these examplesis that in the last one there were too many closing

http://nostoc.stanford.edu/jeff/llisp/1.html (4 of 6)6/18/2008 2:20:18 PM

LEARNING LISP - Getting Started

parentheses. Thisisfine and, in fact is very handy sometimes when you lose count. All you needtodois
keep typing lots of closing parentheses and eventually you'll get back to the colon prompt.

Now for one more concept: predicates. A predicateis aspecial kind of function that returns an answer of
either true or false. In Lisp, trueisrepresented as"T" and falseis represented as "NIL". So, let's ask
some questions.

: (GREATER 3 4)
NI L

: (GREATER 4 3)
T

: (GREATER 100 - 100)
T

: (NUMBER 47)
T

: (NUMBER ' LETTERS)
NI L

: (NUMBER ' SEVEN)
NI L

: (ZERO 0)
T

: (ZERO (ADD 2 -1))
NI L

: (ZERO (ADD 2 -2))

T

http://nostoc.stanford.edu/jeff/llisp/1.html (5 of 6)6/18/2008 2:20:18 PM

LEARNING LISP - Getting Started

The predicate GREATER returnsatrue "T" if the numbers arein a strictly decreasing order; false,
"NIL", otherwise. The predicate NUMBER says"T" if the argument is a number, "NIL", otherwise.
Obviously the word "seven" is characters [more on what that quote in front of it means later] and isnot a
number. ZERO returns "T" if the argument evaluates to zero.

Finger Exercises

Practice starting Lisp and typing in expressions. Y ou might actually take the time to do al of the
examplesin this chapter. Also, do some math and make sure that Lisp can do math as well as you can.
Seeif you can come up with away of changing algebraic expressions into the equivalent Lisp
mathematical expressions.

Contents | Preface | Lists, CAR and CDR

http://nostoc.stanford.edu/jeff/llisp/1.html (6 of 6)6/18/2008 2:20:18 PM

LEARNING LISP - Lists, CAR and CDR

LEARNING LISP

Contents | Getting Started | More Lists

Lists, CAR and CDR

We are going to direct our attention towards the structure of datain the Lisp language. All expressionsin
Lisp areinthe form of alist. Even functions that we will definein alater chapter will be in the form of a
list. Lists are so important that the next severa chapters will be devoted to developing your facility in
using lists.

And now, meet the list.

A listisalinear arrangement of objects separated by blanks and surrounded by parentheses. The obkects
which make up alist are either atoms or other lists. An atom is the basic unit of data understood by the

Lisp language.
Here are some atoms.

car bon

eve

1
bananast and

Here are some lists:

(1 2 3 4)

((i hate) (peanut butter) (and jelly))

(you (walrus (hurt) the (one you) |ove))

(add 3 (rmult 4 5))

(garbage (garbage) out)

(car ((in the garage) park))

(deeper and (deeper and (deeper and (deeper we went))))

Please note several things.

. Some of theatomsin the abovelistsare: "i", "()", "4", and "deeper”. An atomisaword or
number or the pair of parentheses ()" which will be referred to as"NIL".
. The parenthesesin alist will aways be balanced because every list is surrounded by aleft and

http://nostoc.stanford.edu/jeff/llisp/2.ntml (1 of 7)6/18/2008 2:20:20 PM

LEARNING LISP - Lists, CAR and CDR

right parenthesis, and the only things inside which have parentheses are other lists.
. The definition given above permits usto nest lists within other lists to any arbitrary depth.

Y ou should note that the parentheses are used to denote the list; they are not actually part of thelist.

"you" is an atom.
"(walrus (hurt) the (one you) love)" isalist.

The parts of that list are

"walrus" is an atom.

"(hurt)" isalist with one element: the atom "hurt".

“the" isan atom.

"(oneyou)" isalist with the elements: "on€e" and "you", each of these is an atom.
"love" isan atom.

What does Lisp do with lists? Well, whenever you type alist into Lisp it tries to evaluate that list.
Rulesfor lists being evaluated:

. Thefirst element of the list should be aLisp function [like ADD].
. Therest of thelist should be the arguments to the Lisp function, that is, it should contain the data
to be acted upon.

Evaluation takes place if Lisp can apply the function to the arguments.
Thus,
- (ADD 8 3)
11
isalist which is evaluated and has its value printed.
If the first element is not a Lisp function, then an error occurs:
(1 2 3 4)

** ERROR BAD ATOM C ARG **
EVAL :: NL

http://nostoc.stanford.edu/jeff/llisp/2.ntml (2 of 7)6/18/2008 2:20:20 PM

LEARNING LISP - Lists, CAR and CDR
+()

NI L

What if we try to add all the numbersin alist?

. (ADD (1 2))
** ERROR. BAD ATOM C ARG **
EVAL :: NIL
+()
NI L

Compare the expressions (ADD 1 2) and (ADD (1 2)). In thefirst one, the ADD function acts on two
separate atoms [not a list--no surrounding parentheses| while in the second one ADD acts [or at |least
triesto act] on alist: (1 2). Remember that Lisp first evaluates the arguments before applying the
function.

When Lisp encounters (ADD (1 2)), it first tries to evaluate the argument to ADD, namely thelist (1 2).
Notethat "1" isnot a Lisp function. [Remember, if Lisp istrying to evaluate alista, the first element in
the list had better be the name of a Lisp function and the rest of the list had better be the arguments to
that function or else TROUBLE!!]

Here, again, NIL ["()"] is used to get back to the normal Lisp prompt ":".

Wewould like to be able to use lists like " (A B C)", to represent datain Lisp. Unfortunately Lisp seems
to want to evaluate everything that we enter. Since thereislikely no "A" function, the evaluation of the
list will cause an error. Thisleavesusin abit of a quagmire!

Good fortune has fallen upon you. Thereisaway to stop Lisp from trying to evaluate alist. The quote
character ['] causes Lisp to take the expression as written rather than to try to evaluate it. We're going to
begin applying the quote quite liberally from now on. Be very careful to watch what does and does not
get evaluated.

. (DO NOT (EAT ANYTHI NG NOW)
(DO NOT (EAT (ANYTHING) NOW))

' (MULT (ADD 1 2) 4)

http://nostoc.stanford.edu/jeff/llisp/2.ntml (3 of 7)6/18/2008 2:20:20 PM

LEARNING LISP - Lists, CAR and CDR
(MULT (ADD1 2) 4)
Let'sintroduce some Lisp functions which manipulate lists. Manipulating involves taking apart, putting

together, and checking the values of lists. The two functions CAR and CDR are used to get parts out of
lists. The CAR function returnsthe first element in alist.

(CAR ' (1 2 3 4))
1

: (CAR ' ((| HATE) (PEANUT BUTTER) (AND JELLY)))

(| HATE)
' (CAR 1)
** ERROR BAD ATOM C ARG **
CAR :: (1)
+()
NI L

Note that the result of a CAR need not be an atom [in the second case above, it isalist of two atomg],
but that CAR isonly designed to take arguments which are lists, not atoms.

CDR [pronounced "could-er"] is the complement of CAR in that the result of CDR isthe "rest" of the
list:

(CDR ' (1 2 3 4))
(234)

1 (CDR ' (FUN FROG))
(FRGG)

1 (CDR ' ((THREE BLIND) MACE))
(MACE)

. (CDR ' (HELLO))

http://nostoc.stanford.edu/jeff/llisp/2.ntml (4 of 7)6/18/2008 2:20:21 PM

LEARNING LISP - Lists, CAR and CDR

NI L
:(CDR " ())

NI L
Like CAR, CDR isdefined only to operate on lists. Unlike CAR, however, the value of CDR is
ALWAY S alist. Note that the CDR of alist with only one element is an empty list [written as () or
NIL].

We have, in the previous pages, listed the following seemingly contradictory characteristics of NIL:

. NIL isan atom.

. NIL isalist (asaresult of the CDR operation).

. NIL means"false" in predicates.

. NIL, by name, means "nothing."
NIL is certainly making alot of trouble for such an empty concept. Why should we make so much ado
about nothing? NIL isin fact the most important entity in the Lisp language. It is both an atom and allist,
depending upon who is doing the asking. It can be returned by functions whose value is defined to be an
atom, such as a predicate, or by functions whose value is defined to be alist, such as CDR. NIL isan

empty list [alist with no elements]. The use of NIL will become clearer when we begin studying user
defined functionsin alater chapter.

Back to the business at hand: CAR and CDR.

We saw in the first chapter that subexpressions can be used in place of the arguments of any function. In
the same way, the list processing functions can be combined to do various list operations.

. (CDR ' (SAND W TCH))
(WTCH)

. (CDR (CDR ' (SAND W TCH)))
NI L

. (CDR (CDR (CDR ' (SAND W TCH))))

NI L

http://nostoc.stanford.edu/jeff/llisp/2.ntml (5 of 7)6/18/2008 2:20:21 PM

LEARNING LISP - Lists, CAR and CDR

' (CAR (CDR ' (SAND W TCH)))
W TCH
t(CAR (CAR (CDR " (() ((BGZO (NONJ)))))
(BOZO)
t(CDR (CAR (CDR " (() ((BGZO (NONJ)))))
((NONO))
1 (CAR (CAR (CDR (CAR (CDR " (() ((BOGZO (NONO)))))))
NO
' (CDR (CAR ' ((CAR CDR) CAR)))
(CDR)
:(CAR ' (ADD 1 2))
ADD
:(CDR ' (ADD 1 2))
(12)
Aswe mentioned alittle earlier in this chapter, the expressions that we are typing into Lisp are lists, just

as"(1234)" isalist. Remember functions and arguments? Well, the CAR of an expression-list isits
function name and the CDR of that expression-list isthe list of the arguments to that function!

There are standard abbreviations for up to four successive applications of CAR/CDR combinations: take
the letter "A" from every CAR and "D" from every CDR and place them next to each other sandwiched
between a"C" and an "R" [NOTE: Lisp aficionados claim to be able to pronounce all 28 combinations
of CAR and CDR]. For example, the expression (CADDR ANY LIST) is the same as the longer
expression (CAR (CDR (CDR ANYLIST))). Thisbook will not use these too much, but you should be
familiar with them since many things written in Lisp do use them. The above example

:(cdr (car (cdr '() ((bozo) (no no))))))

could have been written

http://nostoc.stanford.edu/jeff/llisp/2.ntml (6 of 7)6/18/2008 2:20:21 PM

LEARNING LISP - Lists, CAR and CDR

: (CDADR ' (() ((BQZO (NO NO)))
((NONO))
Exercises: Car For Yourself

We still aren't deep enough into Lisp to do any entertaining or interesting exercises so your task isto
make up some exercises for this chapter and do them.

Contents | Getting Started | More Lists

http://nostoc.stanford.edu/jeff/llisp/2.ntml (7 of 7)6/18/2008 2:20:21 PM

LEARNING LISP - More Lists

LEARNING LISP

Contents | Lists, CAR and CDR | Atoms and Values

More Lists

In the previous chapter we learned all about taking lists apart. We will now explore the domain of
joining and extending lists. The most important Lisp functions for joining lists are CONS and CONC.
[These names stand for CONStruct and CONCatenate. These names are a little more reasonable than
CAR and CDR, but not much.]

Let'sfirst play with the CONS function.
1 (CONS 'A ' (B Q)
(A B Q)
t(CONS " (A) " (B Q)
((A BQ
t(CONS ' () "(B Q)
(NIL B Q
t(CONs " (B O '"())
((B Q)
. (CONS ' (A B) '(C D))
((AB) CD)
. (CONS ' BACON ' ((LETTUCE) ((GAZELLE))))
(BACON (LETTUCE) ((GAZELLE)))
: (CONS ' BACON ' ())

(BACON)

http://nostoc.stanford.edu/jeff/llisp/3.html (1 of 5)6/18/2008 2:20:23 PM

LEARNING LISP - More Lists

The explanation of CONSisalittle tricky, so hang on. CONS takes its first argument [which may be
either an atom or alist] and insertsit just after the first left parenthesis in the second argument. This
second argument should be alist. CONS will actually connect things onto atoms as. "(cons 'a'b)", but
this creates a special form of list called a dotted pair. Don't worry about dotted pairs for now; Lisp will
print them, but they are not used very often, nor are they very important.

If you have alist of atoms, then you can use CONS to add another atom on the front of thelist [asin the
first example]. You can seethat if we try to add an empty list [NIL or ()] to the front of the list, CONS
will doit. If wetry to add alist onto the front of a"()", thenthe " ()" istreated as alist [just a set of
balanced parentheses].

Hereisavisualization of exactly what CONS will try to do:

fcons 'a ' ()) FY {1)

pcons 'o(a list) ' (lisp)) (& LIST) {1LISP]|

CONS s very important. Y ou should make sure that you throughly understand how it works before
proceeding.

Good. Well, the next magical functionis called CONC. Again, let'sjust play around with CONC before
discussing it.

: (CONC ' (1 MA LIST) ' (URA LIST))
(IMA LI ST URA LIST)

1 (CONC ' ((NUMBER ONE)) ' (((NUMBER TVD))))
((NUVBER ONE) ((NUMBER TWD)))

: (CONC ' (READY SET GO ' ())
(READY SET GO)

: (CONC ' () ' (GO SET DOWN))

http://nostoc.stanford.edu/jeff/llisp/3.html (2 of 5)6/18/2008 2:20:23 PM

LEARNING LISP - More Lists

(GO SET DOWN)
F(CONC " () " ())
NI L

What does CONC do? [Can you answer that question now?] The CONC function joins two lists by
sticking the first one onto the front of the second one and then removing one, and only one, pair of ")("
from the middle. CONCing "(@)" with "(b)" will first form "(a)(b)". Y ou then remove the ")(" from the
middle and you are left with the result "(ab)". Note that putting the lists together does not join "a" and
"b". In other words, you don't get "(ab)". Both the arguments to and the result of a CONC arelists. The
following shows what happens when you try to CONC atoms.

:(CONC 'A ' (B Q)
** ERROR BAD LI ST ARG **
)CONCZZ ((QUOTE A) (QUOTE (B C))
+()
NI L
(CON ' (B O 'A)
** ERROR. BAD LI ST ARG **
)CONCZZ ((QUOTE (B C)) (QUOTE A)
+()
NI L

Moral of the story: CONS can deal with atoms, CONC can't. CONS isthe opposite of a CAR and a
CDR.

:(cons (car ' (i wanna go hone)) (cdr '(i wanna go hone)))
(i wanna go hone)

Amazing! Wetook alist apart using CAR and CDR and then turned right around and put the list back
together with CONS! Make sure you understand what is going on in the above example, and be sure you
can account for all the parentheses. Let's try using a CONC and a CDR for the CONS and the CAR.

http://nostoc.stanford.edu/jeff/llisp/3.html (3 of 5)6/18/2008 2:20:23 PM

LEARNING LISP - More Lists

Note that we do not get back the list we started with:

:(conc (cdr ' (hunpty dunpty)) (cdr ' (hunpty dunpty)))
(dunpty dunpty)

Using two CDR's we cannot put "(humpty dumpty)" back together again. This shouldn't be much of a
surprise since we threw out the CAR of thelist.

A quick note on the structure of lists: if alist contains another list as an element, then the inner list is
said to be nested in the outer one. Also, it is often necessary to discuss top-level elements and levels of
nesting. Hereisalist with its top-level elements numbered:

(aka (googoo dada) waka)

1 2 3

Thus, there are 3 top level elements. The atoms "googoo” and "dada" are said to be more deeply nested:
they are not on the top level.

What good are lists? Why would you want to use these CAR'S, CDR's, CONS's and CONC's on lists?
Answer: We can use lists to store data and the list provides us with avery flexible data structure. Let's
spend some time investigating how lists can represent different kinds of things.

Suppose you have a bunch of friends and their phone numbers and you want to organize them. What is
the important concept here? Each person will usually have just one phone number associated with him/
her. Let's represent the pair (person, number) as atwo element list: (person number). Y our phone book
then becomes alist of two element lists. It might ook like this:

((bill 1234567) (sinon 5551212) (jane 2019999))

Asanumerical example of data structure, consider a polynomial: 12(x+2)+17.

How can we represent thisin Lisp? There are lots of ways. We might use the built-in Lisp functions for
arithmetic operations to form an equivalent expression. The above polynomial is represented as

(ADD (MULT 12 (ADD x 2)) 17)

We are going to return to polynomials of thistypein later chapters and show you how to manipulate
them in meaningful ways. Before that, however, we are going to have to see some more of the Lisp
language.

http://nostoc.stanford.edu/jeff/llisp/3.html (4 of 5)6/18/2008 2:20:23 PM

LEARNING LISP - More Lists

Exercises
Ahal Now we know enough to do something of interest:

1. Given the phonebook data structure mentioned above, write an expression which will make alist
with those name/number pairsin reverse order. That is: ((jane 2019999) (simon 5551212) (hill
1234567)). Remember to quote things correctly. You'll have to repeat the list alot, so you may
want to try a smaller example.

2. Do the same thing as the previous exercise. Make it come out the same way but with the names
and numbers exchanged.

Answers
1. Let L represent the phone list
((BILL 1234567) (SI MON 5551212) (JANE 2019999))
An expression to reverse thislist is
(CONS (CADDR L) (CONS (CADR L) (CONS (CARL) "())))

2. We want to do the same thing we did for (1) except reverse each entry. The expression to reverse
al three entries and the entirelist is:

(CONS
ECC]\IS(CADR(CADDR L)) (CONS (CAR (CADDRL)) '()))
(CONS (CADR (CADR L)) (CONS (CAR (CADR L)) '()))
(CONS
gCO\IS()) (CADR (CAR L)) (CONS (CAR (CAR L)) "()))

)

Contents | Lists, CAR and CDR | Atoms and Values

http://nostoc.stanford.edu/jeff/llisp/3.html (5 of 5)6/18/2008 2:20:23 PM

LEARNING LISP - Atoms and Values

LEARNING LISP

Contents | More Lists | Bag of Predicates

Atoms and Values

In the previous chapters we discussed lists of objects. These objects could have been either atoms or
lists. The exact meaning of atom was sidestepped. Here we will 1ook alittle deeper into what an atomis
and how they hold information.

Let's go back and repesat the definition of an atom given in chapter 2: An atom isaword or a number or

the pair of parentheses ()" which we will call "NIL". So, by that description, all of the following are
atoms:

hel |l o
31415
()

car

axe

0

st ephen
anat om
12345

In fact, there are afew more things that we can use as atoms also. The rules for creating atoms are, to be
exact, asfollows.

. Anatom can be any number the computer understands. Thisis called a numeric atom. These are
integers like: 145, -15, 0, etc., or floating point numbers [ones with fractional parts] like: 1.4, -
56.3, etc.

. A non-numeric atom can be any name made up of letters and/or numbers. Thereis no limit on the
length of this. The only restriction is that the first character must be a letter, not anumber. Thisis
called an alphanumeric atom.

. Theform of NIL "()" can be an atom.

« Alphanumeric atoms can have some funny charactersin them [such as"*" and "+"] but special
Lisp characters cannot be used in atom names. This should be clear by now. The characters " (",
")", and """, would simply confuse Lisp if you tried to use them in atom names. In general, we
avoid using anything other than the letters"A" through "Z" and the numbers " 0" through 9" in
atom names.

http://nostoc.stanford.edu/jeff/llisp/4.ntml (1 of 7)6/18/2008 2:20:25 PM

LEARNING LISP - Atoms and Values

Using the above rules, these are not atoms:

456t est

a sentence like this is not an atom
sone' st uff

this(isn' t(one(either

(1 2 3 4) [this one's a |ist, renenber?]

Aswe usually do, we'll see what happens when atoms are given to Lisp to evaluate.

: ANATOM

** ERROR: UNDEFI NED ATOM **
EVAL :: ANATOM

+()

NI L

P NIL
NI L
:()
NI L
: 567
567

That seemed to work alright, except for the first one. What happened? It looks like some atoms are
defined according to Lisp and some aren't.

Atoms have values. Some atoms have values that are automatically set by Lisp when you start it. Others
need to be given values by you, the user, when you want to do something. When an atom is typed into
Lispitisevaluated just like alist except that instead of executing afunction, the result of the evaluation
is the value of that atom.

http://nostoc.stanford.edu/jeff/llisp/4.html (2 of 7)6/18/2008 2:20:25 PM

LEARNING LISP - Atoms and Values
We can see the types of atoms mentioned in the previous paragraph used in the example above. The
atoms"T" and "NIL" seem to already have valuesin Lisp. Thevalueof "T" is"T". The value of "NIL"
IS"NIL" or "()" which, aswe've said over and over, isthe same thing. The atom 567 also hasavalue. In

fact, all numeric atoms have values that are the numbers they represent. Numbers and those special
atoms are called self-defining atoms.

Okay, then how do we define those atoms that aren't self-defining? There's away to do that too! [There's
away to do most everything in Lisp.]

Watch this:
: LOVE

** ERROR: UNDEFI NED ATOM * *
EVAL :: LOVE

+()
NI L
: (SETQ LOVE 5)
5
: LOVE
5
: (SETQ HAPPI NESS LOVE)
5
: HAPPI NESS
5
. (SETQ POVER FREEDOM)

** ERROR UNDEFI NED ATOM **
EVAL :: FREEDOM

+()

http://nostoc.stanford.edu/jeff/Ilisp/4.html (3 of 7)6/18/2008 2:20:25 PM

LEARNING LISP - Atoms and Values

NI L
Thefirst example just shows that, in fact, the value of love is undefined. Let's defineit.

The SETQ function takes the name of an atom and the value to "assign” to that atom. It puts that value
into the named atom and then, voila, instant definition! Note that the value returned by SETQ isthe
same as the value of the second argument. Y ou will find that all Lisp expressions return avalue of some
kind.

Note that, in the fourth example, the atom now properly defined has a value that can be used to assign to
other atoms. An error will occur if you try to assign the value of an undefined atom in a SETQ operation.

Aswith alist, if wewant to tell Lisp not to try to evaluate an atom, you can simply put a single quote
beforeit:

: THE- VALUE

** ERROR: UNDEFI NED ATOM **
EVAL :: THE- VALUE

+()
NI L

. (SETQ ATOML ' THE- VALUE)
THE- VALUE

: (CONS ATOML ' (1S THE VALUE OF ATOML))
(THE- VALUE | S THE VALUE OF ATOML)

. (SETQ ATOMR (CONS ATOML ' (1S THE VALUE
OF ATOML))))

(THE- VALUE | S THE VALUE OF ATOML)

Above, we have used the value of ATOM1 and the CONS function to create alist made up of the value
of ATOM1 and some other atoms. Y ou should be very careful about the placement of quotes at all
times. A quote is used when you mean the expression itself rather than the result of evaluation of the

http://nostoc.stanford.edu/jeff/llisp/4.ntml (4 of 7)6/18/2008 2:20:25 PM

LEARNING LISP - Atoms and Values

expression.
In the last example, the result of the CONS operation is SETQed into a new atom: ATOM2.

Y ou will find that one of the best uses of SETQ isto save you from having to type the same list over and
over again. We can use atom values in our examplesto save our typing also. Thisis one of the examples
from chapter 2 redone with value atoms and SETQ's:

. (SETQ SANDW TCH ' (SAND W TCH))
(SAND W TCH)
. (CDR SANDW TCH)
(WTCH)
. (CDR (CDR (CDR SANDW TCH)))))
NI L
: (CAR (CDR SANDW TCH))
W TCH
: (CAR (CAR (CDR (SETQ CLOMY ' (() ((BQZO

1) (NONO)))))))
(BOZO)

: (CDR (CAR (CDR CLOMY)))
((NONO))
: (CAR (CAR (CDR (CAR (CDR CLOMNY)))))))
Y ou should go back to the example in the previous chapter and carefully study what was done in order
to use value-atoms. Let's not lose sight of the evaluation processin all thiss mumbo-jumbo. Remember

that the arguments of a function are evaluated first and the results are replaced for that position in the
expression. Using thisrule, let's go through the evaluation of the last expression above.

We start out with:

http://nostoc.stanford.edu/jeff/llisp/4.html (5 of 7)6/18/2008 2:20:25 PM

LEARNING LISP - Atoms and Values

. (CAR (CAR (CDR (CAR (CDR CLOMY)))))
NO

First, "clowny" is evaluated as alist that was SETQed to it previously, giving us:

(car (car (cdr (car (cdr '(() ((bozo) (no no))))))))

[The underlined portion is the SETQed text]. The various CARs and CDRs are evaluated giving:

(car (car (cdr (car '(((bozo) (no no))))))))
(car (car (cdr ' ((bozo) (no no)))))

(car (car '((no no))))

(car ' (no no))

no
This process is the most important thing that you need to know and it isassumed in all our discussions.

One last thing before we move on. It is often useful to be able to put funny characters [like spaces and
open or close parens] into atom names. The most obvious use of thisisto print things out. Even though
it'stechnically against the rules to use spaces, etc., in atom names, Lisp provides away to do so. The
guotation character ["] can be used to enclose atom names. Don't confuse this with the quote that stops
evauation. For example:

: (SETQ "A LONG ATOM NAME" 5)
S

:" A LONG ATOM NAME"
S

: (SETQ "ANOTHER NAME" '"A MESSAGE")
A MESSAGE

: " ANOTHER NAME"

A MESSAGE

http://nostoc.stanford.edu/jeff/Ilisp/4.html (6 of 7)6/18/2008 2:20:25 PM

LEARNING LISP - Atoms and Values

In the second example above, we quoted an enclosed atom in order to put a message with spacesin as
the value of the atom: A LONG ATOM NAME

Note that Lisp doesn't print out the quotation marks around enclosed names. Thisis convenient because
it permits us to use them as messages. Y ou'll seethisused if you look over the code for the Lisp editor
that isincluded in an appendix. Don't look now, though. Y ou'll need to know more of the language first.

Exercises

1. Indicate what you think Lisp would respond with if you type in the following:
a. :(setq apple 'fruit)

(setq pear apple)

:(setqig 140)

‘(setq 15 12)

'apple

-apple

apple"

O

2. Remember all the recopying that we did in the most recent set of exercises. Well, now you should
be able to figure out how to set the phone list as the value of some variable, and just use that

variable. Try it.

ST Q +~0 Q0O 0T

Answers

FRUIT

FRUIT

140

Y ou should expect thisto cause an error; since numeric atoms are self-defining, you shouldn't be
able to change their values.

APPLE

FRUIT
g. FRUIT. Notethat APPLE and "APPLE" denote the same atom, since the atom names are the

same (double quotes enclose atom names, but are not part of the name).
h. (). Thiscreates an atom whose name is the characters " (" and ")". 1t isNOT the same as the atom

NIL.

oo oo

N ¢

Contents | More Lists | Bag of Predicates

http://nostoc.stanford.edu/jeff/llisp/4.ntml (7 of 7)6/18/2008 2:20:25 PM

LEARNING LISP - Bag of Predicates

LEARNING LISP

Contents | Atoms and Values | Defining Y our Own Functions

Bag of Predicates

Congratulations. Y ou have now mastered the basic concepts of atoms and lists. It is the purpose of this
chapter to add to your "vocabulary" of Lisp functions. You will need afew more in order to do any real
work. All of the new functions will be predicates. Remember that predicates ask questions about data
and always return T for true or NIL for false.

The first function is a predicate that asks if an expression is an atom.
. (ATOM ' BOVB)
T
. (SETQ BOMB ' KYAG)
KYAG
. (ATOM BQOVB)
T
: (SETQ NI XON ' (1 AM NOT A COOK))
(1 AM NOT A COX)
. (ATOM NI XON)
NI L
: (ATOM ' ((AND) (EVE)))
NI L
. (ATOM (CAR NI XON))

T

http://nostoc.stanford.edu/jeff/Ilisp/5.html (1 of 4)6/18/2008 2:20:26 PM

LEARNING LISP - Bag of Predicates

C (ATOM ())

T

Asyou will later see, testing for atom-icity is very important. [Is atom-icity a word? Probably not, but it
Isan atom.]

Another nicetesting functionisNULL. NULL saysT if, and only if itsargument is NIL. Now we have a
way to test for NIL-icity [sorry].

. (NULL BOWVB)
NI L
: (NULL (SETQ ALI ST ' (LET THEM EAT CAKE)))
NI L
: (NULL NIL)
T
 (NULL ())
T
 (NULL T)
NI L
(NULL (NULL T))
T
 (NULL (NULL NIL))
NI L
 (NULL (CAR ()))

T

http://nostoc.stanford.edu/jeff/Ilisp/5.html (2 of 4)6/18/2008 2:20:26 PM

LEARNING LISP - Bag of Predicates

: (NULL (CDR ()))
T
: (NULL BERRY- BUSH)

** ERROR UNDEFI NED ATOM **
EVAL :: BERRY- BUSH

+()

NI L
That last oneisjust to seeif you're still awake.

It would be reasonable if you could test for the equality of two expressions. Since Lisp isawaysina
reasonable mood, there is such a predicate: EQUAL. EQUAL returnsaT if and only if its arguments
represent the same Lisp expression; the arguments may be atoms or lists, but there may only be two such
expressions.

(EQUAL " (A) " (A)
T
' (EQUAL 1 (ADD 1 1)))

NI L

(EQUAL (CAR '((A DEEP)LIST)) ' (A DEEP))

T
Using the NULL and EQUAL predicates, we can make our own "not-equal” function.
(NULL (EQUAL 1 (ADD 1 1)))

T

That is, 1 does not equal 1 plus 1. Lisp has afunction called NOT which does exactly the same thing as
NULL. It would be preferable to use NOT here because it makes alittle more sense if you read it out
loud.

http://nostoc.stanford.edu/jeff/Ilisp/5.html (3 of 4)6/18/2008 2:20:26 PM

LEARNING LISP - Bag of Predicates
More equality:
: (EQUAL ' HEAD (CAR ' (HEAD FOR THE NILS)))
T
- (EQUAL ' SCLI PSI ST)

** ERROR TOO FEW ARGS **
EQUAL :: ((QUOTE SOLIPSI ST))

+()
NI L
. (EQUAL ' THREE ' FOR ' ALL)

** ERROR TOO MANY ARGS **

EQUAL :: ((QUOTE THREE) (QUOTE
FOR) (QUOTE ALL))

+()
NI L

: (EQUAL T (EQUAL 4 (SUB 11 7))))
T

We pulled afast onein that last example. SUB is anew function. No problem, really, SUB does
subtraction ala grade school. Play with it to make sure it does its homework.

Contents | Atoms and Values | Defining Y our Own Functions

http://nostoc.stanford.edu/jeff/Ilisp/5.html (4 of 4)6/18/2008 2:20:26 PM

LEARNING LISP - Defining Y our Own Functions

LEARNING LISP

Contents | Bag of Predicates | Help Functions

Defining Your Own Functions

Up to this point in the discussion, Lisp has had a monopoly on functions; we have been forced to use the
ones supplied by the system. If we were limited to these, Lisp wouldn't be much fun. What we are
leading up to isthat you, the user, are able to define, use, and even modify your own functions.

Suppose that you are one of those select people who do not like the name CAR. Well, we are going to
define afunction called FIRST which does exactly the same thing as CAR. Let'sgo into Lisp.

: (DEFI NE (FI RST (LAMBDA (L)
(CARL)))))
FI RST
: (FIRST ' (THI'S HAD BETTER WORK))
THI'S
: (FIRST ' (LONG LI VE DEFI NE))

LONG

The explanation: We used the function DEFINE to set up our FIRST function. DEFINE takes asiits
argument alist containing the function definition. Note that we took more than one line to enter the
function definition. Thiswill generally be the case. Lisp will wait to see amatched set of parentheses. If
you are not careful with the parentheses, you may have to do alot of retyping. We can't explain
everything about the form of the function definition at this point in the book. Suffice it to say that you
must enter your functions in the above form. The first element in the function definition list is the name
of the function you are defining, in this case, FIRST. The names that may be used for a function are the
same as those for an alphabetic atom name.

The next thing in the function definition isalist whose first element isLAMBDA. Let's skip over the
LAMBDA for the moment. Following the LAMBDA isalist of formal arguments for your function. In
our example, thisisthelist: "(L)". We have to make explicit to Lisp the number of arguments our
function will have. We have already seen Lisp functions which take one, two, or sometimes an indefinite

http://nostoc.stanford.edu/jeff/Ilisp/6.html (1 of 6)6/18/2008 2:20:28 PM

LEARNING LISP - Defining Y our Own Functions

number of arguments. If our list had been (L1 L2) then we would be defining a function with afunction
to behave like CAR, which has only one argument. After the list of arguments comes an expression
whose value will be returned as the value of the function. In this case we want a CAR to be the resullt.
Note that we use the formal argumentsin this expression. Thiswill be explained in more detail later.

The value of the Lisp function DEFINE is the name of the function being defined.

Note that we called the list alist of formal arguments. What are formal arguments? Well, we would like
to be able to enter an expression like the following:

(first x)

X is some pre-defined list. The name we use in the argument list in the function definition will, when the
above expression is evaluated, take on the value of the list X. The name we use in our function,

however, only serves as a place holder for the value of the actual argument. Note that here the actual
argument is X. The formal argument, which in the FIRST definition is L, takes on the value of the actual

argument when FIRST is evaluated. Be careful here, because the value of L will revert to whatever value
[or lack thereof] it had previously, after the function had been evaluated.

. (FIRST ' (A LUCKY STAR))

A

** ERROR: UNDEFI NED ATOM **
EVAL :: L

+()
NI L

We know that L had avalue inside the function, because the function executed correctly. Once the
function finishes, L goes away. Poof!

Let'stry our hand at another function definition.

. (DEFI NE (SECOND (LAVBDA (ALI ST)

(CAR (CDR ALIST))))))

http://nostoc.stanford.edu/jeff/Ilisp/6.html (2 of 6)6/18/2008 2:20:28 PM

LEARNING LISP - Defining Y our Own Functions

SECOND

: (SECOND ' (CAN YOU SAY THE WORD FUN))
YOU

: ALI ST

** ERROR UNDEFI NED ATOM **
EVAL :: ALIST

+()

NI L

This dialogue shows the same characteristic behavior of formal arguments: they clean up after

themselves. That is, once the function has been terminated, the values of the formal arguments are no
longer available.

Now, let's deal with functions with two arguments. Let's define our own EQUAL function.

. (DEFI NE (SAVE (LAMBDA (LI ST1 LI ST2)
(EQUAL LIST1 LIST2)))))))
SAVE
. (SAME ' (TESTING) ' TESTI NG
NI L
. (SAME ' (EQUAL) LI ST2)

** ERROR UNDEFI NED ATOM **
EVAL :: LIST2

+()

NI L

. (SETQ LI ST2 ' (1 NVI SI BLE))

http://nostoc.stanford.edu/jeff/Ilisp/6.html (3 of 6)6/18/2008 2:20:28 PM

LEARNING LISP - Defining Y our Own Functions

(1 NVI SI BLE)
: (SAME ' CLONE ' CLONE)

T
: LI ST2

(1 NVI SI BLE)
Note that not only can't we get to the formal arguments after the function is finished, but if we have
another object with the same name as aformal argument then that variable keeps its value even though
the formal argument had a different value! That is both very important and very confusing. Y ou may
want to re-read this explanation and then try some of your own examples so that you develop a"feel” for

the operation of the formal arguments.

Suppose we want afunction that will return the last element of alist, sort of the opposite of CAR. Well,
first we will need aLisp function called REVERSE.

REVERSE will return alist with al of itstop-level elements reversed. Let's make sure REVERSE works.

' (REVERSE ' (P L E H))
(HEL P)

. (REVERSE ' (S DR A WK C A B))
(BACKWARDS)

. (REVERSE ' ((A B) C D (E F))))
((EF) DC(AB))

Now we get to our function: LAST. How do we go about getting the last element of alist? Well, now
that we know about REVERSE, we can reverse the list, and then take the CAR. Let'stry it.

. (DEFI NE (LAST (LAVBDA (ZZ2)
(CAR (REVERSE 772)))))

LAST

http://nostoc.stanford.edu/jeff/Ilisp/6.html (4 of 6)6/18/2008 2:20:28 PM

LEARNING LISP - Defining Y our Own Functions

. (LAST ' (NOW IS THE TI ME))

TI VE

By this time you might be able to say to yourself, "So what?' Why bother defining atrivial function like
LAST when you could just type out "(car (reverse. . .))"? The answer to thisistwo-fold. First, the
functions that you define won't be so trivial later on. The work done in asingle function is amost
unlimited. We are just using simple examples at this point.

The second reason for learning how to define simplistic functionsis more subtle. Remember that we
mentioned the NOT function in chapter 5? It did exactly the same things as NULL. In fact we might
have defined NOT [if it were not already there] by typing:

: (DEFI NE (NOT (LAVBDA (A)
(NULL A)))))

NOT

The reason for having both NULL and NOT isthat in some cases it makes more sense to the
programmer to envision aNOT than aNULL. Go back over the example in Chapter 5 and you'll see this

vividly.
Aswith NOT and NULL, suppose that we were using alist to hold the names of our friends in the form:
(firstname middlename lastname)

We could then define functions called FIRSTNAME, MIDDLENAME, and LASTNAME to access the
parts of thelist. They would represent CAR, CADR, and CADDR respectively. It makes more sense to
ask for "(middlename friend)" than it doesto ask for "(cadr friend)".

Using ssimple defined functions in this way helps us to organize our own thoughts when designing a
program and also helps others when they try to read out work. Applying meaningful namesto simple
thingsis one very important use of DEFINE.

Exercises: Rolling Your Own Functions

1. Remember the infamous phone list? Define FIRST, SECOND, and THIRD which will get the
first, etc. entry from the phone list. Note that these are no longer valid phone lists themselves.

2. Now define two functions: NAME and NUMBER which give you the name or number from one
of the result lists of the functions from the previous problem.
Y ou should be able to do:

http://nostoc.stanford.edu/jeff/Ilisp/6.html (5 of 6)6/18/2008 2:20:28 PM

LEARNING LISP - Defining Y our Own Functions

(NAME (FIRST PHONELIST))
(NUMBER (FIRST PHONELIST)) etc.

3. Redo problems 1 and 2 from Chapter 3, using the functions you've just defined.

Answers

1. (DEFI NE (FI RST (LAMBDA (L)
(CARL))))

(DEFI NE (SECOND (LAVBDA (L)
(CADR L))))

(DEFI NE (THI RD (LAVMBDA (L)
(CADDR L))))

2. (DEFI NE (NAME (LAVBDA (L)
(CAR L))))

(DEFI NE (NUVBER (LAVBDA (L)
(CADR L))))

3. Anexpression toreversethelistis:
(CONS (THIRD L) (CONS (SECOND L) (CONS (FIRST L) "())))
An expression to reverse the list and each entry is:

(CONS
(CONS (NUMBER (THIRD L)) (CONS (NAME (THIRD L)) '()))
(CONS
(CONS (NUMBER (SECOND L)) (CONS (NAME (SECOND L)) '()))
(CONS
(CONS (NUMBER (FIRST L)) (CONS (NAME (FIRST L)) '()))
“()))
)
)

Contents | Bag of Predicates | Help Functions

http://nostoc.stanford.edu/jeff/Ilisp/6.html (6 of 6)6/18/2008 2:20:28 PM

LEARNING LISP - Help Functions

LEARNING LISP

Contents | Defining Y our Own Functions | How to Save the World

Help Functions

The functions we defined in preceding chapters used functions such as CAR and CDR. These functions
are called built-ins. A built-in function is nothing mysterious. All the built-in functions are just the same
as your own functions [like FIRST]. In fact, once you define a function, it becomes built-in until you
leave Lisp. The only difference between built-ins that you build in and those that are builtin by Lispis
that the latter are defined automatically each time you enter Lisp.

A built-in that you build into Lisp [like FIRST] is called a help function. We call these help-functions
because we can use them to write other functions that do bigger and better things. [We could use them to
do smaller and worse things, but that isn't any fun.]

Let'swrite afunction called ENDS which takes the first and last elements from alist and returns them as
anew list. To begin with, let's redefine FIRST and LAST, since, unless you saved your workspace the
last time, they are not there any more.

. (DEFI NE (FI RST (LAMVBDA (L)
(CARL))))))
FI RST
. (DEFI NE (LAST (LAVBDA (L)
(CAR (REVERSE L)))))
LAST
Okay, now we define ENDS which uses FIRST and LAST as help-functions.
. (DEFI NE (ENDS (LAVBDA (L)
(CONC (FIRST L) (LAST L))))))

ENDS

http://nostoc.stanford.edu/jeff/llisp/7.html (1 of 4)6/18/2008 2:20:30 PM

LEARNING LISP - Help Functions

Well try it out.
: (SETQ I NPUTLI ST ' (GRATEFUL ARE THOSE WHO
: ARE NOT DEAD))
(GRATEFUL ARE THOSE WHO ARE NOT DEAD)
: (ENDS | NPUTLI ST)

** ERROR BAD LI ST ARG **
CONC :: ((FIRST L) (LAST L))

+L
(GRATEFUL ARE THOSE WHO ARE NOT DEAD)
+(FI RST L)
GRATEFUL
+(LAST L)
DEAD
+()
NI L
: (FIRST L)

** ERROR: UNDEFI NED ATOM **
EVAL :: L

+()

NI L

When Lisp comes back with the "+" prompt, then the function we are executing [which was ENDS] is
suspended. This means that it has been stopped in mid-evaluation due to some error. At thistime, the
formal argument "L" has the value intact. We can look at its value and also use it in other functions
while ENDS is still suspended. Y ou know ENDS is still suspended because you still get the "+" prompt.
After you typethe"()", the suspension is cleared, and the formal argument is gone. Let'slook at the error

http://nostoc.stanford.edu/jeff/Ilisp/7.html (2 of 4)6/18/2008 2:20:30 PM

LEARNING LISP - Help Functions

report to see if we can find the problem with ENDS. Both FIRST and LAST successfully return values,
so they are not the problem. Ahal! CONC takes as arguments two lists, not two atoms! The following is
an example:

: (CONC ' GRATEFUL ' DEAD)
** ERROR. BAD LI ST ARG **

CONC :: ((QUOTE GRATEFUL) (QUOTE
DEAD))

+()

NI L
It looks like we'll have to figure out some way of making alist with the results of FIRST and LAST.

How can we make an atom into alist? Think about what CONC does to the parentheses and about what
we want the result to look like. Given "anatom" we want to see "(anatom)". We learned that the CONS
function puts something into the beginning of alist. We can ssimply use CONS to put the atom into a
NIL list. Do you see that thiswill give us the result that we need? If not, try it in Lisp.

Now that we have figured out what the problem was, how do we fix up poor old ENDS? Why not write
another help-function called MAKELIST that puts parentheses around the result of FIRST and LAST
for us.

: (DEFI NE (MAKELI ST (LAVBDA (ATOM
(CONS ATOM NI L))))
MAKELI ST
Try it out.
: (MAKELI ST ' DEADHEAD)
(DEADHEAD)

Okay, that looks good. Now all we have to do is change ENDS to use MAKELIST as a hel p-function.
[Note the proliferation of help-functions. It's better to have alot of help-functions than not enough.]

. (DEFI NE (ENDS (LAVBDA (L)

http://nostoc.stanford.edu/jeff/Ilisp/7.html (3 of 4)6/18/2008 2:20:30 PM

LEARNING LISP - Help Functions

(CONC (MAKELI ST (FIRST L)) (MAKELI ST
1 (LAST 1))))))))
ENDS
: (ENDS ' (| CANT BELIEVE | ATE THE WHOLE
: THI NK)))
(1 THINK)
: (ENDS | NPUTLI ST)

(GRATEFUL DEAD)

How about that! It worked! It should be pointed out that Lisp already has a function called LIST which
does exactly what MAKELIST does. We did it ourselves just for practise.

A suggestion: Go back through what we just did. Type it all into the computer and carefully follow
every step. We'll talk more about figuring out what happens when a function goes wrong [a process
called debugging], and about changing help-functions [a process called editing] in later chapters. For
now, just understand what went wrong and how we fixed it.

The important concept in this chapter was the use of help-functions to make the job of other functions
easier. Never be afraid to write a help function to perform some little task for you. Aswith the simple
function definition in the last chapter, they can help you to organize your thoughts by naming mental
jobs into understandabl e parts.

Contents | Defining Y our Own Functions | How to Save the World

http://nostoc.stanford.edu/jeff/llisp/7.html (4 of 4)6/18/2008 2:20:30 PM

LEARNING LISP - How to Save the World

LEARNING LISP

Contents | Help Functions | This Thing Called Lambda

How to Save the World

Now that you are beginning to put your own functions into the system it would be useful to learn
something about how to save them for use later on. This will become especially important when there
are big functions that you won't want to retype.

When you are using Lisp, everything that you do goes into a big pile called the environment. The
environment holds all the functions that you've defined and all the atom values that you SETQed. Asit
turns out, the environment also contains any typos that you made, but we'll talk about these much later
on. Normally, you should aways save the whole environment together. That is, all the functionsin a
given environment are related, so you really want them all saved en masse.

The SAVE function takes everything in the environment and writes it out to adisk. Y ou simply say,

: SAVE ENVNANVE

and Lisp will dump everything you've done since you started to run Lisp, onto afile on the disk called
ENVNAME. Notice that you don't need quotes here. SAVE is specia in thisway [like the first argument
in SETQ)]. Note aso that you don't need parentheses. Thisistrue only for P-LISP and not for most other
Lisps that you may encounter.

The disk will do afew moments worth of clicking. Restart Lisp and type:

: LOAD ENVNAME

and sure enough everything is back exactly the way you left it! Both SAVE and LOAD have alot of
work to do, so you have to wait while they think about it.

By the way, although we used ENVNAME in the above example, you can call your environment
anything you like. Any atom name can also be the name of the environment.

Microcomputers are not very reliable sometimes [nor are big computers]; so you might want to save
your environment once in awhile just for good measure. Then, if the computer dies for some reason, all
you have lost is the work that you did between the last SAVE function and the time that it died. A
LOAD command will restore you to exactly where you were at the last save.

http://nostoc.stanford.edu/jeff/llisp/8.html (1 of 2)6/18/2008 2:20:31 PM

LEARNING LISP - How to Save the World

Another technique that is handy in case of a problem is called save alternation. That is, don't keep
saving into the same file. Suppose we were working along and decided that this was a good time to save
the environment. We could start by saving into, for example, ENV-A. After alittle while longer, we will
want to save again, but thistime we'll saveinto ENV-B. Thisleaves ENV-A intact in casethereisa
serious problem that could ruin ENV-B (for example, a cup of coffee is spilled on the disk), and we have
ENV-A asafallback. The next save, now our third, goesinto ENV-A again, thus leaving ENV-B asthe
backup. Then back to ENV-B, and so on.

By alternating the saved names in this way you can almost guarantee that you won't |ose everything,
especialy if thetwo files are on different disks. Be sure not to lose track, however. Y ou wouldn't want
to load ENV-A when the last file that you saved into was ENV-B or vice versa.

Another useful ideaisto time-date stamp or version stamp the file names. That is, add some numbers to
the environment name so that you can tell when it was saved. Here are some suggested forms:

ENVNAME-JAN-16-2PM
ENVNAME-1, ENVNAME-2, and so on
ENVNAME-01-16-82* 2PM

Don't make the format too hard to remember, and be sure to delete very old versions so the disks don't
fill up with garbage. By doing this, you have the advantage of not having to remember what the most
recent version was; the filename remembers it for you!

Now that you know how to save your work, you might want to make a special "play" environment to
keep everything that you have been playing with in. Also, you may want an environment for each major
project that you write in Lisp. In afew more chapters we'll talk about how to manage the material inside
the environment, but for now, managing the environments themselves is sufficient. Now back to more
Lisp fun.

Contents | Help Functions | This Thing Called Lambda

http://nostoc.stanford.edu/jeff/Ilisp/8.html (2 of 2)6/18/2008 2:20:31 PM

LEARNING LISP - This Thing Called Lambda

LEARNING LISP

Contents | How to Save the World | The Conditional

This Thing Called Lambda

All the functions that were defined previously had something called LAMBDA in them. We left this
without explanation up to now. Here welll take a deeper look at the LAMBDA function and what it does.

Functions are always defined in the following form:
(DEFINE (name (LAMBDA (formal arguments) function-expression)))

"Name" is the name of the function being defined. This shouldn't cause any trouble. " Function-
expression” is simply the expression that will be evaluated when we invoke the named function. We've
been here before, right? When you type "(name. . .)" Lisp evaluates: " (function-expression)”. That was
how we got FIRST to do a CAR function. Whenever "(first . . .)" was entered, Lisp replaced it with its
defined function-expression, "(car . . .)".

"Formal arguments’ serve to hold the place for the actual value[s] which will be inserted when the
function is evaluated. Asyou will recall from previous chapters, we had aformal argument [L] in the
FIRST function. We couldn't get the value of L outside of the function. The "function-expression” can
use L, but we can't! Why isthat?

Let'slook again at the function FIRST.

(define (first (lanbda (L)
(car L))))

Now, let'sinvoke FIRST.

:(FIRST ' (A B Q)

A
Thisisthe same result we would have gotten if we had instead done

:(SETQ L '(A B Q)

http://nostoc.stanford.edu/jeff/llisp/9.html (1 of 3)6/18/2008 2:20:33 PM

LEARNING LISP - This Thing Called Lambda

(ABC)
:(CAR L)
A

except that if we had done that, the value of L would still have been available after the CAR operation. It
seems that the formal arguments got SETQed to match the supplied argument when the function was
invoked. The only difference isthat after the function finishes [that is, the function-expression is done
evaluating] the values get unSET Qed.

If the function has an error that causes an interrupt [you get an error message and get a"+" prompt], then
it hasn't finished evaluation yet, and the values assigned to the formal arguments are still there. That is
why we can look at them when we have the "+" prompt. When we tell Lisp to terminate the function that
was suspended by entering aNIL to the"+", then it terminates the function and, POOF, the values that
were in our formal arguments are gone.

To be alittle more specific, the supplied arguments in the calling expression are matched with the

formal arguments. Then the values of the supplied arguments are inserted into the function expression
where their associated formal arguments were. Thisis subsequently evaluated in place of the original
expression.

Now let's discuss some variations on this theme. If there had been two variables in the formal argument
list ["(L m)" for example], then we would have to put two variables in the part of the expression supplied
with arguments. It should be pointed out that the names in the formal argument list [also known as the

"lambdal list"] are completely arbitrary. "L" and "M" might just as easily have been "LOVESICK" and
"MOOSE", aslong as we did the same in the function-expression al so.

As an example of atwo-argument function, here is afunction that concatenates two lists together. We
are caling it MERGE:

. (DEFI NE (MERGE (LAMBDA (L M
(CONCL M)))
VERGE
:(MERGE ' (AB Q) '(DE F))
(ABCDEF)

The first supplied argument would be bound [CONC is short for CONCatenate] to the first name "L"

http://nostoc.stanford.edu/jeff/Ilisp/9.html (2 of 3)6/18/2008 2:20:33 PM

LEARNING LISP - This Thing Called Lambda

and the second would be bound to the name "m".

((abc) (def))

Let'stry giving Lisp nothing to connect to the formal argument:
: (FI RST)

** ERROR TOO FEW ARGS **
FIRST :: NL

+()

NI L

Oops! Well, that should have been expected. FIRST had one formal argument and we supplied none, so
it told us that we had too few. Now the error reports should be slightly more meaningful to you.

Can you figure out what would happen if we had typed "(first '(abc'(def))"? Try it.

The process of assigning the values of the supplied arguments to the formal arguments s called Lambda-
Binding. The argumentsin the "lambda-list" [the formal arguments] are called locals. They are "local” to
the function in which they are bound in that when the function ends, the binding comes apart, and L [in
the case of FIRST] no longer has the value it had inside the function. That iswhy we can't see the value
in L after the function has ended.

The process of Lambda Binding is an important concept in Lisp. We will discuss its mechanismsin
detail later on. For the time being it is important that you understand what it appears to do to variables.

Contents | How to Save the World | The Conditional

http://nostoc.stanford.edu/jeff/1lisp/9.html (3 of 3)6/18/2008 2:20:33 PM

LEARNING LISP - The Conditional

LEARNING LISP

Contents | This Thing Called Lambda | Simple Recursion

The Conditional

This chapter deals with conditional expressionsin Lisp. Conditions are used commonly in English: "If
you're a bad boy then you'll be sent to bed without dinner".

The conditional above hastwo parts. atest, "you're a bad boy", and a statement which will result if the
test istrue, "you'll be sent to bed without dinner".

Hereisaset of examplesin Lisp:

:(COND (T ' (H THERE)) (NIL ' THEIR HI GH))
1))

(H THERE)

:(COND (NIL ' (THEIR HIGH)) (T '(H THERE
1))))

(H THERE)
:(COND (T '(THEIR HHGH)) (T '(H THERE))))
(THEIR HI GH)

COND takes asits arguments a set of lists. Suppose, for the sake of explanation, we use:

(cond listl list2)

COND will evaluate the CAR as LIST1. If theresult isnot aNIL, then COND will evaluate the
remaining thingsin the list, and will return the value of the last thing it evaluated. If theresult isNILL,
COND will go on and do the same thing for LIST2.

In the first example above, thefirst list is"(t '(hi there))". The CAR of the expressionis T, which

evaluatesto T. Following the process described above, COND notes that the value T does not equal
NIL, and therefore evaluates the rest of the list. Itsvalueis " (hi there)" which iswhat isreturned. The

http://nostoc.stanford.edu/jeff/llisp/10.html (1 of 4)6/18/2008 2:20:34 PM

LEARNING LISP - The Conditional

second example shows the case where the first list is not evaluated but the second is. The CAR of the
first list evaluates to NIL so that list is skipped. The CAR of the second list is T, so therest is evaluated.
Not too bad so far, eh?

If both the first and the second CARs are true, then because COND starts at the beginning and works its

way down [since the CAR of thefirst list evaluatesto "T"], COND will never get to the second list. The

second list will never be evaluated!! When COND can't find alist with anon-NIL CAR, then it returns a
NIL.

: (COND (NI'L ' (FALSEHOOD)) (NIL ' (FALSETTO

))))
NI L
COND will work for any number of lists, not just two.
:(COND (NIL ' (DOOR #1)) (NIL'(DOOR #2))
(T " (DOCR #5)))))
(DOOR #5)
Okay, the party is over, and now we put COND to work. Above, we used the values of T and NIL,

because they evaluate to themselves. However, COND becomes a much more powerful tool when
predicates are used as the first elements of the conditional lists.

The definition of the absolute value function can be described as: If the number is positive, then return
the number. Otherwise, return the number's negative.

Note that this successfully "catches' zero, since the negative of zero is still zero.
The equivalent Lisp function can be written:

. (DEFI NE (ABS (LAVBDA (N)
(COND
((GREATER N 0) N)

(T (MLT N-1)))))))

http://nostoc.stanford.edu/jeff/l1isp/10.html (2 of 4)6/18/2008 2:20:34 PM

LEARNING LISP - The Conditional

ABS
- (ABS 3)
3
: (ABS - 453)
453
- (ABS 0)
0

Hereisanon-numerical function which uses COND. Make sure you understand the evaluation of the
function.

. (DEFI NE (MAKE- A- LI ST (LAMBDA (A-LIST)
(COND
((ATOM A- LI ST) (CONS A-LIST NIL))
(T ALIST))))))

MAKE- A- LI ST
. (MAKE- A- LI ST ' HAPPY)

(HAPPY)
: (MAKE- A- LI ST ' (LISP LI SP LI SP))

(LISP LISP LISP)

Exercises

1. Writeafunction that returns T if itsfirst argument is less than or equal to its second argument,
and NIL otherwise.
2. Write afunction that compares two 2-atom lists, returning T if both lists are the same (assume

http://nostoc.stanford.edu/jeff/l1isp/10.html (3 of 4)6/18/2008 2:20:34 PM

LEARNING LISP - The Conditional

EQUAL only works on atoms).
Answers

1. (DEFI NE (LEQ (LAMBDA (N1 N2)
(COND
((EQUAL N1 N2) T)
((GREATER N2 N1) T)

(T NI'L)
)
)))
2. (DEFI NE (COVPARE (LAMBDA (L1 L2)
(COND
((EQUAL (CAR L1) (CAR L2))
(COND
((EQUAL ((CADR L1) (CADR L2)) T)
(T NI'L)
)
(T NI'L)
)
)))

Contents | This Thing Called Lambda | Simple Recursion

http://nostoc.stanford.edu/jeff/l1isp/10.html (4 of 4)6/18/2008 2:20:35 PM

LEARNING LISP - Simple Recursion

LEARNING LISP

Contents | The Conditional | The Lisp Editor ED

Simple Recursion

Recursion occurs when a program callsitself as a help function. How can afunction be defined in terms
of itself? That sounds like a circular definition!

Recursion avoids circularity by defining the function in terms of simpler cases of itself. If we keep using
the function on simpler cases, then eventually the function will get to a simple enough case and as such
will know the answer without having to recur.

Let'stry asimple program, called RECITE, to print out all the elementsin alist with one element per
line of output. We will do this by having our function print out the CAR of the list, using the built-in
Lisp function PRINT, and then call itself, recur with the CDR of the list. Notice that because we are

going to pass the CDR of thelist, the list will get smaller with each recursive call.

Recursion is useless unless we can make it stop. RECITE, therefore, should do the following: If its
argument isNIL, then it should return to NIL. [Thistype of test is called atermination condition. We
need it to keep List from running away.] If its argument is not a NIL, then print the CAR of the
argument and call RECITE again with the CDR. Hereis RECITE.

. (DEFI NE (RECI TE (LAMBDA (STUFF)
(COND ((NULL STUFF) ())
(T (PRINT (CAR STUFF))
(RECI TE (CDR STUFF)))
))))
RECI TE
! (RECITE ' (THI'S IS A TEST LI ST))
ITgl S

A
TEST

http://nostoc.stanford.edu/jeff/llisp/11.html (1 of 7)6/18/2008 2:20:37 PM

LEARNING LISP - Simple Recursion

LI ST

NI L

When STUFF isNIL, the COND evauates " (null stuff)" to T and evaluates the"()" as dictated by
COND. Otherwise it prints the CAR of thelist and calls RECITE, binding the CDR of STUFF to the
new STUFF. Notice that it does not replace the value of STUFF but simply binds a new local valueto it.
When that particular call terminates, the previous value of STUFF will return. The NIL displayed at the
end is not printed by the PRINT function. Rather, it is the value returned by the RECITE function. It
came from the succession of recursive function terminations. When the function we started off with
terminates, it prints out its value because thereis no "caller" to return to other than the user.

What would have happened if we had left out the termination condition? Answer: no end in sight.

. (DEFI NE (RECI TE (LAMBDA (STUFF)
(PRINT (CAR STUFF))
(RECITE (CDR STUFF)))))))
RECI TE

(RECITE ' (TH S IS A TEST))
TH S
'S
A
TEST
NI L
NI L
NI L
NI L
NI L
NI L

+()

NI L
{We hit control C.}

Thelist of NILsin the above execution will go on forever. We've cut off at seven in order to preserve
our forests. Thisisagood time to learn about how to do that--that is, stop afunction that is running wild.

http://nostoc.stanford.edu/jeff/llisp/11.html (2 of 7)6/18/2008 2:20:37 PM

LEARNING LISP - Simple Recursion

The answer is control-C. When a Lisp function starts repeating, you simply hold CONTROL and hit C.
This causes Lisp to break the function, suspend it, and enter the "+" mode. [We've talked about this
before]

Onward to another example. The function we are going to define is called MEMBER. This function will
take two arguments, an atom and alist. MEMBER will return aT if the atom is one of the top-level

elements of thelist, NIL otherwise. We now exhibit the function definition and some examples of its
uSes.

: (DEFI NE (MEMBER (LAVBDA (A L)
(COND
((NULL L) NIL)
((EQUAL A (CAR L)) T)
(T (MEMBER A (CDR L)))))))
MEMBER
: (MEMBER ' MAN ' (UNI ON MAN))
T
: (MEMBER ' SNURD ' (ELMER SNERD))
NI L
: (MEMBER 'A ' ((A B) C D))
NI L

Here, wefirst test to seeif L isan empty list. If it is, we need to search no further. We then compare the
specified atom A with the first element of list L. If they are equal, then we have a match and the value of
T isreturned. Otherwise, we try again, looking for the atom in the CDR of the list. Note that this process
IS guaranteed to terminate because the function either returns avalue or tries again with a shorter list. A
list can only contain afinite number of elements so that after a maximum number of calls equal to the
number of top-level elementsin theinitial list, we must reach an answer.

Let's follow the MEMBER function with a debugging tool called TRACE. The Lisp TRACE function
will tell uswho calls whom and what is returned. When you see - - >>"| it means that the function is
being called. When you see "<<- - ", it indicates that the function is returning. Follow these examples

http://nostoc.stanford.edu/jeff/llisp/11.html (3 of 7)6/18/2008 2:20:37 PM

LEARNING LISP - Simple Recursion

and watch what's happening. Note that you get an extra set of parentheses around the arguments in the
"- - >>" trace.

: (TRACE MEMBER)
T
: (MEMBER ' ARM ' (HEAD LEG ARM FOOT))

-->> MEMBER :: (ARM (HEAD LEG ARM FQOOQT))
-->> MEMBER :: (ARM (LEG ARM FQOQOT))

-->> MEMBER :: (ARM (ARM FQOOQT))

<<-- MEMBER :: T

<<-- MEMBER :: T

<<-- MEMBER :: T

Note that the " T" result is passed back through each level of the recursive call. It isn't just popped right
back up to the top from the last call [thelast "- - >>"].

Let'stry onethat fails [returns NIL].

: (MEMBER ' HAND ' (ARM HEAD LEG FQOT))
->> MEMBER :: (HAND (ARM HEAD LEG
FOOT))

->> MEMBER :: (HAND (HEAD LEG FOOT)
)

->> MEMBER :: (HAND (LEG FOOT))
->> MEMBER :: (HAND (FOOT))

->> MEMBER :: (HAND NIL)

<<- MEMBER :: NL

<<- MEMBER :: NL

<<- MEMBER :: NL

<<- MEMBER :: NL

<<- MEMBER :: NL

NI L

The same returning sequence happens with the NIL. In fact, the same type of thing will always happen
inaLisp function that returns the values to the routine that called it, never back to the user directly. We
saw thisin the ENDS example and it also applies to recursion.

The opposite of TRACE isUNTRACE.

http://nostoc.stanford.edu/jeff/llisp/11.html (4 of 7)6/18/2008 2:20:37 PM

LEARNING LISP - Simple Recursion

: (UNTRACE MEMBER)

NI L

If you forget to UNTRACE your functions they will keep tracing themselves until you either restart
Lisp, or shut off your computer.

If you wish to turn tracing off of all of your functions at once, simply type (UNTRACE).
: (UNTRACE)
NI L

Asathird example, we will ook at arecursive mathematical function, namely, the factorial. Recall that
the factorial of nisthe product of thefirst n integers and is defined by the following recursive formula:

nt =1 if n

=0
n*(n-1)! if n>0

Notice that the termination condition is already specified in the definition, namely, that the recursion
stops when n=0. The factorial can easily be defined in Lisp, as follows:

. (DEFI NE (FACTORI AL (LAMBDA (N)
(COND
((EQUAL N 0) 1)
(T (MULT N (FACTORIAL (SUB N 1))))
))))
FACTORI AL
. (FACTORI AL 0)
1

. (FACTORI AL 1)

http://nostoc.stanford.edu/jeff/llisp/11.html (5 of 7)6/18/2008 2:20:37 PM

LEARNING LISP - Simple Recursion

1

: (FACTORI AL 2)
2

: (FACTORI AL 3)
6

: (FACTORI AL 5)

120

It would be instructive to trace an evaluation of FACTORIAL to see how it works. Here's a trace of
(FACTORIAL 5).

- (FACTORI AL 5)
->> FACTORI AL ::
->> FACTORI AL ::
->> FACTORI AL ::
->> FACTORI AL ::
->> FACTORI AL ::
->> FACTORI AL ::
<<- FACTORI AL ::
<<- FACTORI AL ::
<<- FACTORI AL ::
<<- FACTORI AL ::
<<- FACTORI AL ::
<<- FACTORI AL ::

NBRR RS
OFRNWHMKMOU
— N N N

(0]

RN
N B~
o

120

Notice how each value of FACTORIAL is passed back through every level of the recursive call, where it
ismultiplied by the value of n at that level. Work through the example to be sure you understand it.

Exercises

1. Write arecursive function that adds up the numbersin alist, for example (1 2 3 4) = 10.
2. Write arecursive function that takes a list and returns everything minus the last element.

Answers

http://nostoc.stanford.edu/jeff/llisp/11.html (6 of 7)6/18/2008 2:20:37 PM

LEARNING LISP - Simple Recursion

1. (DEFI NE (SUM (LAVBDA (L)
(COND
((NULL L) 0)
(T (ADD (CAR L) (SUM (CDR L))))
)
)))

2. (DEFI NE (RDC (LAVBDA (L)
(COND
((NULL (CDR L)) NIL)
)(T (CONS (CAR L) (RDC (CDR L))))
)))

Contents | The Conditional | The Lisp Editor ED

http://nostoc.stanford.edu/jeff/llisp/11.html (7 of 7)6/18/2008 2:20:37 PM

LEARNING LISP - The Lisp Editor ED

LEARNING LISP

Contents | Simple Recursion | Lists as Trees

The Lisp Editor ED

In the previous chapters, you were at the mercy of your typing ability. If you could type your Lisp
function in correctly the first time, then more power to you. However, for the rest of us, even if we do
manage to get the parentheses balanced, our functions usually don't work perfectly from the outset.
Provided with Lisp is amechanism for manipulating user defined functions. It iscalled ED, and it is
designed to edit functions.

Y ou get into the editor by typing
- (ed fun)

where FUN is the name of the function you want to edit. The editor will respond with alevel indicator
and a point of view [POV]. Thiswill typically ook something like this:

TOP: (LAVBDA & &)

The point of view isawindow into the function. That is, you are always looking [through the eyes of the
editor] at some particular part of the function body and the point of view is a picture of that part of the
function.
Let'sdefine alittle function in order to play with the editor. Here is the function EDITME:
- (DEFI NE (EDI TME (LAMVBDA (L)
(PRINT (CARL))))))))
EDI TME

Here is what happens when we try and edit the function.

: (ED EDI TVE)
TOP: (LAVBDA & &)

The editor responds by displaying the top level of the LAMBDA list. Any atoms|[in this case only

http://nostoc.stanford.edu/jeff/llisp/12.html (1 of 6)6/18/2008 2:20:39 PM

LEARNING LISP - The Lisp Editor ED

LAMBDA] are fully spelled out, but any lists are represented by a & . The reason for thisis that many
lists are quite large; you would not want to see the entire list, only enough to give you an idea of where
you are.

The rule to remember in editing parts of listsis, "what you see is what you edit". Whenever you do
anything in the editor, you are shown the current expression [the POV]. If you want to see the entire
POV without the &, type aP. Thiswill invoke the pretty-printer on the current POV . The pretty-printer
shows you what the entire window looks like and tries to indent its elements in some reasonable manner.

?P

(LAVBDA (L)
(PRINT (CARL))

)

TOP: (LAVBDA & &)

We can change our location in the list [that is, change the POV so that it indicates a different part of the
list] by entering a number as the editor command. The number is the position in the current window to
which you would like to move. Lists are numbered like this:

(LAVBDA (L) (PRINT (CAR L)))

1 2 3

If we want to make the first element the new current expression we can simply type

?2
TOP: 2: (L)

Use"0" to move back one levdl.

20
TOP: (LAVBDA & &)

We cannot go to 1, because the window isn't allowed to be just alone atom. Y ou can only go to alist,
which shows up in the window as an & . Notice that the numbering changes once we move to a new part
of thelist.

?-1
TOP:3: (PRINT &)

http://nostoc.stanford.edu/jeff/llisp/12.html (2 of 6)6/18/2008 2:20:39 PM

LEARNING LISP - The Lisp Editor ED

Negative numbers can be used to move down into the function, but the elements are counted from the
right end. Therefore, we can number the current expression as follows:

(PRINT (CAR L))

TOP: 3:2: (CAR L)
?-3
| NVALI D ELEMENT.

We cannot go to something that doesn't exist, and the editor will report thisto you. Let's go back to the
top.

20

TOP:3: (PRINT &)
20

TOP: (LAVBDA & &)
20

NO UP FROM HERE.
If you also try to go past the top, of course the editor stops you.

There are also provisions for moving BACK one element and to the NEXT element. These commands
are BX and NX respectively. The last movement command is GO (LEVEL INDICATOR). Regardiess
of where you are, thiswill move you to a completely new place. Make sure the argument to GO is alist.
Let's see how these work.

?2

TOP: 2: (L)
?NX

TOP: 3: (PRINT &)
200 2)

TOP: 2: (L)

Something funny will happen if the NX or BK are asked to go to atoms. The editor won't |et an atom be
the only thing in the window, but by jumping NX or BK you might be asking it to make an atom the
current window. Well, the editor is smarter than that. It will skip over atoms that are in the way when
BK or NX are done.

So far al we've done is move around within the function. Now, let's try and change something. To do

http://nostoc.stanford.edu/jeff/llisp/12.html (3 of 6)6/18/2008 2:20:39 PM

LEARNING LISP - The Lisp Editor ED

this, we need to use the "insert" command. Remember that editing commands only modify the window.
Make sure that what you want to modify is there. Move around until you are looking at the correct
section of the function.

20
TOP: (LAVBDA & &)

21 NOT AFTER 2
TOP; (LAVBDA & NOT &)

21 ONLY BEFORE -1
TOP: (LAMBDA & NOT ONLY &)

21 WAS FOR 1
TOP: (WAS & NOT ONLY &)

Note the three different forms of the insert ["1"] command. Y ou can insert AFTER an element, BEFORE
an element, or FOR an element. These three can all be abbreviated to asingle letter each [A, B, or F].
Y ou are also not restricted to inserting just atoms either. Y ou can insert full lists.

21 (NOT) FOR 3
TOP: (WAS & & ONLY &)

There is also a delete command for removing items from alist.

'D -2
TOP: (WAS & & &)

Again, for the delete command, you can use either positive or negative numbers.

Using the insert and del ete commands we can perform any list surgery we want. Feeling very confident
inour abilities, let'stry to fix up areal function. First, we must leve the editor by typing ABORT.
ABORT will completely ignore any changes we have made, but since we just made awreck of
EDITME, that's perfectly acceptable.

?ABORT

EDI T ABORTED.

Now, we must enter the definition of the function. It may already be there, but you should re-enter it
anyway.

http://nostoc.stanford.edu/jeff/llisp/12.html (4 of 6)6/18/2008 2:20:39 PM

LEARNING LISP - The Lisp Editor ED

. (DEFI NE (ENDS (LAVBDA (L)
(CONC (FIRST L) (LAST L))))))))
ENDS

Now, let's go back into the editor.

. (ED ENDS)
TOP: (LAVBDA & &)

We have loaded the function into the editor, so let's get started by looking at the whole function.
?P
(LAVMBDA (L)

(CONC (FIRST L) (LAST L))
)

TOP: (LAMBDA & &)
Great. Let's move down the function.

23
TOP: 3: (CONC & &)

Now, remember what we have to do. We have to make (FIRST L) the new list (MAKELIST (FIRST
L)), and thelist (LAST L) the new list (MAKELIST (LAST L)). In English, we have to make alist out
of an atom.

21 (MAKELI ST (FIRST L)) FOR 2
TOP: 3: (CONC & &)

OH NO! No visible change! Did it work? Why doesiit still say CONC & &? Yes, it worked. We can use
the pretty-printer to verify this.

?P

(CONC (MAKELI ST (FIRST L)) (LAST L))

TOP: 3: (CONC & &)

http://nostoc.stanford.edu/jeff/llisp/12.html (5 of 6)6/18/2008 2:20:39 PM

LEARNING LISP - The Lisp Editor ED

Okay. We still have one more to do, so let's do it.

21 (MAKELI ST (LAST L)) F -1
TOP: 3: (CONC & &)

Note the use of the F for the "for" option. Aswe said, all three options can be abbreviated to just the first

letter. Now, all that we have to do isleave the editor and save the modified function. EXIT will do both
for us.

?EXIT

NI L
Not that we don't trust our work, but why don't we test the function just to be sure.

. (ENDS ' (AUNT EDNA | S A PI CKY EATER)))
(AUNT EATER)
. (ENDS ' (SO YOU THI NK YOU ARE FUNNY)))

(SO FUNNY)

Looks like it worked. That sumps up the editor commands. Don't forget that the editor iswrittenin Lisp,
so you should feel freeto look at it and play with it. The code for the whole editor is shown in an
appendix to this text. Sometimesit's useful to just look at a function without having to go all the way
into the editor. Y ou can get to the pretty printer from outside ED by using the PPRINT function. Just say

c(pprint fun)

where "fun" is the name of the function. It will display the function on your screen in a neat form.

THE EDITOR AS A LISP PROGRAM

In the appendix we have included the entire text of the Lisp editor. It isall writtenin Lisp. After reading
through the rest of the book, you should definitely try to understand how the editor functions. This will

probably be the most valuable exercise that we offer in this book. The editor is avery complicated Lisp
system and athough it certainly isn't an artificial intelligence application of Lisp, itisavery useful one.

Contents | Simple Recursion | Lists as Trees

http://nostoc.stanford.edu/jeff/llisp/12.html (6 of 6)6/18/2008 2:20:39 PM

LEARNING LISP - Listsas Trees

LEARNING LISP

Contents | The Lisp Editor ED | Trees and Recursion

Lists as Trees

Thereisaway of thinking about recursive functions that may help to clarify the method. This brief
chapter will try to explain the simple Lisp functionsin terms of trees. We will then use the tree
representation in later chapters to describe the action of recursive functions.

A useful way to see what a deeply embedded list looks like isto think of it asatree. A tree, asthe name
implies, is a structure with aroot, branches and leaves. Thisisatree.

Mary little

had ()
a () Lambda ()

The above tree is the representation of the list
((Mary had a) (little (lanbda)))

Each node of the tree indicates the starting point of a pair of elements. The root [first node] indicates the
starting point of the main list. The leaves of the tree are the atomsin thelist.

Notice that each node of the tree branches two ways. Thistype of treeis called a binary tree because of
the two way branching.

Let'stake alook at asimpler tree.

http://nostoc.stanford.edu/jeff/llisp/13.html (1 of 5)6/18/2008 2:20:43 PM

LEARNING LISP - Listsas Trees

(a list)

list ()

This tree has two nodes and four branches. There are atoms at the ends of the lowest branches [NIL isan
atom too!].

(new stuff)

new

stuff ()

It looks the same. Now, let's insert the second tree into the first, replacing " (new stuff)" for "a'. The
resulting tree looks like the following diagram.

((new stuff) list)

new list ()

stuff ()

When we look at the CAR of the above tree we are looking at

(new stuff)

http://nostoc.stanford.edu/jeff/llisp/13.html (2 of 5)6/18/2008 2:20:43 PM

LEARNING LISP - Listsas Trees

CAR can be thought of asreturning all the material hanging on the left branch. CDR, as you might
expect, returns the material on the right branch.

(list)
Is;t/\()

Thisiswhy there are still a set of parentheses around it. Note that all the trees eventually terminate in
NIL ["()"]. Recall that if you keep taking the CDR of alist you will eventually hit aNIL. The reason for
this should now be apparent. If we were to insert aNIL into the end of thelist, we would get:

((new stuff) list ())

CAR-
CAARH'*EW
stuff () () ()
Thisisthe CDR of the above list.
(list ())
list
() ()

The CDR of that is

http://nostoc.stanford.edu/jeff/llisp/13.html (3 of 5)6/18/2008 2:20:43 PM

LEARNING LISP - Listsas Trees

(0))

() ()

CAR of that is

() [that is: N L]
NIL

So isCDR.

Both the CAR and CDR of NIL are NIL. Thus, we can't change the list from here on without CONSing
stuff onto it. Let's do so now.

(setg worktree ())

NIL

(setq worktree (cons 'stuff worktree))

/N

stuff ()

(setq worktree (cons '(nore) worktree))

more () stuff ()

http://nostoc.stanford.edu/jeff/llisp/13.html (4 of 5)6/18/2008 2:20:43 PM

LEARNING LISP - Listsas Trees

Y ou should be able to draw and analyze the functions of CONC and various other ssmple Lisp functions.

Contents | The Lisp Editor ED | Trees and Recursion

http://nostoc.stanford.edu/jeff/llisp/13.html (5 of 5)6/18/2008 2:20:43 PM

LEARNING LISP - Trees and Recursion

LEARNING LISP

Contents | Listsas Trees | A Style of Programming

Trees and Recursion

We promised you that trees would help you understand recursion and it will. Most functionsin Lisp,
whether they are built-in or written by us, are designed to work on trees. All treesin Lisp [subtrees are
trees also] look alike. Therefore, if we have afunction that works on atree, it will work on any tree.

Our first version of RECITE removed the far left branch of the argument list [tree] with CAR and
printed it. It then recursed [it called itself] passing the rest of the tree [the CDR] as the new tree.
Unfortunately, if any of the branches were trees themselves, then they would simply be printed out as-is:

. (DEFI NE (RECI TE (LAMBDA (STUFF)
(COND
((NULL STUFF) ())
(T (PRI NT (CAR STUFF))

(RECITE (CDR STUFF)))))))

. (RECI TE ' ((VWE THE PEOPLE) STAR (E PLENEBLA) TREK)

(VE THE PECPLE)
STAR

(E PLENEBLA)
TREK

NI L

How can we get around this? The thing that should come to mind isthat RECITE will work on any tree.
Thus, if before RECITing the CDR of the list we make sure that all the subtreesin the CAR of thelist
have been RECITEd, we should be home free. No matter how deeply nested the main treeis, we will
eventually get to itsleaves by calling RECITE over and over again on deeper and deeper subtrees until
we hit one whose CAR is an atom.

http://nostoc.stanford.edu/jeff/llisp/14.html (1 of 4)6/18/2008 2:20:44 PM

LEARNING LISP - Trees and Recursion

We will redefine RECITE with a COND as suggested by the previous description. We keep calling
RECITE of the CAR [and the CDR] of the things that are entered until we hit an atom and then ssmply
print out the atom! Would that give us the same result?

. (DEFI NE (RECI TE (LAMBDA (S)
(COND ((ATOM S) (PRINT S))
(T (RECITE (CAR S))

(REQTE (CDR §)))))))

RECI TE
. (RECI TE ' (YOU (WALRUS (HURT THE) ONE)

- ((YQU) LOVE))))))
YQU

WALRUS
HURT
THE
NI L
ONE
NI L
YQU
NI L
LOVE
NI L
NI L

NI L

What happened? There are extraNILs in the way. Let's ook at the input tree.

http://nostoc.stanford.edu/jeff/llisp/14.html (2 of 4)6/18/2008 2:20:44 PM

LEARNING LISP - Trees and Recursion

you

()

hurt one () you () love ()
the ()

(you (walrus (hurt the) one) ((you) |ove))

When we finally print “the" [asindicated by the star ["*"] in the above picture], the CDR of STUFFisa
NIL which qualifies as an atom, so it gets printed out also. Let's put in atest for NIL and simply do
nothing when we encounter it:

: (DEFI NE (RECI TE (LAVBDA (THI NG)
(COND ((NULL THING NIL)
((ATOM THING (PRI NT THING))
(T (RECITE (CAR THI NG))
(RECI TE (CDR THING)))))))
RECI TE

. (RECI TE ' (YOU (WALRUS (HURT THE) ONE)

- ((YQU) LOVE))))))))
YQU

WALRUS
HURT
THE
ONE
YQU
LOVE

http://nostoc.stanford.edu/jeff/llisp/14.html (3 of 4)6/18/2008 2:20:44 PM

LEARNING LISP - Trees and Recursion

NI L

One of the important uses of recursion istree searching. RECITE is an example of this method. By using
the function recursively and passing smaller and smaller treesto the later calls, we can scan the entire
main tree.

Contents | Listsas Trees | A Style of Programming

http://nostoc.stanford.edu/jeff/llisp/14.html (4 of 4)6/18/2008 2:20:44 PM

LEARNING LISP - A Style of Programming

LEARNING LISP

Contents | Trees and Recursion | Scope Considerations

A Style of Programming

The result of asimple recursive function is that the value returned is the value of the last evaluated
expression which does not involve arecursive cal. Typically, thisisaT or NIL or some atomic value.
Since the function is stopped when arecursion is invoked, we can use the result of acall as the argument
to some function. This section will deal with thistype of complex recursion.

Suspended evaluation is of primary importance here. When afunction is evaluating its arguments, it is
suspended until all those arguments are through evaluating. [We've been over this many times, once
more can't hurt.] So, if in the process of evaluating arguments, a recursive function call isinvolved, that
recursion takes place without disturbing the suspended eval uation even though the recursion may
involve another occurrence of that expression. The only way to understand what we're driving at isto
see it happen. TRACE isthe fastest way to do thisand it should be used freely in your examination of
this chapter.

Thefirst example is afunction to flatten alist. Thisfunction will return all of the atomsin asingle list
with no nested lists; that is, it will remove all the nesting parentheses. If we view alist as atree, then this
function will return alist of al of the"leaves." Thisfunction is similar to the RECITE function of the
last few chapters. [We introduce the LIST function here. It is the built-in version of MAKELIST which
we mentioned earlier.]

Here is the function definition.

: (DEFI NE (FLATTEN (LAVBDA (L))
(COND
((NULL L) NIL)
((ATOM L) (LIST L))
(T (CONC (FLATTEN (CAR L))
(FLATTEN (CDR L))))))))

FLATTEN

http://nostoc.stanford.edu/jeff/llisp/15.html (1 of 5)6/18/2008 2:20:46 PM

LEARNING LISP - A Style of Programming

: (FLATTEN ' (A B Q)
(ABC)
: (FLATTEN ' ((((YOUR))) (((FACE)))))
(YOUR FACE)
: (FLATTEN ' ((TWEEDLEDUM) (((AND)))
: (TWEEDLEDEE))))))

(TVEEDLEDUM AND TWEEDLEDEE)

Thefirst condition in the COND phrase handles the case where the list is NIL. The next case handles an
atom by making it into alist. The last case causes arecursion if the argument L is neither anull list nor
an atom. It flattens the CAR of L, flattensthe CDR of L, and then CONCs the two results together.

Thereis acertain style to these recursive functions, and now is the time to expand on this. We always
use the same format. First handle the termination conditions, then deal with special cases, and finally, do
the general case, assuming that the special cases are handled properly. Thisformulaisthe way of Lisp!

Some care should be taken in setting up the special cases. We test for NULL before we test for ATOM.
If you do not see why thisisthe case, scrutinize this next segment of output.

. (DEFI NE (EVI L- FLATTEN (LAVBDA (L)
(COND

((ATOM L) (LIST L))

((NULL L) NIL)

(T (CONC (EVI L- FLATTEN (CAR L))
(EVI L- FLATTEN (CDR L)))))))))

(T (CONC (EVIL- FLATTEN (CAR L))
(EVI L- FLATTEN (CDR L))))))))

EVI L- FLATTEN

http://nostoc.stanford.edu/jeff/llisp/15.html (2 of 5)6/18/2008 2:20:46 PM

LEARNING LISP - A Style of Programming

. (EVI L- FLATTEN ' (EINS ZVEI DREl))
(EINS ZWEI DREl NIL)
. (EVI L- FLATTEN ' (OOPS (BLOOPS) HOOPS))

(OOPS BLOOPS NI L HOOPS NI L)

If you didn't figure it out, the reason isthat NIL isan atom. So testing for ATOM of NIL will be T and
the LIST of NIL will be returned. Thisis unacceptable, and underscores the necessity of correctly setting
up the termination conditions of the recursion.

On to the next example. Here, we are concerned with writing our own version of the REVERSE
function. [Review the behavior of thisfunction if you don't remember how it works.] The game plan has
alittletrick to it. But first, let's borrow the shell of the "standard" recursive function:

. (DEFI NE (REV (LAVBDA (L)
: (COND
((NULL L) NIL)

(T (-nmmmmnees)))

The hyphens indicate the general case of the function which we haven't written yet. How should we
proceed?

Thetrick is: Suppose that REV works! Then, (REV (CDR L)) isthe reverse of the list without its CAR.
If we put the CAR back on the right end of this expression then we have the reverse function.

. (DEFI NE (REV (LAMBDA (L)
(COND
((NULL L) NiL)
(T (CONC (REV (CDR L))
(LIST (CARL))))))))
REV

(REV ' (TEST A IS TH' S))

http://nostoc.stanford.edu/jeff/llisp/15.html (3 of 5)6/18/2008 2:20:46 PM

LEARNING LISP - A Style of Programming

(THIS IS A TEST)
: (REV ' ((PHOO BAR) (FOOD BAR) (PCO BEAR)))

((POO BEAR) (FOOD BAR) (PHOO BAR))

While an "assume it works" strategy may seem allittle bizarre, it isavery useful and quite valid method.
Here is one more recursive example: the function RAC rewritten with recursion. What is the strategy
here? The recursion phrase is easy. Keep taking the CAR of thelist, removing the first element of the
list, until we get to the end of thelist. So far we have

(define (rac (lanbda (L)
(cond

(t (rac (cdr L)))))))

The termination condition is alittle slippery. If we makeit "((null L)nil)", then the function will keep
calling itself, dropping off the first elements, until it getsto aNIL list, and return the NIL. Thisisn't
quite what we had in mind. What we want to do is to stop recurring just before we get to the end of the
list. Try this termination phrase: "((null (cdr L)) (car L))". Thiswill stop the recursion one call before the

list becomes NIL. That is, if the CDR of thelist is NIL, then the first element of thelist isthe |last
element. The whole function becomes

. (DEFINE (RAC (LAVBDA (ALl ST)
(COND
((NULL (CDR ALIST)) (CAR ALIST))
(T (RAC (CDR ALIST)))))))
RAC
' (RAC ' (BIRD (NEST))))

(NEST)
Exercises

1. Write arecursive function to perform multiplication according to the following formula:

NXMENX (M 1) +N; Nx1=N;

http://nostoc.stanford.edu/jeff/llisp/15.html (4 of 5)6/18/2008 2:20:46 PM

LEARNING LISP - A Style of Programming

2. Write arecursive function to decide whether alist is palindromic. A palindromic list is one which
reads the same backward or forward. Assume that NIL and alist with just one element are
palindromic. Also, you may want to use a help function or two.

Answers

1. (DEFI NE (FN (LAMBDA (N M
(COND
((EQUAL M 1) N)
(T (ADD N (FN N (SUB M 1))))
)
)))

Note that this function assumes M is always greater than or equal to 1; if M islessthan 1 the
function will recur forever.

2. We can use the RDC function defined in chapter 11 (exercise #2, Answer) and the RAC function
defined in chapter 15.

(DEFI NE (PALEN (LAMVBDA (L)
(COND
((NULL L) T)
((EQUAL (CAR L) (RAC L)) (PALEN (CDR (RDC L))))
(T NIL)
)
)))

Contents | Trees and Recursion | Scope Considerations

http://nostoc.stanford.edu/jeff/llisp/15.html (5 of 5)6/18/2008 2:20:46 PM

LEARNING LISP - Scope Considerations

LEARNING LISP

Contents | A Style of Programming | Maps

Scope Considerations

Lisp functions live, work, and play in an environment. We learned how to save that contents of the
environment awhile back. The purpose of this chapter is to describe this environment and the effects of
lambda-binding on it.

When you enter the Lisp system, there are some predefined Lisp functions [the built-ins] and two
predefined variables, T and NIL. Using SETQ to define your own variables causes Lisp to set up an area
of storage for holding the value of that variable. Thus, evaluating the expression, (SETQ A 10), Lisp
binds the value of 10 to the variable A, setting up something like this;

10
A Cell

Since we are not currently evaluating any function, this value of A is said to bein the global
environment. The global environment is the state of affairs at the highest level [that is, not inside any
functions]. Any subsequent use of the SETQ function with A will change the valuein A.

The interaction of the assignment with the evaluation of user-defined functionsisinteresting. Remember
that the global value of variables are left untouched even though the local variables in the function may
have the same name. L et's define some functions with which we can experiment.

. (SETQ X 10)
10
. (SETQ Y 20)
20
: (DEFI NE (FUNL (LAVBDA (X)

(PRI NT X)

http://nostoc.stanford.edu/jeff/llisp/16.html (1 of 5)6/18/2008 2:20:49 PM

LEARNING LISP - Scope Considerations

(PRI NT Y)
(FUN2 XY)
(FUN3 (ADD X 1)))))
FUN1
- (DEFINE (FUN2 (LAMBDA (X 2)
(PRI NT X)
(PRI NT YY)
(PRI NT 2)
(SETQ Y 5))))
FUN2
- (DEFI NE (FUN3 (LAMBDA (R
(PRI NT R)
(PRI NT X)
(PRINT 2))))
FUN3
- (FUNL 2)
2
20
2
20
3
2
5
- X

10

http://nostoc.stanford.edu/jeff/llisp/16.html (2 of 5)6/18/2008 2:20:49 PM

LEARNING LISP - Scope Considerations

'Y
5

We defined three somewhat contrived functions. We begin the process of evaluation by typing " (funl
2)". When FUNL is evaluated, the value of its actual argument 2 is bound to the local variable X. But X
already existsin the global environment by means of the SETQ function. Lisp always checksto seeif a
conflict between a global variable and alocal variable esists. If thereis such a conflict, the new valueis
stacked on top of the older value or values. This can be better understood with the help of the following
picture:

The new X value.
2 +— [Latest Binding)

10 20 The Glaobal

— Envirenment

X Stack Y Stack

The value of the atom in evaluation is designated by the value at the top of its stack. Therefore, the value
of X at thispoint is 2 and the value of Y is 20. These values are called alocal environment.

After the function, in which the local variable is defined, ends, the topmost [current] value is removed
from the stack. Thus, the older value is returned. Note that the global environment can't be removed
from the stack in this way.

While inside the function, the local value acts like a global value to all the functions called by the first
function. The sameistrue for all deeper levels of function calls.

Back to our example. We are now inside the function FUN1. The first expression to be evaluated is
"(PRINT X)". This causes the current value of X to be printed. Since X isalocal variable to this
function, the current value of X isthe value of the argument supplied in the call of the function FUN1.
Thisisthe number 2 which we typed ourselves. Therefore, it isthe first 2 in the output. The next
expression, "(PRINT Y)", printsthe global value of Y, which is 20.

The next expression, "(FUN2 X Y)" isacall to the function FUNZ2. The formal arguments for FUN2 are
X and Z. Because X already exists in the environment [twice, in fact], we must again "stack™ the new
value, 2, on top of the older value, 2. [Note that the old value and the new value are the same. Lisp does
not care, it will save the old one anyway.] Also, the value of 20 is bound to Z. The new environment
looks like this:

http://nostoc.stanford.edu/jeff/llisp/16.html (3 of 5)6/18/2008 2:20:49 PM

LEARNING LISP - Scope Considerations

2 20 | <« FUNZ Level
2 &« FUN1 Level
10 20 « Global Level

X S5tack ¥ Stack Z Stack

We are now inside of FUN2 [which isinside of FUN1]. The value of X isprinted as 2, in the third
output line. Then, the value of Y isprinted. Thisis 20. Next, the value of Z in printed [20, the fifth lin€].
We then use the SETQ function to assign avalueto the variable Y. Therefore, Y now has the value of 5.
If Y had been alocal variablein FUNZ2, then the assignment would have been broken when leaving
FUNZ2. However, since Y is global, this assignment of value is permanent, at least until the next
assignment. The action of changing the value of a variable which is not one of the function's formal
argumentsis called a side effect. Side effects are usually very nasty, and should be avoided.

FUN2 now exits, returning the value of Y [which is thrown away]. We are now back in FUN1 and the
uppermost level has been removed from the stack.

2 +— FUN1 Level

10 5 + Global Level
X Stack Y Stack

Next, we call FUN3 with the expression "(FUN3 (ADD X 1))". Thevalue of X inside FUN1is 2.
Therefore, (ADD X 1) evaluatesto 3. The value of the formal argument in FUN3, namely R, hasthe
value of 3 bound to it.

3 «— FUN3 Level

«— FUN1 Level

10 20

X Stack ¥ Stack R Stack

El-[-

+— Global Level

The value of R is now printed on the sixth line. The variables X and Y are also printed. The question is,
which X and which Y ? Neither are local to FUN3. For X, we use the value which was available in the
previous environment, that is FUN1. There, X had the value 2. Therefore, a2 is printed for X. What
about Y?Y isn't local to any function, so Lisp usesthe global value of 5. [Note that the global value was
assigned from inside the function FUN2]

http://nostoc.stanford.edu/jeff/llisp/16.html (4 of 5)6/18/2008 2:20:49 PM

LEARNING LISP - Scope Considerations

The last number printed is the value returned from FUN1. FUNL1 isreturned from FUN3, which is
returned from PRINT. Remember that everything in Lisp returns avalue, even PRINT.

Contents | A Style of Programming | Maps

http://nostoc.stanford.edu/jeff/llisp/16.html (5 of 5)6/18/2008 2:20:49 PM

LEARNING LISP - Maps

LEARNING LISP

Contents | Scope Considerations | Isplay Ogrammingpray

Maps

We are going to make life with Lisp much ssmpler. The careful reader may have noticed some patterns
in the recursive Lisp functions that we have been defining. Lisp provides built-in functions to perform a
number of these patterns.

Suppose that we want to perform the same operation on each element of alist in succession. Thereisa
Lisp function to do this: MAPCAR. Let'sfirst try an example.

. (MAPCAR ' PRI NT' (ALL THE NEWS THAT FITS))
ALL
THE
NEWS
THAT
FITS

(ALL THE NEWS THAT FITS)

What happened? Well, we used the PRINT on each element of the list. This caused the first five lines of
the result. [Each PRINT took up oneline.] Lisp then collected all of the results of the PRINTsinto alist
and returned this collection as the result of the expression. We normally won't want to use the PRINT
function on each element of alist; let's try some more interesting examples. INT isanew Lisp function
that returns the value of its argument preceding the decimal point, if any. For example, (INT 33.89) is
33. Now for EVEN. It isapredicate that works by dividing the argument by two and determining
whether that result is the same as the integer part of the number divided by 2. Here's EVEN:

. (DEFI NE (EVEN (LAMBDA (N)
(EQUAL (DIV N 2) (INT (DIV N 2)))))))

EVEN
Now we can use MAPCAR to apply EVEN to all the members of alist.

(MAPCAR '"EVEN ' (0 1 2 3 4))

http://nostoc.stanford.edu/jeff/llisp/17.html (1 of 2)6/18/2008 2:20:50 PM

LEARNING LISP - Maps

(TNIL TNIL T)

. (MAPCAR ' LENGTH ' (() (A) (B B) (CDE))
(0123)

. (MAPCAR ' REVERSE ' ((ARE VE) (I N NOT)

1 (TOTO KANSAS)))))

((VE ARE) (NOT IN) (KANSAS TOTO))

The exact definition for MAPCAR isasfollows: Asits arguments MAPCAR takes a function name and
alist. First, use the given function on the CAR of the list. Then continue using the same function with
the CDR of the list. When finished, make alist of all the individual results.

In the first example above, Lisp applied the function EVEN to each element of thelist: "(012 3 4)". In
the second example, LENGTH was used on each element of its associated list. In the last example, we
used the REVERSE function on each element. Note that thisis sort of the complement of the regular use
of the REVERSE function which REVERSEs all of the top level elements of alist. Here we REVERSEd
the elements of each sublist but |eft the order of sublistsintact.

A recursive Lisp function equivalent to the first example is presented below.

. (DEFI NE (EVENVAP (LAVBDA (L)
(COND
((NULL L) NIL)
(T (CONS (EVEN (CAR L))
(EVENVAP (CDR L))))))))

EVENVAP
(EVENVAP '(0 1 2 3456 7 8)

2))
(TNIL TNIL TNIL T NIL T)

Contents | Scope Considerations | Isplay Ogrammingpray

http://nostoc.stanford.edu/jeff/llisp/17.html (2 of 2)6/18/2008 2:20:50 PM

LEARNING LISP - Isplay Ogrammingpray

LEARNING LISP

Contents | Maps | FEXPRS: Unevaluating Functions

Isplay Ogrammingpray

Y ou now have all the tools needed to solve some reasonably large problemsin Lisp. [Y ou've actually
had most of them for awhile.] This chapter demonstrates the steps that can be taken to solve such
problems. These steps are, of course, dependent upon the exact problem specified, but there are some
genera rules which we will emphasize.
The problems we will attack are those of a pig Latin translator. The system [a collection of functions and
help functions al intented to solve one problem] will take a sentence in English and return the sentence
in pig Latin. It will do this:
- (PIGATIN ' (TAKE QUT THE TRASH)))

(AKETAY QUTWAY ETHAY ASHTRAY)
Thefirst step in designing a system is: Take out a piece of paper and a pen or pencil.
Y ou will need paper to keep notes [and doodle while you think]. If the system will have many functions
in it you're definitely going to need a scorecard to keep track of the functions and their arguments.
Because of the environment nature of Lisp, it's not easy to comment the functions so notes are important!

Next, define the problem and lay out exact specifications.

In this case, the specifications are fairly easy. The user will enter his sentence as alist of words, and the
program will return the sentence with each word "pigized".

The next step isto decide on an algorithm.
The standard pig Latin algorithm works in the following manner.

Look at each word in the sentence. If itsfirst letter isavowel, smply add "way" to it. Otherwise,
remove al the letters from the beginning of the word, and up to the first vowel. Put them after the word.
Then add "ay".

There are afew assumptionsin this description. It is very important to specify your assumptions so that

http://nostoc.stanford.edu/jeff/llisp/18.html (1 of 8)6/18/2008 2:20:53 PM

LEARNING LISP - Isplay Ogrammingpray

you know which cases you won't have to deal with. A well-defined set of assumptions can make a
programming task quite abit simpler.

We have assumed that all words have vowelsin them. We will ignore the case of "words' (actually
syllables) with no vowels. Also, we assume that only vowels can be one-letter words ("a*, "I"). By
examining some sample cases, we can fill in blanksin the algorithms.

WATER - -> ATERVWAY
VEEEPS - - > EEPSVWAY

Thus, "W" is not avowsel.

YELLOW - -> YELLOMY
YAKS - -> YAKSVWAY

So"Y" isavowel. Obvioudly, "A", "E", "I","O", and "U" are vowels also.

We've now specified the problem. How do we go about programming it? The most useful technique to
learn is called top down programming. It means that the main programs are written before the help
functions. By using the top down style we can organize our thoughts. Let's start at the very beginning.
Thefirst part of the algorithm says: "L ook at each word in the sentence.” Because our sentenceisalist,
the words are the atoms in that list. Looking at each word is similar to the MAPCAR operator. Let's
define our main function to use MAPCAR and cause each word in the sentence to be processed.

: (DEFI NE (Pl GLATI N (LAVBDA (SENTENCE)
(MAPCAR ' Pl GADRD SENTENCE)))))

Pl GLATI N

Thisisthe main function. There are two important factors to note in the definition of thisfunction. The
first isits name [and the name of the help function it calls] have meaning. We could have called this
function "xyzzy" but then we would never be able to remember what it did!

The second point is more subtle. The main function and all the functions that we'll write are very short.
We took a single idea [mapping down the sentence] and turned it into afunction. The help function
[PIGWORD] will aso implement one little part of the whole. By slowly adding parts of the algorithm,
we can build the entire system in very small, easily manageable increments. There are many advantages
to this, not the least of which is that ssimpler and smaller functions are easier to edit or retype.

Let's get on to the first help function: the processing of each word. The PIGWORD function will take a
word and turn it into pig Latin. The 1/O [Input/Output] behavior of this function should be

http://nostoc.stanford.edu/jeff/llisp/18.html (2 of 8)6/18/2008 2:20:53 PM

LEARNING LISP - Isplay Ogrammingpray

: (PI GWORD ' THI S)
| STHAY

There's a problem here. We have functions that modify lists but not functions for modifying the lettersin
an atom. The solution isto make the atom alist and then turn the processed list back into an atom:

THS->(THI S) ->(1 STHAY) -> | STHAY

Of course, Lisp conveniently provides functions for doing this. EXPLODE turns an atom into alist of its
letters, and IMPLODE does the opposite.

Here we have a new concept not specified in the algorithm, but implicit in the nature of Lisp. We need
to have some intermediate processing step that does this explosion, and subsequent implosion. We will
define PIGWORD asfollows:

. (DEFI NE (Pl GAORD (LAVBDA (\AORD)
(1 MPLODE (Pl GLI STEDWORD (EXPLODE WORD)))

)))

Pl GAORD

PIGLATIN cals PIGWORD viaMAPCAR and passes it to each word. PIGWORD, in turn, explodes
the word and processes it using another help function [with a meaningful name] called
PIGLISTEDWORD. PIGLISTEDWORD will return the list of the "pigized" word, and PIGWORD will
implode it to an atom again and return the new word to PIGLATIN.

All that remains now iswrite PIGLISTEDWORD. Which part of the problem does this one implement?
Hereisthe definition.

. (DEFI NE (Pl GLI STEDWORD (LAVBDA (ORD)
(COND
((1 SAVONEL (CAR WORD)) (Pl GVONEL W\ORD))
(T (PI GNOVOAEL WORD))))))

Pl GLI STEDWORD

http://nostoc.stanford.edu/jeff/l1isp/18.html (3 of 8)6/18/2008 2:20:53 PM

LEARNING LISP - Isplay Ogrammingpray

Several things are still missing from the system. PIGV OWEL will translate aword that starts with a
vowel into its pig Latin equivalent. PIGNOVOWEL will translate all other words, and the predicate
ISAVOWEL will tell us whether the letter it received isavowel or not.

Let'swrite the smple ones first:

. (DEFI NE (1 SAVONEL (LAVBDA (LETTER)

(MEMBER LETTER "(A EI OUY))))

| SAVOWNEL
: (DEFI NE (Pl GVOVEL (LAVBDA (V\ORD)
(CONC WORD * (WA Y))))))
Pl GVOWEL
(PIGVONEL ' (A F T E R))))

(AFTERWAY)

We should now be able to test the ssimple part of the system--sentences where al the words begin with a
vowel.

. (PIGLATIN ' (ALERT Al RVEN ARE ONTI VE))

(ALERTVWAY Al RVENVAY AREWAY ONTI MEVWAY)
[What would happen if wetried to "pigize" a sentence with words that began with consonants? Try it.]

Great! Most of our system finished in only 5 functions. All we have to do now iswrite the hard one.
PIGNOVOWEL. Let's describe the responsibility of that function in detail.

Since we can only deal with one letter of the exploded word at atime, we have to search for the first
vowel [ISAVOWEL will be useful here]. When we find the vowel, we will attach the first letters [which
we will have been collecting up along the way] to the end of the word and tack on an "ay".

How can we recur down alist and keep the information as we go? The answer isto passthe list of

http://nostoc.stanford.edu/jeff/l1isp/18.html (4 of 8)6/18/2008 2:20:53 PM

LEARNING LISP - Isplay Ogrammingpray

collected letters along with the recursion, and just tack on letters along the way. Thisis the function.
Follow it by hand, and see what it does.

. (DEFI NE (PI GNOVOVEL (LAVBDA (WORD LETS)
(COND
((1 SAVONEL (CAR W\ORD))
(CONC WORD (CONC LETS ' (A Y))))
(T (Pl GNOVONEL (CDR WORD) (APPEND LETS (CAR WORD))))))))

Pl GNOVOWEL

Note that there are two arguments to this function. We will always have to supply both of them, or this
function will not work. O.K., let'stry it out:

(PIGNOVONEL ' (T HI1T S) ())

(I STHAY)
That looks good, we should now be able to try the whole system:

. (PI GLATI N ' (EVERY GOOD BOY DOES FI NE))

** ERROR. TOO FEW ARGS **
Pl GNOVO/EL :: (W\ORD)

+()
NI L

Oops! Something went wrong. The error message said we called PIGNOV OWEL with one argument
instead of two. The call was from PIGLISTEDWORD. We hadn't forseen that we'd need two arguments
in PIGNOV OWEL when we wrote PIGLISTEDWORD. Oh well, we can now go and edit it or retypeit.

. (DEFI NE (Pl GLI STEDWORD (LAVBDA (WORD)
(COND

((1 SAVOAEL (CAR WORD)) (Pl GNOVOWEL WORD))

http://nostoc.stanford.edu/jeff/l1isp/18.html (5 of 8)6/18/2008 2:20:53 PM

LEARNING LISP - Isplay Ogrammingpray

(T (PIGNOVONEL WORD NIL))))))

Pl GLI STEDWORD

: (PI GLATI N ' (STI CKS AND STONES ARE PAI NFUL))

(1 CKSTAY ANDWAY ONESSTAY AREWAY Al NFULPAY)
L ooks good!

We've now completed the design of our pig Latin system to specification. Y ou should SAVE it so that
you can recover it later.

The lessons of this chapter are summarized in the following list:

. Take notes. Write down every function and its "form of call". The form of call for ADD, for
example, is: "(ADD numberl number2)". Also, write one line describing what is does and what it
comes back with. If you're brave you can write down the function definition. Thiswill help you
figure out what's wrong.

. Formulate a complete specification of the problem before beginning to even think in Lisp. Thel/
O behavior of the function should be the main part of this description. |/O behavior asoisagood
way to formulate the descriptions of most help functions.

. Define the agorithm and assumptions [restrictions] involved. Thiswill save you from
embarrassing trouble later, when you suddenly remember something that you had forgotten.

. Usetop down programming. That is, start with the function that the user will typein (think of the
user as someone other than yourself), then fill in your undefined functions as you get to them.
Work your way deeper and deeper into the help functions.

. Asyou write parts of the system, test the help functions thoroughly. Thiswill save you
debugging time in the long run.

. Use mnemonic names. The names of all functions, help functions, and variables should have
meaning to you and to others. [CAR and CDR are good examples of what not to use as names.]

. Keep your functions brief. Short functions are easier to edit and easier to retype.

. Implement asingle part of the algorithm in each function. Thiswill aso help keep them brief. I
the algorithm is well described, then there should be approximately one function per clause in the
description.

. Make sure that the parts of the system are internally consistent. [Thisiswhat went wrong with
the arguments of PIGNOVOWEL .]

Designing a system in Lisp or any other programming language, islike designingin general. You
takeit step by step and fill in the unknowns when you come acr oss them. Always have thefinal

http://nostoc.stanford.edu/jeff/llisp/18.html (6 of 8)6/18/2008 2:20:53 PM

LEARNING LISP - Isplay Ogrammingpray

goal in mind.

Exercises to Translate Into Thoughts

1. Explain how afunction that sorts words in alist would work. Think about each function and
describe the entire system in English.

2. Practice taking a paper and pencil [or pen] out before starting to write things into Lisp. Do this
until it becomes automatic.

3. Thereisasimplification that can be made in our Pig Latin system. It is possible to do it without a
function because its action is performed by a special use of another function. What are we talking
about? Fix the system accordingly. Think about the advantages and, especially, the disadvantages
of doing things this way.

4. How istop down programming like recursive tree traversal? Design a Lisp system [in English but
with possible real help functions] that would take a problem specification. Write the program
using top down tree traversal.

5. Adjust the pig Latin tranglator to work with words such as, "nth", "cwm" and "crwth".

Answers
3. PIGVOWEL isaspecia case of PIGNOVOWEL. We can redefine PIGLISTEDWORD as

(DEFI NE (Pl GLI STEDWORD (LAVBDA (WORD)
(COND
((1 SAVOAEL (CAR WORD))
(Pl GNOVOWNEL WORD ' (W)
(T (Pl GNOVONEL WORD ' ()))

)
)))

)

5. Put atermination condition in PIGNOV OWEL to watch for vowelless words.

(DEFI NE (Pl GNOVOMEL (LAVBDA (\WORD LETS)
(COND
((NULL WORD) (CONC LETS ' (A Y)))
((| SAVOVEL (CAR WORD))
(CONC WORD (CONC LETS ' (A Y))))
(T (Pl GNOVOAEL (CDR \ORD)
(APPEND (LETS (CAR WORD))))
)
)))

Contents | Maps | FEXPRS: Unevaluating Functions

http://nostoc.stanford.edu/jeff/llisp/18.html (7 of 8)6/18/2008 2:20:53 PM

LEARNING LISP - Isplay Ogrammingpray

http://nostoc.stanford.edu/jeff/l1isp/18.html (8 of 8)6/18/2008 2:20:53 PM

LEARNING LISP - FEXPRS: Unevaluating Functions

LEARNING LISP

Contents | Isplay Ogrammingpray | Control Structures

FEXPRS: Unevaluating Functions

Most of the functions that we've used thus far are called "EXPRs" [short for EXPRession]. An EXPRis
afunction that evaluates its argumentswhen it is called. ADD, MULT, CAR, CONS, and many others
areal EXPRs.

It is often useful to be able to write a function whose arguments will not be evaluated but rather, passed
asisto the function. A function that does not evaluate its argumentsis called a"FEXPR".

Thefirst flexibility that this offers usis that we can type things in without quotes. The pig Latin example
could have been simplified with a FEXPR. We could have typed

(PIGATIN THIS | S A TEST SENTENCE)
instead of
(PIGATIN ' (THIS IS A TEST SENTENCE))

A FEXPR has adlightly different DEFINE syntax than an EXPR. The word LAMBDA is replaced by
the word FLAMBDA. Thereis exactly one formal argument, never more, never less:

. (DEFI NE (PRI NTME (FLAMBDA (| NPUT)
| NPUT))))

PRI NTME

We have defined atrivia function in order to return the value that gets bound to its formal argument.
Thiswill enable us to see what a FEXPR does with the arguments:

:(PRINTME | HAVE BUT ONE LI ST FOR YQU)

(I HAVE BUT ONE LI ST FOR YQU)

The FEXPR simply makes alist of the unevaluated arguments and binds this to the single formal

http://nostoc.stanford.edu/jeff/llisp/19.html (1 of 5)6/18/2008 2:20:55 PM

LEARNING LISP - FEXPRS: Unevaluating Functions

argument.

. (PRI NTVE (CAR (BUS)) (CDR (CADDR CDDAR)))

((CAR (BUS)) (CDR (CADDR CDDAR)))

The CAR and CDR functions above are not evaluated. Asfar asthe FEXPR is concerned they are
simply names exactly like "bus", "truck", "caddr", etc.

Now let's do something less trivial. Notice that PRINTME always puts an extra set of parentheses
around its argument.

. (PRI NTME LI BERTY)
(LI BERTY)
. (PRI NTME (OR DEATH))

(OR DEATH))
Here'saversion of PRINTME that doesn't do that.

. (DEFI NE (PRI NTME2 (FLAVBDA (| NPUT)
(CAR INPUT)))))))

PRI NTME2

Now PRINTME2 acts exactly like the QUOTE function that we have encountered in our Lisp studies. In
fact, thisis exactly what the quote (') sign does. When we put a quote before alist or an atom, it is
interpreted asif we had typed "(QUOTE. . .)". QUOTE isa FEXPR that returns the name of its
argument uneval uated.

:' (CAR (DONT EVALUATE THI S))
(CAR (DONT EVALUATE THI'S))

: (PRINTME2 (CAR (DONT EVEN TRY)))
(CAR (DONT EVEN TRY))

. (QUOTE (CAR (DONT EVALUATE THI S)))

http://nostoc.stanford.edu/jeff/llisp/19.html (2 of 5)6/18/2008 2:20:55 PM

LEARNING LISP - FEXPRS: Unevaluating Functions

(CAR (DONT EVALUATE THIS))

Knowing this might be of some relief to those of you who have noticed that when an error occurs, Lisp
has expanded the apostrophes into the word QUOTE.

S0, there has been at least one FEXPR with us since the beginning. Can you think of others? How about
SETQ? Why doesn't the first argument in SETQ need a quote? [Why do you think that they call it
SETQ?] Wherever it seems as though something should be quoted but is actually not necessary, there's
probably a FEXPR in the works someplace.

A good rule of thumb isthat a FEXPR should always call an EXPR to do the work. It can typically do
this by using MAPCAR to scan the list of input elements. Using this rule we can rewrite PIGLATIN as,

. (DEFI NE (Pl GLATI N (FLAVBDA (SENT)
(MAPCAR ' Pl GAORD SENT)))))))

Pl GLATI N

Y ou should try this and verify that it works as expected. Y ou should be able to type in the sentence to be
trandlated, without parentheses or the quote.

The other advantage that FEXPR gives us is the ability to write functions that take an unspecified
number of arguments. For example, we might want to write afunction that takes alist of paired names
and phone numbers, and returns each pair in list form.

. (DEFI NE (PAI RW SE (FLAVBDA (I N)
(SEGVENT 1N)))))))))
PAI RW SE
. (DEFI NE (SEGVENT (LANVBDA (L)
(COND ((NULL L) ())
(T (CONS (LIST (CAR L) (CAR (CDR L)))
(SEGVENT (CDR (CDR L)))))))))

SEGMVENT

http://nostoc.stanford.edu/jeff/llisp/19.html (3 of 5)6/18/2008 2:20:55 PM

LEARNING LISP - FEXPRS: Unevaluating Functions

:(PAIRWSE A1 B2 C 3D 4)

((Al) (B2) (C3) (D4))

There is another important rule of FEXPR's. Never recur with a FEXPR, and avoid calling them from
within other functions. Why isthat? Consider what the result of calling a FEXPR recursively will do.
Let's define arecursive FEXPR.

: (DEFI NE (REVLI ST (FLAVBDA (L)

(COND ((NULL L) ())

(T (CONS (REVERSE (CAR L))

(REVLIST (CDR L))))))))
REVLI ST

This should reverse each element of the input list. Thus, we should be able to type
(revlist (himrebuild) (was he than better))
and get
((rebuild him (better than he was))
In response.

It would be nice to be able to TRACE FEXPRs but P-Lisp can't. Other versions of Lisp may or may not
allow this. However, for this example, we'll imagine that it can and imagine that it will print.

c(revlist (himrebuild) (was he than better))
-->> REVLIST :: ((H MREBU LD) (WAS HE THAN BETTER))
-->> REVLIST :: ((CDR L))
-->> REVLIST :: ((CDR L))
-->> REVLIST :: ((CDR L))

+()

Thefirst list went in okay, but it looks like the recursive steps didn't work correctly. Since the FEXPR
doesn't evaluate its arguments, the "(cdr L)" wasn't evaluated, and the next iteration simply tried to do
REVLIST on"(cdr L)" as opposed to the CDR of "L". Thiswould have gone on forever if we hadn't

http://nostoc.stanford.edu/jeff/llisp/19.html (4 of 5)6/18/2008 2:20:55 PM

LEARNING LISP - FEXPRS: Unevaluating Functions

interrupted. Actually, Lisp has alarge but finite recursion limit. Y ou will undoubtedly encounter
RECURSION CHECK errors eventually. That's what really happens if you let arecursive function run

away.

Exercises Not to Be Evaluated

1. Write REVLIST correctly. You'll probably want to use a help function.
2. IsDEFINE a FEXPR? Of course, it is, otherwise we wouldn't have asked the question. Convince
yourself with the argument just presented.

Contents | Isplay Ogrammingpray | Control Structures

http://nostoc.stanford.edu/jeff/llisp/19.html (5 of 5)6/18/2008 2:20:55 PM

LEARNING LISP - Control Structures

LEARNING LISP

Contents | FEXPRS:. Unevaluating Functions | Eval and Apply

Control Structures

We claimed that Lisp was a programming language, and programming languages usually do
complicated things. We did one fairly complicated operation but, hopefully, it wasn't too difficult (the
pig Latin system). In order to do even more complicated work in Lisp, we need to be able to do some of
the things that other languages do.

Control Structures are something that most programming languages provide in order to help the
programmer organize his or her thoughts and, thus, lend better organization to the program. They can be
thought of as aframe into which you can shape your program. For example, we have been shaping our
programs so far into the frame of CONDs and recursion. These are one type of control structure.

This chapter will show you how certain useful control structures are implemented in Lisp. Programming
with these structures is a matter of experience. You'll eventually learn structures that are not recursive,
and then we will return to this chapter and point out alternate methods of programming.

One thing that other languages do which we've seen alot of in Lisp isthe COND. In Pascal, COND can
be thought of as a CASE statement or a series of IF-THEN-EL SE clauses. Hereisa COND writtenin a
language called pseudo code.

: (DEFI NE (MEMBER (LAMBDA (A L)
|F L is NULL THEN
NI L
ELSE IF (CAR L) equals A THEN
T
ELSE
(MEMBER A (CDR L)))))

That's our old friend MEMBER. Y ou might try writing MEMBER in your favorite language. (Use alist
of numbersinstead of atoms--that will make it smpler.) You'll find that your tendency in language other

than Lispisto write aloop. Hereis MEMBER written as aloop.

. (DEFI NE (MEMBER (LAVBDA (A L)

(PROG ()

http://nostoc.stanford.edu/jeff/l1isp/20.html (1 of 8)6/18/2008 2:20:58 PM

LEARNING LISP - Control Structures

TOP
(COND
((NULL L) (RETURN NIL))
((EQUAL (CAR L) A) (RETURN T)))
(SETQ L (CDR L))
(GO TOP)))))

VEMBER

What we have here is a special sort of control structure called a PROG. That is, obviously, short for
"program”. PROGs look like this.

(PROG (locals) objl obj2 obj3 . . .)

|dentify each part in the PROG above. Note that there are no locals and that obj1 is the atom TOP. The
other objects are lists that have Lisp expressions in them. OBJ4 has an unusual function called GO in it.
WEe'l explain al this now.

PROG workslike this: Before it beginsit sets all the localsto NIL. The old values of these locals are
saved, and these new values [the local ones] are used only while Lisp is doing the PROG [Remember the
scope chapter]. Thus, when the PROG is done, whatever old values were in the locals come back.

PROG begins with the first object. If it isan atom [like TOP], then it simply ignoresit. Why? Y ou'll see.
If the object is not an atom then it evaluatesit and if it can, goes on to the next object. That's really all
thereisto aPROG! Simple!

We haven't answered some questions yet: What's TOP for? What does GO do? How does PROG return
avalue from its calculation? The answer to this last question will be obviousif you carefully study the
COND in our PROG example. Thereisaspecia function called RETURN. The argument to RETURN
is returned from the PROG that it isin, and that PROG stops!

GO and the atom TOP are used to implement looping. The reason that PROG evaluation ignores labels
[which are just atoms by themselves] is that they are ssimply markers to name various placesin the
PROG. They are labels! TOP isalabel that marks the top of the program [the place that we want to go
back to each time]. The names of labels are arbitrary and there can be many in one PROG. When PROG
evaluation encounters a GO expression, it hunts around in the PROG body for an atom object that has
the same name as the argument of GO. Evaluation begins again there.

http://nostoc.stanford.edu/jeff/l1isp/20.html (2 of 8)6/18/2008 2:20:58 PM

LEARNING LISP - Control Structures

Thisis quite ssimple but it's not clear what you would use it for. Let's do a complicated PROG example:
Let'srewrite the pig Latin system as one giant PROG. That is, we're going to incorporate all of those
help functions into the body of a single function.

Before we show you the function, let's talk about comments alittle bit. Comments are very important in
programming. Usually, when you write a program, you put in "comment lines' to tell others what's
going on in various sections of the program, or to remind yourself. There are two reasons why we
haven't discussed them yet. First, all the Lisp programs that we've written thus far have been very small.
So small, in fact, that they should have been commented merely by virtue of having a good meaningful
name!

The second reason why we've avoided commentsiis rather poor. That is, that Lisp does not handle

comments very well. You can get the Lisp language to simply ignore aline that you type, by preceding it
with a semi-colon.

. THI'S I'S A COWENT
. (CAR ' (A

.. THIS IS A COWENT TOO
:B)))

A

Thisisfine and lets us comment as we are entering things but exactly because Lisp literally ignores
these lines, they don't stay around with the program. Therefore, they aren't very useful. If you enter a
program and put in comment lines, they won't appear on the printed display because they have been
ignored on entry!

Y ou may think it would be easy to make a COMMENT function that lets us put comments into the
functions. Here's a possible function to do just that.

: (DEFI NE (COMMVENT (FLAMBDA (S) ()))))))

COMVENT

This function simply eats its arguments and returns (). Thisis similar to ignoring the comment.
However, thiswon't work very well.

. (COWENT THI'S IS A COWENT)

http://nostoc.stanford.edu/jeff/l1isp/20.html (3 of 8)6/18/2008 2:20:58 PM

LEARNING LISP - Control Structures

NI L
: (PROG () (PRINT ' TESTING
(COMMVENT THI'S IS A COMNVENT)
(PRINT " (1 2 3)))))
TESTI NG
(123)
NI L
: (COND ((NULL 5) (PRINT ' NOPE))
(COMMVENT THI'S IS A COMVENT)

(PRINT "(1 1 1)))))

** ERROR: UNDEFI NED ATOM * *
EVAL :: COMVENT

+()

NI L

What happened? It looks like we can put comments into PROGs easily but only in specific places.

Unfortunately, there's no simple solution to this problem, and the more complex you make it, the harder

it gets. Therefore, because this particular function is so large, we will use comments, but if you type
them in as we show you here, don't be surprised when they disappear!

But back to the point. Here's the pig Latin function as a PROG.
(define (piglatin (lanbda (s)

; The locals to the prog are:

; result - wll store the piglatin formas it is made.

;. word - holds the word that is being transl ated.

; newwrd - gets the result of a translation from word.

; hol dchars - sabes up consonants while the word is being scanned.

(prog (result word newword hol dchars)

http://nostoc.stanford.edu/jeff/l1isp/20.html (4 of 8)6/18/2008 2:20:58 PM

LEARNING LISP - Control Structures

Conme back here to see if we're done. If not then get the

next word froms and put it into word. Then set up everything
for a single word translation. Note that '(w) gets inserted
into the character list if the word starts out with a vowel.

next wor d
(cond ((null s) (return result)))
(setq word (explode (car s)))
Renove the word fromthe front of s.
(setq s (cdr s))
(setq holdchars ' (w))
(setq newword ())

This loop translates the word in word. Each character is
checked for vowel ness (we actually still use | SAVONEL here).

wor dl oop
(cond
((null word)
(setq result
(conc result
(list (inplode (conc newword
(conc holdchars '(a vy))

)))
))

(go nextword) ; This word is done so go get a new one.
) ; This paren closes this condition of the COND.

If the letter in front is a vowl then nove the whol e word
to newwrd and arrange for the [oop to stop by killing word
to NL.

((isavowel (car word))
(setq newword word)
(setq word ())

)

The followi ng two cases take care of the things to do when
there is a consonant in front of the word. If [w is

still in holdchars we've got to kill it. OQherw se sinply
put the letter fromthe front of the word into the hol ding
set and renove it fromthe word, then go on.

http://nostoc.stanford.edu/jeff/l1isp/20.html (5 of 8)6/18/2008 2:20:58 PM

LEARNING LISP - Control Structures

((equal '(w) hol dchars)
(setqg holdchars (list (car word)))
(setq word (cdr word))

)
(t (setq holdchars (conc holdchars (list (car word))))
(setq word (cdr word))
)
) ; Close the COND sequence
(go wordl oop)

) ; Cose the PROG
))) ; Cose off the whole function

Whew! That was alot of writing! Hopefully, you found that entirely counter intuitive. Wasn't the
recursive, modular definition much simpler? We, of course, didn't have to put al that in one function,

but that way we got to show you alot of PROG utilization and afew ways that comments can come in
handy when writing big programs.

PROGs are pretty useful but there are a couple of other control structures that are simpler and sometimes

equally useful. These are AND and OR. Astheir nameimplies, AND and OR work with true [T] and
false [NIL] statements. Let's look at some examples.

:(AND T T)
T
((AND T ())
NI L
(AND () T T)
NI L
(OR() T(O)
T

(RO O 0O)

NI L

AND and OR take any number of arguments [yes, they are FEXPRS]. If any of the arguments of AND is
false, then AND returns (). Thisislike saying "If Bill and Lester and Dave go to school then TRUE."

http://nostoc.stanford.edu/jeff/l1isp/20.html (6 of 8)6/18/2008 2:20:58 PM

LEARNING LISP - Control Structures

Likewise, OR returnsfalse only if all its arguments are NIL [if any of its arguments are T]. Look at the
above examples and try some on the computer.

By the way, the arguments don't haveto be NILsand Ts:

: (OR (GREATER 3 5) (EQUAL 2 2))
T
: (AND (GREATER 5 3) (EQUAL ' (YES) '(NO)))
NI L
There can be any list of expressionsin an AND or an OR.
Thisisreally very useful in COND predicates. It allows you to put many testsin one COND line.
(COND ((ORD (NULL L) (EQUAL 1 (LENGTH L))) bl ahbl ahbl ah))
This does "blahblahblah” if either of the two conditions are true.

Why isthis chapter on control structures? Well, AND and OR control the evaluation of their arguments
in an odd way. In order to determine the result of an OR, all we have to do is evaluate until the first
expression returns T. If there is even one true expression, then the result of thewhole OR isT. Thus, OR
only evaluates until it findsaT. So the following expression will never get to do the printing. It never
gets past the second equal because it has enough information by then to figure out what the result of the
OR will be!

(OR (EQUAL 3 4) (EQUAL 4 4) (PRINT 'BOO))
Thisis how OR controls execution! It is very important to remember that in Lisp everything except a
NIL meanstrue. Therefore, it doesn't take just a T to stop OR. It will stop at any expression which

returns anything other than NIL. In fact, when an OR stops short, the result it that value which caused it
to stop.

' (OR (EQUAL 2 2) (SETQ Y 32))
T

Y never gets set!

http://nostoc.stanford.edu/jeff/l1isp/20.html (7 of 8)6/18/2008 2:20:58 PM

LEARNING LISP - Control Structures

What about AND? Well, same game except that AND works the other way around. In order to figure out
whether the result of the AND is going to be false, it goes until it hits the first occurrence of afalse
expression. Then it has enough to determine that the result is false!

AND istrue until proven false. OR isfalse until proven true! These can be used for work while they're
ontrial.

Exercise Your PROGramming Facilities

1. Our PROG version of PIGLATIN also doesn't handle "nth" or "crwth". Try to alter it so that it
does. Isit easier or harder to fix the PROG as compared with the modular, recursive system?

2. Suppose you tried to fix the problem of using the COMMENT function in CONDSs. Y ou might
try to give COMMENT avalue, since that's what Lisp seemed to think was missing. What value
would you give it so that CONDs like this worked correctly? Why is that still not correct? (Think
about OR and AND.)

3. Write your own versions of AND and OR as FEXPRs with PROGs.

Contents | FEXPRS: Unevaluating Functions | Eval and Apply

http://nostoc.stanford.edu/jeff/l1isp/20.html (8 of 8)6/18/2008 2:20:58 PM

LEARNING LISP - Eval and Apply

LEARNING LISP

Contents | Control Structures | Properties and Lambda Expressions

Eval and Apply

In this brief chapter, we will show you the entire Lisp interpreter. Well, not really, but we will show you
some functions which form the "heart" of the Lisp system.

When you type an expression into the Lisp system, it is passed to afunction called EVAL. EVAL
[EV ALuate] processes your expression and returns the result. What is thisthing called EVAL?

: (SETQ A ' (CAR B))
(CAR B)

: (SETQ B ' (AA BB CC DD))
(AA BB CC DD)

. (EVAL A)
AA

. (CAR ' (AA BB CC DD))

AA
. (EVAL ' A)
(CAR B)

Let's see what happened. First we defined two variables, A and B. Note that the value of A isalegal
Lisp expression. When Lisp EVALuates A, it isasif we had typed in the expression ourselves. Lisp
returns the value of the expression as the result. When Lisp EVALuates"A", it returns the value of the
value of 'A, which is the same thing as the value of A.

The importance of this ability may not be immediately apparent. However, notice that this enables usto
mani pulate programs as data and then evaluate them. Most other programming languages do not provide
thisfacility. Hereis asmall example.

http://nostoc.stanford.edu/jeff/llisp/21.html (1 of 5)6/18/2008 2:21:00 PM

LEARNING LISP - Eval and Apply

. (SETQ FUN ' MULT)
MULT
. (SETQ X 3)
3
: (SETQ Y 2)
2
: (SETQ VARS ' (X Y))
(XY)
. (EVAL (CONS FUN VARS))

6

In Lisp, there is another function which will evaluate afunction and its data: APPLY . The generic form
of the APPLY functionis"(APPLY function-name list-of-arguments)”. To repeat the last linein the
above example use the APPLY function.

: (APPLY FUN X V)

6

Let's apply what we know about EVAL to the problem of evaluating polynomials. The polynomials are
going to be represented by their associated Lisp expressions. Thus,

3x2+15

will be represented as

(ADD (MULT 3 (MULT x x)) 15)

Suppose we have this representation as the value of some variable.

:(SETQ P ' (ADD (MULT 3 (MULLT X X)) 15))))

http://nostoc.stanford.edu/jeff/llisp/21.html (2 of 5)6/18/2008 2:21:00 PM

LEARNING LISP - Eval and Apply

(ADD (MULT 3 (MULT X X)) 15)
: (EVAL P)

42
Now we have the capability to form polynomials and then evaluate them. EVAL gives us avery handy
way of making FEXPRs much more powerful. Suppose that we wanted to write an addition function that

used many arguments, no just two. We want to be able to write"(add* 12 3. . .)" and get back their
sums. Here's a possible FEXPR to do that.

. (DEFI NE (ADD* (FLAVBDA (L)
(ADD-SUB L))))
ADD*
: (DEFI NE (ADD- SUB (LAMVBDA (L)
(COND
((NULL L) 0)
(T (ADD (CAR L) (ADD-SUB (CDR'L))))))))
ADD- SUB

Convince yourself that thisworks for "(add* 12 34 5)". Now try using SETQ to set up some values and
use themin ADD*.

. (SETQ SOME 5)
5

. (SETQ MORE 6)
6

. (SETQ VALUES 7)
7

: (ADD* VALUES MORE SQME)

http://nostoc.stanford.edu/jeff/llisp/21.html (3 of 5)6/18/2008 2:21:00 PM

LEARNING LISP - Eval and Apply

** ERROR. BAD NUMERI C ARG **
ADD :: ((CARL) (ADD-SUB (CDR L))

)
+()

NI L

What happened? Well, when recursion stopped down in ADD-SUB, it returned a 0 which the next level
tried to add to the then-car of thelist, SOME. Well, SOME is not a number! ADD can't deal with it like
that! SOME is not an atom--it has avalue, but its name isn't that value [it isn't like numeric atomsin that
respect]. How do we get its value from its name? Right, EVAL! Here's anew definition of ADD-SUB
that works:

: (DEFI NE (ADD- SUB (LAMVBDA (L)
(COND ((NULL L) 0)
(T (ADD (EVAL (CAR L))
(ADD-SUB (CDR L))))))))

ADD- SUB

Convince yourself! Trace EVAL and ADD-SUB and see why.

Exercises to Evaluate in Your Head

1. Thereisaway to write ADD* by changing ADD* itself instead of ADD-SUB. It also relies on
EVAL but it does the evaluation before ADD-SUB ever gets called. Can you think of away of
doing this? If so, fix ADD*. If not, look up MAPCAR and recurse through this problem!

2. Write afunction called DEFUN that permits us to get rid of some of the irritating parentheses.

We want to be ableto do this:
: (defun function-nanme (args list) body . . .)
: (defun function-nanme fexpr (arg) body . . .)

Have it fill the material that DEFINE wants to see and then call DEFINE. Notice that unless we
say "fexpr", it makes an EXPR. Thiswill need a special test.

3. Write afunction called NEWSETQ that counts the number of timesit is used. It should look
exactly like SETQ asfar asits arguments are concerned. Y ou should also keep the count in some

http://nostoc.stanford.edu/jeff/llisp/21.html (4 of 5)6/18/2008 2:21:00 PM

LEARNING LISP - Eval and Apply

global variable called NEWSETQ-USE-COUNT.

Answers

1. (DEFI NE (ADD* (FLAVBDA (L)
(ADD- SUB (MAPCAR ' EVAL L))

)))

2. (DEFI NE (DEFUN (FLAVBDA (L)
(COND
((EQUAL (CADR L) ' FEXPR)
(EVAL (CONS ' DEFI NE
(LI ST (CONS (CAR L)
(LI ST (CONS ' FLAVBDA (CDDR L)))
)

))
))

(T (EVAL (CONS ' DEFI NE
(LI ST (CONS (CAR L)
(LI ST CONS ' LAVBDA (CDR L))
)
)
)
)
)))

3. (DEFI NE (NEWBETQ (FLAVBDA (L)
(SETQ (NEWSETQ USE- COUNT (ADD NEW SETQ USE- COUNT 1))
(EVAL (CONS ' SETQ L))
)))

Contents | Control Structures | Properties and L ambda Expressions

http://nostoc.stanford.edu/jeff/llisp/21.html (5 of 5)6/18/2008 2:21:00 PM

LEARNING LISP - Properties and Lambda Expressions

LEARNING LISP

Contents | Eval and Apply | Differentiating Polynomials

Properties and Lambda Expressions

We have seen several ways to attach "meanings’ to names [atoms]. The SETQ function gives avalueto
an atom. There is one other way of connecting values to atoms.

A property is a name associated with a particular value of an atom. As an analogy, think of an atom asa
chest of drawers. The top drawer would contain something, the second would contain something
different, and so on. Each thing in the drawers, however, is still associated with the chest [the atom].

Let's construct our chest of drawers.
: (PUT ' CHEST ' TOP ' (SOX))
(SOX)
:(PUT ' CHEST ' SECOND ' (UNDERVWEAR (SHORT
: SHIRTS))))
(UNDERWEAR (SHORT SHIRTS))
: (PUT ' CHEST ' THIRD ' (T- SHI RTS JEANS)))
(T- SH RTS JEANS)
. (PUT ' CHEST ' BOTTOM ' (PAJAMAS)))
(PAJAVAS)
The PUT function takes three arguments. The first is the name of the atom that we are attaching
propertiesto ["chest"]. The next is the name of the property ["top", "bottom", etc.], and the third is the

value to attach to the atom at that property. This value can be anything at all [lists, names, numbers]. The
GET function looks at properties on an atom.

: (GET ' CHEST ' SECOND)

http://nostoc.stanford.edu/jeff/llisp/22.html (1 of 8)6/18/2008 2:21:02 PM

LEARNING LISP - Properties and Lambda Expressions

(UNDERVWEAR (SHORT SHIRTS))
: (GET ' CHEST ' TOP)

(SOX)
: (SETQ PLACE ' CHEST)

CHEST
: (PUT PLACE ' TOP (CONS (GET PLACE ' TOP)
: (GET PLACE ' SECOND)))))

((SOX) UNDERWEAR (SHORT SHIRTS))
: (REM PLACE ' SECOND)

NI L
: (GET PLACE ' SECOND)

NI L

In case you hadn't figured it out, REM removes a property from the property list. It's ssimilar to pulling
out adrawer. We can't GET the value of that property after it has been REMed.

We said previously that you couldn't take the CDR of an atom. That isn't quite true. The CDR of aname
[a quoted atom] returns all the properties associated with that atom in the form:

: (CDR PLACE)
(TOP ((SOX) UNDERWEAR (SHORT SHIRTS))
TH RD (T- SHI RTS JEANS) BOTTOM (
PAJAMAS))

. (CDR ' CHEST)
(TOP ((SOX) UNDERWEAR (SHORT SHIRTS))

TH RD (T- SHI RTS JEANS) BOTTOM (
PAJAMAS))

The value set by SETQ and the properties associated with the name are completely separate.

http://nostoc.stanford.edu/jeff/llisp/22.html (2 of 8)6/18/2008 2:21:02 PM

LEARNING LISP - Properties and Lambda Expressions

- (SETQ CHEST 5)
5
- (CDR ' CHEST)
(TOP ((SOX) UNDERVEAR (SHORT SHI RTS))
THI RD (T- SH RTS JEANS) BOTTOM (
PAJANAS))
: CHEST

5
What are properties used for? Why are they in Lisp?

For a simple example we might arrange our phonebook according to our friends' names. Each name has
associated with it a property "number" and a property "address'. Thisisn't much different than just
having the names, numbers, and addresses arranged as alist of triplets. The advantage of using the
propertiesis that the process of finding someone's phone number or address is ssmply a matter of getting
the right property from the atom which is the person's name.

. (PUT ' MARY ' ADDRESS ' (123 FRONT ROAD))
(123 FRONT ROAD)

: (PUT ' MARY ' PHONE ' (345 6789))
(345 6789)

: (CDR ' MARY)

(ADDRESS (123 FRONT ROADD) PHONE (
345 6789))

: (PUT ' DAVE ' ADDRESS ' (321 TRONF STREET))

(321 TRONF STREET)

http://nostoc.stanford.edu/jeff/llisp/22.html (3 of 8)6/18/2008 2:21:02 PM

LEARNING LISP - Properties and Lambda Expressions

: (PUT ' DAVE ' PHONE ' (VE7 1212))
(VE7 1212)

: (GET ' DAVE ' ADDRESS)
(321 TRONF STREET)

But thisis useless because we are restricted to using address parts and phone numbers that are Lisp
atoms. Anyway we could have done the whole program with recursion and gotten the same result.
However, as an exerciseit can't hurt.

Another possible use of propertiesisto "tag" names. For example, let's imagine that we were going to
type in adictionary and wanted to tag each word that we typed with its part of speech. We also might
want to include some other identifications like number [for nouns] or transitivity [for verbs]. By using
PUT and GET to attach properties to the atom whose name is the word, we can accomplish this tagging
quite ssimply.
. (PUT ' AARDVARK ' SPEECHPART ' NOUN)

NOUN
. (PUT ' AARDVARK ' NUMBER ' SI NGULAR)

SI NGULAR
. (PUT ' EAT ' SPEECHPART ' VERB)

VERB
- (PUT ' EAT ' VERBTYPE ' TRANSI TI VE)

TRANSI Tl VE
: (PUT ' SOUPS ' SPEECHPART ' NOUN)

NOUN
: (PUT ' SOUPS ' NUMBER ' PLURAL)

PLURAL

http://nostoc.stanford.edu/jeff/llisp/22.html (4 of 8)6/18/2008 2:21:02 PM

LEARNING LISP - Properties and Lambda Expressions

If we want to retrieve al parts of speech from alist of words, we could use MAPCAR with a function
which will return the speechpart property from aword. Here is the function PARTS which does just that.

- (DEFI NE (PARTS (FLAMBDA (SENTENCE)
(MAPCAR ' (LAVBDA (WORD) (GET WORD ' SPEECHPART))
SENTENCE)))))
PARTS
. (PARTS EAT AARDVARK SOUPS)
(VERB NOUN NOUN)
What, you may ask, was all that about? It |ooks like we half-wrote a function in the middle of another

one! The expression"(LAMBDA (WORD) . .. 'SPEECHPART))" istypical of what we type for the
definition of afunction using DEFINE.

Let'slook at some simpler examples:

 (SETQ FN ' (LAMBDA (X) (REVERSE X))))
(LAMBDA (X) (REVERSE X))

:(FN ' (THE VALUE OF FN | S A LAVBDA))
(LAMBDA A IS FN OF VALUE THE)

(" (LAMBDA (X) (REVERSE X)) '(TH S ONE

1S R GHT HERE)))

(HERE RIGHT IS ONE TH' S)

LAMBDA expressions, variables whose values are LAMBDA expressions, or expressions which
evaluate to LAMBDA expressions, can be used in aLisp expression in any place afunction name would
normally occur. A LAMBDA expression islike atemporary function. The appropriate values of its
arguments are bound during evaluation, but after the result is returned, the function, and the argument
values, go away.

When we use DEFINE to establish afunction definition, it puts the LAMBDA expression forming the

http://nostoc.stanford.edu/jeff/llisp/22.html (5 of 8)6/18/2008 2:21:02 PM

LEARNING LISP - Properties and Lambda Expressions

body of the function as a property of the function name. The property where this function is stored is
caled EXPR.

: (CDR ' PARTS)
(EXPR (FLAVMBDA (SENTENCE) (MAPCAR (
QUOTE (LAVBDA (WORD) (GET WORD (QUOTE S
PEECHPART)))) SENTENCE)))

. (GET ' PARTS ' EXPR)
(FLAVBDA (SENTENCE) (MAPCAR (QUOTE (

LAVBDA (WORD) (GET WORD (QUOTE
SPEECHPART)))) SENTENCE))

In general, LISP looks at the world as follows:

1. Everythingisan expression [that is, hasa CAR and a CDR or is an atom].

2. If the expression is an atom then return its value.

3. If the expressionisalist then apply rule 4 to the CAR and use the CDR as the arguments to the
function referred to in rule 4.

4. If the CAR isan atom then either itsvalueisa LAMBDA expression [as example 3 above] or it
has an EXPR on its property list whose value [i.e., (GET (CAR expression) 'EXPR)] isa
LAMBDA expression [asin all the functions created by DEFINE]. Evaluate the LAMBDA

expression!
5. If theCARisalist, evaluateit and go to rule 4.

That's all abit complicated. Perhaps a few examples would help out. First, let's suppose that the variable
[atom] X hasthe value " (lambda (f) (reversef))".

We enter:

((CAR ' (X Y 2)) '(LIST TO BE REVERSED))

X [theresult of CAR .. .] evalsto the form:

((LAMBDA (F) (REVERSE ' (F)) ' (LI ST TO BE REVERSED))
The F binds to the argument. The new expression is:

(REVERSE ' (LI ST TO BE REVERSED))

http://nostoc.stanford.edu/jeff/llisp/22.html (6 of 8)6/18/2008 2:21:02 PM

LEARNING LISP - Properties and Lambda Expressions

which returns;
(REVERSED BE TO LI ST)

We could have equivalently used DEFINE to jam the LAMBDA expression into the EXPR property of
the atom X. The evaluation would have worked in the same way. In a previous chapter we asked
whether DEFINE was an EXPR or aFEXPR. Since we know what DEFINE really does, we can define
it. Thisseems abit redundant, and it is, but it is a good exercise.

DEFINE is of the form:
(DEFI NE (nanme (LAMBDA-expression)))

Since (name (LAMBDA-expression)) can't be evaluated [especially before the name is defined] we have
to use aFEXPR in order to keep Lisp from trying to evaluate it. Our first line must be:

(DEFI NE (DEFI NE (FLAMBDA (function-form

The function-form will have the form:

(name (LAMBDA- expression))

Now, our task is easy. Let's redefine DEFINE inreal Lisp and seeif it works as expected. If you try to

do this, itisagood ideato call it something other than DEFINE [like DEFINA], to avoid making
catastrophic mistakes,

E(DEFI NE (DEFI NA (FLAVBDA (FUNCFORM)
(PUT (CAAR FUNCFORM) ' EXPR (CADAR
FUNCFORM))))
DEFI NE
. (DEFI NA (ENDOF (LAVBDA (S)
(CAR (REVERSE §))))))))
(LAVMBDA (S) (CAR (REVERSE S)))
: (CDR ' ENDOF)

http://nostoc.stanford.edu/jeff/llisp/22.html (7 of 8)6/18/2008 2:21:02 PM

LEARNING LISP - Properties and Lambda Expressions

(EXPR (LAMBDA (S) (CAR (REVERSE S)))
)

: (ENDOF ' (A S D F))
F
. (CDR ' DEFI NA)

(EXPR (FLAVMBDA (FUNCFORM) (PUT (CAAR
FUNCFORM) (QUOTE EXPR) (CADAR FUNCFORM

))))
: (REM ' DEFI NA ' EXPR)

NI L
: (CDR ' DEFI NA)

NI L
: (CDR ' DEFI NE)

(SUBR *)
Note that when we redefined DEFINE we are using only the value of DEFINA. The property that you
seein thelast line above [SUBR] holds the real value of DEFINE. When we REM our EXPR definition
from DEFINE's property list the old value [SUBR] comes back [IF YOU USE DEFINE INSTEAD OF

DEFINA, DON'T FORGET TO DO THIS]! Don't worry about what a SUBR really is, we will discuss
that on the chapter about internals.

Lisp functions exist as properties of atoms with the name of the atom being the name of the function.
Since Lisp functions are only Lisp expressions, you can see how being able to manipulate these
expressions can be useful. For one thing, it means we can write our own editor in Lisp. It means that we
can write functions which generate other functions during their evaluation.

Contents | Eval and Apply | Differentiating Polynomials

http://nostoc.stanford.edu/jeff/llisp/22.html (8 of 8)6/18/2008 2:21:02 PM

LEARNING LISP - Differentiating Polynomials

LEARNING LISP

Contents | Properties and Lambda Expressions | Simplifying Polynomials

Differentiating Polynomials

We are now going to travel back in time to the days of freshman calculus. We are going to write a
system which will perform symbolic differentiation of polynomials.

Here are the rules for differentiation which will use.

O 0, x] =0

O x, x] =1

D (utv), x] =D u, x] +O{ v, X]
D (u-v), x] =D u, x]-Df v,]
O (uv), x] =ul v, x] +vD[u, x]
Of (u"), x] =nun-10{ u, x]

We are using the capital letter "D" to indicate the differentiation operator. Also, we specify the variable
with which the differentiation is being done. Notice that some of these rules are recursive. For example,
in order to differentiate (u+v) we need to differentiate u and v. So much for the specification problem.
Let'srecall the representation of polynomialsin Lisp from previous chapters, where polynomials were
transformed into Lisp lists. Thus, "2x" trandatesto "(MULT 2 X)", etc. We are going to write some help
functions which return the different parts of the polynomials for use in our derivative function. We will
need the outermost [or highest level] function in a polynomial. Here is a picture.

(ADD (MULT 2 X) 3)

second term
first term
top-1 evel function

Here are some of our help functions. The "function” in a polynomial isthe CAR of the polynomial
represented in Lisp. The first and second terms of a polynomial are the CADR and the CADDR of the
Lisp representations, respectively.

(deflne (function (lanbda (poly)

(car poly))))
FUNCTI ON

http://nostoc.stanford.edu/jeff/llisp/23.html (1 of 5)6/18/2008 2:21:04 PM

LEARNING LISP - Differentiating Polynomials

- (define (firstterm (lanbda (poly)
: (cadr poly))))
FI RSTTERM
- (define (secondterm (|l anbda (poly)
: (caddr poly))))
SECONDTERM
- (setqg p '(add (sub x 2) 12))
(ADD (SUB X 2) 12)
:(function p)
ADD
(firsttermp)
(SUB X 2)
: (secondt erm p)
12

Note that none of these functions are strictly necessary. However, if we were to change the underlying
Lisp representation then it would only be necessary to change these three functions. If we didn't use
them, then any change in the representation would require changing every access of the representation in
all of the functions we write.

Let'swrite the main function first. It will be called DERV and take two arguments. a polynomial, and
the variable with which the polynomial is to be differentiated. Here is some sample behavior.

- (derv '(add x 2) 'Xx)

(ADD 1 0)
c(derv "(mult x 2) 'Xx)

(ADD (MULT X 0) (MULLT 2 1))
- (derv '(exp x 2) 'X)

(MJULT (MULT 2 (EXP X 1)) 1)

We now exhibit the function DERV.

. (define (derv (lanbda (poly var)
: (cond
((atom poly) (dervatom poly var))
((equal '"add (function poly))
(dervsum poly var))
((equal 'sub (function poly))
(dervm nus poly var))
((equal "mult (function poly))
(dervprod poly var))
((equal "exp (function poly))

http://nostoc.stanford.edu/jeff/llisp/23.html (2 of 5)6/18/2008 2:21:04 PM

LEARNING LISP - Differentiating Polynomials

(dervexp poly var))

))))
DERV

If the polynomial is an atom then we call a help function, DERVATOM, which will properly
differentiate an atom. We will write DERVATOM shortly. The next four conditions compare the main
function in the polynomial with the different functions we are using: ADD, SUB, MULT, and EXP. If
one of those four are found, the appropriate help function is called.

Let'swrite DERVATOM. The derivative of an atom is equal to 1 if the atom is the variable with which
the differentiation is being performed. The derivativeisa0 in al other cases. Thisfunction is quite

simple to write.

. (define (dervatom (|l anbda (poly var)
; (cond

((equal poly var) 1)

(t 0)))))

DERVATOM
c(derv "1 '"x)
0
s (derv '"x '"X)
1

We will now write the function for differentiating a sum of two polynomials.

. (define (dervsum (|l anbda (poly var)
: (list "add
(derv (firstterm poly) var)
(derv (secondtermpoly) var)))))
DERVSUM
:(dervsum ' (add x 3) 'Xx)
(ADD 1 0)

Notice that DERVSUM, which is called by DERV, also calls DERV. Therefore, we have a PAIR of
recursive functions.

Similarly, hereisthe function for differentiating a difference of two polynomials.

- (define (dervm nus (| anbda (poly var)

: (list '"sub
(derv (firstterm poly) var)
(derv (secondterm poly) var)))))

http://nostoc.stanford.edu/jeff/llisp/23.html (3 of 5)6/18/2008 2:21:04 PM

LEARNING LISP - Differentiating Polynomials

DERVM NUS
The functions for multiplication and exponentiation are only slightly more difficult.

(deflne (dervprod (I anbda (poly var)
(list "add
(list "mult
(firstterm poly)
(derv (secondterm poly) var))
(list "mult
(secondt erm pol y)
(derv (firsttermpoly) var))))))
DERVPRCD
(deflne (dervexp (I anbda (poly var)
(list "mult
(list "mult
(secondt erm pol y)
(list '"exp
(firstterm poly)
(sub (secondtermpoly) 1)))
(derv (firsttermpoly) var)))))
DERVEXP
:(dervprod '(mult x 2) 'Xx)
(ADD (MULT X 0) (MULLT 2 1))
:(dervexp '(exp x 2) 'X)
(MULT (MULT 2 (EXP X 1)) 1)

We now have the entire system, so let's try some difficult stuff.

c(derv '"(add (mult 3 (exp x 2)) 15 'Xx)

(ADD (ADD (MULT 3 (MULT (MULT 2 (EXP X 1)) 1))
(MULT (EXP X 2) 0)) 0)

:(derv '(add (add (nmult a (exp x 2)) (mult b x)) c) 'x)
(ADD (ADD (ADD (MULT A (MULT (MULT 2 (EXP X 1)) 1))
(MULT (EXP X 2) 0)) (ADD (MUT B 1) (MJULT X 0))

0) 0)

:(setq a (derv '"(mult (add x 1) (sub 1 x)) 'Xx))

(ADD (MULT (ADD X 1) (SUB 0 1)) (MUT (SUB 1 X)
(ADD 1 0)))

- (setqg x 3)
3

- (eval a)
-6

http://nostoc.stanford.edu/jeff/llisp/23.html (4 of 5)6/18/2008 2:21:04 PM

LEARNING LISP - Differentiating Polynomials

Contents | Properties and Lambda Expressions | Simplifying Polynomials

http://nostoc.stanford.edu/jeff/llisp/23.html (5 of 5)6/18/2008 2:21:04 PM

LEARNING LISP - Simplifying Polynomials

LEARNING LISP

Contents | Differentiating Polynomials | Efficiency and Elimination of Recursion

Simplifying Polynomials

Let us now return once again to the world of polynomials. We have only one task remaining, namely the
simplification of a polynomial. Remember from the last episode that the result of the DERV function
could be rather messy, as the following aptly demonstrates:

:(derv '(mult (add x 2) (add x 3)) 'x)
(ADD (MULT (ADD X 2) (ADD 1 0)) (MJLT (ADD X 3)
(ADD 1 0)))

Thereisno intelligence in the DERV function. It should be clear that (MULT (ADD X 2) (ADD 1 0))
can be smplified to (ADD X 2). In fact, there are many similar simplifications that can be performed on
polynomials. Hereisour list.

Lisp form Sinplified form

R OVOF VOV YVYVOO0o

[where ? is any Lisp expression]

Assume we have at our disposal afunction called SIMPLIFY which will perform these transformations.
Here is some behavior.

c(sinplify '(add x 0))
X
c(sinmplify "(exp 0 0))

http://nostoc.stanford.edu/jeff/llisp/24.html (1 of 4)6/18/2008 2:21:06 PM

LEARNING LISP - Simplifying Polynomials

1

c(simplify "(mult (mult 0 x) vy))
0

- (setqg p (derv '"(mult (add x 2) (add x 3)) 'Xx))
(ADD (MULT (ADD X 2) (ADD 1 0)) (MJULT (ADD X 3)
(ADD 1 0)))

c(sinmplify p)
(ADD (ADD X 2) (ADD X 3))

When we apply the SIMPLIFY function to an expression of the form MULT 1 ?, the result should be the
result of applying SIMPLIFY to ?. This meansthat SIMPLIFY isrecursive.

The following function implements the above table:

:(define (sinplifyl (lanbda (poly)
(cond
((null poly) nil)
((atom poly) poly)
((equal "mult (function poly))
(cond
((equal O (firsttermpoly)) 0)
((equal O (secondterm poly)) 0)
((equal 1 (firsttermpoly))
(sinplifyl (secondterm poly)))
((equal 1 (secondterm poly))
(sinmplifyl (firsttermpoly)))
(t (list "nmult
(sinmplifyl (firstterm poly))
(sinmplifyl (secondtermpoly))))))
((equal "add (function poly))
(cond ((equal O (firsttermpoly))
(sinmplifyl (secondterm poly)))
((equal O (secondterm poly))
(sinmplifyl (firsttermpoly)))
(t (list 'add
(sinmplifyl (firstterm poly))
(sinplifyl (secondtermpoly))))))
((equal '"sub (function poly))
(cond
((equal O (secondterm poly))
(sinmplifyl (firsttermpoly)))
(t (list 'sub
(sinmplifyl (firstterm poly))

http://nostoc.stanford.edu/jeff/llisp/24.html (2 of 4)6/18/2008 2:21:06 PM

LEARNING LISP - Simplifying Polynomials

(sinplifyl (secondtermpoly))))))
((equal "exp (function poly))

(cond
((equal O (secondterm poly)) 1)
((equal 1 (secondterm poly))
(sinmplifyl (firsttermpoly)))
((equal O (firsttermpoly)) 0)
((equal 1 (firsttermpoly)) 1)))

(t poly)))))
SI MPLI FY1

SIMPLIFY 1 uses some of the help functions from the last chapter. The structure of the function closely
follows the list of semplifications given above. Notice the recursive calls when the terms are not
constant.

Let's compare it with our idealized SIMPLIFY .

c(simplifyl "(mult (add x 2) (add 1 0)))
(MULT (ADD X 2) 1)

c(simplify "(mult (add x 2) (add 1 0)))
(ADD X 2)

We have here a discrepancy. What is the source of the problem? Well, when SIMPLIFY 1 simplifies
(ADD 10), it gets 1 asit should. However, the test for multiplication by 1 has already been performed
before this. SIMPLIFY 1 can't make the second semplification. If we view the polynomial as atree, then
SIMPLIFY 1 ismoving down the tree and any reduction performed on subtrees can't migrate back to the
upper levels. How can we beat this conundrum? What we really want to do is to keep applying
SIMPLIFY 1 to the polynomial until the application no longer resultsin any change. Let'swrite a
function which goes around in aloop while continually applying SIMPLIFY 1 until afinal constant
expression is reached.

Thisis one of those cases, when recursion isn't the easiest way to do things. Thus, let's use a PROG! The
following isthe PROG for SIMPLIFY::

:(define (sinplify (lanbda (poly)
: (prog (polyl)
| oop (setq polyl (sinplifyl poly))
(cond ((equal poly polyl)) (return poly)))
(setq poly polyl)
(go loop)))))
SI MPLI FY

(sinplify '(mult (add x 2) (add 1 0)))

http://nostoc.stanford.edu/jeff/llisp/24.html (3 of 4)6/18/2008 2:21:06 PM

LEARNING LISP - Simplifying Polynomials

(ADD X 2)

This function continues to simplify the polynomial until there is no change between two successive
simplifications. It then returns the ssimplified polynomial.

Contents | Differentiating Polynomials | Efficiency and Elimination of Recursion

http://nostoc.stanford.edu/jeff/llisp/24.html (4 of 4)6/18/2008 2:21:06 PM

LEARNING LISP - Efficiency and Elimination of Recursion

LEARNING LISP

Contents | Simplifying Polynomials | ELIZA

Efficiency and Elimination of Recursion

We have disregarded one issue throughout this entire book, namely, how hard the computer has to work
to evaluate a function. In this chapter, we are going to look at some different ways of writing the same
function, with emphasis on the efficiency of the evaluation.

Here are four different versions of the factorial function.

- (define (factl (|l anmbda (n)
(cond
((equal n 0) 1)
(t (mult n (factl (sub n 1))))
Do)
1))

FACT1

- (define (fact2 (lanbda (n)
(cond
((equal n 0) 1)
((equal n 1) 1)
(t (mult n (fact2 (sub n 1))))
Do)
)))

FACT2

- (define (fact3 (Il anbda (n)
(prog (m prod)
(setq m 0)
(setq prod 1)
| oop
(cond
((equal mn) (return prod))

)
(setqg m(add m 1))

http://nostoc.stanford.edu/jeff/llisp/25.html (1 of 3)6/18/2008 2:21:07 PM

LEARNING LISP - Efficiency and Elimination of Recursion

(setq prod (nmult prod m)

(go I oop)
L)
1))

FACT3

- (define (fact4 (|l anmbda (n)
(factda n 1)

)
FACT4

- (define (factd4a (lanbda (n m
(cond
((equal n 0) m
(t (factd4a (sub n 1)
Do)
1))

FACT4A

We haven't shown them working, but take our word for it, they do. What are the salient differences
between each of the functions?

FACT1 and FACT?2 are the standard recursive definitions of the factorial. However, since FACT2 tests
for an argument of 1, it will end a chain of recursive calls one setp sooner than FACT1. We still need to
test for O because O is a special case. The importance of one lessrecursive call is, in this application,
negligible.

FACT3 shows the factorial function in itsiterative form. Thereis only one function call, but the function
will loop n timesjust as FACT1 will call itself n times. Depending upon the phase of the moon, the
iterative solution might be more efficient for the computer [that is, it will execute faster]. The recursive
form will usually be more legible, though.

The fourth definition uses what is known as a collection variable, or an accumulation variable. Aswe
decrement n we keep the running product in the collection variable m. The FACT4 function serves only
to pass the value of n and set up the collection variable for the function FACT4A. Although it may not
seem very useful, this technique can be used to define very efficient recursive functions. It is particularly
useful in cases where some values of the function are recomputed by different recursive calls.

So much for factorial. We mentioned several times that Lisp was an interpreter. What does this mean?

http://nostoc.stanford.edu/jeff/llisp/25.html (2 of 3)6/18/2008 2:21:07 PM

LEARNING LISP - Efficiency and Elimination of Recursion

L anguage processors come in two different types, interpreters, and compilers. An interpreter isa
computer program written in assembly language [the language that is very close to what the computer
understands directly]. An interpreter worksin what is called a READ-EVAL-PRINT loop. If we wereto
call afunction 1000 times, Lisp would re-evaluate each part of the function 1000 times. This is waste of
time. Thisiswhere acompiler comesin. A Lisp compiler would translate each function into machine
language. [Thisiswhat the computer processor understands directly.] This would make each function
execute much more rapidly. Y ou tipically would not want to use a compiler to compile functions while
you are developing the programs. Because compiling takes a finite amount of time, you normally would
want to wait until all your functions are debugged before running them through a compiler.

Contents | Simplifying Polynomials | ELIZA

http://nostoc.stanford.edu/jeff/llisp/25.html (3 of 3)6/18/2008 2:21:07 PM

LEARNING LISP - ELIZA

LEARNING LISP

Contents | Efficiency and Elimination of Recursion | The P-Lisp Interpreter

ELIZA

ELIZA isaclassic example of the use of Lisp in asample artificial intelligence (Al) application. Originally written
by Joseph Weizenbaum, ELIZA isaprogram that "simulates' a patient's discussion with a psychiatrist. While
appearing on the surface to possess "intelligence”, the program is actually little more than a simple pattern matcher.
A sample dialogue with ELIZA follows (user input isin lower case, with ELIZA'S responses in upper case):

MAY | HELP YOU?
21 want you to help ne
VHAT WOULD I T MEAN TO YOQU | F YOU GOT ME TO HELP YQU?
cimafraid to tell you
YOURE NOT REALLY TALKI NG ABOUT Mg, ARE YOU?
:what does that nean
VHY DO YOU ASK?
-are you asking ne
VHY ARE YQU | NTERESTED I N WHETHER OR NOT | AM ASKI NG YOU?
:why do you keep answering w th questions
DOES THAT QUESTI ON | NTEREST YOU?
i dont know
DONT YOU REALLY KNOWP
: No
ARE YOU SAYI NG NO JUST TO BE NEGATI VE?
i think so
DO YOU REALLY THI NK SO?
:not al ways
CAN YOU THI NK OF A SPECI FI C EXAVPLE?
:oh shut up
| M NOT SURE | UNDERSTAND YOU FULLY?
: goodbye
GOODBYE

What follows is an annotated listing of ELIZA asimplemented in p-Lisp:

; ELIZA -- P-Lisp version Copyright 1982 by Steven Cherry

; The main function, ELIZA, gets a line of input and prints the
; appropriate response. The user's input is saved for the next tine
; through the |l oop so we can check if the user is repeating hinself.

http://nostoc.stanford.edu/jeff/llisp/26.html (1 of 11)6/18/2008 2:21:11 PM

LEARNING LISP - ELIZA

(DEFI NE (ELI ZA (LAVBDA ()
(PROG (KEY I N ON)

(CALL -936) ;cl ear the screen

(GC NIL) ;turn of f garbage coll ection nessage
(PRI NT)

(PRI NTLI NE ' (MAY | HELP YOU?))

LOOP

; Get input. If the new input equals the old, conplain.
; Ot herwi se check if input should stop ELIZA
(SETQ I N (READLI NE))

(COND
((EQUAL I N ON)
(PRI N1)
(PRI NTLI NE ' (PLEASE DO NOT REPEAT YOURSELF))
(GO LOOP))
((EQUAL I N ' (GOODBYE)) (RETURN ' GOODBYE)))
(SETQ KEY (KEYSEARCH I N)) ;get the keyword nunber
(PRI N1)
(PRI NTLI NE (REPLY (CONJUGATE (CDR KEY))
(CAR KEY))) ;print response
(SETQ IN ON)
(GO LOOP)
)
)))

; KEYSEARCH searches the input line for the word or phrase
; that has the highest priority. This priority is returned, along
; wth the remai nder of the input |ine.

; Priorities are stored on a word's property list under the property

;. KEY. |If the property value is not a nunber, then the word can be part
; of a phrase, in which case the property value will also appear as a

; property on the list. The value of this property will be either the

; priority for the phrase or the next word of the phrase. If a word can
; have a priority by itself as well as be the first word of a phrase

; then this priority will be stored under the property KEY2. As an

; exanple, the property list for the word YOU m ght | ook I|ike:

; (KEY ARE ARE 4 KEY2 14),

; nmeaning the word YOU has priority 14, and the phrase YOU ARE has

; priority 4.

(DEFI NE (KEYSEARCH (LAMBDA (I N)
(PROG (KEYNUM THI SKEY LEFT WORD)
(SETQ KEYNUM 1 THI SKEY 1)
LOOP
; If at end of input, return the highest priority and the i nput
; followi ng the keyword or keyphrase sel ected.

http://nostoc.stanford.edu/jeff/Ilisp/26.html (2 of 11)6/18/2008 2:21:11 PM

LEARNING LISP - ELIZA

(COND ((NULL I'N (RETURN (CONS KEYNUM LEFT))))
(SETQ WORD (CAR I N))
; Check if the word is a nunber, since doing a GET on a nuneric
; atom causes an error. Set TH SKEY to the property val ue of
; KEY (could be NIL if the word isn't a keyword).
(COND
((NUMBER WORD) (SETQ THI SKEY 1))
(T (SETQ THI SKEY (GET WORD ' KEY))))
; If THHSKEY is not nunmeric, the word nust be the first word
; of a keyphrase.
(COND
((NOT' (NUMBER THI SKEY))
(SETQ THI SKEY (KEYPHRASE WORD (CDR IN) THI SKEY))
; I f KEYPHRASE returned NIL, the phrase wasn't in the input.
; In this case get the KEY2 property value. O herw se,
; KEYPHRASE returned the priority of the phrase and the
; input follow ng the phrase.
(COND
((NULL THI SKEY)
(SETQ IN (CDR IN) THI SKEY (GET2 WORD ' KEY2)))
(T (SETQ IN (CDR THI SKEY) THI SKEY (CAR THI SKEY)))))
(T (SETQIN (CDR IN))))
; If the new priority is higher than the old one, set the old
; to the new and set LEFT to contain the remainder of the input.
(COND
((GREATER THI SKEY KEYNUM
(SETQ KEYNUM THI SKEY LEFT IN)))
' (GO LOOP)
)
)))

. KEYPHRASE checks for a specific sequence of words in IN [|f found,
; the priority of the phrase and the input followi ng the phrase are
; returned as the CAR and CDR of a list respectively.

(DEFI NE (KEYPHRASE LAMBDA (WORD | N THI SKEY)
(PROG ()
LOOP
(COND
((NULL THI SKEY) (RETURN NIL)) ;check if finished
; Return the priority for the phrase (in THI SKEY)
. has been found.
((NUMBER THI SKEY) (RETURN (CONS THI SKEY IN)))
; Use the next word in the input as a property on WORD s
; property list, get the property value and | oop.

(T (SETQ THI SKEY (GET WORD (CAR IN)) IN (CDR IN))))
(GO LOOP)

http://nostoc.stanford.edu/jeff/Ilisp/26.html (3 of 11)6/18/2008 2:21:11 PM

LEARNING LISP - ELIZA

)
)))

. GET2 returns the property value of property Y for atom X If this
: value is NIL, then GET2 returns 1.

(DEFI NE (GET2 (LAMBDA (X Y)
(PROG (2)
(SETQ Z (GET X VY))
(COND
(NULL Z2) (RETURN 1))
(T (RETURN 2)))

)
)))

; CONJUGATE conjugates the input line follow ng the keyword or phrase

; found by KEYSEARCH. The conjugation of a word is stored on the word's
; property list under the property CONJ. For exanple, | is changed to

; YOU, YQU is changed to ME, etc. The resulting list is returned.

(DEFI NE (CONJUGATE (LAVBDA (OLDT)
(PROG (NEW W \W2)
LOOP
(COND
((NULL OLDT) (RETURN NEW)) ; return if finished
(SETQ W (CAR OLDT))
; If Wis a word, get the value of the CONJ property
(COND
((NUMBER W (SETQ W2 NIL))
(T (SETQ W (GET W' CONJ))))
; If W2 is non-NIL, it will be the conjugation of word W Append
; the correct word onto NEW and repeat.
(COND
((NULL W2) (SETQ NEW (APPEND NEW W))
(T (SETQ NEW (APPEND NEW W2))))
(SETQ OLDT (CDR OLDT))
(GO LOOP)
)
)))

; REPLY is given the priority of the found keyword or phrase (KEYNUM and
; the conjugated remai nder of the input Iine (NEW and fornul ates a

; response. First the priority is used to select the response set from

; the RESP |ist. The CAR of this response set is used to select the next
; response in the set, and this nunber is then increnented. If the

http://nostoc.stanford.edu/jeff/Ilisp/26.html (4 of 11)6/18/2008 2:21:11 PM

LEARNING LISP - ELIZA

; nunber exceeds the length of the set, it is reset to 2. Oice a
; response is selected, NEWis attached to the end if the CAR of the
, response is an asteri sk.

(DEFI NE (REPLY (LAMBDA (NEW KEYNUM
(PROG (A RES QUT)
. Use KEYNUM to sel ect the response set
(SETQ A (ARRAY (LI ST KEYNUM RESP))
(SETQ RES (EVAL A))
; Use the CAR of the response set to select the
;. next response.
(SETQ OQUT (ARRAY (LIST CAR RES)) (CDR RES)))
; Reset the nunmber to 2 if nothing was sel ected, and
. select the first response. Qtherw se increnment the nunber.
(COND
((NULL Qum)
(SET A (CONS 2 (CDR RES)))
(SETQ OQUT (CAR (CDR RES))))
(T (SET A (CONS (ADD (CAR RES) 1) (CDR RES)))))
. If the CAR of the response is an asterisk, add NEWto the end.
(COND
((EQUAL (CAR QUT) " *)
(SETQ OUT (CONC (CDR QUT) NEW)))
(RETURN QUT)
)
)))

; PRINTLINE prints a |list without the delimting parentheses.

(DEFI NE (PRI NTLI NE (LAVBDA (X)
(MAPCAR ' PRI NL X)
(PRI N1)

)))

; ELI ZA DATABASE

(SETQ RESP ' (RL R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 Rl14 RI15
R16 R16 R16 R16 R16 R16 R22 R23 R24 R25 R26 R27 R28 R29 R30
R31 R32 R33 R34 R35 R36)))

(SETQ RL ' (1
(WHAT DOES THAT SUGGEST TO YOU?)
(I SEE)
(I M NOT SURE | UNDERSTAND YOU FULLY)

http://nostoc.stanford.edu/jeff/Ilisp/26.html (5 of 11)6/18/2008 2:21:11 PM

LEARNING LISP - ELIZA

(COMVE, COME, ELUCI DATE YOUR THOUGHTS)
(CAN YOU ELABORATE ON THAT?)

(THAT |'S QUI TE | NTERESTI NG

(DO YOU HAVE ANY PSYCHOLOG CAL PROBLEMS?)
(YOU DONT SAY)

))

(SETQR2 ' (1
(* DONT YOU BELI EVE THAT | CAN)
(* PERHAPS YOU WOULD LI KE TO BE ABLE TO)
(* YOU WANT ME TO BE ABLE TO)
(* WHAT MAKES YOU THINK | COULD)

))

(SETQ R3 ' (
(* PERHAPS YOU DONT WANT TO)
(* DO YOU WANT TO BE ABLE TO)
(* DO YOU THI NK YOU COULD NOT)

))

(SETQ R4 ' (1
(* WHAT MAKES YOU THINK | AM
(* DOES | T PLEASE YOU TO BELIEVE | AM
(* PERHAPS YOU WOULD LI KE TO BE)
(* DO YOU SOVETI MES W SH YOU VAERE)

))

(SETQ R5 ' (1
(* WHAT MAKES YOU THINK | AM
(* DOES | T PLEASE YOU TO BELIEVE | AM
(* PERHAPS YOU WOULD LI KE TO BE)
(* DO YOU SOVETI MES W SH YOU V\ERE)

))

(SETQ R6 ' (1
(* DONT YOU REALLY)
(* \WHY DONT YOU)
(* DO YOU W SH TO BE ABLE TO)
(* DOES THAT TROUBLE YOU?)

))

(SETQ R7 ' (1
(TELL ME MORE ABOUT SUCH FEELI NGS)
(* DO YOU OFTEN FEEL)
(* DO YOU ENJOY FEELI NG

))

(SETQ R8 ' (1

http://nostoc.stanford.edu/jeff/Ilisp/26.html (6 of 11)6/18/2008 2:21:11 PM

LEARNING LISP - ELIZA

(* DO YOU REALLY BELI EVE | DONT)
(* PERHAPS I N GOOD TIME | WLL)
(* DO YOU WANT ME TO)

))

(SETQ RO ' (1
(* DO YOU THI NK YOU SHOULD BE ABLE TO)
(* WHY CANT YOU)

))

(SETQ R10 ' (1
(* WHY ARE YOU | NTERESTED | N WHETHER OR NOT | AM
(* WOULD YOU PREFER | F | WERE NOT)
(* PERHAPS | N YOUR FANTASIES | AM

))

(SETQ R11 ' (1
(* HOW DO YOU KNOW YOU CANT)
(HAVE YOU TRI ED?)
(* PERHAPS YOU CAN NOW

))

(SETQ R12 ' (1
(* DD YOU COVE TO ME BECAUSE YOU ARE)
(* HOW LONG HAVE YOU BEEN)
(* DO YOU BELIEVE I T IS NORVAL TO BE)
(* DO YOU ENJOY BEI NG

))

(SETQ R13 ' (1
(* DID YOU COVE TO ME BECAUSE YOU ARE)
(* HOW LONG HAVE YOU BEEN)
(* DO YOU BELIEVE I T IS NORVAL TO BE)
(* DO YOU ENJOY BEI NG

))

(SETQ R14 ' (1
(VE WERE DI SCUSSI NG YQU -- NOT ME)
(" o4, 1)
(YOURE NOT REALLY TALKI NG ABOUT ME, ARE YOU?)
(OH, YEAH?)
)

(SETQ R15 ' (1
(* WHAT WOULD I T MEAN TO YOU | F YOU GOT)
(* \WHY DO YOU WANT)
(* SUPPOSE YOU SOON GOT)
(* WHAT | F YOU NEVER GOT)

http://nostoc.stanford.edu/jeff/llisp/26.html (7 of 11)6/18/2008 2:21:11 PM

LEARNING LISP - ELIZA

(* | SOVETI MES ALSO V\ANT)
))

(SETQ R16 ' (1
(VWHY DO YOU ASK?)
(DOES THAT QUESTI ON | NTEREST YOU?)
(VHAT ANSWER WOULD PLEASE YOU MOST?)
(VHAT DO YOU THI NK?)
(ARE SUCH QUESTI ONS ON YOUR M ND OFTEN?)
(WHAT 1S I T THAT YOU REALLY WANT TO KNOWP)
(HAVE YOU ASKED ANYONE ELSE?)
(HAVE YOU ASKED SUCH QUESTI ONS BEFORE?)
(WHAT ELSE COVES TO M ND WHEN YOU ASK THAT?)
(ARE YOU ASKI NG ME?)

))

(SETQ R22 ' (1
(NAVES DONT | NTEREST ME)
(I DONT CARE ABOUT NAMES -- PLEASE GO ON)

))

(SETQ R23 ' (1
(1'S THAT THE REAL REASON?)
(DONT ANY OTHER REASONS COMVE TO M ND?)
(DOES THAT REASON EXPLAI N ANYTHI NG ELSE?)
(WHAT OTHER REASONS M GHT THERE BE?)

))

(SETQ R24 ' (1
(PLEASE DONT APOLOG ZE)
(APOLOGI ES ARE NOT NECESSARY)
(WHAT FEELI NGS DO YOU HAVE WHEN YOU APOLOG ZE)
(DONT BE SO DEFENSI VE)

))

(SETQ R25 ' (1
(WHAT DOES THAT DREAM SUGGEST TO YOU?)
(DO YOU DREAM OFTEN?)
(VWHAT PERSONS APPEAR | N YOUR DREAMS?)
(ARE YOU DI STURBED BY YOUR DREAMNS?)

)
(SETQ R26 ' (1

(HOW DO YQU DO -- PLEASE STATE YOUR PROBLEM
(ENOUGH SALUTATI ONS -- WHAT DO YOU WANT?)

))

(SETQ R27 ' (1

http://nostoc.stanford.edu/jeff/Ilisp/26.html (8 of 11)6/18/2008 2:21:11 PM

LEARNING LISP - ELIZA

(HOWN DO YOU DO -- PLEASE STATE YOUR PROBLEM
(ENOUGH SALUTATI ONS -- WHAT DO YOU WANT?)

))

(SETQ R28 ' (1
(YOU DONT SEEM QUI TE CERTAI N)
(WHY THE UNCERTAI N TONE?)
(CANT YOU BE MORE POSI Tl VE?)
(YOU ARENT SURE?)
(DONT YOU KNOWP)

))

(SETQ R29 ' (1
(ARE YOU SAYI NG NO JUST TO BE NEGATI VE?)
(YOU ARE BEING A BI T NEGATI VE)
(VHY NOT?)
(ARE YOU SURE?)
(VHY NO?)
))

(SETQ R30 ' (1
(* WHY ARE YOU CONCERNED ABOUT MY)
(* WHAT ABOUT YOUR OMN)

))

(SETQ R31 ' (1
(CAN YOU THI NK OF A SPECI FI C EXAMPLE?)
(VHEN?)
(WHAT ARE YOU THI NKI NG OF?)
(REALLY, ALWAYS?)

))

(SETQ R32 ' (1
(DO YOU REALLY THI NK SO?)
(* BUT YOU ARE NOT SURE YOU)
(* DO YOU DOUBT YQU)

))

(SETQ R33 ' (1
(I N WHAT WAY?)
(WHAT RESEMBLANCE DO YOU SEE?)
(WHAT OTHER CONNECTI ONS DO YOU SEE?)
(HOAP)

)

(SETQ R34 ' (1
(YOU SEEM QUI TE POSI Tl VE)
(ARE YOU SURE?)

http://nostoc.stanford.edu/jeff/Ilisp/26.html (9 of 11)6/18/2008 2:21:11 PM

LEARNING LISP - ELIZA

(I SEE)
(1 UNDERSTAND)

))

(SETQ R35 ' (1
(WHY DO YOU BRI NG UP THE TOPI C OF FRI ENDS?)
(DO YOUR FRI ENDS WORRY YOU?)
(ARE YOU SURE YOU HAVE ANY FRI ENDS?)
(DO YOUR FRI ENDS PI CK ON YOU?)

))

(SETQ R36 ' (1
(DO COVPUTERS WORRY YOU?)
(ARE YOU TALKI NG ABOUT ME | N PARTI CULARY?)
(ARE YOU FRI GHTENED BY MACHI NES?)
(VHY DO YOU MENTI ON COMPUTERS?)
(WHAT DO YOU THI NK MACHI NES HAVE TO DO W TH YOUR PROBLEMP)
(DONT YOU THI NK COVPUTERS CAN HELP PEOPLE?)
(VWHAT IS | T ABOUT MACHI NES THAT WORRI ES YOU?)

))

; ELI ZA DI CTlI ONARY

(PUT "I ' CONJ ' YOU)
(PUT "1 ' KEY ' DONT)
(PUT '| ' DONT 6)
(PUT ' 'FEEL 7)
(PUT '| ' CANT 11)
(PUT ' ' AM 12)
(PUT '| 'WANT 15)

(PUT ' YOURSELF ' CONJ ' MYSELF)
(PUT ' ARE ' CONJ ' AM)
(PUT ' ARE ' KEY ' YOU)
(PUT ' ARE ' YOU 10)
(PUT ' AM ' CONJ ' ARE)
(PUT ' V\ERE ' CONJ ' WAS)
(PUT ' WAS ' CONJ ' VERE)
(PUT ' YOU ' CONJ ' MVE)
(PUT ' YOU ' KEY ' ARE)
(PUT ' YOU ' ARE 4)

(PUT ' YOU ' KEY2 14)
(PUT ' YOUR ' CONJ ' MY)
(PUT ' YOUR ' KEY 30)
(PUT 'MW ' CONJ ' YOUR)
(PUT ' I VE ' CONJ ' YOUVE)
(PUT ' YOUVE ' CONJ ' | VE)
(PUT 'IM' CONJ ' YOURE)

http://nostoc.stanford.edu/jeff/Ilisp/26.html (10 of 11)6/18/2008 2:21:11 PM

LEARNING LISP - ELIZA

(PUT ' I M KEY 13)

(PUT ' YOURE ' CONJ ' I' M
(PUT ' YOURE ' KEY 5)
(PUT ' ME ' CONJ ' YOU)
(PUT ' CAN ' KEY ' YOU)
(PUT ' CAN ' YOU 2)

(PUT 'CAN ' 3)

(PUT ' WHY ' KEY ' DONT)
(PUT ' WHY ' DONT ' YOU)
(PUT ' WHY ' YOU 8)

(PUT 'WHY ' CANT ')
(PUT "WHY "I 9)

(PUT ' WHY ' KEY2 21)
(PUT ' WHAT ' KEY 16)
(PUT ' HOW' KEY 17)
(PUT ' WHO ' KEY 18)
(PUT ' WHERE ' KEY 19)
(PUT ' WHEN ' KEY 20)
(PUT ' NAME ' KEY 22)
(PUT ' NAMES ' KEY 22)
(PUT ' CAUSE ' KEY 23)

(PUT ' BECAUSE ' KEY 23)
(PUT ' SORRY ' KEY 24)
(PUT ' DREAM ' KEY 25)
(PUT ' DREAVS ' KEY 25)
(PUT ' HELLO ' KEY 26)
(PUT 'H ' KEY 27)

(PUT ' MAYBE ' KEY 28)
(PUT ' NO ' KEY 29)

(PUT ' ALWAYS ' KEY 31)
(PUT ' TH NK ' KEY 32)
(PUT ' ALI KE ' KEY 33)
(PUT ' YES ' KEY 34)
(PUT ' FRIEND ' KEY 35)
(PUT ' FRIENDS ' KEY 35)
(PUT ' COMPUTER ' KEY 36)
(PUT ' MACHI NE ' KEY 36)
(PUT ' MACHI NES ' KEY 36)
(PUT ' COMPUTERS ' KEY 36)

Contents | Efficiency and Elimination of Recursion | The P-Lisp Interpreter

http://nostoc.stanford.edu/jeff/Ilisp/26.html (11 of 11)6/18/2008 2:21:11 PM

LEARNING LISP - The P-Lisp Interpreter

LEARNING LISP

Contents | ELIZA | Appendix: The Lisp Editor

The P-Lisp Interpreter

This chapter isintended for those who are curious about how a Lisp interpreter managesto do al the
wonderful things described in the previous chapters. The chapter isabit technical in nature and assumes
the reader has a basic knowledge of bits, bytes, and similar aspects of computer internals. Although
written specifically about the P-Lisp system, many of the concepts and methods employed here are used
in many different Lisp systems.

On its most fundamental level, aLisp interpreter consists of little more than a set of routinesto handle
some fancy pointer manipulation (a pointer being an address of some location in memory). This
simplicity isadirect result of the uniformity of Lisp data structures. As described below, the primary
data structure, the list, maps quite easily onto an equivalent internal representation. The interpreter's
simplicity is further enhanced by the non-necessity of a sophisticated parser, due to Lisp's rather smple
syntax. Moreover, because Lisp is by definition arecursive language, the interpreter may be defined
recursively as well, substantially reducing its complexity.

The P-Lisp workspace is divided into four-byte units called "cells." Thefirst two bytes of acell are
called (naturally enough) the CAR of the cell, and the last two bytes are the cell's CDR. The cellsare
aligned on contiguous four-byte boundaries, so that the last two bits of a cell's address are dways zero
(see below). Thisis necessary because the last two bits may then be used as status flags or to describe a
cell's contents.

Byte O 1 2 3 4 5 6 7 8 9 A B C D E F 10

Figure 27.1. Memory Cells

For example, the CAR or CDR of acell will typically contain the address of another cell. Bit 1 of such a
pointer is used to indicate the type of datait is pointing at. If the bit is set, the pointer (with the bit reset)
points to an atom; if the bit is reset, the pointer pointsto alist. A list isrepresented asalinked list of

http://nostoc.stanford.edu/jeff/llisp/27.html (1 of 6)6/18/2008 2:21:14 PM

LEARNING LISP - The P-Lisp Interpreter

cells. For example, thelist (A B C) is represented simply as

Figure 27.2. List Representation

The CDR of the last box is a pointer to the atom NIL. To make life easy for the interpreter, NIL is
predefined to live at alocation in memory where the hi-byte of its address is guaranteed to be zero (such
an addressis said to reside in "page zero" of memory). So, if the first byte of a pointer is zero, the
Interpreter assumes that the pointer pointsto NIL, regardless of the value of the second byte.

Note in Figure 27.2 how thelist (A B C) maps directly onto itsinternal representation. The CAR of (A B
C)isA, and the CAR of thefirst cell of thelist pointsto the atom A. The CDR of (A B C) is(B C), and
the CDR of thefirst cell points to the internal representation of (B C). You should be able to see already
that to evaluate (CAR ‘(A B C)), for example, the CAR subroutine simply returns the CAR of the first
cell of (A B C).

P-Lisp supports three types of atoms: literal atoms, integer atoms, and floating-point atoms. Literal
atoms are stored with the following format:

| | | property |i st

I I

| | ----- > | | ----- > Pointer to

I I

- R R (could be NL)

Pointer to Pointer to
val ue print-name |ist

Figure 27.3. Literal Atom

A literal atom's print name (the sequence of characters comprising the name of the atom) isstored in a
linked list. The CAR of each cell in thislist contains two characters of the atom's name, while the CDR

http://nostoc.stanford.edu/jeff/llisp/27.html (2 of 6)6/18/2008 2:21:14 PM

LEARNING LISP - The P-Lisp Interpreter

points to the next cell in thelist. The CAR of an atom'sfirst cell pointsto the atom's value; if the atom
has no value, this pointer is zero. Note that in the latter case both bytes are zero; thisis necessary to
distinguish the no-value case from the NIL-value case, which has only the hi-byte zero.

As an example, the atom APPLE with the value FRUIT and the property list (COLOR RED) would have
the following format:

| | | |
IR >] - >] - > INIL
I I I I
SIEEEEEE SIEEEEEE SIEEEEEE SIEEEEEE
I | I I
v | v v
|
Pointer to | Pointer to Pointer to
FRU T | COLOR RED
Y
I I I
|A P ----- > |P Ll ----- > |E | NL

Flgure 27.4. Litera Atom

Numeric atoms are distinguished from literal atoms by having the CDR of thefirst cell NIL, with the
CAR pointing to the remainder of the atom. An integer atom has the following format:

-- 16-bit val ue

http://nostoc.stanford.edu/jeff/llisp/27.html (3 of 6)6/18/2008 2:21:14 PM

LEARNING LISP - The P-Lisp Interpreter

Figure 27.5. Integer Atom

The 16-bit value isin two's-complement form. The NIL in the CDR of the second cell distinguishes
integer atoms from floating-point atoms. A floating-point atom has the following format:

. |
e eees “-e--
| |
| |
Exponent & Manti ssa &
manti ssa sign byte

Figure 27.6. Floating-point Atom

Floating-point atoms are stored in unpacked normalized exponential form. The mantissais four bytesin
length, providing ten significant digits.

All literal atoms, including the built-in atoms (T, NIL, and the built-in functions), are organized into a
single list within the workspace, called the OBLIST. Literal atoms are always unique; for some atom A,
there can be only one instance of A in the workspace. All references to this atom are pointers to the
single location where A resides. Numeric atoms, however, are not unique; there can be any number of
Instances of a given numeric value.

When the Lisp READ routine reads a s-expr, the s-expr is parsed and an internal representation of the s-
expr isbuilt. For every literal atom, the interpreter scans the OBLIST for that atom, comparing the
atom's print name to those of the atom on the OBLIST. If the atom is found, the pointer to the atom
(with the atom bit set) is returned; otherwise, an internal representation of the new atom is built and
added to the end of the OBLIST, and a pointer to the new atom is returned. If READ reads a numeric
atom, it smply builds a new atom (integerized, if possible) and returns its pointer. Although unique
numeric atoms would provide a substantial memory savings, vital for any microcomputer
implementation, the result would be a severe degradation of performance in any application involving
extensive calculations (consider that, if numeric atoms were unique, the OBLIST would have to be
scanned after every calculation to determineif the result already lives on the OBLIST).

After READ builds the linked list of cells representing the just-read s-expr, a pointer to the list is passed

http://nostoc.stanford.edu/jeff/llisp/27.html (4 of 6)6/18/2008 2:21:14 PM

LEARNING LISP - The P-Lisp Interpreter

on to the evaluator, EVAL. EVAL determinesif the s-expr is an atom or alist by the status of the atom
bit. If the bit is set, the s-expr is an atom, and EVAL evaluatesit in the following way: If the atom is
numeric (indicated by the CDR of thefirst cell being NIL), EVAL just returns the pointer to the atom as
the result. In the case of aliteral atom, EVAL first scans the environment chain (see discussion on
environment chain below) for the atom, and returns the corresponding value if found. If the atom is not
on the chain, EVAL uses the atom's OBLIST entry, returning the CAR of thefirst cell asitsvalue.

If EVAL ishanded alist to evaluate, the CAR of thefirst cell is used to determine the function to be
applied. If the pointer pointsto an atom, EVAL scans the property list of the atom for the EXPR
property. If found, the corresponding property value, the function definition, is evaluated, with the CDR
of thefirst cell handed to EVAL used as the pointer to the argument list. If EVAL does not find the
EXPR property, the property list is scanned again, this time searching for the SUBR property. If this
property is found, the corresponding property value is used as the address of the interpreter subroutine
that evaluates this SUBR. Thisroutineis called, passing to it the pointer to the argument list. If the CAR
of thefirst cell handed to EVAL pointsto alist, EVAL calsitself to evaluate this list, applying the end
result of this evaluation (which must be an EXPR or SUBR) to the argument list.

The SUBR routines themselves consist primarily of building new cells, deleting old cells, and moving
pointers around. Consider, for example, the function CONS. Recall that (CONS'A '(B)) creates a new
list (A B), the CAR of whichis A, and the CDR of which is (B). Thisis accomplished in the interpreter
by ssmply getting anew cell and storing the pointer to A in the CAR and the pointer to (B) in the CDR.
The pointer to the new cell now points to the result, the list (A B).

The environment chain contains the active LAMBDA-bindings during a given evaluation. LAMBDA -
bindings are stored as cell pairs; the CAR of thefirst cell points to the formal argument, and the CAR of
the second cell pointsto the value bound to the formal argument. The end of the environment is marked
by aNIL formal argument, with the CDR of that cell pointing to the next environment on the chain.
Below is a sample environment chain.

	- >		- >		- >		- > [NIL						
ol R ol R ol R ol R	- -												
\Y; \Y; \Y; \Y; \Y;
Formal X Val ue bound Formal Y Val ue bound Poi nt er
to X to Y t 0 next

envi r onnment

Figure 27.7. Environment Chain

Whenever an environment is exited (for example, leaving a PROG or aLAMBDA-expression), the cells

http://nostoc.stanford.edu/jeff/llisp/27.html (5 of 6)6/18/2008 2:21:14 PM

LEARNING LISP - The P-Lisp Interpreter

in the environment are discarded and the environment chain pointer is set to point to the next
environment on the chain. Whenever a new environment is entered (a new invocation of aLAMBDA-
expression or PROG), a new environment is built and attached to the head of the environment chain.

During the course of an evaluation, cells are constantly being used and discarded as required by the
interpreter, for example, by building and discarding environments. Initially, al free cellsin a workspace
are organized into alinked list called the free-space list. New cells are taken from this list as needed by
the interpreter. When the interpreter runs out of new cells, aroutine called the Garbage Collector is
invoked. The Garbage Collector scans the entire workspace, collecting all discarded cells into a new free-
space list. This collection is accomplished in two phases, the Mark phase and the Sweep phase. During
the Mark phase, all cellsthat are currently "active," that is, those cells that are attached to the OBLIST or
those that are part of the environment or the recursion stack, are marked as active. Thisis done by
setting the garbage collector bit, bit O, of the CDR of each cell. Cells that are not marked at the end of
the Mark phase cannot be reached via a pointer path either through the OBLIST, the environment chain,
or the recursion stack; these cells are considered free and reusable. During the Sweep phase of garbage
collection, the free cells are collected into a new free-spacelist. Thisis accomplished by scanning the
workspace from top to bottom. All cells that are marked are simply unmarked, while cells that are
initially unmarked are added to the freespace list. After this phase is completed, the interpreter continues
processing where it left off when the Garbage Collector was invoked.

SUMMARY

In very broad terms we have described the basic workings of the P-Lisp interpreter. A more detailed
examination would probably be beyond the scope of this book. However, you should now be able to
reread the tutorial with a better understanding of how and why things work the way they do. If you wish
to know more about the design of Lisp interpretersin general, John Allen's " Anatomy of Lisp" isan
excellent source for such information.

Contents | ELIZA | Appendix: The Lisp Editor

http://nostoc.stanford.edu/jeff/llisp/27.html (6 of 6)6/18/2008 2:21:14 PM

LEARNING LISP - Appendix: The Lisp Editor

LEARNING LISP

Contents | The P-Lisp Interpreter

Appendix: The Lisp Editor

This appendix includes a detailed explanation of the Lisp editor [ED] including all the code with
comments. It is certainly worth going through with a fine-tooth-comb and figuring out how ED does what
it does. It really embodies all of the things that are discussed in thistext. It would make avery nice
exercise to add afew commands to the editor yourself. We have not included the pretty-printer code. That
Isreally a separate set of functions. The editor smply calls the pretty printer directly.

; The lisp editor. Witten for P-Lisp by Jeff Shrager

; The main function is ED. It is a FEXPR so that the user can type

; (ED nanme) w thout having to quote the nane. Al that ED itself does

; is to check that the nanmed function really exists [has an EXPR] and

; then call ED-SUB on the function's body. If there is no EXPR then ED
; yells and quits.

(DEFI NE (ED (FLAMBDA (N) ; Nwll be a list of the function nane
(PROG (BODY)
(GC NIL) ; Turn off garbage collection nessages
(SETQ N (CAR N)) ; Fix the arg frombeing a list to just the nane
; If there's nothing in the EXPR property of the nanmed synbol then
; yell.
(COND ((NULL (SETQ BODY (GET N 'EXPR)))
(RETURN " "NO FUNCTI ON DEFI NI TION. "))
; If a NNL cones back fromED-SUB then the edit was aborted so tell the
; user to confirm Otherwise, the result is bound to BODY and that gets
. replaced in the EXPR property of the naned synbol by the T expression.
((NULL (SETQ BODY (ED-SuB BODY)))
(RETURN * "EDI T ABORTED. "))
(T (PUT N " EXPR BODY))

)))

; ED-SUB does all the real work. It takes any expression and returns it

http://nostoc.stanford.edu/j eff/llisp/appendix.html (1 of 9)6/18/2008 2:21:17 PM

LEARNING LISP - Appendix: The Lisp Editor

; edited as per command. |f an ABORT command is given, ED- SUB returns
; NIL thus indicating to ED that an ABORT was perforned.

(DEFI NE (ED- SUB (LAMBDA (BODY)
; POV starts out NIL by virtue of the way PROG works.
;. WNDOWis sinply used to speed up processing so that that display
; does not have to be recalculated all the tinme. COMAND hol ds the
; command for processing.
(PROG (WORK W NDOW POV COMVAND)
; Loop to EDPRINT in order to redisplay the wwndow. It is reconputed
; here al so.
EDPRI NT
; Print the little "where am 1" display.
(ED- POV- PRI NT POV)
; Print the window in conpressed formand put it in W NDOW
; Although it gets printed conpressed, the function returns
; the full formfor the SETQ
(SETQ W NDOW (ED- PRI NT BODY PQOV))
; Loop here to reinput a conmand if errors occur that do not require
; reconputing or redisplaying the w ndow.
EDREAD
; Read a command word and jamit in COVMAND. Note that the
; i ndividual functions have to (read) their own argunents.
(SETQ COMVAND (READ))
; This is the main conmand deci sion structure,
; If the command was nuneric then novenent is attenpted.
(COND ((NUMBER COVIVAND)
; If the nunber is O then this is an UP command.
; Make sure that there is soneplace to go and then
; sinply lop the end off the POV.
(COND ((ZERO COVIVAND)
(COND ((NULL POV) (PRINT " "NO UP FROM HERE. ")
(GO EDREAD))
(T (SETQ POV (ED DETAIL POV))
(GO EDPRI NT))
))
; Not a O so fix negatives (ED-FIXNUM to the
; corresponding positive and the add that to the
; POV. EDFIXNUMW || return () if the nunber is
; not a |legal elenent of the w ndow.
((NULL (SETQ COMVAND (ED- FI XNUM W NDOW COVMAND)))
(GO EDREAD))
; If no errors occurred then we'll get here with a
; sure positive and | egal position nunber. One

http://nostoc.stanford.edu/j eff/llisp/appendix.html (2 of 9)6/18/2008 2:21:17 PM

LEARNING LISP - Appendix: The Lisp Editor

; last check -- not an atonl (Can't go to those.)
(T (COND ((ATOM (ED- NTH W NDOW COMVAND))
(PRINT ' "CANNOT GO THERE. ")
(GO EDPRI NT))
)
; Ckay -- add the nunmber to the POV and return.
(SETQ POV (CONC POV (LIST COVMAND)))
(GO EDPRI NT))
))
; Print command. An easy one.
((EQUAL COMVAND ' P)
(PP WNDOW (PRINT) (GO EDPRINT))
; Delete command. Gets one arg, fixes it, then replaces
; the POV with the window | ess the deleted el enent.
((EQUAL COMVAND ' D)
(COND ((SETQ WORK (ED- FI XNUM W NDOW (READ)))
(SETQ BODY (ED- REPLACE BODY POV
(ED- DELETE W NDOW WORK)))))
(GO EDPRI NT))
; Next command
((EQUAL COMVAND ' NX)
(SETQ POV (ED- NEXT POV BQODY)) (GO EDPRINT))
; Back command.
((EQUAL COMVAND ' BK)
(SETQ POV (ED- BACK POV BODY)) (GO EDPRI NT))
; Insert is nmuch like delete but it reads WHAT, HOW and
: WHERE and does sone checking first. Al that's done in
; ED- I NSERT- CHECK which returns () if sonethings wong.
((EQUAL COMVAND ' 1)
(SETQ WORK (ED- I NSERT- CHECK W NDOW (READ) (READ) (READ)))
(COND ((NULL WORK) (GO EDREAD))
(T (SETQ BODY (ED- REPLACE BODY POV WORK))
(GO EDPRINT))))
; Go command -- bori ng.
((EQUAL COMVAND ' GO
(SETQ POV (ED- GO (READ) BODY POV))
(GO EDPRI NT))
; Exit -- even nore boring.
((EQUAL COMVAND ' EXI T)
(RETURN BQODY))
; Abort -- sane boringness as Exit, | guess.
((EQUAL COMVAND ' ABORT)
(RETURN ()))
; If nothing worked out then yell at the user and get a

http://nostoc.stanford.edu/j eff/llisp/appendix.html (3 of 9)6/18/2008 2:21:17 PM

LEARNING LISP - Appendix: The Lisp Editor

: new conmand.
(T (PRINT " "I LLEGAL COMIVAND. ")
(GO EDREAD))

)))
; ED- FI XNUM changes negative position values into their positive
; equivalents. If this can't be done then it screans and give nil.

(DEFI NE (ED- FI XNUM (LAVBDA (W NDOW N)
(COND ((OR (ZERO N) (GREATER N (LENGTH W NDOW)
(GREATER (MULT -1 N) (LENGTH W NDOW))

(PRINT ' "I NVALI D ELEMENT. ")

NI L)

((GREATER 0 N) (ADD 1 (ADD (LENGTH WNDOW N)))
(TN

)))

; ED-PRINT does two jobs. It displays the current wi ndow i n conpressed
; formwhere all lists are replaced by "&" so that long lists can be

. easily read. ED-PRINT also returns the current window [in full] so

; that caller can utilize that information and not have to recal cul ate.

(DEFI NE (ED- PRI NT (LAMBDA (BODY POV)
; If this is the right place then print her and return.
(COND ((NULL POV) (PRINT (MAPCAR ' ED- TRANS BODY)) BODY)
;, otherw se standard recursion on the sel ected subel enent.
(T (ED-PRINT (ED NTH BODY (CAR POV)) (CDR POV)))

N N

)))
(DEFI NE (ED- TRANS (LAVBDA (N)

(COND ((ATOM N) N)
(T &

)
)))
. ED- POV- PRI NT and ED- POV- EXPAND are used to display the | exical name
; of the current POV starting with TOP. The only hairiness in this
; Is that in order not to clutter the oblist, after the nane is nade,
; It is REMOBed.

(DEFI NE (ED- POV- PRI NT (LAVBDA (POV)
(PROG (VORK)

http://nostoc.stanford.edu/j eff/llisp/appendix.html (4 of 9)6/18/2008 2:21:17 PM

LEARNING LISP - Appendix: The Lisp Editor

(SETQ WORK (PRI NT (I MPLODE (CONS ' "TOP: "
(ED- POV- EXPAND POV)))))
; Renob the nane unless it was () pov in which case you
; don't want to renpob "TOP:".
(COND (POV (EVAL (LIST ' REMOB WORK))))
)

)))
; This guy just put ":"s in between the parts of the POV.
(DEFI NE (ED- POV- EXPAND (LAVMBDA (POV)
(COND ((NULL POV) ())
(T (CONC (LIST (CAR POV) ':)
(ED- POV- EXPAND (CDR POV))))

)))

; ED-DETAIL is used to renove the tail fromthings -- primarily the POV.

(DEFI NE (ED- DETAI L (LAVBDA (L)
(COND ((EQUAL 1 (LENGTH L)) ())
(T (CONS (CAR L) (ED-DETAIL (CDR L))))

)))

; ED-I NSERT does the task of inserting before/after/ or for an existing
; element in the current window. It is passed the w ndow and three READ
; Inputs that indicate the various argunent to | in order. The type of

; insert should have been norned by called to one of "B", "A", or "F".

(DEFI NE (ED- | NSERT (LAMBDA (W NDOW VWHAT HOW VWHERE)
; The left hand of this cond selects the proper test according
; to the B/A/F option sel ected.
(COND ((COND ((EQUAL HOW' B) (EQUAL WHERE 1))
((EQUAL HOW' A) (EQUAL WHERE 0))
(T (EQUAL VHERE 1)))
; For "For" kill the selected top el enent
(COND ((EQUAL HOW' F)
(CONS WHAT (CDR W NDOW))
(T (CONS WHAT W NDOW)
)
)
; Recursion if we haven't yet found the right place then hold
; the car element and scan the rest of the I|ist.
(T CONS (CAR W NDOW
(ED- 1 NSERT (CDR W NDOW WHAT HOW (SUB WHERE 1))

http://nostoc.stanford.edu/j eff/llisp/appendix.html (5 of 9)6/18/2008 2:21:17 PM

LEARNING LISP - Appendix: The Lisp Editor

))
)
)))
; ED-REPLACE is used to put a wwndow into a structure at a particul ar
; POV point. It breaks the structure up "around" the pov trail, jans
; the new object in place and then zips the structure up again.

(DEFI NE (ED- REPLACE (LAVBDA (BODY POV NEW
(COND ((NULL POV) NEW
(T (CONC (ED- LEFTBREAK BODY (CAR POV))
(CONS (ED- REPLACE (ED-NTH BODY (CAR POV)) (CDR POV) NEW
(ED- Rl GHTBREAK BODY (CAR POV))

;. ED- RI GHTBREAK takes the right of a list beginning with the el enent
; AFTER the Nth. That is, (ed-rightbreak '(1 2 3) 2) = (3)

(DEFI NE (ED- Rl GHTBREAK (LAVBDA (L N)
(COND ((ZERO N) L)
(T (ED-RI GHTBREAK (CDR L) (SUB N 1)))

)

: ED- LEFTBREAK takes the left N elenents of a list. That is,
; (ed-leftbreak '(1 2 3) 2) = (1)

(DEFI NE (ED- LEFTBREAK (LAVBDA (L N)
(COND ((EQUAL N 1) ())
(T (CONS (CAR L) (ED-LEFTBREAK (CDR L) (SUB N 1))))

)))
; ED- DELETE takes a location and sinply returns the wi ndow w t hout the
; specified el enent.

(DEFI NE (ED- DELETE (LAVBDA (W NDOW WHERE)
(COND ((EQUAL 1 WHERE) (CDR W NDOW)
(T (CONS (CAR W NDOW (ED- DELETE (CDR W NDOW (SUB WHERE 1))))

)

http://nostoc.stanford.edu/j eff/llisp/appendix.html (6 of 9)6/18/2008 2:21:17 PM

LEARNING LISP - Appendix: The Lisp Editor
)

; ED- I NSERT- CHECK nornal i zes the input to insert. It fixes nunbers and
. repl aces FOR/ BEFORE/ AFTER for their one letter equival ents.

(DEFI NE (ED- | NSERT- CHECK (LAVBDA (W NDOW WHAT HOW WWHERE)
(COND ((AND (ED- MEMBER HOW' (F FOR A AFTER B BEFORE))
(SETQ WHERE (ED- FI XNUM W NDOW WHERE)))
(ED- | NSERT W NDOW WHAT

(COND ((EQUAL HOW' FOR) ' F)
((EQUAL HOW' AFTER) ' A)
((EQUAL HOW' BEFORE) ' B)

) (T HOW

WHERE

)

)
(T (PRINT ' "ILLEGAL | NSERT COMMAND. ")
()

)))

. ED-BACK, ED- GO, and associ ated routines were added to the editor
; by Stewart Schiff man.

; ED-BACK arranges the POV so that the w ndow has shifted treew se left.
; If you hit the front, an error is returned. The tough part of these

; maneuvers is that they have to skip over atom c elenents since the
;Wi ndow cannot contain an atom

(DEFI NE (ED- BACK (LAMBDA (POV BQODY)

(PROG (CVD OPOV W NDOW
(SETQ OPOV POV)

BLOOP
; Try to nove the end pointer in the POV back by one.
(SETQ CMD (SUB (ED- NTH POV (LENGTH POV)) 1))
(SETQ POV (ED-DETAIL POV))
; Figure out what the w ndow | ooki ng down on this one sees.
(SETQ W NDOW (ED- SETW BODY POV))
; Test for hitting the front. If not then fix the POV.
(COND ((EQUAL CVD 0) (PRINT ' "CANNOT GO BACK. ")

(SETQ POV OPOV) (RETURN POV)
)

(T (SETQ POV (APPEND POV CMD))

http://nostoc.stanford.edu/j eff/llisp/appendix.html (7 of 9)6/18/2008 2:21:17 PM

LEARNING LISP - Appendix: The Lisp Editor

(SETQ W NDOW (ED- SETW BODY POV)))
)
(COND ((ATOM W NDOW (GO BLOOP)))
(RETURN POV)

)))
; ED- CHNUM and ED- SETW are used by BK and NX to get w ndow i mages and
; check for illegal position val ues.

(DEFI NE (ED- CHNUM (LAVBDA (W NDOW N)
(NOT (GREATER N (LENGTH W NDOW))
)))
(DEFI NE (ED- SETW (LAVBDA (BODY POV)
(COND ((ATOM BODY) BODY)
((NULL POV) (MAPCAR ' ED- TRANS BODY) BODY)
(T (ED- SETW (ED- NTH BODY (CAR POV)) (CDR POV)))

)))
; ED-NEXT is exactly |ike ED BACK except that it noves forward instead
; of backward [obviously].

(DEFI NE (ED- NEXT (LAVBDA (POV BODY)
(COND ((NULL POV) (SETQ POV ' (3)))
(T (PROG (CVD OPOV W NDOW
(SETQ OPOV POV)
| LOOP
(SETQ CVD (ADD (ED-NTH POV (LENGTH POV)) 1))
(SETQ POV (ED- DETAI L POV))
(SETQ W NDOW (ED- SETW BODY POV))
(COND ((NULL (ED- CHNUM W NDOW CMVD))
(PRINT ' "CANNOT GO FORWARD. ")
(SETQ POV OPOV) (RETURN POV)
)
(T (SETQ POV (APPEND POV CMD))
(SETQ W NDOW (ED- SETW BODY POV)))
)
(COND ((ATOM W NDOW (GO | LOOP)))
(RETURN POV)

http://nostoc.stanford.edu/j eff/llisp/appendix.html (8 of 9)6/18/2008 2:21:17 PM

LEARNING LISP - Appendix: The Lisp Editor

;. ED-GO sinply replaces the POV. It has to nake sure that the new
: value is not an atom

(DEFI NE (ED- GO (LAMBDA (NPOV BODY POV)

(COND ((ATOM NPOV (PRINT ' "I LLEGAL GO COMMAND: MUST BE A
LIST.") POV)

(COND ((ATOM W NDOW (PRI NT ' "CANNOT GO THERE.") POV)
| (T NPOV)))
)))

H

;. ED-NTH and ED- MEMBER are just utilities that work as one woul d expect.
; That is, they return the Nth elenent of a list and find out whether a
; particular target is in a list.

(DEFI NE (ED-NTH (LAVBDA (L N
COND ((EQUAL 1 N) (CAR L))
(T (ED-NTH (CDR L) (SUB N 1)))

N N

)))
(DEFI NE (ED- MEMBER (LAMBDA (A L)

(COND ((NULL L) ())
((EQUAL A (CAR L)) T)
(T (ED-MEMBER A (CDR L)))
)
)))

Contents | The P-Lisp Interpreter

http://nostoc.stanford.edu/j eff/llisp/appendix.html (9 of 9)6/18/2008 2:21:17 PM

LEARNING LISP - index

VBARMING LI

Contents

Note: Wordsin CAPITAL lettersindicate P-L1SP built-ins or functions defined in this book.
Phonebook representation

" to enclose atoms EXPLODE function
& notation in ED EXPRs
. comment character

Factorial 12
ADD function FEXPRs1 2
Algorithm specification FLAMBDA
Alphanumeric atom Floating point 1 2
Alternating saves Form of call

AND function
APPLY function
Arguments12 3

Formal arguments 1 2
Function definition
Functionname1 234

Assumption specification Function tracing

Atom12
ATOM predicate
Atomvaluel 2

Balanced parentheses

Garbage collector

GET function

Global environment
GO function (not in ED)

Binary tree

Binding

Branches

Built-in functions 1 2

CAR function

CDR function
Cells

Collection variable
Comments (in Lisp)
Compiler

CONC function
COND function 1 2
CONS function

GREATER predicate

Help functions1 2

IMPLODE function
INT function
Internal consistency

Interpreter
Interrupt 1 2

LAMBDA 123
LAMBDA binding
LAMBDA list
Leaves

http://nostoc.stanford.edu/jeff/llisp/idx.html (1 of 2)6/18/2008 2:21:21 PM

Pig Latin
Pig Latin agorithm

Point of view [POV] in ED

Polynomials

Polynomial representation in Lisp

Predicate 1 2

Pretty printing (see PPRINT in ED)

Problem specifications
PROG 12

function 12

labels

local variables

Prompts

Properties
Pseudo-code

PUT function

Quote (double)
Quote (single)
QUQOTE function

READ routine
Read-Eval-Print 1 2
Recursion 12

REM function
RETURN function

Return key
Root

SAVE function

LEARNING LISP - index

Control structures Levels

Control-C List

CxxxxR abbreviations List elements
LIST function

DEFINE function123 [iteral stom
LOAD function

ED (P-LISP EDitor) 12
& notation
ABORT command
BX command
DELETE command
EXIT command
GO command
INSERT command
level indicator
listing of ED code
number commands
NX command
P command
POV
PPRINT function
windows

ELIZA

Environment 1 2

EQUAL predicate

Errors123

EVAL function

Contents

http://nostoc.stanford.edu/jeff/llisp/idx.html (2 of 2)6/18/2008 2:21:21 PM

Local environments

Local PROG variables

Locdls

Loop 12

Scope

Self-defining atom
SETQ function 1 2

Side effect

Stack of values

SUB function
Subexpression

SUBR property
Suspended evaluation 1 2

System

MAPCAR function123 T1234
Meaning of function names Termination condition 1 2

MEMBER function

MULT function

Nested lists

NIL12345678
NOT predicate 1 2
NULL predicate1 2

NUMBER predicate

Numeric atom

OBLIST
OR function

P-L1SP interpreter

Page zero

Time-date stamp saves
Top down programming
Top level elements
TRACE function12 3
Tree

Undefined atom
UNTRACE function

Vaue
Vauestack 12
Version saves

ZERO predicate

	stanford.edu
	LEARNING LISP - Contents
	Jeff Shrager
	LEARNING LISP - Preface
	LEARNING LISP - Getting Started
	LEARNING LISP - Lists, CAR and CDR
	LEARNING LISP - More Lists
	LEARNING LISP - Atoms and Values
	LEARNING LISP - Bag of Predicates
	LEARNING LISP - Defining Your Own Functions
	LEARNING LISP - Help Functions
	LEARNING LISP - How to Save the World
	LEARNING LISP - This Thing Called Lambda
	LEARNING LISP - The Conditional
	LEARNING LISP - Simple Recursion
	LEARNING LISP - The Lisp Editor ED
	LEARNING LISP - Lists as Trees
	LEARNING LISP - Trees and Recursion
	LEARNING LISP - A Style of Programming
	LEARNING LISP - Scope Considerations
	LEARNING LISP - Maps
	LEARNING LISP - Isplay Ogrammingpray
	LEARNING LISP - FEXPRS: Unevaluating Functions
	LEARNING LISP - Control Structures
	LEARNING LISP - Eval and Apply
	LEARNING LISP - Properties and Lambda Expressions
	LEARNING LISP - Differentiating Polynomials
	LEARNING LISP - Simplifying Polynomials
	LEARNING LISP - Efficiency and Elimination of Recursion
	LEARNING LISP - ELIZA
	LEARNING LISP - The P-Lisp Interpreter
	LEARNING LISP - Appendix: The Lisp Editor
	LEARNING LISP - index

